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+2 The Mercurous Di-Ion (Hg2 ), A Theoretical Study 

Randy P. Neisler 

Abstract 

Electronic structure calculations are performed on the ground 

+2 state of the mercurous di-ion, Hg2 , using relativistic effective 

core potentials. In addition, a parallel calculation is carried out 

on a non-relativistic basis where the speed of light is assigned a 

5 value of c•lO a.u. Equilibrium bond distances, R, and dissociation 
e 

energies, D , are calculated at the self-consistent field (SCF) level e 

using spin-averaged effective potentials and at the configuration 

interaction (CI) level, which includes spin-orbit terms. The CI bond 
0 

distances and dissociation energies are 2.539 A and -26.3 kcal/mole, 
0 

relativistically, and 2.819 A and -49.6 kcal/mole, non-relativistically. 

These results are compared with previous values from a Hartree-Fock-

Slater calculation. Similarities with isoelectronic gold dimer, Au2 , 

are also discussed. 

The mercurous di-ion is metastable in the gas phase but is stable 

in aqueous solution. A continuum dielectric method is used to 

approximate the free energy, enthalpy, and entropy of hydration of 

the system. The ion is placed within a dielectric cavity of pre-

determined shape with various constraints used to determine the cavity 

size. Results are analyzed in terms of reaction enthalpies with 

comparisons made to experimental values. 
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Chapter 1 

INTR.ODUCTIOH 

Chemical systems involving the heavier elements reveal unusual 

properties. Undoubtedly, these properties can in part be attributed to 

the large number of electrons present. From the time of Mendeleev, 

surprising trends have been observed in the periodic table as the atomic 

number increases. In recent years, several authors have noted a 

correlation between these trends and the inherent relativistic effects 

of the systems containing the heavier elements.l-6 

Mercury is an element of particular interest due to its surprising 

physical and chemical properties. Its liquid standard state and the 

unusual stability of many of its compounds relative to other. members of 

its group are but a few of the traits attributed to the relativistic 

effects mentioned previously.2•3 Mercurous di-ion, Hg2+2, the system 

considered in the following chapters of this dissertation, is a molecule 

of remarkable stability. Identical to gold dimer, Au2 , in electronic 

structure, mercurous di-ion is expected to show a similar ;elativistic 

stabilization of its bond energy as determined in the next chapter. 

Although unusually stable in solution, mercurous di-ion readily 

dissociates as a gaseous species. Hence, in the subsequent chapters a 

model is developed to determine the stabilization due to solvation 

effects, which are then used to modify the gaseous internal energy 

curves. 

1 



Chapter 2 

ELECTRONIC STRUCTURE CALCULATIORS OF THE MERCUROUS DI-IOH 

2., 1 BACKGROUND 

It has long been realized that the majority of chemical and 

physical properties of atomic and molecular systems are dominated by 

valence electron interactions with the core electrons providing 

shielding effects and an effective field. A method that requires only 

the valence electrons to be considered while representing the core with 

an effective potential is most desirable given the high computer costs 

of all-electron calculations involving atoms with many electronse 

Historically, the concept of treating an electron as a subset of 

the other electrons present originated with the work of Fock, Vesselow, 

and Petraschen.7 The use of effective potentials received theoretical 

justification in 1959 from Phillips and Kleinman8 and was extended to 

many valence electrons by Weeks and Rice.9 

A variety of methods are now used to generate effective potentials 

and are described in the review by Krauss and Stevens. 10 Our 

method,6•11- 21 outlined more fully in the following sections, involves 

forming pseudo orbitals using relativistic Dirac-Fock orbitals and then 

inverting the one-electron equation11 

1 2 REP 
(- /2 v -z/ r +U + w >x • e: y v v v v·-v (2.,1) 

where uvREP is the effective potential, Xv is the pseudo orbital, and e:v 

is the Dirac-Pock orbital energy. Furthermore, Wv includes the coulomb 

and exchange terms from the interaction of the electron in orbital v 

2 



with all the other electrons in the valence region. The reliability of 

computations using potentials generated in this manner in comparison to 

all-electron calculations is well documented, 10 yielding results with 

agreement often to within a few percente 

As previously stated, effective potentials can be found once the 

Dirac-Fock orbitals are determined. The next section describes the 

procedure used in finding these orbitals. 

3 



2. 2 EFFECTIVE CORE POTDTIALS PROM ATOMIC DBF CALCULATIONS 

2e2.1 The DBF approxiaation 

The Dirac-Fock method22 , 25- 27 involves the solution of the energy 

equation with the relativistic Hamiltonian for n electrons given by 

where the exchange corrections approximated 

terms are neglected. The terms in equation 

the distance of electron i from the nucleus 

whose 

a -X 

s -

components are 

0 0 0 1 
0 0 1 0 
0 1 0 0 
1 0 0 0 

1 0 0 0 
0 1 0 0 
0 0 -1 0 
0 0 0 -1 

t 

' 

4x4 matricies 

0 0 0 -1 
0 0 i 0 a - It a 

y 0 -i 0 0 
i 0 0 0 

and 

(2.2) 

by the Breit interaction 

(2.2} are as follows; ri is 

of charge z, "i is a vector 

0 0 1 0 
0 0 0 -1 -z 1 0 0 0 
0 -1 0 0 

The eigenfunctions for the Hamiltonian in equation (2e2} are four 

component Dirac spinors 

(2e3} 

with pn~(r} and Qn~(r) defined as the large and small radial components, 

respectivelye The angular portion is expressed as 

(2.4) 

4 

.. 



.. 

where C(1~2 j;m-a,a) are Clebsch-Gordan coefficients, yAm-a(a,~) is a 

spherical harmonic and t~;2 are Pauli spinors. The quantum number kappa 

is defined as IC • 1 if j • 1 -1/2 and IC • -(1+1) if j • .t + 1j2 e 

Furthermore, the index A is A• I y+ 1j~ - 1;2 where y is either IC or ":"IC as 

indicated in equation (2.3). 

For a given value of kappa the radial components PniC(r) and QniC(r) 

form an orthonormal set, 

-I 
0 

and, furthermore, they satisfy the following coupled differential 

equations 

dP ~r)/dr + ICP (r)/r - {2/a+a(Vi(r)-£ )}Q (r) • XQ(r) niC niC niC niC 

(2.5) 

(2.6) 

(2.7) 

where Vi(r) and XP,Q(r) are the coulomb potential and exchange terms, 

respectively, a - 1/c is the fine structure constant, and £niC is the 

one-electron energy. 

Computer codes developed by Desclaux23 •24 and based upon the 

foundational work of Grant25- 27 are used to solve the two first order 

coupled differential equations, in which a change of variable is made 

with t•ln r. The resultant equations are then 

dP/dt + ICP- { 2r/a + ar(Vi(r) - £niC)} Q • rXQ 

dQ/dt -ICQ + ar{ v1(r)- £niC} P • rXP. 

(2.8) 

(2.9) 
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These are solved using the five point Adams predictor-corrector method28 

where 

(2.11) 

(2.12) 

are the predictor, corrector, and the resultant valueG The Yn term 

denotes the solution at the nth iteration. Furthermore, the prime 

implies differentiation and h is a constant interval. · 

The integration is performed both from the origin outward and from 

practical infinity inward. The outward integ~ation begins from a power 

series expansion with a point charge nucleus and the inward starts from 

the asymptotic form P(r) • pexp(-ur), Q(r) • qexp(-ur) with 

u • (£- e2/4c2f12and up • (2c- £/2c)q. The energy eigenvalue£ is 

then varied until the inward and outward integrations give the same 

value for the large component at the match point. In gen&ral, two 

different values will exist for the small radial component, Qinner and 

Qouter• unless £ has been chosen correctly. A functional integration of 

£ provides a corrected value and the integration processs is repeated 

until convergence is achieved. 

The Dirac-Fock calculation is performed, first, in a fully 

relativistic manner and, again, in the non-relativistic limit. The non-

relativistic calculation involves assigning a large enough value to the 

speed of light, in our case c • 105 a.u., such that the small radial 

6 



components approach zero and the large radial components approach the 

non-relativistic Bartree-Fock valuese 

2.2.2 ~sulta of DBF calculation 

2 
The S lf2 ground state and six excited states are determined for the 

mercurous ione Excited state orbitals are obtained by promoting the 

lone 6s electron to an excited orbital while the remaining electrons 

maintain their ground state wave functions. The valence electron 

configurations of the mercurous ion considered are Sd106s, Sd106p*• 

Sd106p, Sd10sf*, 5d10sf, 5d10sg*, and Sd10sg, where the* represents the 

orbital with the lower j value. The one-electron energies obtained from 

the DHF calculation, both relativistic and non-relativistic, along with 

their corresponding Rzaax values for the large radial component are 

listed in table 2.1. 

From table 2.1 it is apparent that electrons of low angular 

momentum have lower relativistic orbital energies as compared to those 

obtained in the non-relativistic limit. Similarly, those with high 

angular momentum have higher orbital energies. In fact, the 

-relativistic shift in energy is great enough to change the ordering of 

some orbitals as seen in the 58 and 4f,4f* values, where the Ss orbital 

is now lower in energy than.the two 4f orbitals. A similar trend is 

seen in a comparison of 1\ma.x values for the large radial components. 

The electrons of low(high) angular momentum exhibit a 

contraction(expansion) of the large radial component in the relativistic 

case as compared to the non-relativistic. 

Another important relativistic effect, the spin orbit splitting, 

can be obtained from the orbital energies of table 2.1. In the valence 

7 



Table 2.1: 

Hg+ orbital energies and Rmax values are obtained from DHF 

calculations(a.u.}. The orbitals 1s-6s are from the (core}Sd106s1 

* ground state configuration, whereas the 6p -Sg orbitals are from excited 

states in which only the lone 6s electron is promoted to higher 

electronic states while the remaining orbitals maintain their ground 

state configurations (see text}. 

ORBITAL REL(-£) NREL(-£} REL Rmax NREL Rmax 

ls 3.0765e 03 2.7790e 03 1.0226e-02 1.2257e-02 
2s 5.5086e 02 4.7103e 02 5.9355e-02 6.8266e-02 
2p* 5.2718e 02 4.5247e 02 4.37lle-02 5.2983e-02 
2p 4.5547e 02 4 .. 5247e 02 S.ll65e-02 5.2983e-02 
3s 1.,3350e 02 1.1343e 02 1.6698e-01 1.8622e-01 
3p* 1.2296e 02 1•0463e 02 1.5589e-01 1.7530e-01 
3p 1.0687e 02 1.0463e 02 1.7090e-01 1.7530e-01 
3d* 8.9758e 01 8.8436e 01 1.3318e-01 1.3772e-01 
3d 8o6342e 01 8.8436e 01 1 .. 3738e-01 1.3772e--01 
4s J.,0988e 01 2 .. 5864e 01 3.,7667e-01 4., 1450e-01 
4p* 2.,6449e 01 2 .. 1990e 01 3.,7530e-01 4 .. 1394e-Ol 
4p 2 .. 2512e 01 2Ql990e 01 4 .. 0515e-Ol 4 .. 1394e-01 
4d* 1.5121e 01 1.490le 01 3 .. 9813e-Ol 4.0648e-01 
4d 1.4377e 01 1.4901e 01 4.0780e-01 4.0648e-Ol 
4f* 4.7970e 00 5.3036e 00 3.6606e-Ol 3.6309e-Ol 
4f 4 .. 6358e 00 S.,3036e 00 3.7089e-01 -..3.6309e-01 
Sa 5.4297e 00 4.4721e 00 8.3653e-01 9.2078e-Ol 
Sp* 3.8655e 00 3.1438e 00 8.8214e-01 9.7402e-01 
Sp 3.1704e 00 3.1438e 00 9.5745e-01 9.7402e-01 
Sd* 9. 7539e-Ol l.0056e 00 1.1370e 00 1.1491e 00 
Sd 8.9965e-01 1.0055e 00 1.1764e 00 1.1491e 00 
6s 6o3924e-Ol 5.3500e-01 2 .. 2248e 00 2.5550e 00 
6p* 4ol858e-Ol 3 .. 6935e-01 2.,7813e 00 3.,1577e 00 
6p 3o814le-01 3 .. 6935e=Ol 3.,0945e 00 J.,l577e 00 
Sf* 1 o2598e-<H 1 .. 2591e=01 7 .. 8743e 00 7 .. 9624e 00 
Sf 1 .. 2607e-Ol 1.,2591e-01 7.8616e 00 7.9624e 00 
Sg* 8.0010e-02 8.0006e-02 1.2505e 01 1.2506e 01 
Sg 8.0010e-02 8.0006e-02 1.250Se 01 1.2506e 01 
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region, only the 5d*,5d and 6p*,6p orbitals have significant splittings 

equivalent to 2.0610 and 1.0115 ev for each orbital pair, 

respectively. The 5f*,5f and Sg*,Sg orbital pairs have negligibly small 

splittings since they are very loosely bound. 

2e2e3 Pseudo orbitals 

Of the various methods used in generating pseudo 

orbitals10 •15 •29- 32 we use the procedure developed by Christiansen15 in 

which shape consistent orbitals are formed where the pseudo orbitals are 

identical to the Dirac-Fock orbitals beyond a prescribed match point. 

In this method, the dominant criterion in forming pseudo orbitals is 

that the Wv in equation (2.1) should be the same ·regardless of whether 

the true orbitals or pseudo orbitals are used. Although slight 

differences in Wv are unavoidable when using pseudo orbitals, these 

differences are judged unimportsnt15 if confined to a small region about 

the nucleus whereas exact equality with the true orbital at large r is 

essential. The differences in Wv for small r are only that which are 

necessary to satisfy the criteria of a normalized, smooth, and nodeless 

orbital. --
The pseudo orbitals are formed using only the large component of 

the Dirac-Fock wavefunction since the effect of the small component is 

negligible in the valence region. 11 This methodology is necessary since 

nodes cannot be removed simultaneously from both the large and small 

components. 

The pseudo orbitals are defined in two sections. The first section 

extends from infinity to some match point, ~atch• and is equivalent to 

the large radial component from the DHF calculation. The other section 

9 



extends from Rmatch to the origin and is expressed as a five term 

polynomial in r with a lead power, typically, of 1 + 2. 

Smoothness criteria require that the polynomial have the same value 

and the same first, second, and third derivatives as the outer wave 

function at the point Rmatch• Furthermore, it is to have no nodes and 

not more than two inflexions. or more than three inflexions in its first 

derivative. Additionally, the pseudo orbital must be normalized and the 

value of Rmatch is to be less than Bmax• The lead power of the 

polynomial expansion is reduced from 1 + 2, if necessary, to satisfy 

this criterion. 

The pseudo orbitals for the mercurous ion are formed from the 

wavefunctions of section (2.1). The (core)Sd106s1 configuration is used 

to construct pseudo orbitals for the s1/ 2 , d3, 2 , and d5/ 2 components. 

In addition the six excited states are used for constructing the p112 , 

PJ/2 , f 5, 2 , f7/ 2 , 1712 , and g9/ 2 pseudo orbitals. Table 2.2 contains a 

list of the lead powers used in the polynomial expansion and a 

comparison of !match for the pseudo orbitals and Rmax for the DHF large 

radial component. Due to the nodeless character of the Sg orbitals, the 

entire DHF radial function is used as the pseudo orbital,:Snd, hence, 

these are not included in the table. Since the values of Rmatch are 

below those of Rmax• it is clear that the dominant contribution to the 

pseudo orbitals is from the DHF radial component as desired. 

2.2.4 Effective potentials 

From the pseudo orbitals, effective potentials are obtained Which 

satisfy the one electron equation11,29 

10 
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Table 2.2: 

. + 
Ruaatch vs Rmax values for Hg valence orbitals(a.u.), where N is the 

lead power in the polynomial expansion of pseudo orbital. 

ORBITAL N REL Rmatch REL Rmax NREL Rmatch NREL Rmax 

Sd* 4 1.0648e 00 1.1370e 00 l.0648e 00 1.149le 00 

Sd 4 1.1194e 00 1.1764e 00 1.0648e 00 1.1491e 00 

6s 2 2.0397e 00 2.2248e 00 2.2S42e 00 2.SS50e 00 

6p* 3 2.2542e 00 2.7813e 00 2.4913e 00 3.1577e. 00 

6p 3 2.4913e 00 3.0945e 00 2.4913e 00 3.1S77e 00 

Sf* 3 6.1276e 00 7.8743e 00 6.1276e 00 7 .9624e 00· 

-Sf 3 6.1276e 00 7.8616e 00 6.1276e 00 7.9624e 00 

.. 



2 REP · (- lf.2 V - Z/ r + U + W ) X • £ X v v v v v (2.13) 

.which is described on page 2c 

Equation (2.13) can be solved for UvREP provided Xv is nodeless, 

hence, 

UREP • ( {£ + 1J.2 Vl+ Z/r - W )x 1/x • 
v v v v v 

{2.14) 

Furthermore, the overall potential for an atom involves sums over 1, j, 

and 11 

j 
t 

JP-j 
u~Pitjm><tjml {2.15) 

where the projection operators are two component spinors equivalent to 

the angular factors of the two large components of the Dirac spinors. 

In principle the sum over t is from zero to infinity, however, it has 

been shownll that u1jREP does not change appreciably after 1 exceeds by 

one the highest value of 1 in the core. The expression for uREP is now 

j 
t [UREP_ UREP] jtjm)(tjml• 

JP-j tj LJ 
(2.16) 

However, for use in standard molecular SCF programs based on A-S 

coupling12 , the potentials are spin-averaged according to the expression 

(2.17) 

This averaging is advantageous since, considering the relativistic 

12 
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effects contained in the effective potentials, only the spin-orbit 

effect is eliminated in the process but is eventually recovered in the 

CI calculation. The overall potential is now written aa · 

L I. 
tf'REP - ttREP + t t [ ~p- ~p 1 l.r.m><tm I 

L t•O ~-1. I. L 
(2.18) 

which compared with equation (2.16) is no longer j dependent. 

2.2.5 Spin-orbit operator 

Spin-orbit effects are re-introduced at the CI level by use of a 

spin-orbit operator19 defined as the difference of the uREP and uAREP, 

-L-1 REP REP 
t (Ut,t+ 1J.2(r) - U.r.,.r.-1.t2(r)) 

1.•1 

(2.19) 

where the difference ULJREP(r) - uLAREP(r) is negligible and, therefore, 

is not included in the operator. The spin-orbit terms are included in 

the CI Hamiltonian and placed on an equivalent level with the electron 

correlation. Since the spin-orbit matrix elements may be complex, a 

procedure is used which is a modification of the diagonalization routine 

developed by Davidson33 made to accommodate complex elements. 

13 



2. 3 SCF CALCIJLATIORS 

It is apparent that within the averaged relativistic effective 

potential lie all the dominant one-electron relativistic effects, 

excluding spin-orbit, which influence the valence electrons, both 

directly and indirectly. The valence electrons can now be treated non­

relativistically11 by solving the Hartree-Fock energy equation with the 

inclusion of uAREP in the Hamiltonian 

H • 
N 
I (-Z /r + uAREP)} + 

a au a 
1/r uv {2.20) 

where ny is the number of valence electrons, and N is the number of 

nuclei. Za is defined consistently with the type of effective potential 

used in the calculation. For uAREP, we designate Za to be the effective 

nuclear charge equal to the nuclear charge minus the number of core 

electrons. 

2 .. 3.1 Basis se~ 

The valence orbitals are expressed in terms of expansions in Slater 

functions. The double zeta basis set in table 2.3 is derived from 

previously optimized functions of the mercury atom obtained from earlier 

preliminary calculations. The Sd and 6s zeta values are from the ground 

state 1s atomic configuration, and the 6p values are from the lowest 

atomic 3p state with the valence configuration 6s16p1• The zeta's of 

the atomic Sd and 6s functions for the relativistic calculation are 

increased by 10% to account for the contraction of these orbitals with 

the removal of one of the 6s electrons. Additionally, the 6p functions 

14 
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Table 2.3: 

Bg+ STO valence basis set 

RELATIVISTIC NON-RELATIVISTIC 

c6s(1) 3.405 3.095 

C6s(2) 1.975 1.796 

c6p(1) 2 .. 463 2.463 

t6p(2) 1..313 1 .. 313 

t5d(l) 5.090 5.090 

c5d(2) 2.705 2.705 



are kept at the atomic values, since the 6p orbital contracts much less 

than the Sd or 6s. 

As evident in table 2.1, the differences due to relativistic 

effects are small for the Sd and 6p orbitals as compared to the 6se The 

relativistic zeta values, therefore, are used to describe the non-

relativistic 5d and 6p orbitals, whereas, the atomic 6s zeta values 

represent the corresponding non-relativistic orbital of the ion, which, 

being expanded with respect to its relativistic counterpart, is more 

similar to the atomic orbital. 

2 .. 3.2 SCF results for aercarous ion 

The reliability of the basis set can be determined by comparing the 

orbital energies obtained at .the SCF level of a calculation on the 2s 

ground state of the mercurous ion using relativistic and non-

relativistic effective potentials and treating only the outer 11-

electrons with those from the all electron results of section (2.1)e 

Table 2c4 reveals good agreement between the two methods for the valence 

orbitals, implying that the basis set is accurately representing these 

orbitals in the valence region. 

2.3.3 SCF results for the di-ion 

The SCF molecular calculation involves a 22 electron single 

configuration in which the two 6s electrons are paired in a a molecular g . 

orbital. The orbital coefficients near the bond distance in both the 

relativistic and non-relativistic cases reveal the bond to be 

predominantly a 6s-6s sigma bond, see table 2.5. Furthermore, the 

relativistic contraction of s type orbitals leads to an expectation of a 
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Table 2.4: 

Relativistic and non-relativistic valence orbital energies(a.u.) for 

2s Hg+ as obtained from effective potential and all-electron 

calculations. 

£5d3/2 
£ 
5d5/2 

REL all -e 0.975 0.900 0.639 

REL AREP 0.947 0.636 

NRELall - 1.01 e 0 .. 535 

NREL EP 1.02 0.534 
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Table 2.5: 

SCF orbital coefficients for ground state ag2+2. 

RELATIVISTIC NON-RELATIVISTIC 

R(a.u .. ) 5.0 5 .. 0 

sa 0.2855 0 .. 2702 0.,2620 0.2417 

0.3163 0 .. 3472 Oo3280 0.3562 

pa 0.1354 0 .. 1203 0.1513 0.1317 

0.0202 0.0415 0.0406 0.0670 

da -0.1010 -o.0827 . -0.0638 -0.0528 

-0.0764 -0.0577 -0.0348 -0.0247 
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shorter bond length in the relativistic calculation as compared to the 

non-relativistic. From a cubic fit of the results, equilibrium bond 

distances of 4.78 and 5.31 a.u. and dissociation energies relative to 

two dissociated mercurous ions of -0.05746 and -0.09259 hartrees are 

obtained for the relativistic and non-relativistic SCF calculations, 

respectively. The dissociation energies are negative due to the 

electrostatic repulsion in the system. Hence, the di-ion is metastable 

+ as a gaseous species dissociating at equilibrium to two Hg • 

Nevertheless, as discussed below, Hg2+2 is stable in the aqueous phase 

where solvation effects lower the energy of the system sufficiently to 

provide positive dissociation energies. 



2.4 CI CALCULATIONS 

A CI calculation, including spin-orbit terms, is performed for the 

ground state of ag2+2 , involving all 10 single and 43 double excitations 

from the reference configuration (core)6sag2.. Because of computing 

limitations, the number of SCF orbitals included are 6, 0, 2, 2 for a, 

6 , w , and w
1 

as opposed to a complete set of 16, 4, 8, 8. xy x 

Excitations from the d-type orbitals either 6 2 2 or 6 are excluded, x -y xy 

not only as a result of limitations in the computing process, but also 

due to our assumption that the bond involves principally a 6s-6s sigma 

bond and the configurations involving d-type orbitals have little effect 

on the ground state energy. 

Figure 2e1 contains the energy curves for the CI calculations with 

respect to the same dissociation limit as in the SCF calculation. The 

energy curves have vibrational frequencies of 182 cm-1 for the 

relativistic result and 115 cm-1 for the non-relativistic. Table 2.6 

lists the equilibrium bond distances and dissociation energies for the 

curves of figure 2.1 as well as the results from the SCF calculations. 

Table 2 .. 7 contains the CI coefficients for the two most dominant 

configurations. Clearly, the configuration (core)6sau2 his a larger 

effect on the energy of the ground state with increasing R. As seen in 

table 2.6, the influence of this additional configuration causes a 

lengthening of the CI equilibrium bond distances with respect to the SCF 

results even though the di-ion is stabilized energetically. All other 

configurations, such as those involving the 6pa and 6p• orbitals, 

resulting from single and double excitations out of the 6sa 2 orbital g 

have CI coefficients less than 0.08, which seem to be negligible in 

affecting the bond energy. 

20 



Figure 2.1: 

Relativistic (REL) and non-relativistic (NREL) CI energy curves for 

. +2 ground state mercurous di-ion, ag2 (g), with respect to a dissociation 

limit of 2Hg+(g) at the SCF level. 

21 
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Table 2.6: 

Ground state ag2+
2 SCF and CI 

bond distanees(Re) and dissociation energies(De). 

REP SCF 2.531 -36.1 

NEP SCF 2.810 -58.1 

REP CI 2.539 -26.3 

NEP CI 2.819 -49.6 --
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Table 2. 7: 

Cl coefficients for ground state ag2+2. 

RELATIVISTIC NON-RELATIVISTIC 

R(a.u.,) 6sa 2 6sa 2 6sa 2 6sa 2 g u g u 

4 .. 0 .. 9942 e0467 

4.,5 &9924 .. 0681 .9918 .0431 

5 .. 0 .. 9884 .1089 .9900 .0599 

-5.5 .9887 .0866 

7.0 .. 8908 .. 4372 .9574 .2469 
.. 



Relativistic effects are evident in the results for Bg2+
2• A 

relativistic contraction of the bond distance equal to 0.28 A for both 

SCF and CI values is apparent. Furthermore, the bond is stabilized due 

to relativistic effects by 22.0 kcal/mole at the SCF level and by 

23.3 kcal/mole at the CI. It has been proposed by a number of 

authors2•3•5 that these effects, the contraction and stabilization of 

the bond, are a direct result of the relativistic effects on the valence 

6s orbital, described in section (2.2.2), however, a detailed analysis 

is difficult as noted by Ross and Ermler.34 Furthermore, there are 

others35•36 who view the contraction and stabilization of the bond as a 

direct relativistic effect, unrelated to effects on the atomic orbitals. 

An analysis of the accuracy of our results require comparisons 

either with previous calculations on Hg2+2 or with results of similar 

molecular systems. Although there are no prior effective potential 

+2 calculations on ag2 , results using the Bartree-Fock-Slater method are 

available.35 Furthermore, the isoelectronic molecule, Au2, is a very 

appropriate molecule for comparison purposes with Hg +2 since ample 2 . 

effective potential and all-electron calculations have been performed on 

this system. We first discuss the similarities with the i~sults for Au2 

which have identical computational procedures, and then we compare our 

results with those from the HFS method. 

As in our approach, Ross and Ermler have performed REP calculations 

on Au2 involving the 10 d and single s valence electrons of the gold 

atom while representing the inner 68 electrons by an effective core 

potential. A more extensive CI calculation was involved which included 

single excitations from the d-type orbitals. The resulting bond 

distance and dissociation energy are contained in table 2.8. A non-
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relativistic effective core potential calculation has been performed on 

Au2 by Christiansen and Ermler~37 Although the bond distance is an SCF 

result, we assume this to be sufficient for comparisons. The bond 

distance is also contained in table 2.8~ Finally, an all-electron non­

relativistic calculation by Lee et a1. 13 on Au2 is included in table 2.8 

as well. 

Even though there is not a non-relativistic dissociation energy 

value for Au2, a comparison with ag2+2 can be undertaken in terms of the 

bond distance. In particular, from table 2.8, we determine a bond 

contraction for Au2, in comparing REP and NEP results, equivalent to 

0.36 A versus a contraction of 0.28 A for ag2+2• The agreement is 

acceptable since, in comparing the two, we are ass~ing that the 

expansion due to the electrostatic repulsion within the ag2+2 system is 

balanced by the contraction resulting from the additional positive 

charge on each atomic core. 

Nevertheless. if we remove the electrostatic repulsion from Hg2+2 

by subtracting the coulombic interaction energy for two positive point 

+ charges, representative of 2Hg , from the configuration interaction 

energy of the di-ion, the resulting bond distances and di~sociation 

energies equal to 2.46 A and 105.7 kcal/mole, relativistically, and 

2.66 A and 71.8 kcal/mole, non-relativistically, are obtained. The 

agreement of the difference in the bond distance, 0.20 A, with the 

difference between Au2 REP-CI and Au2 NREL all~electron results 

equivalent to 0.19 A, is perhaps misleading, since our non-relativistic 

method involves effective potentials and is not an all-electron 

calculation. The addition of CI to the NEP calculation on Au2, perhaps, 

would provide REL-NREL differences in better agreement with our results, 
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Table 2.8: 

+2 +2 d Hg2 EP vs Au2 EP, Hg2 HFS, an Au2 HFS 

Bond distances(R ) and dissociation energies(D ) e e 

Hg2+2 REP CI 

Hg2+2 NEP CI 

Au2 REP CI1 

Au2 NEP SCP2 

- 3 Au2 NREL ALL e 

Au2 expt1 

Bg2 +
2 REL HPS4 

11g2 +
2 NREL HFS4 

Au2 REL HPS4 

Au2 NREL HPS4 

R (A) e 

2.539 

2.819 

2.65 

3.01 

2.84 

2.47 

2.63 

3.12 

2.,44 

2.90 

- 26.3 

- 49.6 

36.4 

53.3 

-11 

- 46 

58 
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although this would be contrary to what Ross and Ermler observed for the 

affect of CI on Au2c
34 

However, since the computational methods are similar, we would 

expect an error in the results for ag2+2 of the same magnitude as 

obtained for Au2 with ~espect to experimental values. From table 2.8, 

it is apparent that the calculation by Ross and Ermler overestimated the 

bond length in Au2 by 0.18 A a~d the dissociation energy by 16.9 

kcal/mole. A similar discrepancy with experimental results is 

anticipated for Bg2+
2 as will be determined in subsequent chapters. 

In table 2.8, we have also included results from an earlier 

relativistic calculation35 on the mercurous di-ion. The method involves 

the Bartree-Fock-Slater approximation38 where, in the one-electron 

energy expression, the well known Xa exchange term is included 

(2.21) 

with aex' the exchange scale factor, taken to be 0.7, and p(r) defined 

as the electron density. Relativistic effects are obtained from a 

perturbational approach using the Pauli approximation22 of- the Dirac 

equation. 

In comparing the two methods, it is apparent that the BFS approach 

yielded greater relativistic effects as seen in the differences in 

dissociation energies and bond distances between the relativistic and 

non-relativistic calculations equivalent to 35 kcal/mole and 0.49 A for 

the BFS method and 23.3 kcal/mole and 0.28 A for our results. It is 

difficult to say which set of results is most reliable. Additional 

calculations35 reveal that the BFS method often yields inaccurate bond 
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distances but reasonably accurate dissociation energies compared to REP-

CI calculations. Furthermore, it is possible that our non-relativistic 

calculation may contain some error since it is performed in the non-

relativistic limit where c, the speed of light, is large but not 

infinite. 

Nevertheless, the BFS results for Bg2+2 are justified in reference 

(35) by a comparison with a similar HFS calculation on gold dimer, 

Au2• Good agreement is claimed between the differences in bond 

distances and dissociation energies of the relativistic and non-

relativistic calculations. However, a direct comparison between 

mercurous di-ion and gold dimer is difficult, as noted above, due to the 

inherent electrostatic repulsion of the ag2+2 system. 

Furthermore, as stated previously, the HFS method tends to yield 

unreliable bond distances. A better comparison would be with the more 

reliable effective potential and all-electron calculations of table 

2.8. Although our results appear to underestimate the REL-NREL 

difference in bond length as compared to the REP-NEP results for Au2, 

the BFS method tends to overestimate this difference by (0.49 A - 0.36A) 

0.13 A. 
~ 

However, this comparison is difficult since the computational 

methods involved are substantially different. 

A better estimation of the reliability of our result is obtained in 

the following chapters where we determine the hydration effects on the 

mercurous di-ion using a modified continuum dielectric model and obtain 

solvation enthalpies which can be compared with experimental results. 
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Cbapter 3 

ELECTROSTATIC MODELS OF SOLVATION 

3 .. 1 BACKGROURD 

The theoretical treatment of ionic solvation has a diverse 

history. From the pioneering work of Max Born using a continuum 

electrostatic mode139 to the more recent computer simulations,40 the 

topic has been of considerable interest to numerous researchers. Born's 

well known equation for the free energy of solvation of a spherical ion 

!G .. -i 
(1-1/£) (3.1) 

continues to receive some use.41 A variety of refinements of equation 

(3.1) have been made involving primarily corrections to the cavity 

radii, ri, and structural effects of the solvent on the ion. These are 

reviewed in a number of articles.42 

Equation (3.1) and its variations involve a single rigid spherical 

ion. For an arbitrary charge distribution and shape, however, the 

result is somewhat more complicated. Kirkwood obtained expressions for 

the free energy of an arbitrary charge distribution in a dielectric 

continua for both spherica143 and prolate spheroidal44 cavities. The 

following derivations differ in the notation used from that of Kirkwood 

although similar results are obtained. 

The electrostatic model used in determining the free energy of 

solvation involves placing the molecular ion within a cavity of 

predetermined shape which is surrounded by a dielectric continuum. The 

ag2+2 ion is modeled as two positive point charges placed on the z axis 
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at equal distances from the origin. The potentials describing the 

system are solutions of the Laplace equation 

2 v • - 0 • (3.2) 

Appropriate boundary conditions define the potential inside as well as 

outside the cavity assuring continuity at the cavity surface. 

Given the distribution of the charges, we now consider what is the 

most applicable cavity shape. The most ideal would likely involve a 

hemispherically capped cylinder. However, numerous problems arise in 

determining the electrostatics of a system with this geometrical 

shape. Nevertheless, a close approximation to this ideal model can be 

obtained as is described in the following sections. The numerical 

results obtained from the various cavity approximations are presented in 

the sections following the description of the electrostatics of each 

system. 



3.2 CAVITY APPROXIMATIORS 

3.2.1 Sphere 

As a preliminary calculation, a spherical cavity of radius a is 

considered with the electrostatic potentials expressed in spherical 

polar coordinates. A condition of axial symmetry as with our model 

yields potentials of the form45 

. -0 
-t (A rn+B /rn+l) P (cose) 

0 
n n n 

n• 

-t
1

s t (C rn + D /rn+l) P (cos6) 
n-o n n n 

r>a 

r<a 

where the p
11

(cos6) are Legendre polynomials of the first kinde The 

coefficients An, B
11

, C
11

, and D
11 

are determined from the boundary 

conditions 

1 .. <• ) - 0 • 
0 r--

since at infinity there are no electric field sources. 

(3.3) 

(3.4) 

implying that the potential and the derivative of the potential, or the 

normal component of the displacement vector are continuous across the 

boundary surface. According to the first boundary condition t
0 

remains 

finite as r approaches infinity, thus An : 0 for every value of n. 
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The term Dn/rn+1 Pn{cose) in the potential for r<a is due to the 

charge distribution within the cavity equivalent to the potential in the 

absence of the dielectric.45 This is derived from the law of 

superposition of potentials, which states that the potential due to an 

assembly of charges is the sum of the potentials due to each charge. 

Therefore, a positive point charge on the z axis a distance s from the 

origin, with no dielectric present, has a potential of the form45 

. -+ 
-: I (s/r)n Pn(cose). 

n•O 
(3.5) 

'A similar expression is obtained for a positive point charge at z--s 

-e 
• - r I n•O 

-
n (s/r) P (cose + w) 

n 

• ~ I (s/r)n P (-cose). 
r~ n 

The total potential is now the sum of t+ and t_ 

•++ ·- -

and 

-er I (s/r)n {P (cose) + P {-cose)}~ n n n•O 

-• ~ I (s/r)n(1+{-1)n) P (cose) 
r n•O n 

n n 
D • es (1+(-1) ). n 

{3.6) 

(3.7) 

(3.8) 
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The remaining coefficients are determined by applying the second 

and third boundary conditions 

(3 .. 9) 

and 

£(3t /3r) • (ati/ar) o r-a r-a 

D+2 n-1 n n n+2 
-(n+l)&Bn/a • nCna -es (1+(-1) )(n+l)/a .. (3.10) 

Solved simultaneously, the above equations yield the coefficients Cn and 

Bn 

n n 

c -
es (1+(-1) )(n+1)(1-£) 

(3.11) 
D (n+£n+£) a 2n+l 

and 

B -esn(l+(-l)n)(2n+l) 
(3 .. 12) .. 

D n+£n+£ 

The potentials t
0 

and t 1 are now 
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• n n 
es (1+(-1) )(2n+1) P (cose) t • I 

0 n•O (n+en+e) rn+1 n 
r>a 

------------------
• n n 

(es (1+(-1) )(n+1)(1-£) rn 

(n+en+e) a2n+1 

n n + es (1+(-1) )) 
rn+1 Pn(cose). r<a 

(3.13) 

(3.14) 

The Gibbs free energy of hydration is the mutual electrostatic 

energy of the interaction of the charge distribution with the 

surrounding dielectric. This energy is found from the reaction 

potential 

• 
t • I C r~ (cose) 

R n•O n n 
(3.15) 

using a charging process of the Guntelberg-Muller type, 43 and is given 

by one-half the sum of the products of the charge e and the value of tR 

at the coordinates of the charges, 

where, for our system, the two points (ri,e1 ,+i) are (s,O,O) and 

(s,w,O). The free energy is, therefore, 

• 
M;e• I 1/2 e(esn(l+{-l)n){n+1){1-£)/(n+en+e)a2n+1) 

n•O 

• 
• I 1;2 e2s2n(l+(-1)n)2(n+1)(1-e)/(n+en+e:)a2n+1 .. 

n•O 

(3.16) 

(3.,17) 
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This result is confirmed by an alternate definition of the free 

energy in terms of the electric field. 45 In particular, the integral, 

~G • -(e-1)/Sw f E
0

•E dV, 
e s 

(3 .. 18) 

is over the dielectric, only, where Is is the electric field produced by 

the two point charges in the absence of the dielectric and is expressed 

as the gradient of the electrostatic potential, 

B • -Vt • -v D /rn+1 P (cos9) 
a a n n 

•(n+l)D P (cos9)/rn+2 r - D /rn+2aP (cos9)/a9 9 c 
n n n n (3.19) 

Furthermore, ! 0 is the electric field in the exterior of the boundary 

and is expressed as 

E • -Vt • -VB P (cos9)/rn+l o o n n 

n+2 n+2 -•(n+1)B P (cos9)/r r- B /r 3P (cos9)/39 9. n n n n (3.,20) 

These results yield the product 

2n+4( )2 + B D /r 3P (cos9)/39 
D D D 

(3.,21) 

and the free energy integral 



.. 

2 2 + (apn(cos8)/ae) )}r dr sinede d+ 

which using the relation46 

1r 2 1r 2 f (aP (cos8)/ae) sinede • n(n+l) f P (cose) sin8de 
0 n 0 n 

and the identity46 

1r 

f P (cose)2sin8d8 • 2/(2n+l) 
0 n 

leads to the result obtained previously, 

-N; • t lf2 e2s2n(l+(-l)n)2(n+l)(l-&)/(n+en+e)a2n+l • 
e n•O 

3.2~2 Prolate spherlod 

-

(3.22) 

(3.23) 

(3.24) 

(3.25) 

Beyond the sphere, a closer approximation to the true dielectric 

cavity is the prolate spheroid. A similar procedure is used in 

determining the free energy of hydration. The electrostatic potentials 

are again solutions of the Laplace equation, now expressed in prolate 

spheroidal coordinates, t,n, and + which have the domains 
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-1 < t ' 1 

0 < + < 2w 

where we use the notation of reference (47). The relationship between 

t,~, and + and the rectangular coordinates are as follows; 

z • a~t 

(3.27) 

2 2 1! 
x • a{ (1-t )(~ -1)} 2 sin+ 0•28) 

where the focal points of the spheroid are at z•±a, x-y-0. 

The point charges are again at positions z-s and z--s which are 

designated as the foci of the spheroid. If a dielectric ~s brought into 
-

a distance ~-~ 1 , the inner and outer potentials are expressed as47 

- .. .. 
Vi• I (AiPn(t) + BiQn(t))(AfPnC~) + BIQn(~)) ~<~1 (3.29) 

n•O 

and 

. - .. .. 
V0 • I (A0 P (t) 

n-o n 
+ BoQn(t))(A~n(~) + B~Qn(~)) fl)~l (3.30) 

where the coefficients are determined from the boundary conditions 



.. 

1. V is everywhere finite, 

3 .. 

Using the first boundary condition, it is apparent that B1•B
0

•0 since 

#> 

and Ac,"='-D since 

The potentials Vi and V0 are now 

- (3.31) 

- (3.32) 

The term CiPn(t)Qn(~), analogous to the expression Dn/rn+l pn(cos6) 

in the spherical cavity, is due to the charge distribution within the 

cavity equivalent to the potential without the dielectric. As before, 

using the law of the superposition of potenitals, we obtain the total 

potential is the sum of the potentials of the two ions. The potential 

of a point charge at coordinates (~0 ,t0) is47 
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• 
V+• I : (2n+l) Pn(t0 )P

0
(n0 )Pn(t)Qn(n). 

n•O 

Similarly, from the charge at coordinates (n0 ,-t0 ), the potential is 

• 
V_• I : (2n+l)(-l)~n(t0)Pn(n0)Pn(t)Q0 (n). 

n-0 

The coefficient ci is ,therefore, 

The second and third boundary conditions yield the equations 

and 

, , ~ 

D1P;<n1> + ci~<n1 > • cC0Q~(n1 > 

(3.34) 

(3.,35) 

where the prime denotes differentiation with respect to the argumente 

The coefficients are determined by solving the above two equations 

simultaneously for C0 and Di in terms of Ci 

- -c1 (~<n1 > - ~<n1 )P~(n 1 )/P0(n 1 >) 
c - , -0 

£q;<n1> - ~<n1 )P~(n 1 )/Pn(n 1 > 
(3e38) 
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and 

(3.39) 

As with the sphere, the reaction potential can be derived from the 

inner electrostatic potential and is equivalent to 

v­R 
-t DiP (t)P (n) • 

0 
n n 

n• 
(3.40) 

Furthermore, the free energy is again the sum of equation (3.16) with 

The reaction potential is evaluated at the two points (~i'"i'+i) 

equivalent to (~0 ,n0 ,o) and (-~0 ,n0 ,o), yielding the free energy 

~;<n1)-Qn(n1)Pn;<n1)/Pn(nl) 

x (£Qn~(n1)-Qn(nl)Pn;<n1)/Pn(nl) - 1) 

(3.41) 

(3.42) 
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where (t0 ,no)•(l,l) since the point charges are at the foci of the 

spheroide This result can also be confirmed by the alternate definition 

of the free energy equation (3el8) as discussed previously. 

3.2.3 Correction to prolate spheroid 

A final approximation to the ideal hemispherically capped cylinder 

model can be obtained by the addition of a correction term to the free 

energy of the prolate spheroidal cavity. The correction term amounts to 

effectively trimming the middle of the spheroid to a cylindrical shape . 

while allowing the ends to retain their spheroidal surfacee 

The correction is derived from equation (3.18) for the fr-ee 

energy. The inter,ral is approximated by evaluating the product E0 •Es at 

the point (t,~.+)•(0,~1 ,o) and then evaluating the remaining volume 

integrale As witn the sphere, the fields Eo and Es are, respectively, 

the electric field of the charge distribution in the dielectric and the 

electric field without the dielectric present. Furthermore, they are 

now expressed as 

(3.43) 

and 

where ht • a((t2-~2)/(t2-l)) 112and h~ • a((t2-~2 )/(l-~2)) lf2. 

Evaluating the product Eo•E
8 

at the specified point (0,~ 1 ,0); yields the 

correction energy 
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(3.45) 

where bVd is the volume of the spheroid removed, determined in the next 

section. 



3.3 CAVITY RADII AND FREE ENERGIES 

For many years it has been known that ionic cavity radii can be 

related to crystallographic radiie48 In determining the size of the 

mercurous di-ion cavity in the above models, certain similarities exist 

with the mercurous fluoride crystal structure. In a recent article,41 

Rashin and Honig found that adding a correction factor of 7% to various 

ion-fluoride bond distances (after subtracting the fluoride radii) 

provided cavity radii which yielded solvation enthalpies in good 

agreement with experimental resultso This method is extended to the 

mercurous di-ion by relating the distance between the ion and the point 

of intersection of the cavity with the z-axis to the mercurous fluoride 

crystal structure. This distance is expressed as49,41 

R • 1.07{(Hg-F bond distance)-(F-radius)} 
c 

-Table 3.1 contains the cavity radii for the spherical model obtained by 

adding Rc to each value of s, and the resulting free energy obtained 

from equation (3.17). 

Furthermore, the radial factor "t in the prolate spheroidal system 

is determined through the use of equation (3.26) 

(3.26) 

where t•l since the point of interest lies along the z axiso 
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Additionally, the foci a, as noted earlier, are equivalent to the 

positions of the point charges. The expression for n1 is now 

These values are listed in table 3.2 along with the resulting free 

energies of equation {3.42). 

(3.47) 

The correction to the free energy in section {3.2.3) involves an 

additional constraint to determine 6Vd in equation (3.45). In 

particular, the distance from the point charge normal to the z-axis to 

the cavity boundary is to remain a constant equivalent to49,41 

Ru • 1.07{D - R{r-)} 

• l.07(2.69-0.72)A • 2.11A (3.48) 

where D is the perpendicular distance from the Hg-Rg axis to the 

fluoride ions. As is evident, the 7% correction factor is also applied 

to this value. Table 3.3 lists 6Vd and the new spheroid ~lumes after 

the removal of 6Vd, in addition to the the free energy corrections. The 

new free energies of the prolate spheroidal cavity after the addition of 

the correction term are also contained in table 3.3. 
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Table 3.1: 

Free energy of hydration for spherical cavity. 

a(A) a( A) 

1.0584 2 .. 7584 - 242.91 

1.1907 2 .. 8907 - 233.48 

1 .. 3230 3 .. 0230 - 225 .. 07 

1.4553 3.1553 - 217.55 

1.5876 3 .. 2876 - 210.80 

1.8522 3.5522 - 199.18 

• 
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Table 3.2: 

Free energy of hydration for prolate spheroidal cavity. 

s(A) 

1.0584 2.6062 - 252.91 

1.1907 2.4277 - 244.39 

1.3230 2.2849 - 236.77 

1.4553 2.1681 - 229.94 

-
1.5876 2.0708 - 223.77 

1.8522 1.9178 - 213.14 
0 



Table 3 .. 3: 

Volume of prolate spheroid removed (~Vd)• corrected prolate spheroid 

volumes (Vpsc>• free energy correction (6Gcor> and corrected free energy 

for prolate spheroidal cavity (~Gpsc>~ 

s(A) ~Gcor(kcal/mole) 

1..0584 13 .. 184 61 .. 789 - 14 .. 497 - 267.41 

1.1907 18.022 65.993 - 17.109 - 261.50 

1.3230 23.436 70.117 - 19.406 - 256.18 
~ 

1 .. 4553 29.410 74.181 - 21.434 - 251.37 

1o5876 35.938 78.197 - 23 .. 240 - 247.01 

ls8522 50.586 86 .. 120 - 26.321 - 239.46 
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3.4 SOLVATION ENTlOPIES AND ENTHALPIES 

As a matter of convenience and to avoid further approximations, we 

convert the free energies of the previous sections to enthalpies by use 

of the definition 

611 • llG + TllS (3.49) 

which may then be compared to experimental solvation enthalpies obtained 

from tabulated heats of formation. The entropy term in equation (3.49) 

is defined as 

(3.50) 

whereso 

(
3£ 
aT) • -1.357 (£/T) (3.51) 

0 
and £ • 78.30 are the values for water at 25 c. The partial derivative 

(36G/3£) is expressed for the spherical cavity as 

36G) ( 1 2 2n n 2 2n+1) (a£ - a /2 e 8 (1+(-1) ) (n+1)(1-£)/(n+£n+£)a /3£ 

• ---1f._2...;:e;....2.;;..s 2_n...:<..::.l_+(.:...-...:;l~)..,..n.:;...) 2~(:.;;;n+;.....:;;.;l)~(:.=2;.;.;.n+_1;;..:;..) 
(n+£n+£)2a2n+l 

and for the prolate spheroidal cavity as 

(3.52) 
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(3.53) 

Using the values of tables 3el and 3c2, we obtain entropy terms for the 

two cavity shapes which are evaluated at T-298K. The products T6S are 

listed in table 3.4 as a function of tle distance s. 

Solvation enthalpies are now determined using equation (3.49) and 

are contained in table 3.5. In determining the enthalpy for the 

corrected prolate spheroidal cavity, the entropy for the uncorrected 

prolate spheroid is used without an additional correction term since the 

inclusion of this term would undoubtedly not change the resulting 

enthalpies beyond the uncertainties from other approximations. 
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Table 3.4:. 

T6S for spherical and prolate spheroidal cavities at 298K. 

a( A) T6Ss(k~al/mole) T6SP
8
(kcal/mole) 

1.0584 - 4.3264 - 4.4782 

1.1907 - 4.1775 - 4.3373 

1.3230 - 4.0477 - 4.2130 

1.4553 - 3.9339 - 4.1032 

1.5876 - 3.8342 - 4.0054 

1.8522 - 3.6682 - 3.8406 .. 



Table 3.5: 

Solvation enthalpies for spherical, prolate spheroidal. and corrected 

prolate spheroidal cavities. 

s(A) ~Hs(kcal/mole) llHps(kcal/mole) llHpsc(kcal/mole) 

1 .. 0584 - 247 .. 24 - 257.39 - 271.89 

1.1907 - 237.66 - 248.72 - 265.84 

1.3230 - 229.12 - 240.99 - 260.39 

1.4553 - 221.49 - 234.04 - 255.47 

1.5876 - 214.64 - 227.78 - 251.02 

1.8522 - 202.85 - 216.98 - 243.30 
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Olapter 4 

SOLVATION OF 1BE MERCUROUS DI-IOR 

4.1 ENTBALPIES FROM INTEKHAL ENERGIES 

In our study of the mercurous di-ion thus far we have determined 

the internal energy of the system both relativistically and non-

relativistically and have calculated solvation enthalpies using a 

primitive electrostatic continuum dielectric model. The internal 

energies at zero Kelvin of Chapter 2 may now be converted to enthalpies 

at 298K as follows. 

To determine the enthalpy values from the internal energies for the 

reaction 

+ +2 
2Hg (g) - Hg2 (g), (4.1) 

first, the identity at absolute zero, u0- u0, is applied. The enthalpy 

at higher temperatures is then obtained by adding to the absolute zero 

enthalpies corrections for the change in the internal modes of the 

system and a correction to account for the expansion of the gas with 

increased temperature. The enthalpy per mole is expressed as 

where 

3 B •- RT tr 2 

(4.2) 
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is the translational correction, 

is the rotational correction for diatomic species 8 .. 

and 

B .. RT 
pv 

is the expansion correction., The vibrational correction is expressed as 

hv (ehv/kT_1)-l. 
Bvib• R k 

where v is the vibrational frequency of the molecule., 

+ The enthalpy for the two singly charged mercurous ions, 2Hg , at 

298K is 

For the gaseous di-ion, we obtain an enthalpy expressed as 

(4o4) 

where BVib is determined for the relativistic and non-relativistic 

curves of figure 2.1. The relativistic energy curve has a frequency of 

54 
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v- cv 
e 

• c(182 cm-1) • 5.46 x 1012 a-1 

yielding an enthalpy correction of 

B • R(262 ~ 1 0K)(e262.10/298.15_1 )-1 vib,rel 

• R(l86.06K). 

Additionally, for the non-relativistic energy curve with a frequency of 

v - cv e 

• c(115 cm-1) • 3.45 x 1012 a-1 

we obtain a vibrational enthalpy correction equal to 

B • R( 165.S6K)(e165.56/298.15_1)-1 
vib,nrel 

• R(222.99K). 

Furthermore, the change in enthalpy for the reaction of equation (4.1) 

performed relativistically is 

AH~; • AH~L + ~ R(298.l5) + R(l86.06) - 5R(298.15) 

• (AH~L - 0.519) kcal/mole. (4.5) 

Calculated non-relativistically, the enthalpy is 
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~H~L • ~H~L + ~ R(298.15) + R(222~99) - 5R(298el5) 

NREL • <~ao - 0.446) kcal/mole. 
.. 

(4.6) 

Table 4.1 contains the corresponding enthalpy values of figure 2.1 after 

the removal of the values of equations (4.5) and (4.6) for the 

respective curves. 



57 

Enthalpy values of gaseous mercurous di-ion at 298K (kcal/mole). 

s(A) REL 6H29S,(g) NREL 6R29S,(g) 

1.0584 120.74 

1.1907 36.543 85.449 

1.3230 29.704 53.623 

1.4553 42.680 50.265 

1.5876 51 .. 654 54.815_ 

1.8522 55.801 64.748 

"· 



4. 2 MODIFIED ENERGY CURVES AND EXPEK.IMEHTAL RESULTS 

The solvation enthalpies obtained from the three methods of Chapter 

3 are now added to the results of table 4.1. New bond distances and 

equilibri\DD enthalpy values are obtained and are listed in table 4.2 .• 

These results may now be compared to the experimental heats of 

formation. 

The enthalpy values of table 4.2 are for the reaction 

An experimental enthalpy for this equation cannot be obtained directly 

from a combination of the heats of formation since the reaction involves 

both gaseous and aqueous ionic components, which have different 

reference states. Furthermore, experimental heats of formation are 

+ +2 unavailable for either Hg (aq) or ag2 (g). Nevertheless, the enthalpy 

for the reaction of equation (4.7) can be determined indirectly as 

outlined below .. 

A heat of hydration is known41 for a related mercury species, the 

+2 mercuric ion Bg • This is expressed as 

where ~H1• -439.4 kcal/mole.. Now the enthalpy for the reaction 

is determined from the known heats of formation51 as 
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Table 4.2: 

Enthalpy values for the reaction, 2Hg+(g) • Hg2+2(aq), using 

spherical(SPH), prolate spheroidal(PS), and corrected prolate 

spheroidal(PSC) solvation cavities. 

REL SPH 

NREL SPH 

R.EL PS 

NREL PS 

REL PSC 

NREL PSC 

2.492 

2.710 

2.496 

2.719 

2.508 

2.745 

dHe (kcal/mole) 

-206.37 

-176.21 

-217.78 

-188.26 

-235.97 

-208.35 
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Figure 4el: 

Relativistic (REL) and non-relativistic (NREL) enthalpy values, using a 

corrected prolate spheroidal solvation cavity, for Hg2+2(298K,aq) as a 

function of the bond distance, R. Curves are with respect to a 

+ dissociation limit of 2Hg (298K,g). 
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~H2 • ~Hf(Hg+2(g)) + ~Hf(Hg(l)) - 2l1Hf(Hg+(g)) 

• 690.8 + 0.0- 513.6 • 177.2 kcal/mole. 

Furthermore, the reaction 

has an enthalpy equivalent to51 

AHJ • ~Hf(ag2+2 (aq)) - l1Hf(Hg+2(aq)) ~ AHf(Hg(l)) 

• 41.2 - 40.9 - 0.0 • 0.3 kcal/mole. 

Summing the reactions of equations (4.8-4Gl0), 

Hg+2(g) • Hg+2(aq) 

+ 2Hg+(g) - Bg(l) + Bg+2(g) 

+ Hg(l) + Hg+2(aq) • Hg2+2(aq) 

and subtracting Rg(l) from each side, we obtain the desired reaction of 

equation (4.7) 
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where 

AH4 • AH1 + AH2 + AH3 

• -261.9 kcal/mole • 

A comparison of the experimental enthalpy determined above with the 

results of table 4o2 reveal that the corrected prolate spheroidal 

solvation cavity provides the most reasonable results as anticipated. 

Furthermore, the discrepancy between our calculated value, -236.0 

kcal/mole, and the experimental value, -261.9 kcal/mole, is well within 

the limitations of the calculation. This is particularly comforting 

since the application of an electrostatic, continuum dielectric model to 

systems beyond single spherical ions is uncertain at best. In fact, the 

greatest source of error most likely lies in the methods of Chapter 2. 

' As noted earlier, the calculated dissociation energy for the gaseous di-

ion is probably 20 kcal/mole too low since a difference of this 

magnitude was also determined for Au2 using similar computational 

methods. In addition, the remaining 5 kcal/mole discrepancy is 

certainly within the uncertainties inherent in the approx(mations of 

Chapter 3. 

In conclusion, it is most apparent that the application of 

electrostatic, continuum dielectric methods to other complex molecular 

systems is very promising. The reliability of the method will be 

determined through additional ealculations and through the refinement of 

the procedures outlined above. Although many researchers are critical 

of the approach, 52 it appears that electrostatic methods will continue 

to be useful in understanding the theory of electrolytes. 
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