
LBL-217 4 7 ~-~

Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA, BERKELEY

Information and Computing
Sciences Division MAR 2 1987

To be presented at the Third International
Conference on Data Engineering, Los Angeles, CA,
February 2-6, 1987

PHYSICAL DESIGN OF TEMPORAL DATABASES

D. Rotem and A. Segev

(

June 1986
/·

TWO-WEEK LOAN C ··.

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098

r
ry
r
I

~ -

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

.
I

Physical Design of Temporal Databases

Doron Rotemt and Arie Segevt

tComputer Science Research Department
University of California

Lawrence Berkeley Laboratory
Berkeley, California 94720

tSchool of Business Administration
The University of California

Berkeley, CA 94720

June, 1986

LBL-21 i'·n

Tbia research waa supported by the Applied Mathematics Sciences Research Pro-
'" gram or the Office or Energy Research, U.S. Department or Energy under contract

DE-AC03-78SFOOOD8.

j

;,;

PHYSICAL DESIGN OF TEMPORAL DATABASES

Doron Rotemt 4nd Arie Segevt

t Lawrence Berkeley Laboratory
Department oC Computer Science Research

The University or California
Berkeley, CA 94720

t School of Business Administration
The University or California

Berkeley, CA 94720.

ABSTRACT

In this paper, we propose a partitioning scheme or files in a temporal data­
ba.se system, and develop algorithms to minimize the overfiow a.ssociated with
that scheme. The proposed partitioning is suitable Cor range queries and aggrega­
tion operations along the time dimension. Simulation results show that the parti­
tioning algorithms proposed in this paper result in better performance than in the
ca.se or a grid-type partitioning.

'li

1

1. Introduction

Recently there has been a significant increase in the amount of research in the area of tem­

poral databases [ARIA84, LUM84, SNOD84, CLIF85, RUBE85, SNOD85, AHN86, SHOSH86, and

others]. For a survey or the role or time in information processing, see [BOL082]. The impor­

t.ance or incorporating the time dimension into database systems has long been recognized. The

dramatic decrease in the cost/performance ratio of hardware components baa made it feasible to

support the time dimension online provided that efficient storage methods and access algorithms

are developed. In this paper we deal with the case of temporal databases, be they commercial or

scientific. Such databases are often characterized by their static nature (especially in the case of

historical temporal data), and the importance or the time domain (these databases are frequently

used Cor time-series analysis).

Most of the studies on the support of the temporal dimension have dealt with the concep­

tual [AHN86, SNOD85, SNOD84, CLIF85] rather than the physical [LUM84, RUBI85, SIJOSH86]

level. Like in any other database, it is clear that there is not a single file structure Cor a temporal

database that universally dominates all others. The suitability of a particular file structure is

dependent both on the data and on the access pattern. For example, the physical organization

proposed in [LUM84] is appropriate for the case or querying the complete history or an attribute.

In the case or temporal databases, the most important property or the data is its behavior with

respect to time. Such a behavior can be clearly identified through the framework of viewing tem­

poral data proposed by [SHOSH86]. The essence of that framework is to view temporal data as a

time sequence with certain properties. These properties have a major impact on the physical

organization or the files.

It is our view that in many instances, a multidimensional partitioning or the file is the

appropriate approach to organizing temporal data. In traditional databases, the problem or mul­

tidimensional file partitioning (MDFP) arises in many applications where it is required to store

files which are indexed by one or more search attributes to disk pages such that the mapping from

the key space to the physical address space is order preserving. Such an order-preserving map-

2

ping is important in an environment where the frequency of range queries and sequential ac:c:ess

by key values is high. Examples of MDFP schemes are the Grid Files of different types [NIEV84,

REGN85, OZKA85, OZKA85a], and the file structures described in [MERR78, MERR82,

MERR84] . In all of these methods the possible range of values for eac:h attribute is partitioned

into segments, the intersection of these segments define hyper--rectangles or cells. Eac:h tuple is ·-t
aasoc:iated with a eeU based on the segments to which its attribute values belong. An MDFP

structure is a three level hierarc:hic:al structure. The first level is a relatively small file with infor-

mation about the partitioning points and is kept in faat storage. The second level is a directory

with a single entry per each cell of the partitioning. This entry contains a pointer to the data

page which contains the tuples uaoc:iated with this cell. The last level is the actual file where the

data tuples are stored. Typically the two Jut levels are r.ident on disk because of their 1i1e. A

q\Jery against this structure is answered as follows: Using the attribute values specified by the

query, the information kept in fast storage is used to compute ·the disk address of the relevant

directory entry or entries on disk, these. in turn contain pointers to the data pages where the

tuples whic:h form the answer to the query are stored.

In. a 1iven application environment, data file• are c:lauified u static: or dynamic: depending .

on the rate of insertion and deletion transactions. In recent years, most of the research has

focused on dynamic: files, resulting in several file organization methods, e.g., the grid file method

[NIEV84]. Some work bas also been done on static: MDFP [MERR84]. For the temporal databases

considered in this paper, a static: algorithm is more appropriate especially when the database c:on-

tains historical data for the purpose of analysis and decision making. In Section 6, we will indicate

bow static: struc:tures.ean.be incorporated into a dynamic: environment.

In Section 2, we explain the partitioning concept and discuss the parameters relevant to the

decision on how to partition the file. In particular, we consider two types of partitioning: sym-

metric: and asymmetric:. Section 3 presents existing algorithms for the symmetric: ease, and in Sec:-

tion 4, we develop algorithms for the asymmetric: case. The results of simulation experiments are

reported in Section 5; these results demonstrate the advantage of the asymmetric: partitioning in

.J

'"' ...

3

terms of disk accesses. The paper is conduded with a summary and a discussion in Section 6.

2. Multidimenaional Partitioning• and Temporal Databues

As discussed in [SHOSH86], a temporal value is actually a triplet (• ,t ,v), where 1 ,t, and v

refer to the ••rrogate, time and valu respectively. The time t ia the time to be managed and

can be ei~her logical or physical (see [LUM84] and [SNOD85] Cor a taxonomy or time). For an

example, (PROD 1,JUNE ,1000) represents the fact that 1000 units or PROD1 were sold in June.

We can represent the set or such triplets as a time sequence &rray (TSA) as illustrated in Figure

1 (adapted from [SHOSH86]). The set or values or surrogate 1; can be viewed as a time sequence

TS;.

t
I •

s4

I

I
• • • • •

• • • • I

• • • • I

• • •
I

I · V .. e •

t,
1
-·--:--.--· : ll

! • •

• t
I

Tc:;
'-'n

Fi1. 1: A Time Sequence Array

We now explain the concept of multidimensional partitioning and show how it relates to

temporal databases. As mentioned previously, in a MDFP scheme all the tuples which are a.ssoci-

ated with the same cell of the partitioning are stored on the same disk page. An overflow occurs

when the number or tuples associated with a given cell exceeds the capacity of a disk page. We

assume that there is a single common overflow area. In this paper we deal with the case of two

search attributes (one of which is the time dimension), but the analysis can be easily generalized

4

to more than two dimensions. We will refer to an algorithm that determines the partitioning of

the attribute space u a "partitioning algorithm". The parameters that determine the best partia

tioning are the size of the primary data area (in number of pages) a K; the page capacity (in

number of tuples) - e ; the storage utilization (or load factor) • a; the number of unique values in

the search attribute (to simplify the expoeition, and without lou of generality, we usume that

this number is the same for each search attribute) - n ; and the frequency matrix F := {! ij } ,

where Iii is the number of tuples having values i and j in the first and second search attributes,

respectively. It should be. noted that the matrix F is different from the Time Sequence Array of

Figure 1; in F, we store in position (i,j) the value Iii which represents the number of data

tuples with values t; and 'i in the time and surrogate attributes respectively. For example

f u=S means that there ue five transactions for surrogate • a at time unit t 2· The details of

each such transaction is a record which will be kept on a data page. Note that all these five

records (and possibly others associated with that cell) will reside on the same disk page. That is,

the matrix F serves as. a. basis for the allocation of data. tuples to disk pages and the creation of

an index to the data file. Our approach generalizes the one in [SHOSH86] in. the sense that we

also store the details of the transactions as records whereas the latter work only stores summary

data about the number of sales or a single meuurement per each entry. In our cue the inform a-

tion given in F is the input to partitioning algorithms which will determine which tuples will fall

into the same cell and therefore will reside in the same disk page.

We consider two types of partitioning • symmetric and asymmetric. Figure 2 presents two

examples of a symmetric partitioning. The matrix F may represent daily sales transactions of a

group of products. In this cue, the first row ofF in Figure 2(a) has the-following interpretation:

the number of transaction records for products 1,2,3,4,5 in day 1 is 1,2,4,0,0 respectively. The

second row represents the number of sales recorda in the second day, and so on. As can be seen

from Figure 2, the matrix F is partitioned vertically and horizontally by grid lines. The figure

illustrates that the overflow can be reduced by changing the partitioning. Figure 3 presents an

asymmetric partitioning of the same matrix. In this cue, we partition F vertically by grid lines,

l.

I"

·'

•

r--r' r;)
11 ~ 4 0 0
1 I 1 1 1 0
211 1 1 4.
1 I 1 1 1 ')

f..l

'
1 l 1 9 1 1 I !-..;

{a)

1 2
1 1
2 1

1 1
1 1

I

' 4 !0
11"1
1 I 1

J I 1
211

{b)

'l I Ut

Ol
I

4
~) ...
1

Fl1. 2: Two examples of a .,-mmetric partitionins with e =3 and K =16. In (a) total ·-:;p~
overftow is 5
whereaa in (b) it i• 3. The arrow• point to cella where overftow haa occurred.

I •) LL ;...

r 1 1
? 1 ~ ,-
1 1
1 1

I ,.
4
1

LL
1
2

0
J..
1
1

1

0
tJj
4 ...

r-oo-

9 ;...,

1

\.. Fis. 3: An example of an aaymmetric partitioniq which further reduces the overflow.

arid each vertical segment (the submatrix between two adjacent grid lines) is part.itioned horizon-

tally. A.s can be seen from Figure 3, the asymmetric partitioning helps to further reduce the

amount or over6ow 0

The advantage of the symmetric partitioning over the asymmetric one is that it requires less

storage space to keep the information about the partitioning {first level file), in this case we only

need to keep the attribute values at which partitioning lines are inserted. In the asymmetric case

we keep the same information as before about vertical lines but Cor each vertical segment we keep

a list or its horizontal partitioning points. There is a difference between the two methods·in the·

way in which data tuples are clustered in pages. In the symmetric method there is no priority of

clustering by one attribute over another whereaa in the asymmetric case we will give priority to

cluster tuples together based on their surrogate value. We feel that with the reduction in the cost

of main memory, the additional storage requirements of the asymmetric partitioning does not

pose a serious problem. Moreover, the reduction in overftow outweighs the added cost of'storage.

The asymmetric partitioning is also appropriate in many instances of temporal data, where the

dominant interest is in the ·attribute of an entity or a group of entities· as a.function of time~ e.g.·,

what were.tbe.sales.o(an item during a certain time period.

3. A aymmetric partitioning

In this section, we present a symmetric-partitioning algorithm against which the asymmetric

partitioning algorithm (see Section 4) will be compared. The symmetric-partitioning algorithm

was developed in [ROTE86], where a detailed analysis or grid-type algorithms can be found. The

following definitions will be used in the description or the algorithms presented in this paper.

Given a .pair or integers n 1 and n 2• they are called permissible (actors or K i(n I X n 2=K

and n; ~ n /or i = 1,2. Let P be the set of all permissible factor pairs of K . We can partition

the matrix F into K cells by partitioning the rows into n 1 segments and the columns into n 2 {

segments. This is done by placing n 1-1 horizontal lines between the rows of F and n rl vertical

lines between the columns o(F. Let C (F) and R (F) be the two vectors obtained from F in the

•
following way: The •vector C (F)=< c 1,c 2• .•• , c8 > is obtained from F by setting Ct = E f ;•

i-1

7

for t<k <n, i.e., each component c• is the sum of the elements of the t'• column ofF. Simi-- -
larly, R(F)=<r~or 2, ••• , r. >is the vector obtained by letting r1 be the sum or elements in

the i 16 row of F. Let { V ,k ,c } denote a one dimensional partitioning problem or the vector V

into k pages each with capacity c . The same notation will be used for the case or a two dimen-

sional problem except for the following: V will denote an n by n matrix and k will be replaced

by two factors. For each pair n 1 , n 2 in P , we solve a pair of one dimensional problems

these two problems. By combining the horizontal and vertical line positions computed by the solu-

tions '•• and 1.
2

, we obtain a solution r (f. 1,f.J to {F ,n 1,n 2,c }.

The following theorem suggests a procedure tor eliminating {fathoming) permissible factors

from consideration.

Theorem 1 ([ROTE85])

Let T be an optimal partitioning or the _matrix F into K pages each with capacity c with rae- _
-_,_.(~·

tors " I and "2· Let r be an optimal (one dimensional) partitioning of c (F) into "2 pages each

with capacity n 1 c . Let TF (T) and TF (1') denote the total overflow resulting from the parti-

tioning T and r respectively. Then, TF (r) ~ TF (T).

D

We now describe an optimal solution procedure for the one-dimensional partitioning prob-

lem that will be used as a subroutine by the tw~dimensional partitioning algorithms. The alg~

rithm is based on the following relations:

Let FL (i ,j) denote the overflow incurred by allocating elements {I;, ... , I i } to a segment.

FL(i,i)=Maz {ort1, -c)} ·-·
Let TF (i ,k) denote the total overflow incurred by optimally partitioning elements

{I I• ... , I i } into k segments. The optimal solution to our problem is given by TF (n ,K).

The recursive relation for the total overflow is given by:

TF(i,k) =. Min . {TF(i,k-1) + FL(i+l,i}}, i?:J: >1 ·-•-I. ... ,J-1

8

TF(j ,1) = FL (1,j), j ~1

The above recursive equation is based on the well known 'principle of optimality' (see

[HOR078]}. In our case, this principle states that the optimal partitioning of the first j elements

of F into k segments must consist of an optimal partitioning of the first i elements (for some i

such that k -1 ~ i < i) into k -1 followed by a single segment which contains all the remaining

j -i elements. The second equation is a straightforward boundary condition. Since efficient alge> ' I,

rithms for solving ·the·dynamic program given above are well-known, we will not explicitly state

such an algorithm but simply refer to it as a solution to the one-dimensional problem.

Algorithm 1 below describes a heuristic procedure to partition the matrix F. Note that a

partitioning of F is equivalent to a partitioning of the attribute space and an uaignment of data

tuples to disk pages.

Algorithm 1.

1. For each element. (n'l,n 2) in.P, solve·t.he two one dimensional problems {C(F),n 2,n 1 Xc}

and {R(F),n 2,n 1Xe }. Combine~the•two solutions to a•two dimensional partitioning and

find the total overflow.

2. Choose the factor pair which gives the minimum overflow.

0

-'· A.,-mmetrie Partitionin1

In this section we ,describe the asymmetric algorithm for placing the horizontal and vertical

lines so that a minimum overflow partitioning is achieved subject to the constraint on the number

of pages in the primary area. & mentioned before, an asymmetric partitioning generalizes the

symmetric one because it is less constrained in the way in which it partitions the attribute value

space. Specifically, in the case of a temporal database we may partition the values of the surre>

gate into segments representing groups of surrogates and then perform a different horizontal par-

titioning ·for-each such segment. The horizontal partitioning required for each segment may con-

11

.. ,
"

' ''-'

9

tain a different number or cells due to the different activity rates of surrogate groups. For example

in an inventory system some parts will be moved in and out of the warehouse at a much faster

rate than others and therefore more transactions will be generated for these parts. This in tum

will require allocating more horizontal lines to the segment which contains these parts.

The reaaon for partitioning the surrogate values into segments (rather than the time values)

is that we expect that moat queries will specify a aWTOgate value (or a small range) and try to

·access the records corresponding to this surrogate within a specified time range or obtain the

whole time sequence for that surrogate. We would like to have an efficient data structure with

respect to such queries while still supporting queries which specify a time range and then access

transactions which refer to all or aome subset of the surrogates.

An algorithm for solving this problem must perform the following:

a) Determine the number of vertical lines and their exact placement. This will partition the apace

into vertical segments.

b) For each vertical segment determined in a), find bow many pages should be allocated to it so

that the total number or pages allocated to all segments is equal to the constraint K. Assume

that k; pages are allocated to the i,. segment.

c) Find an optimal partitioning for the i 14 segment into k; pages. In terms or our previous alg~

rithm, this requires placing k; -1 horizontal lines in the i,. segment .

.....

An algorithm for optimally solving this problem has to inspect a large number of choices for

Step a). For the purpose of comparison with the symmetric algorithm, we devised two heuristic

algorithms which we will call for reference purposes Algorithm 2 and _Algorithm 3. In Algorithm

2, we fix the number or vertical segments to be as close as possible to ../7(. This bas the effect or

balancing between the number or lines placed in each dimension. In Algorithm 3 we looked at

more choices for the number or vertical segments. In this case we inspected all the permissible

factor pairs (n 1,n 2l in P (as in Step 1 or Algorithm 1) and took the second component n 2 as a

value for the number or vertical segments. This is the only difference between Algorithm 2 and

Algorithm 3. In both cases, once the number or vertical lines was chosen, the exact placement or

10

these lines was determined by solving a one--dimensional partitioning problem on C (F) the

column sum vector of the matrix F (u defined in the previous section). From now on, let us

assume that step a) is completed and we have a fixed vertical partitioning I with n 2 vertical

segments.

Let us denote by FL (i ,j) the overfiow incurred by optimally partitioning the i 14 segment

into j pages. We note that under the fixed partitioning I , finding the value of FL (i , j) is a

standard one dimensional dynamic program for every value of i and j . Let 'J'F (j ,I) denote the

overftow incurred by the optimal partitioning of the first j segments into a total of I pages. We

have the following recursive equation:

TF (j ,I)=-Min{ TF (j -1,m)+FL (j ,1-m)} . ..
This equation expresses the fact that the optimal partitioning of the first j segments into l pages

is achieved by choosing some m where m <I, and optimally partitioning the first j -1 segments

into m pages and then partitioning the j'' segment into 1-m pages. The boundary condition is

TF (1,/)=FL (1 ,I) for every I.

A dynamic programming• approach was used to find the value of m which minimizes the above

equation. ~ mentioned above; in Algorithm 2.only one value, of n 2 was tested whereas in A.Jgo-

rithm 3, we computed TF (n 2,K) for each n 2 in P and then chose as our optimal solution the

vertical partitioning which produces the smallest value of TF (n 2,K). The results of both a! go-

rithms and comparisons with the symmetric algorithm are presented in the next section.

J

11

5. Experimental Re.ulta

In this section we describe the computational experiments we conducted in order to compare

the symmetric and the asymmetric partitioning or a database. The parameters or interest in these

experiments were the number or possible attribute values, the constraint K on the size or the

database primary area and the storage utilization. For different combinations or these parameters,

we were interested in compa.ring the total overftow generated by our three algorithms. Also we

compared the quality or the solution generated by the three algorithms ror a uniform input matrix

F as opposed to a matrix which has some clustering or values.

In Table 1 we compare the percentage or overftow generated by the three algorithms under

four different storage utilization factors. Each entry in the table was computed as an average or

four experiments. Each element or the matrix F was generated as a uniform r&ndom variable in

the range 1 to 1000. For each experiment, the size or the matrix n , the number or pages K, and

the storage utilization factor was determined. The page capacity was computed from these

numbers. As expected, Algorithm 3 always finds a solution with a smaller percentage or overflow.

The amount or improvement between the best asymmetric algorithm and the symmetric one is

shown in Figure 4. In this figure, we computed the ratio between the overftow reduction achieved

by Algorithm 3 over the overflow generated by Algorithm 1 for different n and storage utilization

factors. In this graph we always chose K ==2n . As can be seen, the improvement becomes more

significant with decreasing utilizaton factors. In general we observed reduction or overftow

between 35 to 100 percent.

A similar set or experiments was also performed for an input matrix with clustered elements.

This attempts to simulate situations in which some surrogates a.re more active than others or the

existence or some time ranges in which. more activity is expected in the file. We modeled this

non-uniformity by partitioning our matrix into nine sub-matrices and then in each sub-matrix we

generated uniform random numbers from different ranges as shown in Figure 5.

1'2

10 1 1

1 1 10

5 15 1

Figure 5: A clustering scheme

Each number in this figure when multiplied by 100 gives the range used for generating random

numbers in this region of the input matrix. The results of this set of experiments is shown in

Table 2. In this case the asymmetric algorithm even performed better as it can adapt better to

non uniformity in the input. The impact of storage utilization factor was less significant in this

case as can be seen in the graph of Figure 6.

C') -

Util.=0.80 Util.=0.85

n K Alg. I Alg. 2 Alg. 3 Alg. I Alg. 2 Alg. 3 Alg. I

10 25 3.5 0.4 0.4 5.2 1.9 1.9 7.3

40 4.4 1.3 0.3 6.3 2.6 1.2 8.3

20 40 0.6 0 0 1.3 0.1 0 2.6

80 2.1 0.1 0 3.5 0.7 0.1 5.3

40 80 0.1 0 0 0.4 0 0 1.2

160 0.6 0 0 1.4 0 0 2.8

80 160 0.2 0 0 0.1 0 0 0.3

320 0.1 0 0 0.4 0 0 1.2

100 200 0.4 0 0 0.1 0 0 0.3

500 0.1 0 0 0.5 0 0 1.3

200 200 0 0 0 0 0 0 0

500 0.6 0 0 0.1 0 0 0.1

Table 1: Percentqe overftow or the partitioning algorithms ror unirorm data

) c
,j

Utii.=O.OO Utii.=0.05

Alg. 2 Alg. 3 Alg. 1 Alg. 2 Alg. 3

3.8 3.8 9.8 6.3 6.3

4.3 2.8 10.5 6.6 4.0

1.1 0.6 4.3 2.6 1.0

1.9 0.8 7.5 3.7 2.2

0.2 0.1 2.5 1.2 0.8

0.1 0.1 4.6 1.9 1.1

0 0 1.3 0.4 0.2

0.1 0 2.8 0.9 0.3

0 0 1.1 0.3 0.2

0.1 0 2.8 0.8 0.3

0 0 0.2 0 0

0 0 0.7 0.1 0

r ;f"~

""" """

lt ("

Utii.=0.80 Utii.=0.8!> Utii.=O.OO

n K Alg. 1 Alg. 2 Alg. 3 Alg. 1 Alg. 2 Alg. 3 Alg. l Alg. 2

10 25 28 7.5 7.5 31 10 10 34 12.6

40 29 19 7.5 32 21 9.5 34 23

20 40 18 1.4 0.4 !9 2.6 1.1 22 4.3

80 28 7.1 0.5 30 8.8 1.5 33 1.0.2

40 80 17 0.1 0 19 0.5 0.1 20 1.7

'
160 27 0.7 0 29 1.2 0.3 31 3.3

80 160 16.2 0 0 18 0.1 0 20 0.5

320 27 0.1 0 29 0.6 0 31 1.7

100 200 16.6 0 0 18.8 0 0 20 0.2

500 32 0.1 0 33 0.5 0 33 1.8

200 200 0.1 0 0 0.5 0 0 1.6 0

500 26 0 0 28 0 0 29 0.1

---· ---

Table 2: Percentage overHow or the partitioning algorithms ror clustered data

l- >;

Utii.=O.D5

Alg. 3 Alg. 1 Alg. 2 Alg. 3

12.6 35 14 14

11 36 26 14

2.6 25 5 4

3.1 35 12 5

0.7 23 3 2

1.1 34 5 2

0.2 23 1.8 1

0.2 34 3.5 1.3

0 23 1.3 0.7

0.1 34 3.6 1.1

0 3.8 0.3 0

0 32 0.8 0

1------- -

15

Uniforrn case

c
! ..
!

ry 1
I .. ,

' c ,. lo • • •
" 0

•

ft

tJ u til.- o.co

Figure 4

t;lusterea case

o.t~

00

0.1~

0.11

0.7!

0.1
f.,~

10 ao 10 &00 aoo

"
c;, Uta&.• 0.110 Ubi.•O.U • U\U.•O.~

Ficure 8

16

0. Conclusions

In this paper we examined two alternatives for multidimensional partitioning of temporal

databases. It seems that the unique structure of these databases requires different data structures

than simple grid files which perform very well for regular databases. The reason for this

difference is that there is an inherent asymmetry of the time attribute with respect to the other

attributes which requires special treatment. The structures proposed here are static in the sense

that all the data or at least the distribution or the tuples over the attribute values must be known

before a partitioning algorithm can be utilized. However, as shown in [ROTE86J, static structures

can be incorporated in a dynamic scheme for the purpose of conversion or periodical reorganiza­

tion of a dynamic: file to improve future performance. Also, although we did not deal with it in

the paper, the uymmetric: file can be used aa a dynamic file where splits in the directory are

made by adding a horizontal line in some vertical segment.

The~ main objective functions that we•were trying to minimize were the total amount of·

overflow subject to a constraint on the number of' pages K. The same techniques can be used for·

ditferent.objective functions. For example.we can minimize K subject to a zero overflow con­

itraint or·try to maximize ltorage•utilization; Another important advantage•of our scheme is•that

we can solve the dynamic program subject to constraints on where the partitioning lines must be

placed. For example we can specify that surrogates 1 1 , ' 2 and 1 s must belong to the same seg­

ment. The reason for this constraint is that a very common query type specifies all these three

surrogates. In other words we can adapt our partitioning scheme to the query pattern as well as

the data.

1. Acknowledgements

The authors wish to than.k Dr Shoshani for his suggestions and help in preparing this paper.

Y·

,.,

17

REFERENCES

AHN86 Ahn I., "Towards an Implementation o(Database Management Systems with Tern~
•. poral Support", Proceedings ot the International Conference on Data
Engineering, 1986, pp. 374-381.

ARIA84 Ariav G., Beller A., and Morgan H., "A Temporal Data Model", Technical Report,
New York Univer•ity, December, 1984.

BOL082 Bolour A., Anderson T.L., Dekeyser L.J., and Wong H.K.T., "The Role or Time in
Information Processing: A Survey", IACM-SIGMOD Record, 12, 3, 1982, pp. 27-
50.

CLIFF85 11 Clifford J., and Tansel A., "On an Algebra (or Historical Relational Databases: Two
Views", Proceedings of the ACM SIGMOD International Conference on
Mana1ement of Data, May 1985, pp. 247-265.

HOR078 Horowitz E., Salmi S., "Fundamentals or Computer Algorithms", Computer Sci­
ence Preu, Inc., 1978.

LUM84 Lum V., Dadam P., Erbe R., Guenauer J., Pistor P., Walch G., Werner H., and
Woodfill J., "Designing Dbms Support (or the Temporal Dimension", Proceedings
ot the ACM SIGMOD International Conference on Management of Data,
June 1984, pp. 115-130.

MERR78 Merret T.H.,"Multidimensional Paging for Efficient Database Querying", ICMOD
UTI pp. 277-290.

MERR82 MerretT. H.,Ot.oo E.J.,"Dynamic Multipacing: A Storage Structure for Large Shared
Data Banka", Improvln1 Databue U•ablllty and Re•pon•ivene•, P. Scheur­
mann ed. (Jerusalem , June 1982), Academic Press New York, pp. 237-256.

MERR84 Merret T.H., "Relational Inrormation Systems" Ruton Publishing Company,
1984.

NIEV84 Nievergelt J.,Hinterberger H., and Sevcik K.C., "The Grid File: An Adaptable, Sym­
metric Multikey File Structure" ACM TODS, Vol. 9, 1 (March 1984), pp. 38-71.

OZKA85 Ozkarahan E.A. and Ouksel M., "Dynamic and Order Preserving Data Partitioning
(or Database Machines", VLDB, Stockholm, Sweden, 1985, pp. 358-368.

OZKA85a Ozkarahan E.A., "Database Machines and Database Management", Prentice-Hall
Inc., 1985.

REGN85 Regnier M.,"Analysis or Grid File Algorithms", BIT, Vol 25 (1985), pp. 335-337.

RUBE85 Rubenstein B., "Indexes (or Time-Ordered Data" Technical report Computer Sci­
ence Dept., University or Calirornia, Berkeley, 1985.

18

SNOD84 Snodgrass R., "The Temporal Query Language.TQuel", Proceedings of the Third
ACM SIGMOO Symposium on Principles of Database Systems (PODS),
Waterloo, Canada, April 1984, pp. 204-213.

SNOD85 Snodgrass R., and Ahn 1., "A Taxamony of Time in Databases", Proceedings of the
ACM SIGMOD International Conf'erence on Management of Data, May
1985, pp. 23&-246.

ROTE86 Rotem D. and Segev A., "Algorithms for Multidimensional File Partitioning,., Sub-­
mitted for publication.

SHOS86 Shoehani A. and Kawagoe K., "Temporal Data Management", VLDB, Kyoto, Japan,
1986. To appear.

y

'

'".i"

!

).

/

This report was done with support from the
Department of Energy. Any conclusions or opinions
expressed in this report represent solely those of the
author(s) and not necessarily those of The Regents of
the University of California, the Lawrence Berkeley
Laboratory or the Department of Energy.

Reference to a company or product name does
not imply approval or recommendation of the
product by the University of California or the U.S.
Department of Energy to the exclusion of others that
may be suitable. '

·-:--~ a....-:'!1~

LAWRENCE BERKELEY LABORATORY
TECHNICAL INFORMATION DEPARTMENT

UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720

~{' ~ t---c,

