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Abstract 

The Maximum Likelihood Estimator (MLE} method of image reconstruction has been reported to exhibit image 
deterioration in regions of expected uniform activity as the number of iterations increases beyond a certain 
point. This apparent instability raises questions as to the usefulness of a method that yields images at 
different stages of the reconstruction that could have different medical interpretations. In this paper we 
look in some detail into the question of convergence of MLE solutions at a large number of iterations and 
show that the MLE method converges towards the image that it was designed to yield, i.e. the image which has 
the maximum likelihood to have generated the specific projection data resulting from a measurement. We also 
show that the maximum likelihood image can be a very deteriorated version of the true source image and that 
only as the number of counts in the projection data becomes very high, will the maximum likelihood image 
converge towards an acceptable reconstruction. 

Introduction 

Since its introduction into the emission tomography literature by Shepp and Vardi1, the MLE method of image 
reconstruction has received a substantial amount of attention due to its apparent ability to yield images 
with excellent signal-to-noise ratio, good sharpness and increased contrastl-5, 

It has also become aQparent6-8~ that the algorithm results in images that deteriorate by processes variously 
named noise artifact6, ringing' ·or image breakupS as the number of iterations increases beyond a certain 
point. In a previous paperS, one of us and co-workers examined the behavior of the MLE algorithm when recon
structing images from a non-tomographic, two-plane, 128 element BGO camera and arrived at the conclusion that 
the observed image deterioration was inherent in the nature of the Poisson distribution used as basis for the 
MLE algorithm. In order to understand in sufficient detail the mechanisms at work, we simulated a very sim
ple camera (6 elements in two planes} and followed, step by step, the progress of an MLE reconstruction. We 
have extended that work to tomographic positron emission images and, in particular, we have simulated the 
ECAT-III tomograph9 of U.C.L.A. for this study. The principal aim of our work has been to ascertain whether, 
indeed, the deteriorated images at high iteration numbers are converging towards a maximum likelihood image 
and under what conditions the maximum likelihood image may be a good representation of the source. 

We will begin by presenting the theoretical basis of our analysis method, show reconstruction results from 
a phantom which exhibits strong image deterioration, describe the results of analyzing those images and dis
cuss our conclusions about the convergence properties of MLE reconstructions. 

Theoretical Basis 

The likelihood function that one seeks to maximize in the MLE method of Ref. 1 is defined as: 

L(A.} = P(n*JA.) = ~ II e-A.(b,d} [A.(b,d}n(b,d} f n(b,d}!] 

A b=l. .. B 
d=l ... D ( 1} 

where the sum is over all arrays A of n(b,d}'s with n*(d} observed counts in the dth detector tube. The no
tation is that of Ref. 1, which we use throughout this paper. The variables n(b,d} are the number of emis
sions in box b detected in tube d and are independent Poisson variables with mean 

En(b,d} = A.(b,d} = A.(b} p(b,d) (2} 

where A(b} is the activity in pixel b and p(b,d} is the probability of detecting one count emitted by b in 
detector tube d. The vector of observed counts n*(d) is defined as: 

n*(d} 

B 

~ n(b,d} 

b=l 

1 

(3} 



From the description of the members of arrays A in Eq. 1, it is clear that the algorithm attempts to find 
an image that maximizes the likelihood function L( A) within all possible sets of values of n(b,d) that satis
fy the observed counts n*(d). This observation can be restated as: the MLE algorithm will find the image 
which has the highest probability of having given a particular set of detected events. The formulat ion of 
the MLE algorithm does not insure, however, that the projection of the resulting image will have some norm 
of minimum differences with the experimental projection data n*(d). 

Our analysis of reconstruction will first verify that the MLE algorithm does i nd eed conve rge t owards an 
image which has the highest probability of having given a vector of measurements n*( d). It will then be come 
evident that the ma ximum li kelihood image can be quite different from the true source image that ge nerated 
the projection data. Finally, we will show that the difference decreases wh en t he number of counts in the 
measurement increases. 

Following our previous workS, we consider that after a number of iterations i, we have found an image 
Ai(b). The projection of that image into the detector tube space is: 

n*i(d) = ~ p(b,d) Ai(b) 

b 

(4) 

The probability that the image obtained after i iterations has resulted in a measurement n*(d ) will be: 

pi = IJ P[n*(d) 

d 

( 5) 

which should increase with increasing number of iterations. P[j !mJ is the probability of obta i ning j counts 
when the mean of the distribution is m. P corresponds to the Poisson distribution in our case. 

As part of the analysis we also calculate the root mean square error: 

~ ~ 11/2 ~ [n*(d) - n*i(d)]2 1 ~ n*(d) 

d d 

(6) 

as the number of iterations increases. 

Results of Reconstruct ions 

In order to evaluate the behavior of the MLE algorithm exclusively, without being sensitive to effects due 
to the possible inaccuracies of the probability matri x p(b,d) in representing a parti cul ar detector instru
ment, we have generated and reconstructed images by computer in a 
obtained first by random assignment of events to pi xels according 

self-consistent manner : the images were 
to a specific image pattern. We call these 

.91 

.96 

1.0 

images the source images throughout this paper. The 
corresponding projections were then obtained by assign
ing each event in each pixel to a tube d by a random 
process using a previously computed set of probabili
ties p(b,d) that may correspond to a model of some spe-
cific instrument. The same set of probabilities was ·17 --~~~l:O:;~ 
used subsequently in the reconstructions. 

Figure 1 shows the source image used for the experi
ments for the particular case of 32 million counts in 
the image. The relative activities per unit area are 
shown in the figure. The interior of the elliptical 
shell has a relative activity of .05. Random back
ground has been simulated by a relative activity of .01 
over the entire surface of the image. The image plane 
has been discretized into 128x128 pi xels. The matrix 
of p(b,d) values used for projection generation and 
image reconstruction was obtained by the Shepp and 
Vardi prescription of Ref. 1, simulating one ring of 
the U.C.L.A. ECAT-III, 512 detector tomographg. We 
obtain 512 projections with g5 bins each. A random 
number generator with a period of 232 - 1 was used 
in the random process calculations. 
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XBB 8612-10391A 
Fig. 1 Source image with 32 million counts obtained 
by a random process with probabilities corresponding 
to the relative activities indicated. Image has been 
discretized in 128 x 128 pi xels. 
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The reconstruction experiments have been carried out with three different levels of counts in the image: 
2 million (2M), 8 million (BM) and 32 million (32M) counts. The signal-to-noise ratio in the source image 
pixels increases by factors of 2 in succession. The reconstructions were carried out to iteration 500 in all 
cases using single precision (32 bit) floating point arithmetic. Tests indicated that the results were prac
tically identical to those obtained in double precision up to approx 500 iterations. Double precision arith
metic appears necessary above that number. The change in likelihood function was monitored continuously dur
ing the reconstructions and a monotonic increase in likelihood was observed. 
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XBB 860- 1055 1A 

Fig. 2 a) Cut through a line in the source image of 2 million counts. b) ditto for a corresponding MLE re
construction after 9 iterations. c) ditto after 45 iterations. d) ditto after 200 iterations. 

Examination of the reconstructed images shows that the reconstructions improve towards a reasonable repre
sentation of the source images up to approx iteration 45 and that image deterioration of a degree depending 
on the statistical quality of the original projection data is observable beyond that point. Figures 2a-d 
show cuts through a line in the source image and in MLE reconstructions with 9, 45 and 200 iterations, re
spectively, for the case with 2M counts. Figures 3a-d show results with the 8M images and Figs. 4a-d are 
for the 32M count case. The qualitative improvement up to iteration 45 and a changing degree of deteriora
tion at 200 iterations is clearly observable. 
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XB B 860-10552A 
Fig. 3 a) Cut through a line in the source image of 8 million counts. b) ditto for reconstruction after 9 
iterations. c) ditto after 45 iterations. d) ditto after 200 iterations. 

Effect of Input Data Discretization 

The question arises of whether the observed image deterioration could be the result of discretizing the im
age before calculating the projection data. Comments regarding this possibility have been made by Herman et 
al in a written comment to a paper by Vardi Shepp and KaufmanlO. The comment of Herman et al is based on 
experience reported by Gray and co-workersl1. A test of that possibility should be carried out by fabrica
ting an appropriate phantom and making measurements with a true detector ring. Although we intend to do that 
in the near future, we have conducted a preliminary test by discretizing one image (2M counts) in both 64x64 
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pixels and 256x256 pixels using the same sequence of random numbers to generate event coordinates in the im
aging plane. We then generated matrices of p(b,d) values with the appropriate 4096 and 65536 columns, re
spectively and used those matrices to generate two different sets of projection data. Reconstructions of the 
two sets of data have been carried out using only the 64x64 matrix of p(b,d) values. The results of the two 
reconstructions, carried out to 200 iterations each, are basically indistinguishable. We conclude, at this 
time, that the degree of discretization of the input data does not affect the main results reported in this 
paper. 

4 a 
b c d 

XBB 860-10553A 

Fig. 4 a) Cut through a line in the source image of 32 million counts. b) ditto for reconstruction after 9 
iterations. c) ditto after 45 iterations. d) ditto after 200 iterations. 

Analysis of the Reconstructed Images 

Equation 4 has been used to calculate projections n*i(d) starting from the reconstructed images \i(b) . The 
probabilities pi of Eq. 5 (converted to sum of logs) have been calculated next using the input projection da
ta n*(d) and the projections of Eq. 4. Figures 5a-c show the total probabilities obtained for the source im
ages (horizontal line) and for the reconstructions at different number of iterations for the 2M, 8M and 32M 
cases. It is consistently found, as expected, that the probability that the image obtained at iteration i 
would have given the input projection data n*(d) in a measurement increases with iteration number. This in
dicates that the algorithm is working correctly and that the deteriorated images are more likely to have 
given the input projection data than the images with better appearance. It is interesting to note that the 
probability numbers for the source images are not the highest, although they approach that condition as the 
number of counts increases. This fact indicates that the source image is not the most likely distribution 
to have yielded the projection data in a measurement. 

Figures 6a-c show the root mean square error of Eq. 6 for the 2M, 8M and 32M cases, respectively, as a 
function of iteration number. As above, the horizontal lines correspond to the data for the source images. 
Evidently, the mean square error decreases as the iteration numb er increases, although the algorithm does not 
seek to minimize that functional. As in the case of the probabilities of Fig. 5, the mean square error of 
the source image approaches the values corresponding to higher iteration numbers when the number of counts 
in the data increases. 

Discussion of Results 

Once it has become evident that the likelihood of the converging images is increasing while the quality of 
the image deteriorates beyond acceptability, the question arises as to why the "assymptotic" images are so 
different from the source images except with an increasing number of counts in the projection data. A point 
to be examined is the one of discretization of the image plane in the reconstruction phase. An interesting 
discussion between Vardi, Shepp and Kaufman, on one side, and Herman, Censor, Gordon and Lewitt, on the oth
er, has been reported10. 

We wish first to examine whether condition c of the Theorem in Sec. 2.1 of Ref. 10 is fulfilled. The con
dition states that the maximum of the likelihood function is unique if and only if the grid of the image 
plane is suc h that the 0 vectors 

[p(1,d), .•. p(B,d)], d = 1, ••• , D (7) 

span Es, the B-dimensional Euclidean space . The implication of this condition, discussed in Sec. 2.2 of Ref. 
10, is that if the total number of pixels (boxes) B is greater than the number of detector tubes 0, then the 
MLE is certainly non-unique. 
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For the reconstructions described in this 
paper, the number of tubes carrying informa
tion is approx D = 32,000. The 128x128 re
constructions shown correspond to a number 
B = 16,384. We would expect that B is suf
ficiently smaller than D to insure unique
ness. To be on the safe side, we have also 
carried out reconstructions in a plane of 
64x64 pixels, with a value of B = 4096. The 
same kind of image deterioration was also 
observed in these images. We feel it is 
safe to state that the image deterioration 
is not due to non-uniqueness of the maximum 
of the likelihood functions. 

We have also reconstructed the same kind 
of. images in a 256. x 256 plane, with a num
ber B = 65,536, clearly in violation of con
dition c. The images were very similar to 
those reported above at all the stages of 
the reconstruction. This may indicate that, 
even if the maximum of the MLE is not unique, 
the different maxima are not very different 
from each other. Image deterioration was 
qualitatively similar to that of the 128x128 
or 64x64 reconstructions. This fact appears 
to support the idea that discretization of 
the image plane before developing the algo
rithm does not cause the image deterioration 
observed. The reconstructions at 256x256 
have a discretization which is 16 times 
finer than those at 64x64 and they behave 
alike. This point, however, deserves more 
scrutiny as it has some definite relation
ship with the discussion that follows. 

In our previous examination of the behavi
or of the MLE algorithm in simpler imaging 
situations8 we came to two principal con
clusions which can be rephrased here: 

1) The Poisson-based MLE algorithm will gen
erate an image which favors the matching of 
tubes in the projection data containing few 
counts at the expense of those containing 
many counts. This is due to the fact that 
the derivative of the Poisson function with 
respect to its mean decreases as the mean 
increases, for a number of experimental 
counts in the vicinity of the mean. Thus, 
more likelihood is gained by accurately 
matching tubes with low counts than by 
matching tubes with high counts. 
2) There is a "pivot" effect at the edges of 
regions of high activity brought about by 
small p(b,d)'s linking the discrete pixels 
and tubes at those edges. Small statistical 
errors in some tubes at the edge can cause 
overshoots in the interior of the high ac
tivity region which do not get corrected in 
the iterative process because of the bias 
of the Poisson function, as indicated above. 

The justification for these arguments ap
pears in Ref. 8 for simpler image recon
struction problems. We feel that the argu
ments can be applied to tomographic recon
struction; we are proceeding with an at
tempt to prove them for the latter case. 
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Fig. 5 a) Probability that the image obtained at a certain no. 
of iterations has yielded the particular set of projection data 
used as input for the reconstruction; horizontal line indicates 
the probability for the source image that truly generated the 
input data. Case with 2 million counts in the source image. 
b) Case with 8 million counts. c) Case with 32 million counts. 

5 



Conclusion 

In trying to draw a conclusion from the 
observations reported in this paper, it is 
interesting to begin by considering that in 
the case of a very large number of counts in 
the projection data, the final images ob
tained by the MLE and an iterative minimum 
least squares error algorithm, for example, 
will be the same. Both functionals are op
timized in the limit of very large number of 
counts. In practical imaging situations 
with a limited number of counts, however, 
one can expect different results with dif
ferent algorithms. It appears that the MLE 
algorithm does not take very kindly to the 
statistical fluctuations in the projection 
data specifically by the effects registered 
in the uniform regions of high activity in 
the source. It is very well behaved in the 
regions of zero or near zero activity since 
projection tubes with few counts will be 
matched very well by the algorithm. We are 
continuing work on the characterization of 
the MLE reconstructions and a search for a 
possible functional that may overcome some 
of the observed difficulties. 
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