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The Role of V{ettability in the Break-up of Liquid Films Inside 

Constricted Capillaries 

P. A. Gauglitz and C. J. Radke 

Department of Chemical Engineeering 

University of California. 

Berkeley, California 94720 

ABSTRACT 

To understand the role of wettability on gas-foam generation in porous media, this work 

considers the effect of conjoining/disjoining pressure on the dynamics of a liquid film forming an 

unstable collar in both straight and constricted cylindrical capillaries. A hydrodynamic lubrica

tion analysis is presented to describe the time evolution or a thin viscous film under the influence 

of surface tension and the conjoining or disjoining forces. Time to break-up depends on the pore 

shape, the strength of the conjoining/disjoining forces, the initial film thickness, and also, on the 

Buid 'iscosity, interia.cial tension, and unconstricted pore radius which combine to form ·a charac

teristic scaling time. 

Results show that both conjoining (intermediate wettability) and disjoining (strongly wet

ting) forces inhibit break-up. We propose the criterion that these forces inhibit snap-off when 

Ca. ~ I3A • /C1Rr~ 318, where A • is proportional to the Hamaker constant and C1 denot.es the sur

face tension. Thus, wettability inhibits snap-off at nry low bubble capillary numbers, Ca , or in 

very small radius capillaries, Rr. 
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1. INTRODUCTION 

Thin liquid films wetting solid surfaces arise in many physical situations. or pnma.ry 

interest here are oil-bearing underground porous media. 'When two phases are present in a porous 

medium, the distribution of the wetting and nonwetting phases within the pore spaces is crucial 

to the motion of these fluids (Scheidegger, 1974). Often, wetting liquid flows into collars at pore 

constrictions that may become unstable and snap-off to form liquid lenses (Mobanty, 1981). The 

lenses (i.e., liquid lamellae), if stabilized by surfactants, may block flow paths and increase the 

resistance to flow through the porous medium. Foam occurs in the porous medium when large 

numbers of liquid films break up to form lenses which a.re stabilized against rupture. The addi

tion of surfa.ctants, to stabilize the lenses, is known to improve mobility control and reduce grav

ity override in steam displacement processes for increasing heavy oil recovery (Dilgren & Deemer, 

1982; Ploeg & Duerksen, 1985). 

An important mechanism for foam bubble generation is snap-off at pore necks (Mast, 1972). 

The four key steps in bubble snap-off are depicted in Figure 1. In the first two steps, the nonwet

ting bubble moves through a liquidefilled constriction depositing a film of wetting liquid. Due to a 

difference in interfacial curvature, liquid is driven into the growing collar by surface tension forces 

as shown in step 3. Eventually, sufficient liquid collects in the collar and it becomes 1,1nstable and 

breaks up to form a liquid lens as shown in step 4. This final step is bubble snap-off to form a 

foam lamella. 

;me objecti~e or this work is to determine how wetta.bility influences the above snap-off 

mechanism in constricted cylindrical capillaries. By wettability we refer here to the macroscopic, 

static contact angle; 8, gauged through the liquid phase. Contact angles less than go• reflect par

tial wetting \\"bile those greater than 90° correspond to partial nonwetting. Complete wetting 

and nonwetting occurs at o• and tso• contact angles. 

As- shown by Ivanov and co-workers (1978), and Mohanty {1981), and discussed by others 

(Martynov & co-workers, 1976; Del')·agin & co-workers 1976), macroscopic wettability is directly 

related to the molecular conjoining/disjoining pressure. Conjoining and disjoining forces arise in 
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thin ftuid films (e.g., less than 1 JJm thick) where the close proximity to a solid wall modifies the 

pressure in the liquid film. Deryagin (Deryagin & Kussakov, 1939; Clunie & co-workers, 1971) 

defined the disjoining pressure as the excess pressure arising in thin films above the pressure of 

the same ftuid as a bulk phase. A positive disjoining pressure corresponds to a lower pressure in 

the film than the same ftuid in its bulk state. This situation leads to a spontaneous thickening of 

the film. With a liquid film and a positive disjoining function, complete wetting (i.e. 6 = 0) 

occurs. Conversely, a negative disjoining pressure, called conjoining pressure, corresponds to a 

higher pressure in the film. Here, local thinning of the film occurs which eventually leads to 

dewetting of the solid surface (Ruckenstein & Jain, 1974; Williams & Davis, 1982; Kheshgi, 1984). 

For a liquid film with a negative disjoining function, contact angles greater or equal to 90° arise. 

This results in partial nonwetting and a gas film adjacent to the solid surface. 

Disjoining and conjoining forces also play a role in the dynamics of the snap-off phenomena. 

Teletzke (1983) has shown that the conjoining/disjoining pressure alters the film thickness depo

sited by a bubble. This result is important since the film thickness governs the rate of liquid fiow 

into the growing collar shown in step 3 of Figure 1. In addition, the ftow rate in the liquid film 

must also be inftuenced by the conjoining/disjoining pressure.. Therefore, we include 

conjoining/ disjoining forces when describing the film ftow depicted in Figure 1. This permits us 

to investigate the role of liquid wettability during gas bubble snap-off in constricted cylindrical 

capillaries. 

2. PREVIOUS WORK 

The shape and static stability of wetting collars (Figure 2a) has been investigated by 

Everett and Haynes {1972) and Mohanty (1981). Their results show that thin collars are stable, 

but sufficiently thick collars are unstable and break-up into lenses, Figure 2b. Mohanty (1981) 

considered straight and constricted capillaries, and included disjoining and conjoining forces in his 

analysis. For a fixed capillarY pressure {i.e., the pressure difference across the collar interface due 

to the curvature and the conjoining/disjoining pressure), Mohanty found that pure disjoining 

forces stabilize an otherwise unstable collar, and conversely, a combination of disjoining and 
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conjoining forces (partial wetting) destabilize an otherwise stable collar. These static results are 

useful, but to determine the size and rate of bubbles generated by snap-off we must consider the 

dynamics of collar growth and break-up. 

Dynamic break-up of liquid films in straight capillaries (when conjoining/disjoining forces 

are negligible) has also received attention. The initial linear stability analysis performed by 

Goren (1962) demonstrates that infinitesimal sinusoidal disturbances grow exponentially in liquid 

films of uniform thickness wetting the inside wall of a capillary. This is in accordance with the 

experimental data of Goren (19~2), Goldsmith and Mason (1963), and Gauglitz (1986). More 

recently, Hammond (1983) developed a nonlinear analysis, restricted to films that are thin com

pared to the capillary radius, to follow the fate or disturbances when their amplitude becomes 

large. Since the film thickness must be small compared to the capillary radius, Hammond's solu

tion only permits films to evolve into stable collars such as the one depicted in Figure 2a. Thus, 

Hammond's analysis unfortunately does not permit break-up, which is step 4 in Figure L The 

experimental data of Goren (1962), Goldsmith & Mason (1963), and Gauglitz (1986) clearly show 

that liquid films indeed do break-up into lenses, such as the one depicted in Figure 2b. The 

inadequacy or Hammond's thin-film approximation lies in the inaccurate estimate or the circum

ferential curvature during the latter stages of the break-up to form the liquid lens. In this paper, 

we employ an extended evolution equation utilizing a more correct estimate of the circumferential 

curvature (Gauglitz & Radke, 1986a; Gauglitz, 1986), in addition to including conjoining and dis

joining forces. 

The influence or conjoining/disjoining pressure on the motion or liquid films in cylindrical 

geometries, the main theme of this work, has not been very thoroughly examined. Jo (1984) con

sidered the stability of an annular film in straight capillaries by employing directly the results of 

Ruckenstein and Jain (1974). However, only liquid motion on a planar solid surface was con

sidered by Ruckenstein and Jain. Thus, Jo neglects completely the crucial circumferential curva

ture in his analysis. Both Hammond (1983) and Goren (1962} show that the growth of distur

bances is influenced by the delicate competition between the transverse and circumferential radii 
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of curvature. Therefore, we include here both principle radii of curvature and the 

conjoining/ disjoining pressure in our analysis. 

In section 3, we derive a nonlinear evolution equation for axisymmertric liquid films in con-

stricted capillaries. To provide useful physical insight into the role of B.uid wettability in the 

break-up process, section 4 presents a linear stability analysis in the thin-film limit of the evolu-

tion equation for straight capillaries. Section 5 gives the full numerical solution to the nonlinear 

evolution equation for liquid films in constricted capillaries. Finally, since conjoining/disjoining 

forces inB.uence both the deposited film thickness and the evolution of the film, section 6 eluci-

dates the combined effect of these two phenomena on bubble snap-off, and summarizes the role of 

wettability. 

3. THEORY 

Consider a. viscous film oC liquid wetting the inside wall of a constricted capillary, as shown 

in Figure 3. Cylindrical coordinates (r,x) are used with the axial origin at the neck oC the con-

striction. The radius of the unconstricted pore is R;. The shape of the constriction is prescribed 

by an arbitrary function, X(:r ), whose slope is small so the radius of the capillary changes slowly 

with position. Variables and dimensions in Figure 3 are nondimensiona.lized as follows: 

r = r • /R; :r = :r • /R; ' (1) 

p = P • /(t:~/ R;) n = n· /(t:~/R;) , (2) 

r = t • /(3JJR; /t:~) , (3) 

IC = r • / R; = X-h at the inter f ac: e (4) 

The superscript • represents dimensional quantities; all unsuperscripted quantities are dimension-

less. Time is scaled by a characteristic time obtained from ratio of the length R; over the 

characteristic velocity CI/JJ Hammond (1983). The important unknown is IC, the radial position or 

the film interface, or equivalently h, the local film thickness. For the results reported here, we 

define the pore shape with a cosine function as follows: 

X(%)= 1-0.4 [1 + c:o.!(:r1T'/10)]. (5) 

To follow the liquid motion in the film, a nonlinear evolution is derived for the dynamic film 
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position ,. (Atherton & Homsy, 1976; Hammond, 1983). We utilize here, an extension of the 

small-slope evolution equation proposed by Gauglitz (1986), and Gauglitz and Radke (1986b) to 

include conjoining/ disjoining pressure. 

According to Figure 3, liquid flows in the film due to a gradient in the mean curvature of 

the interface along the capillary, and also ~ue to a gradient in the disjoining pressure arising from 

variations in the film thickness. If the film is thin and the slope of the pore wall is small, the clas-

sical lubrication approximation applies for the fluid motion in the film. In addition, inertial 

effects are neglected (Hammond, 1983), and rectangular coordinates are employed. We modify 

the equations of motion by including the conjoining/disjoining forces as a body force (Williams & 

Davis, 1982; Chen and co-workers, 1984). Within the lubrication approximation, Teletzke (1983) 

has justified this approach theoretically. The velocity profile, v16• in Figure 3, is determined easily 

after imposing the boundary conditions of no-slip at the capillary wall, and no-stress at the gas-

liquid interface, since t~e gas is presumed inviscid. Integrating the velocity profile over the thick-

ness of the film gives the volumetric flow as a function of the total pressure driving force as fol-

lows: 

Q • = >.. [ _ ~ + an ]" 3 , 
R;~/iJ az az (6) 

where IT is the nondimensional conjoining/disjoining pressure. The following simple -functional 

form for the disjoining pressure (Kruyt, 1952) proves sufficient for this investigation: 

• • - COR]OUUng 

{ 
A 0 /h. 3 ••. 

n h = • • .... ( ) A jh 3 di8Jomang (7) 
' 

where ±A • is a dimensional scaling coefficient. A • is related to the Hamaker constant and typi-

cally has values near w-21 J (Kruyt, 1952). Other simple functional forms are available for IT, 

such as an inverse quadratic or an exponential dependence on the film thickness (Kruyt, 1952; 

Mohanty, 1981; Teletzke, 1983; Jo, 1985). 

As .noted above, Ivanov and cc>-workers (1978) and Mohanty (1981) have shown that the 

conjoining/ disjoining pressure determines the contact angle. If the disjoining pressure is always 

greater than zero, the liquid-phase contact angle is zero. However, for a conjoining/ disjoining 
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pressure function which is both positive at small film thicknesses, and negative at larger 

thicknesses, intermediate wettability: exists with a contact angle 0 of 0 < 0 < rr/2. The disjoin-

ing pressure functions given by Equation 7, correspond to a perfectly wetting liquid ( 0 = 0) for 

+A • jh • 3• Following the analysis ofMohanty (1981), we find that the conjoining pressure func-

tion, -A • jh • 3
, results in 0 ~ rr/2, which is a partially ~o completely nonwetting liquid. 

Although simple, the inverse cubic dependence for the conjoining/ disjoining pressure given by 

Equation 7 represents both wetting and nonwetting liquids, and will suffice here. 

The p_r~ssure_dr-iving- force-in-Equation 6 is obtained from the normal stress balance at the 

film interface, which is the Young-Laplace equation within our approximation. We impose the 

following small-slope approximation to the curvature which was proposed by Gauglitz (1986) and 

Gauglitz ·and Radke (1986b) as a simple, yet accurate approximation: 

1 a"J~ 
-p=----

IC 8z 2 ' 
(8) 

-
where p is the liquid pressure, and the gas pressure is set to zero since it is assumed constant. 

To obtain an evolution equation, we combine the derivatives of Equations 7 and 8 with an 

integral form of the continuity equation and the kinematic condition (Teletzke, 1983; Hammond, 

1983), and substitute the ftow relation, Equation 6, to yield: 

(9) 

where A =±A • /(lrRr~ is a dimensionless measure of the conjoining/disjoining pressure. This 

group is sometimes refer to as the Scheludko number (aside from a factor of l/6rr; Gumerman & 

Homsy, 1975). 

Equation 9 is the desired evolution equation for the dynamic interface position in a con-

.. 
stricted capillary. This equation is a highly nonlinear partial differential equation that is first 

order in time and fourth order in axial position. We must further simplify this relation to obtain 

analytic information, otherwise, the only amenable solution is numerical. To give useful physical 

insight, we consider now a linear stability analysis of the proposed evolution equation, Equation 9. 
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4. LINEAR STABU.ITY ANALYSIS 

Qualitative understanding of the role of conjoining/disjoining forces emerges by considering 

the fate of infinitesimal sinusoidal disturbances with a normal modes analysis {Drazin and Reid, 

1981; Williams & Davis, 1982; Hammond, 1983). To obtain a simple base state, we consider only 

a. straight capillary with a wetting film of uniform thickness initially at rest. As a further 

simplification, we adopt only the thin-film limit of the evolution equation {Hammond, 1983; Gau~ 

glitz, 1986) obtained by substituting for ,. in Equation 9 the following: 

,. = 1- eh , {10) 

where E is a small constant reflecting the initial film thickness in the straight capillary, and 

r = h • I h.
4 

is a scaled film thickness. Expanding in a Taylor aeries for E - 0 and keeping leading 

.order terms in e gives: 

1 ar _ ..2....{ra [ aar + ali+ 3.A _1_ ali]} 
7Tr = az az 3 az e• r• az . (11) 

This is a direct extension of Hammond's (1983) nonlinear evolution equation to include 

conjoining/disjoining forces. Consider now sinusoidal disturbances of the form, 

h = 1+.8e crr+.:U , (12) 

where .8 is a small constant reflecting the amplitude of the infinitesimal disturbance. Substituting 

Equation 12 into Equation 11 and linearizing yields the following dispersion relation: 

(13) 

where a is the growth rate factor. That is, instabilities grow only for positive a values. The 

wavelength of the fastest growing disturbance, Amu is by 

1r 
Amu= 2-,.-- = 

max 

4.1. RESULTS: LINEAR ST ABn..ITY 

(14) 

The linear analysis determines whether sinusoidal disturbances grow or decay. As portrayed 

in Figure 4, the dispersion relation {Equation 13} gives a one parameter family of curves relating 

8 



" 

.. 

the dimensionless growth rate to the wavelength of the disturbance. At each parameter value, the 

maximum in the curve corresponds to the fastest growing disturbance which dominates the film 

breakup. The crucial parameter determining the role of conjoining/disjoining pressure is 3A /E4 

which shows the important influence of the initial film thickness E and the size of the pore, Ri , 

since A =A • j(rrRi2
). For 3A /E4 = 0, we recover the results of Hammond (1983) where 

Amu = 22/3Tr. 

Conjoining/ disjoining pressure affects the both the value of the growth-rate parameter and 

the wavelength of the fastest growing disturbance. For 0 < 3A /E4 < 1, disjoining pressure 

resists local thinning of the film, and accordingly, the growth rate is less. The dominate 

wavelength shifts towards longer waves corresponding to a decrease in the wave number, k. 

When 3A./E4 ~ 1, all disturbances decay and a stable film uniformly wets the inside wall of the 

capillary. 

Conjoining pressure, corresponding to 3A / E4 < 0, increases the growth rate and shifts the 

fastest growing disturbance towards shorter wavelengths. Analogous to Ruckenstein and Jain 

(1974), Williams and Davis (1982), and Kheshgi (1984), the growth of a disturbance indicates the 

initial dynamics of a thin film evolving to either a dry patch ( dewetting) or a liquid lens. Dewet

ting is detrimental to snap-oft' as we discuss further in section 5. 

When disjoining forces are sufficiently large (i.e., 3A/E4 ~ 1), the liquid is strongly wetting: 

all disturbances are damped since the growth-rate factor defined by Equation 13 is negative for all 

wavelengths. When 3A /E4 << -1, Equation 13 demonstrates that the conjoining pressure is the 

dominate driving force for b~eak-up. That is, the factor of unity in the denominator on the right 

side of Equation 13, which arises from the circumferential radius of curvature, is small compared 

to the conjoining pressure term. Accordingly, the growth rate a is established by the competition 

between the stabilizing transverse curvature (i.e. , -k 4 in Equation 13) and the driving force 

which is the conjoining pressure (i.e., -k 23A /E 4 in Equation 13). For this limiting situation, 

our results simplify to those of Jo (1984) and Ruckenstein and Jain (1974) since the geometry is 

now essentially planer. The nonlinear analysis of Williams and Davis (1982) applies in this limit-
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ing case as well. 

The important results of the linear stability analysis is that disjoining pressure makes all 

disturbances stable if 3A je4 > 1, and that conjoining forces become important when 

3A je 4 $ -1. Combining these criteria we find that conjoining/disjoining pressure must be con

sidered when 31 A I /e 4 2: 0 (1). 

The linear stability analysis also demonstrates that two types of break-up exist: 1) snap-off 

due to the circumferential curvature, and 2) spontaneous film rupture (i.e., dewetting) due to the 

conjoining pressure. The linear stability analysis can not determine which type of break-up will 

predominate, snap-off or dewetting, since it only indicates whether infinitesimal sinusoidal distur

bances grow or decay. To determine which occurs first, snap-off or dewetting, we must perform a 

nonlinear stability analysis which involves solving Equation 9. 

5. NONLINEAR EVOLUTION 

Consider the evolution of a film of uniform thickness coating the inside wall of a smoothly 

constricted capillary as prescribed by Equation 5. Since conjoining/disjoining forces depend on the 

thickness of the film, a range of initial thicknesses is investigated. In addition to the 

conjoining/disjoining forces becoming more important in thinner films, the time required for 

liquid to flow into the growing collar depends strongly on the thickness of the liquid film. With 

thicker films, liquid flows more quickly since viscous resistance is relatively less and collars snap 

off faster. Conversely, with thinner films, snap-off occurs more slowly since the viscous resistance 

to flow is larger in the thinner films. This is evident in Equation 6 where the flow rate in the film 

has a cubic dependence of the film thickness h. 

6.1. NUMERICAL SOLUTION 

The evolution equation given by Equation 9 demands numerical solution. It is parabolic in 

nature, re.quiring an initial condition and four boundary conditions. The initial profile is a film of 

constant uniform thickness h0 = h;/ R; which results in the following initial condition: 

~e(z ,0) = >.(z)- h0 • (15) 
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'Note that h
0 

in the constricted capillary is equivalent to E in the straight capillary. The boundary 

conditions of symmetry at the pore neck (x=O) indicates that the first and third derivatives are 

zero: 

at :r = 0 . (16) 

A long distance from the pore we require that the film have a constant thickness and zero slope: 

~e(z ,r) = 1 - ho , o~e(z ,r) = 0 
oz 

at z = +16 . (17) 

At a position of :r = +16, the boundary conditions given by Equation 17 have no influence on 

the collar evolution. Applying the boundary conditions of Equation 17 further away from the 

constriction causes no change in the results indicating that indeed x = +16 is a long distance 

from the constriction. In addition, we have investigated applying symmetry conditions at x = 

+ 16 where the first and third derivatives are zero as in Equation 16. There is no difference in the 

results so our analysis applies to periodically constricted capillaries as well. 

To obtain a numerical solution, we employ the Galerkin finite element method (Becker, 

Carey & Oden, 1981; Finlayson, 1980) to discretize the axial derivatives in Equation 9, and the 

Crank-Nicholson method (Lapidus, 1962) to discretize the time derivatives. The resulting system 

of nonlinear algebraic equations is solved at each time step with Newton-Raphson iteration. 

Extensive details of the numerical procedures are given in Gauglitz (1986). We report next, the 

results for a range or initial thickness which show the influence or conjoining/ disjoining forces. 

5.2. RESULTS: CONSTRICTED CAPll..LARY 

We focus on the effect of the initial film thickness because of its strong influence on the time 

to break-up. Time to break up is defined as the instant when the collar crosses the centerline of 

the pore. Collar growth accelerates rapidly at the end of the break-up process, and the calculation 

is stopped before the neck radius of the collar becomes identically zero. Interrupting the calcula-

tion when the collar neck radius becomes less than O.OsR; gives an error of less than 1% in the 

calculated time to break-up. Rapid growth of the collar once it reaches a critical thickness has 

been elucidated in a previous study (Gauglitz, 1986; Gauglitz & Radke, 1986b) and is observed 
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experimentally (Goldsmith & Mason, 1963). Results without thin-film forces will be discussed first, 

then the effects of conjoining/ disjoining forces are included. 

The initial condition of a uniform initial film along the pore wall is shown in Figure 5. A 

sequence of film profiles is shown in Figure 6 for a uniform initial film of thickness ho = 0.0124 

with A set to zero. To observe the collar sh~pe more carefully, we plot the solution only near the 

constriction neck. The first profile at r = 1500 shows the initial film growing thicker at the pore 

neck as liquid collects in a growing collar. In the second and third profiles local thinning at the 

sides is noticeable as the collar becomes large. This arises from the collar drawing liquid in rapidly 

from the sides as the collar accelerates its growth. Indeed, the collar grows at an ever increasing 

rate as it becomes larger, with break-up occurring at r6 = 5496, which is soon after the third 

profile in Figure 6 at r = 5300. 

The effect of the initial film thickness on the time to break up, without 

conjoining/ disjoining forces, is summarized in Figure 7 by the line labeled by A = 0. Time to 

break-up increases rapidly for thinner initial films due to the cubic dependence of the B.ow in the 

film on the film thickness as given in Equation 6. 

When A is positive, disjoining pressure resists local film thinning and slows collar growth. 

IC sufficiently strong, disjoining pressure completely inhibits snap .off. The dynamic evolution 

results for A = 3.33(Hr8) are shown in Figure 8 for an initial thickness of h0 = 0.01. Although 
, 

. the collar forms slower under the infiuence of disjoining forces, it eventually does snap-off. The 

initial profile at T = 0 shows the uniform initial thickness. At T = 3.0(104) liquid fills in at the 

constriction. The collar continues to grow as liquid fiows in from the sides of the capillary, as seen 

in the profiles. However, in comparison to the profiles without disjoining pressure, more liquid fills 

in before the short-wavelength collar emerges in the film. This can be understood from the linear 

stability analysis and Figure 4. When disjoining forces become important, the maximum in each 

curve of Figure 4 decreases (and shifts to small wave numbers). This maximum corresponds to 

the fastest growing wavelength which now grows slower compared to when A = 0. Hence, the 

collar in Figure 8 emerges slower from the thickening film. Further, the local thinning at the 
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sides of the collar is inhibited by the disjoining pressure which resists thinning. Thus, the small 

dips apparent at the side of the collar in Figure 6 (where A = 0) do not occur at the sides of the 

collar in Figure 8. 

For comparison, results for different A values are summarized in Figure 7. For positive 

values or A , disjoining pressure increases the time to break-up. when the initial film thickness 

decreases below a critical value. As expected, for larger A (such as a smaller radius capillary), 

the film thickness when disjoining pressure becomes important is larger than when A is smaller. 

We see this in Figure 7 by the curve for A = 1.33(10-..s) deviating from the A = 0 curve at a 

larger initial film thickness than the curve for A = 3.33(10-4). When disjoining forces dominate, 

they completely inhibit snap-off. The liquid film is stable since a collar will not grow, and accord

ingly, the break-up time becomes infinite. This feature is also apparent from the linear stability 

analysis (Equation 13). When A is positive (disjoining pressure) and sufficiently large (i.e., 

3A /E4 ~ 1), the growth rate is always negative, dictating a stable film. This corresponds to an 

break-up time becoming infinite in Figure 7. We can further compare the nonlinear results in 

Figure 7 with the linear stability analysis by noting the equivalence of h0 and e. We find from 

Figure 7 that disjoining pressure becomes important when 3A / h0 
4 :::::: 10. This is in agree_ment 

with the linear stability analysis which gives a criterion of 3A /E4 :::::: 1. 

When conjoining forces (i.e. , A < 0) are incorporated into the film evolution, we find that 

collars grow more rapidly in the initial stages of evolution. This also agrees with the linear sta

bility analysis which demonstrates that conjoining pressure increases the growth rate or a distur

bance. Although the linear stability analysis indicates an increases growth rate, it cannot deter

mine which type of break-up will occur: snap-off or dewetting. The numerical solution of the non

linear evolution equation for constricted capillaries (Equation 9) demonstrates that below a criti

cal initial film thickness, dewetting break-up occurs before snap-off. When conjoining forces are 

unimportant (smaller A or thicker initial films), snap-off is completely unaffected by the conjoin

ing pressure. 

Dewetting begins at the sides of the collar where local thinning occurs, as displayed in Fig-
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ure 6. We further depict this thinning and film collapse in Figure 9. Once local thinning begins, 

conjoining forces drive fluid away from the thin area causing film rupture. This catastrophic event 

corresponds to dewetting or the formation of a dry patch. As mentioned in section 4, the conjoin~ 

ing pressure function employed (Equation 7) reflects a. contact angle of (J ~ 1fj2. Once conjoining 

collapse occurs, numerical integration of th~ evolution equation is stopped since we believe the 

collar will no longer grow because liquid cannot flow into the collar from sides of the capillary. 

Thus, dewetting inhibits snap-off. 

The results including conjoining forces for a series of different negative A values are shown 

in Figure 7. We indicate with an open circle the critical initial thickness below which dewetting 

occurs for each value of A . & expected, at each negative value of A , dewetting occurs for the 

same initial film thickness at which disjoining forces slow the collar evolution. In accordance with 

disjoining effects, dewetting occurs in thicker initial films for larger values of I A 1. It is also 

apparent in Figure 7 that the time to break-up (i.e., snap-off) is unaffected by the conjoining pres-

sure until dewetting occurs since the curves Cor all negative A values lie essentially on the curve 

labeled A = 0. 

Sections 4 and 5 have considered the affects of conjoining/disjoining forces (wettability) on 

the dynamic fluid motion in a film that uniformly coats the inside wall on a constricted capillary. 

The results show that both conjoining and disjoining pressure inhibit snap-off. To complete our 

study of fluid wettability and snap-off, we must consider the role of conjoining/ disjoining pressure 

as it affects how a liquid film is initially deposited in the capillary; according to step 2 in Figure 1. 

' 
Teletzke (1983) has shown that when a bubble (or drop) displaces a viscous fluid from a capillary, 

the thickness of the film deposited by the bubble depends on the conjoining/disjoining pressure. 

In the next section we combine the results of sections 4 and 5 with the results of Teletzke (1983) 

to develop criteria for when, and in what manner, fluid wettability affects snap-off. 

8. RAMIFICATIONS OF WETTABll..ITY ON SNAP-OFF 

If a bubble or drop displaces a perfectly wetting liquid from a capillary, a film of liquid is 

deposited on the inside wall of the capillary (Taylor, 1961; Bretherton, 1961). The film thickness 
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depends on the capillary number which is defined as follows: 

u· 
Ca = -"'-- , 

q 
(18) 

where U • is the velocity of the bubble front. When the bubble (or drop) displaces a fluid of 

intermediate wettability with 0 < 9 < 1r (due to a conjoining pressure contribution), a film of 

liquid may or may not be deposited. If a liquid film is not deposited, snap-off can never occur. 

As indicated in the introduction, the sign and magnitude of the conjoining/ disjoining forces 

determine the fluid wettability (i.e., the contact angle) for static fluid interfaces (Ivanov· & co-

workers, 1978; Mohanty, 1981), as well as the dynamic contact angle when a gas-liquid interface 

moves along a solid surface (Teletzke, 1983). Pure conjoining forces cause a liquid to nonwet par-

tially a solid (tr/2 S 9 S tr). Conversely, pure disjoining forces indicate complete wetting 

(9 == 0). With conjoining forces, Teletzke (1983) notes that for bubbles moving through capil-

!aries, there, exists a critical capillary number below which no film is deposited, thus preempting 

the possibility of snap-off. However, for any fluid regardless of its wettability, a liquid film will 

always be deposited for sufficiently high capillary numbers and snap-off may occur. 

Teletzke has calculated the deposited film thickness for the conjoining/disjoining pressure 

functions given by Equation 7. We can obtain expression for the capillary number (i.e. the film 

thickness) when conjoining/disjoining pressure becomes important by ascertaining the magnitude 

of the terms involving the conjoining/disjoining forces in Teletzke's (1983) film-profile equation. 

Teletzke's equation is given in Appendix A. There we show that conjoining/disjoining pressure 

becomes important during film, deposition if, 

(19) 

We can compare this to the role of wettability in the film evolution. The dispersion relation of 

the linear stability analysis, Equation 13, and the nonlinear evolution calculations in Figure 1, 

demonstrate that conjoining/disjoining forces become important when 31 A I fe 4 ~ 0 (1). The ini-

tial film thickness. e is related to the capillary number by e = 0 ( Ca 213) (Bretherton, 1961). 

Combining these relations, we discover that conjoining/disjoining forces become important during 

film evolution when 
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31 A I Ca-313 ~ 0 (1) (20) 

Notice that Equation 20 has a different capillary number dependence than Equation 19. Com

parison shows that for Ca << 1, conjoining/disjoining forces affect film evolution at a higher 

capillary number where film deposition remains unaffected. 

With Equations 19 and 20, capillary-number criteria can now be developed to predict when 

snap-off occurs for fluids with any wetting ch-aracteristics. We summarize these criteria in Table 

1. For conjoining forces, we first consider at what values of the capillary number liquid films are 

deposited. Equation 19 shows that for Ca < liA 1112 no film is deposited. We signify this by a 

"No" in the "Film Deposition" row. In the second row called "Snap-off'', we indicate by a "No" 

that snap-off can never occur without a liquid film. When Ca > liA 1112 a liquid film is depo

sited by a bubble (indicated by a "Yes" in Table 1), and a. bubble can snap-off. For these higher 

values of Ca., we must consider the evolution of the film and the role of wettability as given by 

Equation 20. 

For Ca. < liA 1318, a film of liquid is deposited, but it dewets during evolution and does 

not snap off. Only when Ca > liA 1318 can a. bubble snap off as shown by the ''Yes". Snap-off 

can occur for these values or the capillary number because a finite film or liquid is deposited and 

during film evolution dewetting does not occur. 

For a disjoining force or complete wetting, Table 1. presents Teletzke's (1983) result that a. 

film is deposited at all capillary numbers. However, in the evolution of these films, disjoining 

forces inhibit snap-off. When Ca < I3A j 318, snap-off does not occur since disturbances will not 

grow. Conversely, when Ca > I3A 1318, snap-off can occur as indicated by the "Yes". 

Since the specific conjoining/disjoining pressure function given by Equation 7 considers both 

perfectly wetting and partially to completely nonwetting liquids, Table 1 considers all possible 

combinations of wetta.bility affecting film deposition and evolution. For both disjoining and con

joining forces, snap-off only occurs for Ca > I3A 1318, which implies that a. sufficiently thick ini

tial film must be deposited for snap-off to occur. 
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Experimental results for the time to break-up of gas bubbles moving through constricted 

.capillaries approximately 0.1 em in diameter are reported elsewhere (Gauglitz, 1986). For parame

ter values of A • = 10·21 J, f7 = 30 mN J m , and R; = 5(10-4) m, the criteria developed above 

gives that snap-off can occur if Ca > 2(10-o). Thus, wettability inhibits snap-off only at very low 

capillary numbers. All experiments were performed at Ca values greater than 2(10..s). The data 

agree quantitatively with the theory for A = 0 indicating wettability is not important in capil

laries of this size. In addition, the shape of the growing collar in Figure 6 accurately represents 

the experimentally observed shape. 

For capillary numbers greater than about 10-3, the snap-off criteria dictates that snap-off 

can occur in pores larger than l~m . Therefore, wettability inhibits snap-off in cylindrical capil

laries only in very small pores. Thus, the calculations presented in tliis work, and the experimen

tal results in Gauglitz (1986) demonstrate that wettability does not affect snap-off in typical oil

bearing porous media (R; :::::::: lo-S m) for capillary numbers greater than 10-3. 

Interestingly, other visual observations by Gauglitz (1986) of snap-off in constricted square 

capillaries indicates that dewetting does occur and inhibits snap-off in 0.1 em radius capillaries for 

capillary numbers in the range of 10-S to 10-3. Thus, square capillaries do not follow the criteria 

developed in section 6. Further study is required to obtain a complete understanding of wettabil

ity effects in constricted square capillaries. 

7. SUMMARY AND CONCLUSIONS 

The role of wettability, as determined by the conjoining/disjoining pressure, on the evolu

tion of liquid films is investigated in both straight and constricted capillaries. Solution of a new 

nonlinear evolution equation demonstrates that both conjoining and disjoining forces inhibit 

snap-off. We propose the criterion that gas-bubble snap-off can occur in constricted cylindrical 

capillaries, unaffected by liquid wettability, if Ca > I3A 1318• 
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Nomenclature 

A - conjoining/ disjoining pressure scaling coefficient, -. 10-21 J 

A =A- frrR·P, dimensionless conjoining/disjoining pressure constant 

Ca capillary number (defined in Equation 18) 

e = 2.71828 

h - film thickness, m 

h/ initial film thickness, m 

h = h ~ / R;, dimensionless film thickness 

-
h0 = h.-; R;, dimensionless initial film thickness 

r = scaled film thickness (defined in Equation 10) 

h = scaled film thickness (defined in Appendix A) 

/c wave number of sinusoidal disturbance 

k mu wave number of the fastest growing disturbance 

p liquid pressure, Pa 

p = p- /(rr/ R;), dimensionless liquid pressure 

r radial position, m 

r = r- / R;, dimensionless radial position 

R; radius of unconstricted capillary, m 

t • time, s 

u. velocity or the bubble front, m/s 
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fls• velocity in fiuid film, m/s 

% axial position, m 

:r = :r • / R;, dimensionless axial position 

% = scaled axial position (defined in Appendix A) 

11 position from tube wall (see Figure 3), m 

Greek Letters 

a growth rate factor (defined in Equation 12) 

{J amplitude of infinitesimal disturbance (defined in Equation 12) 

E = h0•/ R;, dimensionless initial film thickness for straight capillary (defined in Equation 

10} 

8 contact angle through the liquid 

IC dimensionless radial position of film interface 

~ dimensionless radial position of capillary wall 

A dimensionless wavelength of disturbance 

.Amaz dimensionless wavelength of the fastest growing disturbance 

JA liquid film viscosity, mPa's 

7r 3.14159 

n· conjoining/disjoining pressure (defined in Equation 7), Pa 

ll = n• /(tr/R;), dimensionless conjoining/disjoining pressure 

tr surface tension, mN/m 

T = t • /(3JAR;/u), dimensionless time 

r• dimensionless break-up time 
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Appendix A: Conjoining/Disjoining Pressure in Film Deposition 

The film-profile equation predicting the deposited film thickness as a bubble displaces a per-

fectly wetting fluid was first enunciated by Bretherton (1961 ). Bretherton, and more recently 

Teletzke (1983), considered role of conjoining/disjoining pressure on the deposited film thickness. 

The film-profile equation is an approximation valid for Ca - 0. Park and Homsy (1984) have 

shown formally, neglecting conjoining/ disjoining forces, that Bretherton 's solution is the leading 

order term in an asymptotic expansion in Ca 113 . Park and Homsy clarified the characteristic 

length scales in this problem. To obtain the scaled film-profile equation, we follow Park and 

Homsy by substituting into Bretherton's profile equation for the dimensional position x• the 

scaled length~ == (x • /Rr)/Ca 113, and for the dimensional film thickness h• the scaled thick-

ness ia = (h • I Rr)/ Ca 213 to yield: 

(A-1) 

where h0 is the scaled deposited film thickness. Conjoining/disjoining forces are important when 

the coefficient multiplying the second term of Equation A-1 is of order one or greater: 

(19) 

This criterion predicts well the onset of conjoining/disjoining forces in Teletzke's (1983) calcula-

tion of the deposited film thickness using the conjoining/ disjoining pressure functions given by 

Equation 7. 
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Table 1 

Role of Wettability on Thin-film Breakup 

.... * *2 
( A= A /a~ ) 

.... 
Partial Nonwet ting, '1T ) 9 ) rr /2 (Conjoining Pressur·e A < 0 ) 

Film Deposition 

(Laydown) 

Snap-off 

(Evolution) 

NO NO 

Ca > )3A:I3/8 

YES 

Perfect Wetting, e - 0 (Disjoining Pressure A > 0 ) 

Film Deposition YES YES 

(Laydown) 

Snap-off NO NO YES 

(Evolution) 
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Figure Titles 

Figure 1. Pore level view oi bubble generation by snap-off. 

Figure 2. Schematic of a stable collar (a) and a liquid lens (b). 

Figure 3. Liquid film wetting the inside wall of a constricted capillary. 

Figure- 4. Thin-film growth rate for an initial sinusoidal disturbance m a straight 

Figure 5. 

Figure 6. 

Figure 7. 

Figure 8. 

Figure 9. 

cylindrical capillary. 

Initial condition of a uniform film thickness. 

Profiles f~r liquid-film evolution in a constricted capillary. 

Effect of the initial film thickness and A on the time to break-up; A > 0 gives a 
perfectly wetting liquid, while A < 0 indicates a nonwetting liquid. Open circles 
indicate the onset of dry patch formation. 

Profiles for liquid-film evolution with disjoining pressure m a constricted 
capillary. 

Dewetting film due to conjoining pressure. 
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