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PION INTERFEROMETRY OF ULTRA-RELATIVISTIC HADRONIC 
COLLISIONS 1 . 

Karen Kolehmainen and Miklos Gyulassy 

Nuclear Science Division, 70A-3307, Lawrence Berkeley Laboratory, Berkeley, 
California 94 720, USA 

Abstract: Pion interferometry of ultra-relativistic hadroriic collisions is described 
in the context of the inside-outside cascade model using a current ensemble method. 
In contrast to the usual Gaussian and Kopylov parameterizations involving only ge
ometrical variables, the correlation function in this model depends on a special 
combination of dynamical as well as geometrical parameters. 

Correlations in momentum space between pairs of identical particles have long 
been used to obtain information about the space-time structure of the source of the 
particles [1,2]. The correlation function is defined as 

where 

and 

P2(khk2) 
C(kh k2) = P1(k1) P1(k2) ' (1) 

(2) 

(3) 

are the invariant single particle and two-particle inclusive distributions, respectively . 
. In eqs. (2) and (3), y is the longitudinal rapidity, kT is the tra~sverse momentum, 

and E is the particle energy. If one takes the two particle wave function to be a Bose 
symmetrized (or Fermi antisymmetrized) plane wave state, one finds that C(kh k2) 

is related to the Fourier transform of the space-time density distribution of particle 
sources. Experimental results for two pion correlations in. hadronic collisions. are 
usually fit by expressions which assume that this density of sources is given by a 
Gaussian in space and time or a uniformly radiating disc with exponential ti:Ine 
dependence [3,4]. Neither of these parameterizations, however, contains the corre
lations between the dynamics and geometry appropriate for high energy hadronic 
collisions. 

Such correlations arise due to the nature of the inside-outside cascade dynam
ics [5]. Due to Lorentz time dilation, the formation time of a secondary particle 

1 Work supported by the Director of the Office of High Energy and Nuclear Physics of the Depart
ment of Energy under Contract DE-AC03-76SF00098 and the National Science Foundation under 
Contract PHY84-05172. 
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increases linearly with its energy. This leads to a strong correlation between the 
average space-time point (t, z) of particle emission and the longitudinal rapidity y. 
This correlation can be expressed approximately by [5]. 

z = To sinh y , 

t = To cosh y , (4) 

where To is the characteristic proper time for particle freezeout. In nuclear collisions, 
we expect that To ~ A l/S fm. It is important to note that the final interference 
pattern measured by C reflects only the geometry at the proper time when the 
interactions cease. In refs. [6], [7], and [8], it was shown that the interplay between 
dynamics and geometry could significantly alter the interference patterns. The 
inside-outside cascade was considered in ref. [8], but with a noncovariant formalism. 
In this letter, we employ the current ensemble formalism developed in ref. [4] to 
investigate this question further. We extend this formalism to allow the sources to 
be moving with an arbitrary velocity distribution. In ref. [9], further applications 
of this formalism are discussed. Our goal here is to clarify how the inside-outside 
cascade nature of the dynamics influences the correlation function. 

We start by considering an ensemble of currents with Fourier transform 

N 

i(k) = L::ei'; eikz; io(Y- Yi,kT) , (5) 
i=l 

where Yi is the longitudinal rapidity of pion source i in a frame where the pion 
four-momentum is k~ = (fflTcoshy, kT, fnTSinhy). We may take this frame to be 
the laboratory frame. The pion transverse mass, mi- = m 2 + kf, is of course the 
same in all frames related by boosts along the z axis. We assume, as in ref. [4], that 
the phases t/>i of the different sources are random. Source i, as characterized by a 
Lorentz scalar current io(x) in its rest frame, is centered initially at space-time point 
xi. The Fourier transformed current io (y - Yi, kT) is interpreted as the amplitude 
for source i to emit a pion with rapidity y- Yi in the rest frame of source i. The 
new feature in eq. (5) which was not considered in ref. [4] is the distribution of 
source rapidities Yi. 

We specify the ensemble of currents by the normalized probability density D(x, y0 ) 

of finding a source with rapidity y0 at space-time point x. The invariant single pion 
inclusive distribution is then 

(6) 

where D(q, Yo) denotes the Fourier transform of D(x, y0 ) in x and (N) is the mean 
number of sources. Note that (N)D(q = O,y0 ) = dNjdy0 is the rapidity density of 
sources. Similarly, the invariant two pion inclusive distribution is 

(7) 
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The angle brackets in eqs. (6) and (7) denote averages over the random phases, the 
number of sources, and the source density distribution in space-time and rapidity. 
In this model, the correlation function is given by 

(8) 

where 

(9) 

The simplest characterization of the inside-outside cascade model, incorporating 
eq. (4), is given by 

D(z, t, i'r, Yo) = .-~ O(t- To e<>Sh Yo) O(z- To sinh Yo) exp (-~) , {10) 

where y0 is the source rapidity, and the source distribution in the transverse direction 
is assumed to be a Gaussian with radius RT. It is convenient to utilize the proper 
timer= vt2 - z2 and a rapidity-like variable '7 = t ln[(t + z)f(t- z)] in place of z 
and t. Then eq. (10) becomes 

D(r,'7,fT,yo) = 1r~ro o(r- ro) 6('7- Yo) exp (-~) . (11) 

More generally, eqs. (10) and (11) should contain a factor dNjdy0 , the density of 
sources in rapidity. We take dN / dy0 to be a constant, thereby assuming that the 
central rapidity region extends to infinity in both directions. As long as we consider 
pions well within the central rapidity region, finite energy corrections should not be 
important. 

From eq. (9) it is clear that G depends not only on D but also on the details 
of the production dynamics described by j 0 • We consider two models for j 0 • One, 
referred to as the pseudothermal model, is given by 

·PS( ( fflT ) ( E') Jo y- y0 , kT) = exp -
2
T cosh(y- Yo) = exp -

2
T , (12) 

where E' is the pion energy in the rest frame of the pion emitter. This parameterizes 
the source in terms of an effective temperature T. The other model corresponds to 
a source in thermal equilibrium: 

(13) 

This thermal parameterization, however, results in nonanalytic expressions for C; 
hence we present results here primarily for the pseudothermal case. We find, how
ever, that the results for the two parameterizations agree closely if T' and T are 
related by T ~ 1.42 T'- 12.7, where T' and Tare in MeV. 

3 



The invariant single inclusive pion distribution with the pseudothermal source 
is simply 

(14) 

where a is a normalization constant. Thus T characterizes the average transverse 
momenta of the pions. Furthermore, the pions are uniformly distributed in rapidity 
as a consequence of choosing dN / dy0 to be constant. The function G is found to be 

(15) 

where the dynamical and geometric effects are convoluted through the variable 

( 1 2) ( 2 2 ) ( 1 2) iTo ( 2 2 ) u = 2m1Tm2T 4T2 + To cosh fl.y + m 1T + m 2T 4T2 - To + T m 1T - m 2T 

(16) 
In eqs. (15) and (16), ifT = k2T- k1T, fl.y = Y2- Yh and Ko(z) ex: f dt exp(-z cosh t) 
is the conventional modified Bessel function of a complex argument. 

The structure of the correlation function is obviously rather different than con
ventional Gaussian or Kopylov parameterizations [3,4]. In this model, it is a func
tion of four kinematic variables: the two transverse masses m 1T, m 2T, the rapidity 
difference fl.y, and the angle 4> between k1T and k2T (which enters through qT)· It 
depends on three physical parameters, To, T, and RT, which can be extracted by 
fitting experimental results. Note that there is no obvious separation of dynamical 
and longitudinal geometric effects. 

A multi-dimensional analysis of pion correlations is neccessary to disentangle the 
effects ofT, To, and RT. This procedure requires three steps. First, Tis determined 
by fitting the invariant single inclusive distribution P1 as a function of mT by eq. 
(14), as shown in figure 1. Next, we examine the correlation function for the case 
where ifT = 0, thus eliminating the dependence on RT. Since Tis known from the 
first step, To can now be determined. In practice, this is done by examining either 
Cas a function of fl.y for fixed mT (m1T = m 2T for this case) orCas a function of 
mT for fixed fl.y. These two cases are shown in figures 2(a) and 2(b), respectively. 
Finally, RT is determined by fitting the correlation function by eqs. (15) and (16) 
for the general case where ifT =/:. 0. C can be examined as a function of any of the 
four variables, m 1T, m 2T, fl.y, or¢, while the other three are held fixed. An example 
of C vs. 4> for fixed m 1T, m 2T, and fl.y is shown in figure 3. We note that the results 
of Pratt [8], although noncovariant, are in good numerical agreement with ours if 
his expressions are evaluated in the reference frame where k1z + k2z = 0. 

Since in the general case, the effects ofT, To, and RT are all mixed together, this 
three step approach is necessary to extract meaningful parameters from correlation 
data. The usual procedure of analyzing the correlation function as a function of 
one variable, for example lifl, and integrating over all other variables, is clearly 
inadequate. It is obvious from eq. (16) that the effective source radius thus obtained 
would be a nonlinear function of the three parameters iii our model. Determination 
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of the inside-outside cascade nature of the dynamics therefore requires the more 
complex analysis outlined above. 

For practical applications, it will be important to choose a mo~e realistic source 
distribution D than in eq. (11). For example, fluctuations in. r0 and a realistic 
dN j dy0 should be considered. Examples of more detailed dynamical calculations 
based on string models can be found in refs. [10) and [11). In addition, final state 
interactions [4) must be taken into account. The main advantage of our analytic 
treatment is that the influence of the inside-outside cascade on 1r1r correlations is 
revealed in a particularly transparent way. It also suggests that the natural choice 
of variables and method of analysis should be significantly different than those used 
in pion correlation studies thus far. 2 

One of us (K.K.) gratefully acknowledges the Support of Bruce Barrett and the 
Department of Physics at the University of Arizona where part of this work was 
completed. 
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FIGURE CAPTIONS 

1. Invariant single particle distribution P1 vs. mT for several values of the 
temperature parameter T (in MeV) in the pseudothermal model. 

2. Correlation function C vs. tl.y for qT = 0 and fixed mT (part a) and C vs. mT 

for qT = 0 and fixed tl.y (part b). Labels indicate values of r0 in fm. 
Pseudothermal (PS) and thermal (TH) model results are shown separately where 
they differ significantly. 

3. C vs. 4> for fixed m 1T, m2T, and tl.y, where 4> is the azimuthal angle between 
the transverse momenta k1T and k2T. Labels indicate values of the transverse 
radius RT in fm. 

6 



FIGURE 1 

10~---------------------------

co 
0 
~ 1 
>< 
.....-... 
N 

I 

~ 
~ 0.1 ............. 

or--

a.. 

'-) 

0.01--+--------.....,.---.----.--------~---~~ 

140 240 340 440 540 640 740 840 

mT (MeV) 
-- XBL 865-1987 --

7 



L . 

FIGURE 2(a) 
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FIGURE 2(b) 
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FIGURE 3 
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