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We calculate the partition function for color singlet quark-gluon 
plasma droplets analytically including shell effects and a total momen
tum constraint. Bulk properties become size-dependent and the entropy 
shows how the effective number of plasma degrees of freedom decreases 
with size. We derive the appropriate size-dependent phase-space distri
butions for quarks and gluons and point out phaenomenological conse
quences of our results . 
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Ultra-relativistic nuclear collision experiments are soon to be realized at CERN 
and BNL with the goal of studying quark-gluon plasmas [1,2]. In order to under
stand properties of this new phase of matter as predicted by QCD it is necessary 
to investigate their relation to the variety of proposed experimental signatures. A 
popular theoretical approach has been to describe quark~gluon plasmas by equilib
rium thermodynamical concepts, although the study of plasma evolution from the 
formation towards thermal and chemical equilibrium has only recently begun [2]. 
Thus, the application of equilibrium thermodynamics presents a strong assumption 
about the timescales of the underlying dynamics which deserves more work. 

When studying the space-time evolution of plasma droplets and related observ
ables one generally assumes an ideal or at most weakly interacting gas of quarks 
and gluons which is confined inside a finite size cavity by a phaenomenological vac
uum pressure or volume energy as in all bag models. This assumption is based on 
the high-temperature behavior of QCD investigated in lattice calculations (see [1,2] 
and further references therein). Above a critical temperature Tc: ~ 150- 250 MeV, 
where a phase transition from hadronic matter to plasma occurs, one observes a 
rapid approach towards properties typical of an ideal quantum gas as described 
by the Stefan-Boltzmann law. However, there exist warnings in the literature that 
Stefan-Boltzmann like behavior could for example be mimicked by a cancellation of 
collective phonon and plasmon effects [3]. Even chromomagnetic monopoles might 
persist in the high-temperature phase [4} and eventually necessitate a different per
turbation theory scheme. 

From these remarks we conclude that it seems appropriate at present to describe 
the quark-gluon plasma as an assembly of qua:;i-particles with the same basic num
ber of degrees of freedom as there are quarks and gluons. Effects of non-perturbative 
interactions are incorporated via the vacuum pressure and by requiring all physical 
states to be color singlets with respect to the SU(3) gauge group [5,6]. Previous 
studies of this model of the quark-gluon plasma, where in particular considerable 
finite size effects were observed [5,7], were incomplete in an important aspect: the 
spectrum of single-particle cavity modes was treated in the continuum approxima
tion corresponding to the thermodynamical limit of an infinite system. Since finite 
size corrections can be expected to be quite large for experimentally accessible small 
plasma droplets, so-called shell effects due to the discreteness of single-particle en
ergy levels should consistently be included. 

The purpose of our present study is to calculate the partition function for color 
singlet spherical quark-gluon plasmas including average shell effects and fixing the 
total momentum of the droplet. We provide analytical results showing the finite size 
corrections which have to be applied in more realistic thermodynamical calculations 
related to plasma observables. We remark here that a numerical calculation of the 
energy of a plasma droplet with zero baryon number and SU(3)-color symmetry has 
been reported in ref.[8] which, however, did not realize the correct bag type bound
ary conditions and artificially assumed the fermion spectrum to be equal to the one 
for bosons. - In the second part of this paper we consider how the thermal phase-
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space distributions for quarks and gluons in plasma droplets are modified, again 
due to average shell effects and the color singlet and total momentum constraints 
on all many-particle states implicitly involved in the calculation. 

To implement the color singlet constraint into the quantum statistical descrip
tion of the system, we follow the group-theoretical projection method [9] which was 
recently extended to cover interacting systems as well [7,10]. Thus, the partition 
function for a color singlet quark-gluon plasma contained in a volume Vat temper
ature T and quark chemical potential p, with a total momentum p is determined 
by: 

! +,.. j+"" ds >.. "IJ>.- - .... Z(T, V,p,;p) = _,.. d(t/J/2)d(t/J/3) M(t!J,t/J) _,.. (
2

1r)S e' ·P Z(T, V,p,;>..,tjJ,t/J) , 

(1) 
where M(t/J,t/J) = (8/37r2)[sint{t/J + t/J/2) sint/J/2 sint(t/J- t/J/2)] 2 is the weight 
function (Haar measure) for the group integration. The generating function Z is 
defined by 

Z(T,V,p,;.\,t~J,t/J) = Tre-f3(H+i.\.p-p,[Nq -Nq]) +it/Jl8 +it/JY8 ) , (2) 

with {3 = T-1 and where fi, p, Nq, Nq, I8 , and Ys respectively denote the Hamil
tonian, total linear momentum, quark number, antiquark number, color "isospin", 
and color "hypercharge" operators. The unrestricted trace in eq.(2) includes all 
states of the many-particle Hilbert space. Note that, although the trace is unre
stricted for Z, the various integrations in eq.(1) effectively projed out a canonical 
partition function with respect to color and momentum quantum numbers. This 
was shown in detail for an internal SU(N) symmetry in refs.[7,10] and the projection 
onto a definite total momentum was applied previously e.g. in the context of early 
particle production models [11]. Furthermore, notice that instead of introducing 
a quark chemical potential corresponding to a grand-canonical ensemble one could 
also treat the baryon number in a canonical ensemble as in ref.[8]. However, for 
a quark-gluon plasma surrounded by hadronic matter one cannct exclude baryon 
number fluctuations even in the central region with zero average baryon density, 
which favors our mixed canonical/ grand-canonical ensemble [5,10]. 

To calculate Z for quarks and gluons, which are noninteracting according to the 
model discussed above, we use the Fock space representation and obtain (cf. [5,10]) 

.z = II zg> II (3) 
i=r,g,ll i=>.,~-&,v,6 

Here the quark and gluon contributions respectively are 

lnZgl = ~ {ln(l + .-P[<(k) + S · k -~<] + ia;) + ln(l + .-P{<(k) + iX · k + 1']- ia;)} , 

(4) 
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A, 

where a,.= <P/2 + t/J/3, ag = -<P/2 + t/J/3, a,= -2¢/3, and 

lnZ}fl = -f. {ln(l- .-P[<'(f') + ;5: · k'] + ia;) + ln(l- .-P[<'(k') + ;5: · f')- ia;)} , 

(5) 
where a~ = a,. - ag, a 11 = ag - a,, av = a, - a,., a 6 = 0. The single-particle 
energies E(k) = k, E(k') = k' in the massless limit only depend on the momenta 
of cavity modes k, k' according to the relevant boundary conditions for quark and 
gluon fields. At this point one usually would turn to numerical techniques in order 
to further evaluate Z from eqs.(3,4,5), since in most cases the cavity modes are not 
known explicitly and even with the simple approximations possible for a spherical 
M.I. T. bag one cannot perform the above mode sums in closed form. Instead in our 
derivation for a spherical cavity of radius R we make use of asymptotic density of 
states formulae which reflect the average shell effects. For the transverse radiation 
field gluons the bag surface boundary conditions, n . E = 0 = n X B ( n normal to 
the surface), by duality transforming E into Band vice versa are analogous to the 
QED case of photons in a cavity with a perfectly conducting boundary. For this 
problem the density of states p is known [12] and thus yields the result for gluons 
with de = 2 polarization states 

where 1t is an unknown constant and we keep only the first two terms in the fol
lowing. For quarks one can deduce a similar density of states from a calculation 
of their zero-point energy in the M.I.T. bag [13], Eo(~) = -2f0

00 dEpq(E)Ee-{E= 
-2[3V j1r2 ~"- R/37r~2 + O(R- 1

)], where an exponential cut-off is used. Then, the 
level density for quarks with a degeneracy factor dq = 2(spin) x 2(isospin) is 

(k) - (v k2 R ( -1 -2 ) - 2 PQ - dq 
2

1r2 -
3

1r + 0 R k ) = Aqk + Bq + .... (7) 

Notice the absence of surface terms in PQ and Pc corresponding to the absence of 
surface energy contributions below. Both results, eqs.(6,7), were previously used 
for an accurate calculation of the asymptotic mass spectrum of bag model states in 
refs.[14]. 

Using eqs.(6,7) we obtain the generating functions for quarks and gluons, eqs.(4,5), 
by replacing Ek-+ f d8kpq,c(k)/41rk2

• Of course, the approximation with Pq,c(k) = 
Aq,ck2 + Bq,c can only be valid for sufficiently large average momenta, i.e. for suffi
ciently high particle number density in a plasma droplet. Then we have to calculate 
the integrals 
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where z is a complex parameter representing zg> = {3p, + il:Xi for quarks (I+) and 

zY> = ia; for gluons (I-) and the second logarithmic term is indicated which differs 
from the first one only by z--+ -z. The angular integrations are elementary giving 

I± = ± A;~G (1 + A2)-2 koo dx x2 {ln(1 ±e-x+ z) + z--+ -z } 

± Bq,G arctg A foo dx {ln(1 ±e-x+ z) + z--+ -z } . 
{3 A lo 

(9) 

The remaining integrals constitute special cases of a general result [7 ,15] calculated 
by contour integration: 

In(Z)± = fooo dx x" { ez-•1 ± 1 + ( -1)n+l ez+•1 ± 1} ' n = 0, 1, 2, ... ' 

(27ri)"+l - ± Bn+l ([1r(1 ± 1) - 2iz]/47r) , 0 < Re[7r(1 ± 1) - 2iz] < 471" , (10) 
n+1 

where Bn+l denote Bernoulli polynomials [16] and expressions on the r.h.s. of 
eq.(10) can be continued to neighbouring strips by 21r-periodicity in Im z. Thus, 
we obtain the final results: 

2Bq arctg AB (( . (i))/2 ) 
271" 73 A 2 7r - 1.Zq 7r ' 

(11) 
with the restriction -i1r < Im z < i1r, and 

lnzfj> = -~71"4 ~~ {1 + A2
)-

2B.(-iz!P j21r) + 21r2 ~a arc1g AB2(-iz!P j21r) , 

(12) 
with the restriction 0 < Im z < 2i7r. Hone sets Bq = Ba = 0 in eqs.{11,12), 
one recovers the continuum limit of these generating functions studied previously 
[5,6,7]. If one sets A = zg> = zg> = 0 instead, one obtains partition functions for 
free fermions and bosons including finite size corrections due to shell effects. 

With the total generating function determined according to eqs.(3,11,12) we now 
proceed to calculate the partition function by eq.(1). For that purpose we expand 
the weight function M to leading order in the angular variables and expand the 
argument of the exponential representing the generating function to second order 
in </>, t/J, or A (Gaussian approximation). Using L:i l:Xi = 0 = L:; a; with ai, a; as 
defined after eqs.(4,5) respectively and consistently extending the integrations to 
infinity we obtain 

(13) 
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where we already performed the elementary angular A-integrations, and where 

c = !vT3 (dq[1 + 3(.8JL)2] + 6da) - _!_RT(dq- 12da) , (14) 
6 1r 37r 

Zo denotes the unprojected partition function for quarks and gluons including shell 
corrections, 

and, 

7r2 s( [ 7 1 (.8JL)2 1 (.8JL)"] d 8 ) lnZ0 (T, R, JL) -
12 

VT 2 · 3 · dq 60 + 2 -;- + 4 7 + 8 · G • 60 

- !:_RT(2 · 3 · dq[.!:_ + ~(.8JL) 2 ] + 8 ·de· 4) - X- Y, {15) 
18 2 2 1r 

1 
D = 2X- -Y . 

3 
{16) 

Note the particular factorization in eq.(13) of Z0 being multiplied by two separate 
correction factors due to the color and momentum projection, which only applies 
for the Gaussian approximation. We do not discuss improvements beyond this 
approximation here, since the accuracy of our results is limited by the validity of 
the asymptotic density of states formulae, eqs.(6,7). Therefore, the leading term. 
- V in eqs.(14-16) should always be larger than the next one - R. For JL = 0 
this yields the condition RT > .9 . From a previous comparison between the 
Gaussian approximation and a particular numerical calculation [7] ( cf. also the 
second of refs. [5]) we learned that for JL = 0 and RT > 1 this approximation 
was qualitatively correct with an error of~ 30%, decreasing towards a few percent 
at RT ~ 2, and becoming negligible for larger RT-values. Also for increasing JL 
the error rapidly decreased (< 5% for JL ~ 3T, RT > 1). Therefore, we expect 
the Gaussian approximation consistently to fit together with the density of states 
formulae within the present description of hot quark-gluon plasma droplets. Finally, 
we perform the remaining Gaussian integrations to obtain the color singlet fixed
momentum partition function: 

Z(T, R,JL; p) = !vi c-• n-s/2 e-(.8P)2 
f4D e-.8BV Z0 , (17) 

with C, Zo, D respectively as in eqs.(14,15,16). We inserted into eq.(17) a factor for 
the vacuum pressure B discussed in the introduction with its phaenomenological 
value in the range 145 MeV:::; B 114 ::5235 MeV [1,2]. Notice that one simply has 
to omit either the factor (27ry'3)-lC-4 or 1r3/ 2 D-312exp- {_8p) 2 j4D from eq.(l7) 
if one wants to drop either the exact constraints on color or momentum quantum 
numbers. 

Including the vacuum pressure, one derives from eqs.(1,2) for p = 0 (or from 
eqs.(14-17)) the equation of state typical of a plasma droplet of non-interacting 
massless constituents [5,7], P = (E /V - 4B)/3. Here P, E denote its pressure 
and energy density given by P = TavlnZ and E = -a13 lnZ. There are, however, 
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finite size effects due to the constrained ensemble underlying our calculations as 
well as the average shell effects. As we observed earlier [5,7] the effective number 
of degrees of freedom del! in a small plasma droplet is reduced drastically from the 
number corresponding to the Stefan-Boltzmann limit with 2 · 3 · dq · 7/8 (anti) quark 
plus 8. de gluon degrees of freedom (cf. eq.(15)). The relevant parameter is RT. 
Furthermore, increasing the chemical potential increases dell· Thus, the plasma 
pressure is reduced and the limit of stability of a droplet where P = 0 is shifted 
towards higher temperature or higher chemical potential as compared to the Stefan
Boltzmann limit depending on droplet size [5,7]. 

To complement our previous results we now calculate the entropy density s given 
by s = v-1aT(TlnZ). Using eqs.(14-17) with p = 0 we obtain: 

8 = So + v-l (ln!v'i- 4lnC- ~lnD- 4C-1TBTlnC- ~TBTlnD) ' (18) 

where the remaining derivatives follow directly from eqs.(14,16) and so is the entropy 
density corresponding to Zo, eq.(15), 

(19) 

with sss/T8 = "s2 (3dq[ 1~ +(,Bpf'n-)2]+~~dc) corresponding to the Stefan-Boltzmann 
limit. In Fig.1a we show the deviation from the Stefan-Boltzmann limit, so/ sss ac
cording to eq.(19), due to the finite size average shell effects alone. Fig.1b illustrates 
the resdt for s/ s58 = dell given by eq.(18) which additionally includes the color 
singlet and fixed-momentum constraints. These ratios measure the effective number 
of degr 3es of freedom in the plasma and show the essential RT- and p-dependence 
mentio•~ed above. For example, in Fig.1b we observe respectively ~ 40, 20,10% 
reduction of del/ for a 10, 27,65 fm3 baryon number zero droplet at T = 200 MeV. 
Omitting the fixed-momentum constraint would result in a shift of the curves in 
Fig.1b by approximately .1 RT-units to the left. The value sr/s58 = 3/37 for a 
free massless pion gas is also indicated in Fig.1b (dashed line). 

Thus, dell may approach the pion gas value for small quark-gluon plasmas ac
cessible to experiment. There is particular uncertainty as to whether the plasma 
will be formed in a single flux tube like region or in the form of several randomly dis
tributed small droplets. In the widely adopted two-phase picture for the transition 
between a baryonless plasma and a pion gas hadronization properties depend on the 
ratio r = sr/ s which may vary considerably according to our above results. For the 
deflagration model [17] we conclude that the deflagration shock front proceeds faster 
with increasing rand the maximum possible energy flux of plasma into hadron gas 
conversion is increased. In the hydrodynamic model of plasma evolution (18,19] 
including the transition through a mixed phase the proper time Th when all plasma 
is converted is determined by the relation Th = r- 1Tq (1+1-dimensional expansion). 
Here at Tq ~ 2 - 20 fm/c the first hadrons appear. Therefore, the mixed phase 
becomes shorter with increasing r. These remarks may suffice to show the impor
tance of finite size corrections for thermodynamical quark-gluon plasma properties. 
Simple analytical expressions for all equilibrium quantities entering more realistic 
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hydrodynamical calculations of plasma evolution can easily be obtained from the 
partition function Z of eq.(17). 

We now turn to the study of distribution functions for quarks and gluons in a 
color singlet plasma droplet with specified total momentum. Using general expres
sions for the expectation value of a number operator in the constrained (canonical) 
ensemble [10] one obtains the average occupation number n± (cf. eq.(1)), 

n(k)± = z-1 1+"" d(4>/2)d(1/J /3) M( </>, 1/J) 1+"" d
3 

\ eiPX·p Z(~,_<P, J!) . , 
_,.. _,.. (27r) ef3(k- J.L + t'A · k) -to:± 1 

{20) 
where + (-) stands for quarks/fermions with a:= £l:i (gluons/bosons with a:= a:;) 
with £l:i, a:; as defined after eqs.(4,5) and J.L = 0 for gluons. n± is independent of 
the vacuum pressure, since its contributions to Z, Z cancel. Similarly to the prove 
that Z generally is real [7], it follows by the symmetry properties of M and Z that 
n(k) is real. Expanding the denominator in eq.(20) and applying the Gaussian 
approximation as before with Z as given by eqs.(11,12) we arrive at the result 
(p = 0): 

00 

n(k)± = z-1 L (:r=1)me-f3(k- J.L)(m + 1) Zo 
m=O 

7r3/2 n-3/2e-(m + 1)2({3k)2 /4D. _1_c-4e-(m + 1)2K±/C. (1 -fO(C-1)) 
27ry3 < 

_ f: (=F1)me-f3(k- J.L)(m + 1) e-(m + 1)2({3k) 2 /4D e-(m + 1)2K±/C 
m=O 

(21) 

with C, Zo, D, Z respectively as in eqs.(14-17), K+ = 1/3, K._ = 1 except for "charge
less" gluons with a: = 0:5 = 0 where K- = 0. As indicated in eq.(21) we calculated 
the Gaussian integrals to O(C-1) -O((RT)-3 ). n± replace ordinary Fermi and 
Bose (J.L = 0) distributions in a quark-gluon plasma droplet. We displayed here the 
expansion of the fermionic distribution valid for k > J.L only (for k < J.L one has to 
replace (k- J.L) -+ (J.L- k) and (m + 1) -+ m in the exponentials). 

Multiplying n(k)± with the respective density of states according to eqs.(6,7) 
we obtain the phase-space distributions /q,G for confined quarks and gluons: 

fq(k) = dq 
2
: 2 (1-~(kR)-2 ) 'f ( -1)me-f3(k- J.L)(m + 1) e-(m + 1) 2[(f3k) 2 /4D + 1/3C] , 

m=O 
(22) 

where for k < J.L again the abovementioned replacement has to be made, 

fc(k) = dc!:._(1- 2(kR)-2) ~ e-f3k(m + 1) e-(m + 1)2[(f3k) 2/4D + K_jC] 
27r2 ~ 

m=O 
(23) 
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f(k)dk gives the average number of particles (e.g. "red" quarks) per unit volume 
having momenta between k and k+dk. Eqs.(22,23), which are accurate to O(R-3

), 

replace the well-known fermion and boson blackbody radiation formulae for the case 
of a color singlet total momentum zero ensemble in a finite cavity with M.I.T. bag 
model boundary conditions. We observe that eq.(23) requires kR = {Jk · RT > y'2. 
Omitting the exponential corrections in eq.(23) we reproduce the result of ref.[12], 
which only takes the average shell effects into account. 

The various correction factors due to the average shell effects and the color and 
momentum projection again can be clearly identified if one compares our results 
with Planck's law. Or, particularly by looking at the Boltzmann limit (m = 0) 
in eqs.(22,23) we qualitatively expect three effects to arise in comparison with the 
usual distribution functions: i) low-momentum modes are suppressed due to the 
underlying discreteness of the single-particle spectrum, ii) there is an overall reduc
tion caused by the restriction to color singlet states, iii) high-momentum modes are 
suppressed by the requirement of zero total momentum. This is illustrated by Fig.2 
where we show the dimensionless functions /3 2 /q (for p. = 0) and /32 fa according 
to eqs.(22,23) respectively with dq = 4 and da = 2, It- = 1. They depend on the 
dimensionless variable {Jk and the size parameter RT. For comparison the distri
butions without any finite size corrections corresponding to Planck's law are also 
given (dashed curves). One observes considerable deviations from this infinite vol
ume limit. Notice also the size-dependent shift of the maximum of the gluon/boson 
distribution. Finally, we want to draw attention to the fact that the momentum
dependent exponential correction factors in eqs.(22,23) lead to a size-dependent 
slope change for logfq,G at high momenta. This is not obvious from Fig.2, but 
easily can be recognized in a logarithmic plot of the high-momentum tails. 

Since phase-space distributions of quarks or gluons enter all calculations of cross 
sections for particle production out of a plasma droplet, for example the dilepton 
probe studied in refs.[20] (and refs. therein), we conclude that finite size effects 
should be taken into account to improve these tools for quark matter diagnosis. 
Summarizing we may say that bulk as well as single-particle properties in quark
gluon plasma droplets depend sensitively on the size of the system which will only 
be determined by experiment. 

Acknowledgement: We wish to thank the Nuclear Theory Group at LBL for its 
generous hospitality and inspiring atmosphere. 
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Figure captions 

Fig.1 Size-dependent deviation of the entropy density from its Stefan-Boltzmann 
limit value for various chemical potentials (lowest curve with J.1. = 0 etc.): a) due to 
shell effects, s0 /ssB from eq.(19); b) due to shell effects and color and momentum 
constraints, sf ssB from eq.(18) (1r's: dashed). 

Fig.2 Phase-space distributions for quarks (upper three curves), {32 fq from eq.(22), 
and gluons (lower three curves), /32 fa from eq.(23), respectively with RT --.. oo 
(dashed), RT = 1.5 (upper full curve), and RT = 1 (lower full curve). 
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