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LATTICE VORTEX MODELS AND TURBULENCE THEORY• 

Abstract 

Alexandre Joel Chorin 

Department of Mathematics 

University of California, Berkeley, CA 94720 

Vortex lattice models for use in turbulence theory are 

explained, a simple one dimensional version is presented and is seen to 

provide reasonable qualitative information about intermittency and 

vortex stretching, and results obtained with three dimensional models 

are summarized. 
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Introduction 

The lattice vortex models that we shall discuss are designed to 

provide qualitative understanding and quantitative predictions in 

turbulence theory. 

The prospects for an accurate and detailed numerical solution 

of the Navier-Stokes or Euler equations in a fully turbulent situation 

are dim. Simple estimates of the number of degrees of freedom that 

must be resolved (see e.g. [2]. [12]) show that the computation would 

be overwhelmingly large. The complexity of the phenomena observed 

in simplified problems (see e.g. [7). [8)) and estimates of the rate of 

growth of errors (see e.g. [4)) show that the problem is worse even 

than the simple counting argument indicates. Even if the 

computational problem were somehow solved, the problem of analyzing 

and understanding the results of the calculation would remain open. 

After all. nature presents us with detailed analogue calculations of 

turbulent flows and these have not yet led to a solution of the 

problem of turbulence. 

There is a vast literature on the modeling of turbulence by 

averaged or phenomenological equations, usually involving empirical 

parameters. Such modeling is very useful as an engineering tool (see 

e.g. [2). [11}) hut does not lead to general equations or to qualitative 

understanding 15]. Some of the reasons will be discussed below. 

A way of tackling the turbulence problem is suggested by 

recent calculations ([7], [8]). The turbulent flow field is determined by 

its vorticity. The evolution of vorticity is typically dominated by a 

small number of coherent structures that interact through vortex I 

vortex interactions, through the exchange of vorticity (for a 

visualization, see [19)), and through processes of vortex stretching and 

creation. The details of these interactions are amazingly complex, but 

the calculations suggest that the overall statistics are independent of 

the details as long as certain constraints are satisfied. In many 

practical problems one is interested in scales of motion that are 

comparable with the scales of the coherent structures, and it is not 

desirable to carry out scaling or averaging operations that eliminate 

the spottiness (= "intermittency") of the solution. It is therefore 
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natural to turn to discrete models of the vorticity field; the lattice 

models are convenient because they allow one to separate scales in a 

natural fashion and keep the calculations relatively small. 

What the lattice vortex models ~ not 

At this point a disclaimer is appropriate. There are a number 

of mathematical constructions that use words similar to the ones we 

shall be using, and confusion is to be expected. 

There is a substantial literature on lattice models and their 

hydrodynamical limits (see e.g. [18]) which is totally unrelated to the 

present work. As far as the present work is concerned, the 

Navier-Stokes and Euler equations have been derived, and the goal is 

to construct discrete models that mimic their behavior. If the models 

we introduce have a hydrodynamical limit it would presumably be, 

depending on the scaling, either the Navier-Stokes equations or some 

averaged model of turbulence. 

Similarly, there have been in recent years a number of attempts 

([13]. [17)) to model continua by discrete models; even if these models 

can be made consistent with the equations, and even if they can be 

made more efficient than more standard methods (at present, a rather 

doubtful proposition), the problem of obtaining information about 

turbulence from solutions of the Navier-Stokes equations would remain 

as open as described in the introduction. The lattice models offered 

here and the lattice models proposed for example in the context of 

"cellular automata" are on opposite sides of the Euler or 

Navier-Stokes equations. 

Vortex methods (see e.g. [8]) provide genuine approximations to 

solutions of the equations of motions and are thus quite distinct from 

the models discussed here. However, some of the features of the 

models were suggested by calculations with vortex methods. The 

closest analogues to the present models that I know of are the coarse 

grained collective variable models [1). [6]. but the analogy is not close. 

in particular because the coarse-grained models do not include a 

vortex model of energy dissipation. 
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Euler's equations 

The equations we shall be starting from are Euler's equations: 

~ = curl !!· div !! = 0, 

(la) 

(lb,1c) 

where !! is the velocity, ~ is the vorticity, t is the time, and y is 

the differentiation vector. These equations are appropriate for the 

analysis of scales larger than the dissipation scales, as discussed for 

example in [8]. For a derivation of these equations, see [10]; for a 

recent review of their theory, see [16). The kinetic energy of a fluid 

whose motion obeys equations (1) is 

(2) 

where ~ is the position vector (see [15]). The mean squared vorticity 

is 

(3) 

Equations (1) allow vortex tubes to stretch (for definitions, see [10]). 

Experiments, both numerical and physical, show that the stretching can 

be very substantial, and that as a result Z can become very large, 

possibly infinitely large in a finite time ([7]. [16)). 

Note that the integrand 

in equation (2) is not positive definite. To see the significance of 

this fact. write 
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J Bd~d~' + 
1~-~'1<£ 

J Bd~d~' = T < + T > . 
1~-~·1~£ 

If £ is small and f is reasonably smooth, T < ~ 0 and T > can change 

sign. As vortex tubes stretch and thin out, the vorticity associated 

with them increases and if £ is of the order of a tube diameter T < 

should increase. Since the sum T is non-increasing T > must decrease 

and possibly become negative. If B < 0, f(~)·{(~') < 0, and the 

vortex tubes must fold. In picturesque language, T > provides the 

screen behind which T < can grow and vortex tubes can stretch. 

Assumptions in the vortex lattice models 

We now list the assumptions we shall be making in the lattice 

models. These assumptions are suggested by numerical experiment. 

The first four are merely global properties of Euler's equations: 

(a) the energy T is conserved as long as Z is finite. If Z is 

not finite, energy is non-increasing. 

(b) specific volume is conserved. 

(c) circulation (J!!·d~. where Cis any closed curve), is 
c 

conserved. 

(d) the connectivity of vortex lines is invariant in three space 

dimensions; connectivity is important because it bestows some 

semblance of realism on the cascade models that lead to Kolmogorov's 

spectrum (see e.g. [9)) . 

(e) vortex lines stretch rapidly and irreversibly. 

Assumption (e) hides interesting mathematical difficulties, analogous to 

the problems in deriving the irreversible Boltzmann or Navier-Stokes 
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equations from the reversible Liouville equation. The solutions of 

Euler's equations are reversible at least as long as they remain 

smooth, yet the tendency towards stretching is very marked. 

Similarly, the solutions of Burgers' equation exhibit a tendency to form 

steep gradients for "most" initial data. Somehow the space of 

solutions and the "natural" space of initial data are different, but 

attempts to formulate this or similar statements precisely have not yet 

been successful. (For an interesting attempt, see [14).) Vortex 

stretching, subject to the conservation properties above, drives the 

flow towards turbulence. The details of the flow are hard to 

determine and can be viewed as random, with an unknown distribution. 

We shall pick that distribution at our convenience, in the hope that 

the choice does not unduly affect. the gross statistical features of the 

flow. 

These assumptions are similar to assumptions made by Childress 

[3) his r -model. 

A one-dimensional model of vortex stretching 

We now present a one dimensional "cartoon" of vortex 

stretching subject to energy conservation. In three dimensional space 

vortex tubes can move, stretch and fold; we mimic these processes on 

the line. 

Consider the lattice xi = ih, i = 1, ... ,N, Nh = 1, with periodic 

boundary conditions, where h is the length of the lattice bond. At 

time t = 0, place "vortices" of lengths ~i = 1 at the sites where is 

odd and no vortices elsewhere. Endow the system with the energy 

T = ~ . :. sgn(~ j) • sgn(f i) ~ + ~ I f i I , 
~ J~~ ~J ~ 

where sgn(z) = 1 if z > 0, -1 if z < 0, 0 if z = 0. and 

j (i-j)h j (mod ~ ). The double sum mimics T > with E = h/2. 

(4) 

r .. = 
lJ 

The 
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second term should mimic T < and depends on the unknown details of 

the vorticity distribution within each "vortex"; it is reasonable to set 

I l. i I to be the contribution of each site to T < (and this statement 

may serve as a definition of l. i). Let T(t=O) = T 0. 

We now set up rules of motion for the vortices. Pick i at 

random, 1 < i ~ N, and perform with equal probability one of the 

following operations: 

(a) Translation. Consider the possibility of translating the 

"vortex" at xi = ih either to xi+l or to xi-l' if the new site is empty. 

If as a result T > T 0. do nothing; if T ~ T0, perform the 

translation. 

(b) "Stretching". When a real vortex is stretched its 

contribution to T< increases. In the one-dimensional model there is 

no realistic way to evaluate this increase, so we arbitrarily try to set 

l. i+ 1 = U i; if the resulting T > T 0 we do nothing, if T ~ T 0 the 

"stretching" is made. (A discussion of the scaling of T < in three 

dimension is given in [9)). 

(c) "Folding~' Consider setting l. i = -£ i; if the resulting T ~ 

T 0 do it, if T > T 0 do nothing. 

T is thus allowed to decrease; it is plotted as a function of 

the number of moves in figure 1. T decreases when the "vortices" 

"fold" (i.e., one of a pair changes sign) and approach each other. T 

increases when "stretching" occurs. On a finite lattice the stretching 

eventually brings T back to T 0. When T reaches T 0 a new "vortex" 

configuration is obtained, stretched but with the same T as the 

original configuration. In figure 2, we plot part of the original 

configuration and the final configuration with the same T for N = 40. 

A negative £i is marked with an arrow pointing downward. We note 

that the new configuration is "intermittent", i.e., energy is not 

distributed uniformly in space. Intermittency is an important property 

of turbulence. Clearly without intermittency "vortex stretching" would 

be very limited. The formation of pairs of "vortices" of opposing sign 

corresponds to the formation of "hairpins" in real flow [8], [20]. 

7 



II 
UJ 
Q. 
Q) -UJ .. -0 ... 
Q) 
.c 
E 
:::J 

I z ""'· J ' 

I 
I 

"" I 
I 
I 
I 
I 
I 
I 
I 
I 0 

0 

I q ,... 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I .•' ..... .. 

II 

~I ~ 
C) ... 
Q) 
c: 

0 w 
0 - q ,... 

figure 1 

8 



' ... 

•vorticity• 
(a) Initial configuration 

10 

--~--~_L __ L__L __ L--~ 
Position 

·vorticity• 
(b) Final configuration 

10 ._ 

, , 
Position 

figure 2 

9 



The length of the new "vortices" depends on h. Having gone 

as far as figure 2, we could refine the mesh and stretch some more. 

We could extract a part of the lattice, claim that its interactions with 

the rest of lattice are less significant than its internal dynamics, 

throw away the rest of lattice and concentrate on the part that 

remains. All these operations will be carried out in the 

three-dimensional case. Finally, if dissipation is important, on some 

scale one should allow cancellations between "vortices" of opposing 

sign. It is a reasonable conjecture that such cancellations are the 

major mechanism of enhanced energy dissipation in turbulent flow. 

The simple model of this section is sufficient to exhibit 

intermittency, its relation to vortex stretching, hairpin formation and a 

mechanism of turbulent energy dissipation. 

Summary of results in !! three dimensional calculations 

A three-dimensional calculation, of which the one-dimensional 

calculation of the preceeding section is a very simplified version, is 

presented in (9). The vorticity field is assumed to consist of vortex 

tubes whose axes coincide with the bonds in a three-dimensional cubic 

lattice. An energy T = T > + T < is defined, analogous to formula (2). 

The tubes are subjected to a random sequence of stretchings of which 

one is drawn in figure 3. The energy connected with the tubes before 

and after stretching is calculated in a manner consistent with equation 

(2), and with the constraints of conservation of specific volume and of 

circulation. Vortex tubes are not allowed to intersect nor to break. 

The energy decreases and then increases, in a manner similar to 

figure 1. When the energy returns to its initial value we view the 

outcome as an eddy that has broken down to smaller scales. Once an 

eddy has broken down. an eigth of the calculation is extracted, the 

mesh is refined and further breakdown becomes possible. This 

extraction/refinement process can be repeated ad infinitum. At each 

step in the process. the mean squared vorticity Z (equation 3) can be 

estimated. 
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figure 3 

Basic stretching in 30 

H is observed and proved that if the volume occupied by the 

"active" vorticity, i.e., vorticity still available for stretching, remains 

equal to the original volume, then the stretching will come to a halt, 

or else conservation of energy will be violated (as in the one 

dimensional model problem). The remedy is to force the stretching 

vorticity into ever smaller volumes (as in fact. happens in solution of 

Euler's equation, [6]. (7)). The sequence of decreasing volumes defines 

a similarity dimension D for the "active" portion of the flow. T > 

becomes negative and vorticity "tangles" appear. The amount of 

vortex stretching that occurs is a function of D. In homogeneous 

turbulence, the relation 

Z(k) = k2E(k), (5) 

where k is the wave number and E, Z are respectively the energy and 

vorticity spectra (see e.g. [5]), determines the right increase in Z and 

leads to an equation for D that can be solved numerically, yielding an 

estimate D - 2.4. Equation (5) is a consequence of the definition of 

vorticity (lb) and of homogeneity. The calculation also yields an 

estimate of the inertial range exponent close to the Kolmogorov value 

Y =5/3, a fact that is probably of little significance, since 

Kolmogorov's theory is dimensionally correct and any reasonably 

self-consistent model should reproduce it. It is significant however 
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that the Kolmogorov spectrum is not incompatible with intermittency, 

and that intermittency appears as a necessary consequence of vortex 

stretching and energy conservation. 

There are two distinct length scales connected with the 

shrinking "active eddies". One is the cube root of the typical volume 

in which the active eddies are confined and is comparable with the 

radius of curvature of the vortex tubes; the other is the diameter of 

the vortex tubes. The second length scale decreases much more 

slowly than the first, as one can already see from figure 3 where the 

basic stretching is shown. The first length scale decreases as a 

result of this stretching by a factor 1/h ~ 2, while the second 

decreases only by a factor /'3 - 1.732. The conclusion must be 

that as the energy cascade proceeds vortex tubes must divide into 

distinct subtubes that curve independently. A similar conclusion is 

reached in [3] by other arguments. This conclusion also constitutes a 

warning for straightforward vortex calculations in three dimensions: 

they must have a fine enough resolution to allow for the bursting of 

vortex tubes. 

The time it takes an eddy to break down can be assumed to be 

comparable with its characteristic time L/ J"f, where L is its linear 

dimension. The sum of the characteristic times of the sequence of 

shrinking eddies converges, and thus, within the framework of the 

model. it takes a finite time t* for Z to become infinite (see [7] for 

the details of the argument). To continue the calculation beyond t* 

one has to allow for the interaction of several vorticity regions and 

for energy dissipation; these more elaborate models will be presented 

elsewhere. 

Conclusion 

On the basis of the results obtained so far, it is reasonable to 

predict that lattice vortex models will become a useful tool for 

investigating the structure of turbulence and a bridge between 

engineering models and the Euler and Navier-Stokes equations. 
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