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Abstract

The effecﬁvof anguler momentum on an excited paired nucleus has been 2
.studied{ The B.C.S;'Hamiltonian, modified to inclﬁde the 3z »projectioﬁ of the
‘ angular momenﬁum has been diagdnaliéed and exﬁreseed in tefms of the duasi—
farticle.oceupation numbers. The grahd paftition function aﬁdvall the relevant
thermodynamicel functions as well es the level densify expreseion haﬁe been derived
for the generel case ofven arbitrary eet of eingle_pafticie'levels. - Furthermore,
~-the formalism hae been applied to the unifofm model and, whenever possible,
analytical expressions'haVe been derived.v In paftiCular-the Zero temperature
angular momentum depepdeﬁee'of_the gap parameter, the critical angular momedﬁum
aS'well es fhe yrast line have been calculated. The critical tempefefure as a
function of angular momentum , which.definee the phase-transition‘between ﬁaired
._and unpaired systems, hasvbeen'calculated. A new effect called the thermally
eesisted‘?aifingVCOrrelafions involving an increase of pairiﬁg wiih increasing
~temperature has been predicted The completeness of the formallsm as‘applled to
spherlcal or deformed nuclei has been discussed. |
Work performed under the euspices_of the U. S. Atomic Energy Commission,. and
eupported in part by Centro di Radiochimica e Analiei per Attivazione, Universita

di Pavia, Italy.
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1. Introduction

Improvements in the'resﬁlts of the statistical treatment of excited nuclei .
are conhected with the use of more and mere realistic single'particle models.

The original work of Bethel) on level densities'waé’based upon the uniform model

(set of equally—spaeed single-particle levels populated by non'interacting

fermions). - The»success.of‘ﬁhis model, modified-in many wayé>by a number of

authors2) is due td_its simple analytical results,vdespite‘fhe oversimplified

and unrealistié Hamiltoniah it is based upon. After the Qalidity ofvthe sheile

model waS'esteBlished and it Became pessible to calcuiate-a reelistic sequence

ef single particle.levels,vsuch model was seldom ﬁsed for.eValuating the statistical
nuclear properties: rather? there has been the tendency to use a‘meckedjup'ehell
mbdel level Sequence; such as a set ef equaily spaced levels of constant degen-
eracy3), or a bunched singie pertic}e le&el speetrumh’S); Again there was a
tendency to obtain simple analytical results, which,'en one hand would account
for some of fhe most relevant experimental fesults, and on the oﬂher would be
convenient for experimenteliSts to use. At present the availability of>high
speed eomputing machines allows oﬁe to solve the problem of the level density
caleulations‘on'the basis of'eﬁ arbitrary sequence of single particle levels6’7).
Furthermore the superconductivity theory and the B;C.S. Hamiltonian8’9),-the.
success of which is dealing with the pairing effects of ground state nuclei is

11,12,

well recognizedlo), have also been.applied in the evaluetion of level densities
In this wayithe.predietion of the low energy behaviof of level densities hae been
much improved. In the preeent paper we generalize the formalism‘describinéAthé
statistical nuclear properties by including the nuclear angular mementum.'vA

13).

preliminary account of the results has already been published More specifically,-
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we shall evﬁluate.all the statisfical nuclear properties on the basis of an
arbitrary shellvmédel level Sequence, with inclusion of pairing effects and
angular moﬁentum by means of the BCS Hamiltonian. The usual proceduré in
statiéfiéal calculations consists in determining the grand partition fundtion of
the system and in restricting it in such a way'as.to conserve énergy, number of
particleé ahd;-in‘general, any other fifst integral of motion. However only -the
first integrals that can be expreséed in terms of éums over single particle.

' stafes can be handled easily in this fashion. While the total angular momentum
does not have Such property, its 2z projection M does. Therefore the following
calculations will be restricted to a constant angular momentum 2z projection

M. In sec. 4 it will be shown that, in most cases, such procedure is justified
and the formalism.is complete. In the first part of the paper the géneral
formalism will be derived, while in the second part actual calculations will be
'presenfed for the case of the uniform model in order to illustrate the pie—

dictions of the present formalism.
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2. General Theory

2.1. THE HAMILTONIAN

The Hamiltonian of a Fermi gas with an attractive interaction can be

written as follows in the second quantization form::

B -+ | . o
H= Z'gk akak—GZ- a_p 188y s - B (1)

k. kk'

" where € are thé‘Unperturbed single particle energy le#els, G 1is the strength-

k

of the pairing interaction and a;,"ak are the single-particle creation and annihi-

lation operators.

It is convenient to consider a new Hamiltonian of the following form:
H>H-AN-yM , | ' : | (2)

where N 1is the'nﬁmber of particles, M 1s the projection of the total angular

- momentum on a laboratory-fixed 2z axis or on a body-fixed z'axis, and A and

Y are two Lagrange multipliers to be determined later on.

The>quantities N and M can be. expressed in operator form:

" D kaakak ka Sk

Stk

(Y3
L~

oW
~—

vhere m are‘the single particle spin.pfojections.

' The Hamiltonian, modified as in (2) can be rewritten as:

ng akak + Z E:k 'aika_k -G Z qafk,a;,aka_k , (4)

-k kk'
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where

gk = E:k. - A= Y mk; gk = Ek.— )\ + Y m-k. . (5) ‘ -
| !
.
. 2.2, THE BOGOLIUBOV QUASI PARTICLE TRANSFORMATION AND THE DIAGONALIZATION OF
THE HAMILTONIAN . \
Such Hamlltonlan can be dlagonallzed approx1mately by means of the
Bogoliubov procedure9 ll}). Let us deflne a néw set of operators as a linear
combination of the previOusly defined operators:
b = a + v a-r
I S S 5
S R (6)
L R T ;
The inverse transformatioh is: i
= b b+ ‘
84k T Y% P4k T Yk Pk
a.=u b. —v. b . : : o (1)
-k "k °-k T Yk 4k . . |
The“new_operators (quasi-particle operators) do. obey the commutation relation:
“ bk ?kv+bk bk.— l. > o _ . (8) | o A

which implies:

' uﬁ + vi =1 L | S ' : (9)
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By substituting eq. (7) in'eg. (L) and retaining only the diagonal terms we

obtain:
ST ey L T Ak 2 e 20 T - e 2 42
B= ) vEEr e ) v ) mler - g )+ ) mng o - g vD)
- Gl Z ukvk(l -m -1 ] , o (10)
kk!' ' - :
where n, = bik.bik are the quasi particle occupation numbers.

<+

By minimization‘of eq. (10) with respect to ukvkeéping n, .

one obtains:

(¢ ) n v 4D o
where
A=g E::uk”vk (l.— n; —‘n;) e . | _ (12)

The quantity A is called the "gap parameter" and it is a measure of the
pairing correlation.

From eq. (11) and eq. (9) we have:

2 'if’ R ?%k'f 21 : ﬁ?k‘  o
. : = - 1t —————a ) - = ]l - —_— s (13)
- Yk 2_( r————A2+;§) Vx 2( !,A2+ }%) o
- where |

e

and n, constant
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The substitution of eq. (13) in eq. (12) yields:

2 G °
VA +}k
which is the so called "gap equation" in its most general form.

By means of eq. (13) and eq. (14) we can rewrite the Hamiltonian (10)

in the following form:

N A ot 2 - 2 mepm 2 b 2y A
e ka(gk g +,Z oy (8w = & Vi) + an(gk oY T

which, after some algebra takes the final form:

2

H =Z(€k - »)\ - Ek) + Zn;(Ek - vak) + Zn;{(Ek +y mk) + —AG— , (15)

where

B = [(e, - x)_ . 222

2.3. THE GRAND PARTITION FUNCTION
In order to obtain the thermodynamical description of the. system we
calculate now the grand partition function, defined as:

e =Tr e .

"This is indeed the grand partition function and not the partition function,

because of the modifications introduced in the Hamiltonian in eq. (2).
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- By means of the Hamiltonian as expressed in eq. (15) the logarithm of

the grand paftition'function is immediately obtained:

Q=—BZ(€ )\—E) +Z-ln[l + exp -‘B(Ek-ymk)]

+ ) Ml +exp-BlE, +ym)l-BE (17)

wheré'B = %-is the. inverse of the statistical temperaturé.T. The quantitiés

Ay A, Ys B are related to each other through the gap equatlon which now . takes

the form

Z [tanh = B( -y mkv) + tanh % B(Ek +y mk)] =% . (18)

2.4, THE LEVEL_DENSITY AND RELATED STATISTICAL QUANTITIES
The level density of the systém_is the inverse Laplace transform of the

grand partitioh function:

o(E,N,M) = --—- fdsé’dafdue . v v ' (19)
where o = BA, u = BY and

=Q ~-~aN - UM + BE . , (20)

The Darwin Fowler triple integral of eq. (19) fixes the energy, the number of

.particles and the angulaf momentum'pfojection in the grand partition function.
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.Suchfan“integral‘can’be’evaanted with good.approximaﬁion:by means'of’
the saddle point method. The exponent S has a saddle point at:

The 1evel_dehsity;is:v

k _p(E,N,M‘) = (o) 372 72 g

where .

D_; —_——_ Pl . - o (22).

Both. S and D must be evaluated at the saddle point. It can be noticed that
er;.(él),which,giveﬁthebsaddle-point conditions also define the first integrals
of the'system. They can be calculated explicitly:

LA

o2 v Lace, )+ tanh L 8(E, +ym )} , (23)
Z T g, temh AR -y m) +tenh G BB ¥ Y mgdl

=
]

SLne ey vy T e Rn YRy (Y
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g - A 1 ' _ 1 S A2
'E = Zek[l__- -‘é'E—k-— {tanh_EB(Ek ~_‘y mk) + tanh 3 B(Ek tym)} - =
The system of egs. -(18), (23), (2k4), and (25) defines the saddle point values
of A, A, Y, and B. At first sight, it may seem strange that in egs. (23), (24),
and (25) therévaré no terms containing the partial derivatives_of A with fespect
to B, A and y. As a matter of fact, con51der1ng for 1nstance the derlvatlon of
eq. (23), the full result is:
E:[l - {tanh —-B(E -y mk + tanh —-B(E +y mk)}]
+A§A—[- §'+Z {tanh—B(E -y )+tanh—B(E + Y (26)
X 'T G 2E,_ mk ’“k R

however, by virtué.of eq. (18) thé coefficiént Of.A.%% is equal fo zero. A
,similar situationvarises>for the other first integrals (2&),and,(25) which indeed
turn out.fo be independent of thé partial derivatives of A.

By means of eq. (20) where we substitute egs. (23), (2&), and'(25),'after

some simplifications webcan obtain the expression for the entropy:

S =.§£:ln[l + exp —B(Ek -y mk)] + zz:ln[l +vex? ;B(Ek + f_mk)]

_ ‘ By =V m E +y m '.' '
* B E: 1 + exp. B(E - v mk) + B 52:1 + exp B(E + Y mk) " (e7)

In order to complete the formalism, we need'the second deriVatives of § which

enter.in the denominator of the level density expressibn:

(25)
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= zz:mk[sech —-B( -y mk)v+_se¢h21%-B(Ek + Y.mkj]

A@_A_'ka [2; U -
- e FE—; sech > B(Ek -y mk) - sech 7-2- B;(E‘k + Y mk)] (28)
= Z (sk - }")V_Z a + A? Z'b _gn o Z(e - M(ay - bk) . © (29)
= A° E: b+ A E: € (e - a, + E::ei(ek - )2 a i
¢ B %é' [Z €€ - X)v(ék - by + ‘3‘26] | o (30)
__J;Z(Ek_x) - 2}- . - o1 |
_: M T mk[sech > B(Ekv— Y .mk) - sech E‘B(Ek +y mk)]
+BA-aAlZ-m—k-[sech —B(E +Ymk—sech—B(E —Ym)] (31)
=~Ezmk{(8 —A)s +A2}[sech -—B(E +Ymk-sech—8 _ymk]
+'EA 3 E::mk t | 21, . ,é.l

% L. TE_ sech” 3 B(E, + Y m) - sech” 3 B(E, - v m)] (32)

- XA? Zbk - ng(ek _)\)2 a, —AE Z (ek —’ x)

'BA—Z‘ —A)(a-')'. - | (33)
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In all of these expressions we have used the quantities:

ak_=.%4;%4 [sech —'B(E mk)_+.§e¢h? %-B(Ek'+ Y m#)] s (3)
Kk - S

b, = 13 [tanh -B(E - Y m) + tanh —-B(E +ym)] (35)

v oBE

k

2{5;. THE DERIVATIVES OF A.WITH,RESPECT TO THE LAGRANGE MULTIPLERS

In eq. (28) through eq. (33) the derivatives of A with respect to B,

0, U are contained, in contrast with the expressions for the first integrals.

We proceed’now to the calculation of such derivatives.

The gap equation (18) defines A as an implicit function of B, a, M
Formally we can write:

f(AsBaaaLl) =0 E .
The total differential is:

of BA) du =.0

_ (2,3 3 ., 3f, 3f 3h o,
at={®*+wm w ¥ G ran aa)d +(a 3 3w
Thé above réiéfidﬁ is satisfied if and only if the quantities in paréntheses are

simultaneously equal to zero. Thus we obtain:

S

" — - of . ' '
4 3B %A __Ba o XA_ 3 (g
% TT3f * e T TaE C dp 2 T R
24 | 94
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EXpiicitlybwe'haVe

;.:SA, L A }E:a + ZE:zx €; (e -A) - Azzjb (g - | ' _ :
BT | BAZ o0 ‘ | BNED

Lo B OE mlsecn ZRE vy m) - e FoE -vm)]
@ - M— S (38)
| | oA Z (a - b,) | | _.

3A Z ak. . o | | 509

a =» BAZ(& -

Such'défivéﬁivééLshoﬁid be éef_édua;kfo zéfo whenéVer A=0. In fﬁis“way we
have. a general formalism which allows one to détermine“the'statistiéal:properties
of a‘paired4nuéléus as a function of its:éxcitation-energy E and its angular

‘momentum projection M.

2.6. GENERALIZATION TO THE CASE OF TWO KINDS OF PARTICLES

So far we have treated the system as belng composed of a single kind of
particles: actually a‘nuéleus is cémposed of neutrons and protons,' he»whole
theory is immediateiy generalizeq: it is suff1c1ent to 1ntroduce a new Lagrange
mulﬁipiier.fcf fhe néy kiﬁd of partlcles. ‘The thermodynamlcal quantltles can be

th@iﬁgd by recalling that the logarithm of the grand-partltlon_functlon, the

'energy.and the entropy are additive quantities:

B=0 05 ESE 4By S=85 45 . tho)
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Furthermore if-should be noticed that the level deﬂsity exjressioh must be
written.as:

*'_;’ 'exp_sk : SR o : - ‘ ,v' -

0 2 172 SRR - o (41)

- (2n).

The quantiﬁyﬂ D is now a determinant of fhevsecond derivatives of Q'wifh resﬁeét
to the four Lagrange mulfipliers: it is therefore a 4 X h,determinént insfead
of the 3 X 3 determinant of eq. (22);'

By pﬁﬁting y=0 everywhere,’the'formalism reduces. to the case of M’% 0:

12)..

such case has been tréated»alféédy by Sano and Yamasakill) and Decowski et al.

 It is worthwhile to point out that in the case of Sano and Yamasaki the saddle

point was searched only With respect.to B, ﬁhich implies‘a-difference in the
denominator'qf the lével»density e#pression; in the case_of Décowski 23;5;.
there is a discrepanéy'ih the deriVatives Ova'With respeét té B and‘u.

‘ Finally we observe that the presenttformalisﬁ can be used to calculate

the level densities starting from any set of neutron and proton single particle

~ levels obtained from shell model célculations. Although such computations turn

out to Be rather complex,vthey can be handled adequately by means of the high

~speed computers available at present. = However, in order to gain a better insight

in the theory, let us consider its application to the uniform model which allows

one to simplify the calculations and, to a certain extent, té,obtain’rather simple

analytical expressions for the relevant thermodynamical guantities.
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3. Applications of_thé Theory to the Uniform“Mbdel
3.1. THE SINGLE PARTICLE MODEL |
Wé assume a set of equally-spaced doubly—degeneréte,singlefparticle
levels (Nilsson-like lévels) with density g .and with-éonstant angular momentum
prjection mk'= m. . For symmefry réaéons the enéréy-scéle>can béudisplaced in
such a way as‘td make.the éhemical potential A equal to zero at all temperatures
(in the general case, the chemical potential A varies with the temperature). In
some of the céiculations which will be presented,'mostly in the case where we
'afe dealihg with energy as a variable, the uniform model has been employed with
the foiiowing parameters:: g=1T MeV-l Ao = 1.0 MeV; m = 2h. Suéh values have

been chosen with the purpose of-simulating,a nucleus in the region of heavy

" rare earths.

3.2. DEPENDENCE'OF THE GAP PARAMETER A U?ON M AT ZERO TEMPERATURE (B = =)

B :From here on we,aésume thaﬁ the péiring‘éorrelation exfends over an
.energy'intervél *w above and below the Fermi surface. . Therefore all the sum-
mations over the single particle levels can be transformed into iﬁtegrals within
the limits *w.

For T = 0 and M = 0 the gap eqﬁation (18) yields thevzero—temperature

zero-angular momentum gap parameter:

= LW ~ _ ‘ .
Ao = Sioh 172G 2w.exp( 1/gG) . (k42)

The approximation holds when gG << 1. In order to obtain the_dependencg of A

upon M for T = 0 let us first integrate eq. (2k4):



',
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e o | ]  d€v ) _ - 'de. ' o
._M —2mg [ 1 + exp B(E - ym) " f 1+ exp R(E + ym) ' (L3)

o e

For B + o the integrand in the second integral.is zero in the whole

range of'integrétion,'while in the first integral the integrand is equal to

2]1/2

unity up to E = Ym-or € =v[(Ym)‘2 - A and is equal to zero for larger values

of €. We obtain then:

M= 2ng [(ym)® - 8512 L | )

Also for B » m'the.gap'equation‘(lB) for M= 0 and M = M can be writﬁen as:

(™)

. | - | (45) -

'f(’AO)'iv-.gé ;o f(d,y) =g
or
f(AO)_= £la,y) . S I - (L6)
After_integrétion we obtain:
Lo i @ o m)® o aB e
5 [2 arcsinh T - 2 arcsinh (= 2 )] = argglnthQF : (47)

After some manipulations we can write: .

82+ B2 L2 e DY = () - PR o we)
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If w >> Ao’ as we can always choose, we obtain with a good approximation:

2. . A 2 1/2 .
" 1 % 1A _ 2 2 _
e [l’+§7—l—§—§] = [(Ym) —Aj‘ s (49)
o L “w w , .
‘or
2 2 : '
A - A 1/2
1l "o _ 2 2 _ M .
el (LS R S (50)

We finally end-up with the very simple expression:

L om e o N )
A= Ao (1 f ﬁz) e ' ' ’ (51)

where'
‘M, =gmA ; (52)
the follbwing expressions are immediately derived:

(84 _ -1 lim dA

T om— T e 0, . (53)
dM.M=0 2gm M~ Mc-dM ,

The dependence of A ubqn M, expfessed by eq. (51) is shown in fig. 1. It ié seen

that the gap ggyg@gtgr, and thus the pairing corr@lationg dgcrgases.with M, until,

at a critigél value Mc’ given by eq. (52) the pairing correlation vanishes.
'Equationé (53) express the slopes of A = A(M) for M= 0 and M = Mc. The

qualitative meaning of such results can be easily understood by conSidering the

Hamiltonian as in eq. (1). The second term of such a Hamiltonian says that,
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wﬁenever a pair 6f particles can be transferred from a filled levél tq.an empty
one, there is'ah energy gain G. The first ferm; of éourse; meaﬁs that, in order
to transfer a pair of>§artiélesvfrom.a level k tb a level  k'- one has to
invest>an‘amouht_§f energy equaizto.é(ék,'— ek). This.ﬁégﬁs that only the 1é§eis
clpse‘to the'Fefmi surfade are the most affected by the péiring_intéraétion.'

In bfder to éeﬁeréte anguiar moﬁentﬁm, we must:break:some of the pairs: the
éxcitations which arise in this way'(éuaéi partiéleé) occuﬁy single particle
levels which 5ec§mé unavaiiable (blocked) to the scattered pairs. Thus the
pairing corfelation decreases and, when the angular momentum is sufficiently

large, the crowding of quasi-particles.around the Fermi levels makes the pairing

correlation energetically unfavored (fig. 2).

3.3. DEPENDENCE OF THE GAP PARAMETER UPON_ANGULAR MOMENTUM.AND EXCITATION ENERGY
Lef us consider first the case of M = O, Again the gap equation (18)

gives the dependence of A upon T. In fig. 3 such dependence is ffesented: the

increase in tempéfature produces a deCreasé in the pairing correlation until,

at and gbove a critical temperature Tc’ A =.0 and the pairing correlation disap-

pears altogether. The critical temperature is given by the relation l):

‘ 'I'C = l.lﬁ w exp(— 1/gG) E - (54)

By application of the eg. (41) we obtain the well known relationll):

24
T
c

©=3.50 . ' (55)

Again'the-déCrease of the pairing correlation with increasing temperature

is due to theAfact'that the excitation energy bfeaks paifs of particles which
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.generate.quesi partieles blocking single-particle levels close to the Fermi
surface. In fig. h the dependence of A upon the‘eXCitation.energy is presented.
' Since we have seen that bothbenergy and angular momentum tend to decrease
fhe:pairing correiation, it is‘intereeting to See their combined effect. Thie
'cen be dene.by determiningwthe dependence of the critical temperature upon the
angular momentum’projection M. Such a fhnction which defines the'bdundafies
between the‘superconduCting and the normal phase in the M - T plane is snown in
fig,TS. For 0 < M <:ME the gap eQuation (18) yields a single éolution for the
cfitical»tempefature, which decreeses Vith‘M as expected. However, for M:?‘MC,
the éep equatien“yields'two critical temperatures; the uppervcritical temperature
is'the_confinnatien of the curve obtained for M <ch,_wnile the lowef critical
tempereture sterts from Zero at M = Mc'and merges into tne upper criticalv
'temperature'fof M~=1.22 Mc' It is very important to note that for M >’N% the
system is normal in the temperature renge.between zero and the loner critical
tempefature?-it‘isba superconductor in the temperature rangevbetweenethe lower
and the uppef criticel femperatureé, and‘it is‘nornal egain forbtemperatﬁre
values above the npper critical temperature. We are deéling here with an
unexbected’effeet,’namely for M > M, a system in the normal phase canvbecome a
supeiconductor by increasing its temperature or excitation energy.  This in
contrast with the known case for M = 0 (fig. 3 and fig. h)_where an inereaSe in
temperature tends to aestroy the pairing correlation. Such en effect could be
called "anomalous pairing" or "thermally assisted pairing correlation” because
it is_sustained by an increase in temperature.
| "Lefvus attempt to gain a qualitative insight into such phenomenong As

stated above, angular momentum is generated by breaking pairs of particles, by
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putting the quasiiparticleé generated in this way into‘fhe single particle levels
close tevthé.Ferﬁi.surface, and by polarizing their spins. If the angular 
momentum iS’suffieientiy high'and fhe femperatﬁrezis equal to.zerb, a lerge
number of quasi particlee do edmpletely eceupy the c10sest'levels-above and
below the Ferﬁi'eurface. Such a compiete blocking of single pafticie levels
makes the pairing'correlation'energetically unfavdrable (fig.v6a).‘ An increase
in tempereturevtends to relai the tight paeking of quasi—particlee by spreading
them farther and farther awey from the Fermi surface: in this WayISOme single
particle leveie become partially unoecupied and thus become available for pairs
scattered by the“paifing interaction (fié. 6b). At a temperature equal to the
lower critical temperature, such a spreading out of quasi particles is Jjust
sufficient tovmake the pairing coffelation‘energetically favored. A furthef
increase of the temperature will eventually produce‘tﬁe normal pairing breakdown
by generatihg an ihcreasingly‘large number of quasi—particles.

‘Suchvefremarkable effect pefsiste aiso for values of M smaller than Mc'
This ceh:be’shoﬁn cleerlyvﬁy calculating the dependence of the gapvparemeter‘
A upon the temperature‘and the angular momentum projection;. In order to do-
that, we must solve the system formed by eq. (18) and eq. (2k). In fig. T the
T - M plane is again divided into‘fwo regiens, one where the system is peired,
the other where the system is normal. In the paired regions lines have been
drawn which correspond to a constant A value, from A = 0.95 MeV to A = 0.1 MeV
in 0.05 MeV steps. It appears that for a constant M‘valﬁe, below M., A begins £o
increase with inereasing temperatufe,.reaches.a maximum,ifinelly decreases, and
vanishes at the critical temperature. For M >’Mc'the gap paremeter A stays equal

to zero from T = 0 up to the lower critical temperature, in the paired region A
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increases, goes thréugh a maximum, decreases égéin and vanishes aﬁ the upper
éfitical temperéture. It can be notiéed that A goes through‘é ﬁaximnm with
inCreasing temperature forAany‘non-zero value of M. Since this initial iﬁcreése
in A'ﬁifh.incréasiﬁg ﬁeﬁperaﬁure can also be called "thermally assisted pairing
correlétion", it follows that such effect can hardlj bé_called anomalous: |
aétﬁally the effect for M = 0 could be cailed anomalous'ﬁecause only in such a

case A decreases monotonously with increasing temperature.

B;h. :PASSAGE FROM THE TEMPERATURE SCALE TO THE ENERGY SCALE

Although the cOﬂcépt 6f temperature in a nucleus may be uséful, it is
A moré cdmmon:tb ébeék‘of nuclei in terms of enérgy:‘ indeed, fof‘tﬁe great
majdrity of'purpoéés, excitéd nuélei are considered with a fixed excitation energy
rather fhan wiﬁh fixed temperature.

Such faétxéhould also lead to the use of the microcanonical ensembl¢
instéad of the canénical ensemble in statistical calculations. The canonical
énsemblé haslﬁéen'used here because of the more advanqed algofithms whiéh have
,beén developedﬁ therefore the calculations presented so far should be understood
to hold for fixed temperature. Nonethéless it is possible to calculate the
a&erage energy associated with such a temperature. The main efféct of such
approximation iS'that'of'introduéing some smoothing of the statistical quantities
with reépect'to enefgy. First, let us éalculate the energy of the system for‘

T = 0 as a function of M. Such function is usually called yrast ling and it is
usually defined in a somewhat different fashion (like the function giving the‘
highest:éngular momentum for a given energy of alternativeiy giving thé-loweét
possible energy.for é given angular momentum). For the uniform model;veg. (25)

becomes: -
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+Ww v . .
E=g | el - {tanh 2 B(E - ym) + tenh £ B(E + ym)}) ac A% (56)
& T e T EETm BT
For T =0 or B - °°;-'-su’ch ekpressidn reduces to the folloﬁing:
P -/ 2mg 2 W 22 |
sesf ce-af Se-sf Se-foo oD
- R B © M/2mg - o
By assuming w >> A and by using eq. (42) and eq. (51) we obtain:
2.1 2. .M W 0, 1/2
_E—-gw -egA +2m (h22+A) (58)
The ground state energy (T = 0, M = 0) is:
2 1,2 S |
E = -guw -5gl . : - (59)
The equation of the yrast line can be writteri as follows:
2 1/2 R : .
=L A% 2y oMM A%y . v
E-Eo—eg(Ao—A)+2m(h22+A)_ , B (60)
. ng
‘or in a simpler form:
| 1 2 M, My ' - ‘ 3
- == g — - —_— < - {
E-E =3 glAO T (2 i )vfor M <M, o (61)
: c e
E-E =-J:g A2+ for M > M . S - (62)
2 0 : c v . B ,

T
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vIn.fig}fgvfhe‘&féét:line ié’showﬁ (loﬁelein¢) tégéthér wifh’the criticﬁly
eﬁergy as a function‘of'M (upper liné).» Thése two cur#es,bwhichrjoih émoothlyb
af.Mc;.défine ?heAregipn of the sﬁperconductingvphase. The_dashed.lihe is the
continuatibﬁ“§f the yrast line giVen b& éq. (62) for M Vélﬁes loﬁér:tﬁéﬂ Mé;'
it represents the yras£ line corfésponding to ah ﬁhcorrelétéd Fermi gas. Such. 
a line intersects the eﬂergy axis, for M = 0 at an eﬁefgy équa1 to_%:g Ai, which
feprééenté theiéon&énsatibn-éﬁérgy from fhe normal to thé_sﬁ?ércondﬁéfiﬂé‘phéée

for M = 0 and T = 0. The difference between the dashed line and the lower line

represents the T = 0 condensation energy as a function of M. As could be expected, -

- such a.cdndénéétidnlenergy_reduces to zero for M = M_ ‘because of the diéappearanée
of'the péirihg'cbrrelation. A generélization of the‘calcula£ion_ié shéwn.in fig.
9: _ﬁeré thé eﬁeféonf.the‘system'is,calculated as é function ova fbf_équélly
spaced cdhétanf_temperéture;values: the yrast line is dbviouSly a paif ofisuch
a’famiiyiof curves, being that.charactefized by T = 0. In fact for the lowef
femperatﬁreS'the curves tend td follow the yrast line, while for the higher
témperatures the cﬁrvés become more parabola-like and similar to_the‘dashed.
curvevcorrespondihg to the yrast line7for an uncorreiated Fermi‘gas;‘ This is
due to thevdecrease in correlation and fherefore in A associated wifh the
temperature increase. |

As a final example of the chahge from temperature to energy scaie;{fig.

10, which corfesponds'to fig. T, showsvthe lines‘of equai A yalué’in the E/MA
plane. The superconducting region is bounded by the yrast line ana’by thé  
criticai energy‘linéf ”thé innér lines, of equal A value gb from A =1 MeV fo

A = 0 MeV in steps of 0.1 MeV.
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3.5. THE ENTROPY
.The pairing effects are very relevant in the entropy expression also
vIn fig. ll the entropy has been calculated as a functlon of M for a set of
'1ncrea51ng values of temperature. In absence-of-palring and in particular for
Mand T above.their critical values, the entropy, at fixed’temperature does not -
depend upon M. This appears clearly in the right side‘of.the figure where the
curves reduce to edually‘spaced straight lines'parallel to thevM'axis.. Within
the paired region there is a general depressionlin the entropyvvalues, the larger
the lower the temperature; For the very lowest temperature values the entropy

goes through a maximum.

3.6. THE LEVEL DENSITY DENOMINATOR

-~

As it was already observed the.case of the pairing correlation for

| M= Oll), the denominator'of the level density‘goes through a discontinuity
whenever the critical temperature is crossed: .in.particular, for M >’M¢ two
discontinuities'should exist in correspondence withkthe two values of tne eritical

temperatures'(corresponding to exceedinglyfsmall excitation energies) the saddle

point approximation is not to be trusted.

3.7. .STATISTICAL QUANTITIES OUTSIDE THE PAIRED REGION‘
| As far as the general case is cOncerned, the formaliSm described.here
holds also.beyond the paired region, provided'that A and its derivatives with
respect to the Laérange multipliers are set equal to.zero.

 In the case'of.the uniform model, the expressions forptne statistical
quantities_can_bebeasily integrated, so that'analytical expressions can be obtained.

They are given as follows:
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4. Completeness of the Formalism with Respect to Angular Momentum

It has beeh'anticipated in the‘introducfion thét{ih the present formalism
onlyfthose first iﬁtegrals can be easily handied which can be expressed in terms
of a sum over single particle levels. Thevehefgy, the particie ﬁumber; and the
projectidn of thé toﬁal angular momentum, do satiéfy suph éxrequirement. However?
the total angular momentum does not present such goodvfeatures and therefore if
has nof been'included.in tﬁe present_calculation.’ Thus the quéstion arises
whether such a éalculation ought to be considered complete. An apparent.lack of
completeness could be found for éxample in the dependencé of A upon M.for T=0
(fig. 1). 1In fact, since the choice df the 2z axis is arbitrary, so will be
the M projection onbsuch an axis. Therefore it-méy not be clear how an intrinsic
property of the system, iike the péiring correlatidn, can dependvupon the arbitrary
choice bf the "z axis. However it can be shown that”the'formalism ié_essentiaily
cbmplete; at'leést'for a sbherical nucleus. It is quite obvious that if thé
total momentum is not aligned with the =z axis, the présent formalism accounté
only for a partvof the overall angular moméntum effect; But, if the angular
momentum is indeed alignéd with the =z axis, (and thisvcan always be the caée;-
if a suitable-choiéé of the 2z axis is made), then there is no’angular momentum
component left out_ﬁhich may affect the intrinsic properties of the sy§tem. It
follows that'wé can substitute the total angular momgntum in'pléce‘ova'in all
the'eXpressions concerning tﬁe intrinsic properties'éf the system. = Such is the
case for the expression giving A as a funétion of M and T,.for the yrast line.
expression; for the energy expression and so on. . Instead, for the evaluation
of the level denéity for a given angulér momentum I, thevproblem'is slighfly‘

more complicated. We can make the usual 6bservationl):
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o(E, 1) = p(B, M=1) - p(B, M=T+1) , (61)
or
o, 1) == (L o(mM) . | (6
. N ' M=I + > :

In taking such a derivative, one must keep not only E and N constant but also A,

this last quantity.being evaluated at M = I + %

. In any case the é#aluatiqn
of such a derivative is not so simple. Perhaps an easier way\to hanale such é
problem is as fdllows.' Let us assume thgt the fdllowing‘relatiqn holds in a
smail intervai of.M: |

M

o 2 ’ -
o(E, M) X £(E) e 20 B | o (66)

where

2
L

sech %-B E

Q
]
OV T

, . , (67)
k : ' '
and where A assumes the value associated to I. Such a relation introduces the

concept of the spin cutoff parameter 02 which has been avoided up to this point.

However this is not so important. In fact now we can perform the derivative:

_ . (1 + £)2/242 v S
o, 1) = L pm) - 2T o (es)
: 20 : ‘ '
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or

2T + 1

2

p(E, I) -
20

o(E, M =T +2) . - O (69)
So, the spin cutoff parameter haé been used ohly for tbe'abproximate evaluatiqn
of the'derifativé;_ | |

In thé case of'élqbn-spherical_nucleus'and spedifiéaliyrin the case of
an axially symmeﬁricvnﬁcleus, ﬁhe spin projections Qk‘énd'the angﬁlar momentum
projection K on the symmetfy axis are good quantum numbers. Therefore-in the
pfesent‘fbrmalism one should idéntify M with K and m with Qk. Indeed now the
formalism‘is not complete because it is notvpossible to handle the angular
momentum component pefpendicuiar to the symmetry axis.v In order to do that, one
should‘perhaps Utiiize the créhkiﬁg model which céﬁld prdvide also an alternative
way t§ solve.thenovefail probiemls). However it.canibe poiﬁted out that axial
symmetry and K conservation hold for the very lowest temperatures only. For
excltation enefgies where the lével density begins to be'high, the levels shéuid
become strongly K mixed and the axial symmetry will be combromiséd. ,Fufthefmore
the statistical washing out of the shells will tend to make‘all éf the nuclei

spherical on the average.'
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Figure CaptiOns
1. Dependencé 6f1tﬁevgap paréméter A.upon the angular momentum M at zero
temperaturef ‘AO is tﬁe gép parémeter for T ='O,_M = 0,'and_Mé’is the critical
angular mqmgntum dbbvé.ﬁhich A = 0.
'2.v Schematic illﬁstratioﬁ of the effect of angular_momentum on the pairing
correlation. . On the left the system hés zero angular momehtum. nThé Blaék
full circles repfeSent the barticles which bccupj the'douﬁly degeneyate levelé
up to the Fermi 1evél EF. Pairihg smears out the Fermi surface as indicaﬁed
in the diagrém on the outer left, where the occupation numbers are shown
as a fﬁncfioﬁ’of the single pérticle energy. On the right,.the:system has~.
é non-zero angular momentum, obtained by Bréaking pairs and by poiarizing
the resulting quasi particles (open circles:with arroﬁ). The quasi particles
block siﬁglé particle levels which becqme unavailable for the péiring cor-
reiatioﬁ.'
3. Dependerice of the gap paréméters A upon the temperature T at zero
éngular mdmentum. ’Tc is thexcritical temperature'abbve which A‘= 0.
4. Dependence of the gap pafameter upon the excitétion energy at Zero
angular momenfum. The paramefers used in the caicuiation are: AO =1 MeV,
g =17 Mev'l, m = 2h. | |

5. Depéhdence‘of the critical temperature upon angular momentum. The

parameters are the same as in fig. L.

6. Explanation of the thermally assisted pairing correlation. a) On the left,

the temperature‘is zero and the angular momentum is generated by quasi

‘particles which are tightly packed around the Fermi surface: the pairing

interaction finds the most effective levels blocked by quasi particles. ‘b) -On



30- LBL-219

the right, a héﬁ-zéro température spreads out the distfibutién of quasi
particles making.more levelé avaiiable for the pairing interécfidn. The .
| result ié a téndency of the gap parameter to increase with temperature for
non-zero angular‘momentum. : ' ‘ ) -
Fig. 7. Contour map of the gap parameter as a funétion ﬁoth of temperature and
and angular-mémentﬁm. The spacing in A'befweén two éucéessive lineé is
0.05 MéV from A = 1.0 MéV to A = 0.1 MéV.’ The outer line corresponds to
A =0 MeV. -
Fig. 8. Critical energy (uppér line) and yrast line (lower line) as a function
of angular.mdmentum. The dashed line, which merées'iﬁto the yfast line at
M= Mc is thevyrast line for the unpaired system. The difference in energy
between the dashed line and the lower solid line represents the:éohdensation
energy due to bairing; |
Fig. 9."Same,as iﬁ fig. 8. The 1ines in the paired'region correépond to\the’
energy as a function of angular momentum at constant témperatures from
T = 0.09 MeV to T = 0.54 MeV in 0.03 MeV steps.
Fig. 10. Same as in fig. 8. The contour lines in the paired region correspond
- to the regions of equal A from A = 1 MeV to A = 0 MeV in sfeps of 0.1 MeV.
Fig.‘ll. Entropy as a function of angular momentum for a set of equally spacéd
temperatures. o |
Fig. 12. Level density denominator as a function of temperature for_differént"

values of angular momentum (number marked on each line).
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