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Abstract 

Realistic calculations of the pair transfer strength functions were per

formed for the nuclei 162Dy and 164Dy as a function of the angular momentum 

and excitation energy in the frame of the self-consistent, cranked HFB and RPA 

theories. At low angular momenta most of the strength is concentrated in the 

ground-to-ground transition, whereas at high angular momenta, after the pair-

ing correlation has dropped, the strength is spread among several states 

located a few (54) MeV above the Yrast line. 

Introduction 

In recent years high-spin physics has provided a large share of the new 

and interesting problems in low-energy nuclear physics. The monotony in the 

rotational moments-of-inertia was broken by the backbendin.g phenomenon 1; 

afterward, a large variety of experimental findings emerged: superdeformed 

nuclei,2 terminating bands,3,4 giant resonances built on rotational excited 

states,5 and damping of rotational states,6 to mention a few. 
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Many of the above-mentioned findings were unexpected. A theoretical pre

diction long sought is the Mottelson-Valatin effect,7 which says that a 

deformed nucleus which is superfluid in the ground state (1=0) will experience 

a phase transition to a normal phase at high angular momentum due to the 

Coriolis field, which breaks the Cooper pairs. Since that notable 1960 

prediction, several new observations have been hailed as the pairing collapse, 

but there has been no definitive proof. Proof is difficult, in part, because 

there is a gapless superconductivity at high spins that makes it very hard to 

observe spectral features directly related to the pairing. Theoretical stud

ies, or interpretations,B,9 are in seeming disagreement. Mean-field theories 

do predict a sharp collapse of the pairing gap (at spins from 10~ to 20H for 

rare earths), whereas projected theories find just a smooth weakening of the 

pairing correlations up to very high spins. The projected theories take into 

account many more correlations, and should therefore be more reliable. There 

exists, however, some arbitrariness in the definition of the pairing gap. 

It has long been suggested that more direct evidence about pairing 

correlations could be found by looking at pair transfer strengths, rather than 

at energy level patterns. Recently, there has been some work in this 

direction, 10,11,12,17 in particular, Guidry et al. developed classical orbital 

methods to estimate how well heavy ion transfer reactions could be used to 

study pair transfer at the higher rotational levels Coulomb-excited on the 

inward path of the projectile. While sufficiently heavy ions have not yet 

been used in such studies to probe the interesting backbending region, recent 

Oak Ridge work with Ni and Sn projectiles has already illuminated features of 

one- and two-neutron transfer at higher spins. In particular the reactions 

seem predominantly to be "cold transfer," going to states fairly close to the 

Yrast line. 



.. 

3 

Theoretical studies of pair transfer matrix elements at high angular 

momenta have been scarce and limited to simplified model calculations. 9 The 

purpose of this paper is to carry out more realistic calculations of the pair 

transfer matrix elements as a function of the angular momentum for the 

recently-measured 12 nuclei 162Dy and 164Dy . We hope that this work may shed 

some light on the process and on the understanding of the experimental 

situation. The calculations were done in the frame of the self-consistent 

cranked H~rtree-Fock-Bogoliubov theory (CHFB), using the hamiltonian and con

figuration space of Baranger and Kumar.13 To take into account transfer to 

collective pairing vibrations we also calculated the transfer with Random

Phase-Approximation wave functions based on the self-consistent field (CRPA). 

110 Theory 

The general theory of pair transfer in non-rotational nuclei can be found 

in work of Bohr and Mottelson,14 but since there is not a "standard" descrip

tion of the pair-transfer amplitude for the case of deformed rotating nuclei, 

we shall introduce some notation and justify our approximations. 

11.1 The amplitudes for pair transfer 

The situation we try to describe is illustrated in Fig. 1. In a pair 

transfer reaction a Cooper pair is deposited (removed) from the rotating 

nucleus (A, EYrast' I) leading to the nucleus (A ± 2, I) at the Yrast level or 

at an excited state. One could also have pair transfer involving transfer of 

angular momentum; this would correspond to a transition mediated by higher 

multipolarities, and such will not be considered in this paper. We shall in 

what follows refer specifically to neutron .transfer, but obviously all the 

formulas apply equally well for proton transfer by merely replacing N by Z. 
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Let {ck,ck} be a complete set of single particle operators characterized 

by the quantum numbers k:(.,n,l,j,m). the operator 

creates a Cooper pair for protons (.:p) or neutrons (.:n). 

and \fo(1»N+2 represent the Yrast states at angular momentum I for the 

nucleus (N,Z) and (N+2,Z) respectively, and \ff(1»N+2 an excited state of 

the (N+2,Z) nucleus. We shall omit the indices Z, from now on, to simplify 

the notation. 

The the ground-to-ground transfer at angular momentum I is given by 

and that to an excited state f given by 

(1) 

(2 ) 

( 3) 

A similar definition to expressions (2) and (3)"has been given by Kumar 15 

for 1=0 and deformed nuclei. The amplitudes for the removal of a Cooper pair 

are given by using the operator P instead of p+ and using the wave functions 

corresponding to a nucleus with N-2 particles. 

11.2 The wave functions 

The next important task is to specify the approximations we use for the 

states \fo(1»N and \ff(1»N+2. In dealing with high-spin states one has to 

consider sufficiently general wave functions to include collective as well as 

single particle degree of freedom which will allow for changes in the shape, 

• 
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the pairing potential and the single-particle alignments. A theory that 

includes such features and that has explained most of the high-spin phenomena 

is the HFB approximation combined with the cranking procedure, also known as 

self-consistent cranking. 16 We shall denote the mean field approximation to 

I~O(I» of eqs. (2) and (3) by I~>. One might be tempted to make a better 

approximation by particle number projection combined eventually with some kind 

of generator coordinate method to describe properly the collective states. 

Such types of calculations could be done'7 for the ground-to-ground transfer 

where only a single final state is involved, but for the thousands of excited 

states of eq. (3) in which we are mainly interested, it is numerically not 

feasible. 

In the cranked HFB approximation the expectation value of the operator 
A, 
H = H - wJ - AN x 

is minimized in the space of generalized Slater determinants I~>, under the 

(4) 

constraint of correct average angular momentum and particle number, i.e. the 

cranking velocity wand the chemical potential A are adjusted to fulfill the 

given constraints. 

The 'variational problem which one faces is 

with 

A 

A 

<pIH'I~> = 0 
a~ 

q IJ I ~> = .; I (I + 1) x 
A 

<~INI~> = N 

(5) 

(6) 

Now, to calculate the amplitudes (2)-(3) in the mean field approximation 

one should, at least in principle, solve the equations (5-6) for the system 
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with N neutrons to obtain I~>N and for N+2 neutrons for 1~>N+2' Solving the i 

equations is not so bad compared with the formidable task of trying to eval

uate the overlaps in eq. (3) for the thousands of excited states which already 

appear at a few MeV of excitation energy in realistic calculations. 

Fortunately, in most of the cases it is not necessary to work with two 

different bases IN> and IN±2> for the following reasons: At low spins, where 

the pairing correlations are sufficiently strong, the nucleus behaves to a 

large extent as a Cooper pair condensate, so that in going from N to N+2 one 

does not expect drastic changes in the wave functions. At the very high spin 

limit I » 1 in the mean-field approximation the gap goes to zero and one gets 

eigenstates of the particle number. Therefore the states of the nucleus with 

N+2 (N-2) particles can be described approximately as the two particle (hole) 

states of the nucleus with N particles. In the region of medium spins and 

high excitation energy we need not be concerned because these states are pure 

holes or pure particles and we again have good particle number for such 

excitation. The questionable region is for medium spins and for states near 

the Yrast band. Nevertheless, we shall describe the states of the N±2 par

ticle nuclides in terms of the N particle nuclide, recognizing the limitations 

of this approach. 

Summarizing the discussion above, we make the following approximations: 

(a) For the ground-to-ground transfer at angular momentum I 

In the last part we have used the definition of the gap parameter ~, and 

introduced the pairing strength G. 

(7) 
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(b) For the ground-to-excited state transfer in CHFB theory 

The operators ak define the vacuum I~>, i.e., 

they are related to the operators cm of eq. (1) by the Bogoliubov trans

formation 

The excitation energy of the state f is given by Ef = Ek + El , where Ek, El 

are quasiparticle energies. In (7) and (8) the wave function I~> satisfies 

the conditions (6). 

(8) 

Another advantage of the CHFB approximation is that it allows, relatively 

easy, to incorporate further correlations in the wave functions as to describe 

collective vibrations around the mean field values. This approximation, the 

CRPA, has been used to describe the a and y collective vibrations at high 

spin, and good agreement with experiment was found. 18 In this paper we use 

the same approach to calculate the collective pair transfer. Expression (7) 

for the ground-ground transfer remains unaltered, but expression (8) becomes 

for the ground-excited transfer in CRPA 

(c) (9) 
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where now If> is the vacuum for the one-boson states Bp ' which are solutions 

of the CRPA equations built on the minimum described by I~>. 

is the excitation energy of B/. 

We shall refer to (8) as the uncorrelated transfer and to (9) as the 

correlated transfer. Aside from the feature that one can describe collective 

phenomena in the CRPA, another important pOint is that in this approximation 

the Goldstone modes associated with the broken symmetries in the CHFB 

approximation separate exactly from the normal modes and go to zero energy. 

11.3 Hamiltonian and configuration space 

For a realistic evaluation of the pair transfer amplitudes in the CHFB 

and CRPA theories we shall use the hamiltonian and configuration space of 

Kumar-Baranger,13 which has been used with considerable success by several 

authors for the description of high-spin states. The ingredients of the 

hamiltonian are the pairing-pIus-quadrupole effective interactions. In a 

compact notation 

where & are the spherical single-particle energies and the hermitian (or 

( 10) 

antihermitian) operator 0p' runs over the five quadrupole operators Q~, 

symmetrized with respect to the Goodman Symmetry,19 and P+±P. The operator p+ 

defined in (1) creates proton (or neutron) Cooper pairs. The configuration 

space contains the spherical oscillator shells with the principal quantum 

numbers N=4,5 for protons and N=5 and 6 for neutrons. The force constants XQ' 

and Xp (:G p or GN) were adjusted to the ground state properties of the rare

earth nuclei. Further details can be found in ref. 13. 
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One of the more attractive features of the hamiltonian (10) is the 

separability of the forces, which allows drastic Simplifications in solving 

the CHFB equations (5)-(6). In the RPA case it reduces the diagonalization of 

a huge matrix to the simple problem of finding the zeroes of a determinant of 

dimensionality equal to the number of terms in expression (10). For the 

calculation of the transfer amplitudes, eq. (9), in the CRPA, the separability 

allows one to evaluate those qualities without solving the RPA equations. 
A 

For any hermitian (antihermitian operator) one-body operator F, the 

strength function at energy E is given by20 

S(E) 

where R(E) is the response function at energy E 

R(E) = o 
l-xR (E) 

1 - - 1m R (E) 
n FF 

and RO(E) the free response function, with matrix elements 

A20*S20 
= \ ( kl kl 

i L E - E - E + in 
ki. k i. 

( 11) 

( 12) 

( 13) 

A~~ and A~I being the 20 and 02 parts of the representation of the operator A 

in the basis determined by the CHFB solution and Ek, the corresponding quasi

particles energies. The operators A and S run over the Dp operators of eq. 

(10) and determine the dimension of the matrix R. This means20 that in the 

case of the CRPA, when If> are one boson states, one can obtain the correlated 
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strength function Just by representing the corresponding operators in the CHFB 

basis and making the matrix inversion of eq. (12). 

The use of the linear response theory (LRT) formulas is specially suit

able for those cases where the leyel density is high and it is very computa

tionally time-consuming to find the main contributions to the strength 

function (11) state by state. By setting a finite value n and doing calcu

lations with a stepsize ~E « n one is able to reproduce the main features of 

the strength function. The same advantage can be used for the CHFB case just 

by taking RO instead of R in expression (11). 

III. Results 

We apply the described formalism to the nucleus 1620y , for which recent 

experiments on pair transfer we~e done. 12 Since this nucleus turned out to 

have unexpectedly longlasting pairing correlations, we also studied the 

neighboring isotope 1640y to investigate the effect of the pairing collapse on 

the transfer strength at somewhat lower angular momenta. 

Since the microscopic structure plays a major role, we shall first 

discuss some properties of the underlying mean-field. In Figure 2a we show, 

in the upper part, the cranking velocity, l.h.s. scale, as a function of the 

angular momentum for 1620y . We observe a strong backbending at approximately 

I = 16H and some alignment at I - 26H. The gaps parameters, referred to the 

r.h.s. scale, are also shown in the same Figure. The neutron-gap decreases 

steadily until I = 30H, to 260 KeV, and then suddenly drops to zero. The 

proton gap shows a kink at the I-value where the backbending occurs, due to 

the fact that at this point the cranking velocity is smaller than in the 

former I-value. For neutrons this effect does not show up because, as we will 

see, their wavefunction changes around this pOint. In the lower part of the 
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Figure we show the amount of alignment for protons and neutrons. This 

quantity is defined for each type of nucleon as the difference between the 

calculated contribution to the expectation value of Jx and the one obtained 

using a cubic extrapolation of the corresponding value at I = 2M and 4M, 

namely, 

<J > 1 = <J > x a x 
<J > , x g.s-. 

( 14) 

where 

<J > = x g.s O'W + 1 W • ( 15) 

The parameters 0 and 1 are adjusted separately for protons and neutrons. We 

also show the increment of alignment between the spin I and 1-2. 

~<J > 1 = <J > 1 - <J > 1 . 
x a x a I x a 1-2 

( 16) 

This quantity peaks whenever a nucleon pair aligns, and the height of the peak 

indicates how fast the alignment happens. The values of <Jx>al refer to the 

left scale', and those of I1<J x>al to the right one. We see now very clearly 

that the cause of the backbending is the alignment of a neutron pair and that 

the cause for the collapse of the neutron-gap at I - 30M is.the alignment 

(small) of a second pair. The proton alignment sets in around I = 20M and 

extends until 1 = 30M, causing the decrease of the proton gap as well as the 

change in the slope of the cranking velocity. 

In Figure 2b we show the corresponding quantities for the nucleus 164Dy , 

seen here in a very clear example of the OSCillatory character of the 

backbending phenomenon. The effect of adding two neutrons enhances the 

deformation and decreases the values of the gap parameters at 1=0; both 

effects contribute at high spin to make the gap go to zero much faster than in 

the nucleus 162Dy . One still can observe on the cranking velocity the effect 
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of the proton alignment which, as can be seen from the lower part of the 

Figure, behaves very similarly to 162Dy . On the other hand, the backbending 

is smoothed out and only a small peak can be found for the neutron alignment 

in the lower part of the Figure. Thus, these nuclei provide two examples with 

different characteristics for which we shall investigate the transfer strength 

properties. 

In Figures 3 through 7 we show the pair transfer strength as a function 

of the excitation energy for different values of the angular momentum. Each 

small Figure corresponds to a cut perpendicular to the x-axis in Figure 1 for 

a given value of the angular momentum. One possibility for- choosing the 

energy origin in these graphs would be to measure the excitation energy with 

respect to the Yrast line of the final nucleus N+2 (N-2). In our 

approximation, as long as 6 ~ 0, the Yrast state for the N+2 and N-2 is I~>N' 

but when 6 = ° the Yrast state for the N+2 (N-2) nucleus is the lowest two

particle (hole) state of I~>N' This produces a small overall shift in the 

strengths when 6 + 0. This shift would not be present if we had self

consistently calculated the states of the nucleus N+2 (N-2). In this case one 

would expect some rearrangement around 4 = ° in the states near the Fermi 

surface but not an overall shift in the strength. To avoid this unphysical 

shift around 4 = 0, we refer to the origin of the excitation energies in these 

Figures for all I to the Yrast line of I~>N' This means that the dips in the 

energy region below the first peak should be ignored. We present the two 

above-mentioned approximations: a) The HFB approximation, i.e., we plot the 

quantity S(E) of formula (11), but we use the free response function RO of 

(13); and b) the RPA, where we plot S(E) but now using the correlated response 

function of eq. (12). In both we have used an n (n = r/2) corresponding to r 

= 0.075 MeV. The choice of this value was made by taking it as small as 
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possible consistent with numerical feasibility. We check in concrete examples 

the approximation of working with a finite n and found no loss of informa

tion. By using linear response theory in the RPA approximation, one has to be 

aware of a spurious nonzero contribution to the strength function of the 

Goldstone modes, if any. This is due to the fact that by using a finite n we 

give to each RPA-mode a Lorentzian shape of width rFWHM . Since the Goldstone 

modes are not normalizable, they could in principle contribute to the strength 

functions, but we believe these contributions are quite small here. We avoid 

these contributions by working in the first two MeV with an effective pairing 

operator P orthogonal to the number operator, instead of P. Lastly, to have a 

direct comparison between the ground-to-ground and the ground-excited-state 

transfer we have smeared out the ground-to-ground transfer (1), with the same 

width r as used in the LRT, between the other modes. 

In Figure 3A, we show the transfer strength for neutron-pair transfer for 

the nucleus 1640y in the HFB approximation. The dotted line at 0.1, used to 

guide the eye, corresponds approximately to the single particle strength. For 

I = 0 the quantum number K is conserved and there is high degeneracy. This is 

also the cause of the large intervals without strength. The minimal values of 

-0.001 are due to·contributions of other modes. The transfer to excited 

states is of the order of magnitude of 0.1 and the ground-to-ground transfer 

two orders of magnitude larger. For I = 4, 8 and 12M, we see the effect of 

the Coriolis force on the strength function; the time-reversed symmetry is 

broken, and consequently the peaks split, and some strength appears in 

different places. We also observe some strength growing near the ground 

state. At I = O~ the lowest excited state transfer appears around 2 MeV, 

while at I = 12~ it is about 1 MeV. The second column, I = 16, 20, 24 and 

28M, corresponds to a regime characterized mainly by the quenching of the 

'. 
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ground-to-ground transfer and by a further establishment of the high spin 

regime: first, the holes in the spectrum are getting smaller. In particular, 

the one at -5 MeV by I = 16~ is filled by I = 28~; second, the concentration 

of strength everywhere in the spectrum and in particular the minimum values 

are higher than before; and third, a kind of new shell structure emerges, 

probably due to the band crossing, in this example at I = 16~, which brings 

about the new broad dip at about 2.5 MeV excitation energy. The third column, 

I = 32, 36, 40 and 44~, shows how the strength redistributes at the very high 

spin limit. In particular for I = 40 and 44h, we observe two bumps, one which 

extends from 1.5 to 6 MeV, centered at 3 MeV, and the other from 6 to 10 MeV 

centered around 7.5 MeV. 

In the HFB approximation no collectivity is allowed in the wavefunction; 

therefore, the transfer to excited states could be changed, if some collectiv

ity is present, in the RPA approximation. This is displayed in Figure 3B. In 

the first column for I = 0, we observe at first sight a similar spectrum to 

the HFB one. In particular, we note similarity in the spacing of the peaks. 

A more careful look shows that some of the peaks, like that around 4.5 MeV, 

split into two components which repel each other. Others, such as those 

around 2 MeV in the HFB spectrum, combine to produce a collective state of a 

strength about 10 times the single-particle estimate. At higher angular 

momenta, as in the HFB approximation, we see the Coriolis effects on the 

transfer strength. It is important to note in going from I = 0 to I = 12~ 

that whereas the collectivity of the ground-to-ground transfer decreases, the 

collectivity of the strength for ground-low-lying excited states, although 

split into several components, increases. The upper part of the spectrum 

shows, as expected, a great similarity with the HFB one, in particular above 

-4 MeV. In the second column, the collectivity of several states concentrates 



15 

to a large extent in the lowest excited state. At I = 20~, the strength of 

this peak reaches its maximum value. By I = 24 and 28~ the first peak has 

moved to slightly higher energies, and the total strength to the excited 

states below 2.5 MeV has increased appreciably. 

Since the ground-to-ground strength has dropped from the sizable value of 

I = 16~ to exactly zero to I = 28 and since the strength above 3 MeV does not 

change very much between these two I-values, we conclude that the accumulation 

of strength between-O and 2.5 MeV is probably due to the weakening of the 

pairing correlations in the nucleus. In the third column we perceive the 

shifting of the strength to higher excitation energies as a function of the 

angular momentum. In particular for the highest values (I = 40 and 44~) we 

observe that the strength distribution looks very spread, concentrated below 4 

MeV and does not show any structure. 

Figure 4 displays the transfer strength for neutron-pair removal (in part 

A the HFB approximation, in Part B the RPA). Since this Figure has many 

common features with the previous one, we shall now just-comment on the 

differences between them. In Figure 4A, at I = 0 we have, as before, a high 

degree of degeneracy. The spacings in between are now smaller, and thus when 

we go to angular momentum 12~ we found that the strength is more uniformly 

distributed. In the second column we now find that the valley that developed 

before at around 3 MeV now is broader and appears at about 2 MeV. In the 

third column we see that there is a peak at - 0.5 MeV of considerable 

strength. With respect to the RPA (Figure 4B) we find that, for all spin 

values, it shows more collectivity than in the pair addition case. In 

particular, one can see in the first column a bump about 2.5 MeV. In the 

second column, where the pairing correlations quenching takes place, we find 

again a shifting of strength from the ground-to-ground to the ground-excited 

" 
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state transfer. In the very high spin limit we find most of the strength 

under 4 MeV, very dispersed and not showing any given structure. 

In Figures 5 and 6 we show the strength functions for proton pair deposit 

and removal, respectively, for the nucleus 1640y . In each of them part A 

shows the uncorrelated strength function for HFB, and part B the correlated 

RPA. The underlying physics is very similar to that previously discussed, and 

we shall not go into details. 

We now turn to discuss the nucleus 1620y . We shall not show all the 

transfer strength but just the neutron-pair transfer and only the correlated 

(RPA) results. They are shown in Figure 7, part A for pair removal and part B 

for pair addition. If we compare with the analogous cases in the 1640y 

nucleus we see that aside from small details, due to the change in the neutron 

number, most of the outstanding features are the same. A somewhat awkward 

feature is that for I = 16H, where the backbending occurs, the RPA breaks 

down. As we can see, this problem only affects the vicinity of the Yrast 

state and just for this I-value. 

A quantitative comparison with the experimenta1 12 results is difficult, 

since we are not calculating cross sections. However, our calculations do 

confirm the experimental findings of some spreading of the transfer strength 

when going to high angular momentum. 

We shall now concentrate on the behavior of the strength function in the 

region where the Simple minded theories (HFB) predict a pairing collapse. For 

1640y at I=16H, we have an energy gap for neutrons of 300 KeVj for I=24H it is 

zero. If we now look at Fig. 3B, we find the transfer strengths at these spin 

values rather similar. In the same way, the neutron-gap at I=24H for 1620y is 

0.4 MeV and for 1640y , as mentioned, zero; if we compare the strength 

functions at low excitation energy for these nuclei at this spin value, i.e. 
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Fig. 3B and Fig. 7B, we again do not find qualitative differences. From these 

two examples, where we compare the transfer strength of two cases, one with a 

pairing gap of the size expected at high spins, the other with gap zero, we 

see that there is no signal for a pairing collapse. Notice that this is not 

the case if one looks at the corresponding Figures in the HFB approximation. 

It appears21 as if, in the small amplitude limit, correlation built in by the 

RPA were enough, to some extent, to smear out the sharp phase transition from 

a superconductor to a normal conductor. Ie is important to notice that in our 

RPA approach we use as starting point HFB wave functions that do experience a 

sharp pairing collapse and nevertheless we do not get clear signals in the 

strength functions. The use of projected theories, that do not predict a 

sharp pairing collapse, as a starting point will, probably, wash out even more 

the shown results. 
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IV. Conclusions 

We have performed realistic calculations of the strength functions for 

pair-transfer for the nucleic 164Dy and 162Dy , as a function of the angular 

momentum and the excitation energy. We find in all cases a large increase of 

the transfer strength to the excited states at high spins. It concentrates 

somewhat within the lowest 4 MeV of excitation energy, and it is rather spread 

out without any given structure. We do not find in the strength functions any 

indication of a sharp phase transition from a superconductor to a normal 

conductor. 
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Figure Captions 

Fig. Schematic illustration of a pair-transfer at finite spin. 

Fig. 2 - (a) HF8 results for the nucleus 1620y as a function of the angular 

momentum. Upper part, the gap parameters in MeV (r.h.s. scale) and 

cranking velocity in MeV (l.h.s. scale). Lower part, different 

alignments, see text for definition. (b) Same as (a) for 1640y . 

Fig. 3A - The strength function for neutron-pair addition for 1640y , as a 

function of the excitation energy for several values of the angular 

momentum, using the HF8 approach. 

Fig. 38 -Same as Fig. 3A using the RPA approach 

Fig. 4A -Same as Fig. 3A for neutron-pair removal. 

Fig. 48 -Same as Fig. 38 for neutron-pair removal. 

Fig. 5A -Same as Fig. 3A for proton-pair addition. 

Fig. 58 -Same as Fig. 38 for proton-pair addition. 

Fig. 6A -Same as Fig. 3A for proton-pair removal. 

Fig. 68 -Same as Fig. 38 for proton-pair removal. 
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Fig. 7A - The strength function for the nucleus 1620y in the RPA for neutron

pair removal. 

Fig. 78 -Same as Fig. 7A for neutron-pair deposit. 
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