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INTRODUCTION TO QUANTUM CHROMO TRANSPORT 
THEORY FOR QUARK-GLUON PLASMAS1 

M. Gyulassy, H.-Th. Elze, A. Iwazaki, and D. Vasak2 

Nuclear Science Division 
Lawrence Berkeley Lab 
Berkeley, CA 94720 

ABSTRACT: 

LBL-22072 

Upcoming heavy ion experiments at the AGS and SPS are aimed at 
producing and diagnosing a primordial form of matter, the quark-gluon 
plasma. In these lectures some recent developments on formulating a 
quantum transport theory for quark-gluon plasmas are introduced. 

1. INTRODUCTION 

At extreme nuclear densities, as in the cores of neutron stars, or at extreme tem­
peratures, as before the first microsec of the Big Bang, matter may exist in a 
novel phase according to Quantum Chromo dynamics (QCD) [1]-[9]. In that phase 
hadrons dissolve, strong interactions become weak, and an ideal color conducting 
plasma of quarks and gluons may be formed. Beginning late 1986 an ambitious 
new experimental program to discover this novel form of matter will commence 
at the AGS in the Brooghaven National Lab and at SPS at CERN. The goal is to 
simulate those extreme conditions by compressing and heating heavy nuclei via vi­
olent nuclear collisions at very high energy. At the AGS nuclei will be accelerated 
to - 15 GeV / A (GeV per projectile nucleon). At the SPS nuclear collisions at 
energies up to 225 Ge V / A will be studied. There are plans to build a Relativistic 
Heavy Ion Collider at BNL with energies up to 100 Ge V / A in the center of mass. 

Assuming that the phase transition point can be reached at sufficiently high 
energies, the hope is that the complex final debris of such collisions can provide 
information on the properties of the quark-gluon plasma. In that debris, there 
may be 1000 pions and 100 kaons together with 500 nucleons. Occasionally, a high 
energy photon or a very massive dilepton pair may also emerge. Unfortunately, 
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the new phase we wish to study can only exist in nuclear collisions for '"-J 10-22 

sec because the quarks and gluons become confined again into hadrons when the 
matter density gets below some critical density '"-J 3po, where Po ~ 0.145 fm-s. 
We are thus faced with the proverbial Humpty-Dumpty problem of trying to piece 
together all the shattered remnants of an elusive state. Whether "all the kings 
horses and all the kings men can put Humpty together again" depends in this case 
on how reliably we can formulate a Quantum Chromo Transport (QCT) theory to 
deal with the dynamical complications of very high energy nuclear collisions. After 
a decade of experience[10] with nuclear collisions at lower energies '"-J 1 GeV / A, 
we have learned to appreciate the difficulties involved with trying to convert ex­
perimental differential cross sections into information about the thermodynamic 
properties of nuclear matter. The problem is that nuclei are small and nonequi­
librium effects can camouflage signatures that would be expected if ideal chemical 
and thermal equilibrium were reached. To deal with that problem, nonequilibrium 
transport theories have recently been developed[ll] with sufficient sophistication 
that real progress is finally being made toward the determination of the nuclear 
equation of state up to several times Po. 

Up to now most calculations of the signatures of quark-gluon plasmas have 
been made with models assuming local equilibration[1]-[4]. While those calcula­
tions have provided valuable guidance on what observables may provide the most 
information about the quark-gluon plasma, we should not be surprised to find 
discrepancies with the upcoming data. During the next several years, when only 
relatively light ions such as 0 16 and 8 S2 can be accelarated, finite size nonequilib­
rium effects will be very important to consider. In the 1 GeV / A range we know 
that signatures of collective phenomena only become clear for nuclei with A > 100. 
Even in such heavy systems, 3~50% corrections due to finite surface effects are 
found. Thus, it is necessary to develop calculational methods that can deal with 
nonequilibrium conditions. Furthermore, in very high energy collisions the very 
rapid time scale of the collisions may make it necessary to incorporate quantum 
effects. Of course, we expect that QCD contains somehow all the answers. The 
problem is how to extract them from this subtle and still little understood theory. 
Unlike transport theory at lower energies based on known hadronic degrees of free­
dom and Yukawa interactions, the quark-gluon transport theory QCT is still in its 
infancy and many questions remain to be resolved. The aim of these lectures is to 
introduce some recent developments in QCT based on work in Refs. [12,13,14,15]. 
These lectures are not intended to provide a comprehensive review. For a broader 
perspective see the many excellent reviews in [1]-[4]. 

2. THE QUARK-GLUON PLASMA 

Even without knowing about QCD, hadron phenomenology itself indicates that 
the properties of matter could change drastically at energy densities an order of 
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magnitude above that in ground state nuclei, fO ~ mNPO ~ 0.15GeV /Fms. Con­
sider zero baryon density matter. The energy density as a function of temperature 
T is given by 

(
mT)S/2 3 

E(T) = ! dmp(m)e-m
/
T 21r (m + "2T + ... ) , (1) 

where the density of hadronic states is approximately given by the Hagedorn form, 
p(m) ,..; m-Gem / To with a ~ 5/2 and To ~ m .. ~ 140 MeV. Because of the expo­
nential rise in the number of states f and also the partition function Z = tr e-H / T 

have an essential singularity at a finite critical temperature T = To. Taking the 
finite volume of hadrons into account as in the MIT Bag Model via the relation 

m 
V(m) = 4B ' (2) 

where B ,..; 200 GeV /Fms is the vacuum energy density, the energy density of 
matter in the excluded volume approximation was shown in Ref.[16] to be 

E(T) 
fB(T) = 1 + f(T)/4B ' (3) 

where EH(T) is given by the point particle expression (1). With (3) the partition 
function has an essential singularity at the finite energy density 

EQ = EB(To) = 4B ,..; 1 GeV /Fms . (4) 

This suggests the end of the hadronic world and the breakdown of hadronic matter 
theory is not far from the domain of ordinary nuclei. 

To discuss the properties of matter at energy densities beyond EQ, we must 
turn to QCD. In this standard model there are N = 3 colored quark and N 2 - 1 
colored vector gluon fields that-couple in a gauge invariant way under the color 
group, SU(N). There are N, ~ 3 flavors of quarks. In the absence of interactions, 
the energy density of this Stefan-Boltzmann gas of quarks and gluons is simply 
given by 

with T, p. being the temperature and chemical potential. The pressure of this 
ideal relativistic gas is just PSB (T, J..L) = l ESB (T, p). In perturbation theory the 
corrections to this ideal pressure have been computed to leading orders. Kapusta 
[17] calculated that for J..L = 0 

g2T" 1 5 sT" 1 
p(T) = PSB(T,0)---(N2-1)(Nc+-N,)+-g -(N2-1) (-(N+N,/2))S/2+ . .. 

16 9 4 121r 3 
(6) 
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The basic problem is to determine under what conditions il any perturbation the­
ory could apply, Le., when is 9 sufficiently small? The effective coupling strength 
in the plasma depends on the interplay between vacuum fluctuations that are 
responsible for asymptotic freedom at small distances and Debye screening that 
reduces the coupling at large distances. Recall that vacuum polarization and ver­
tex corrections in QeD lead to the famous asymptotic freedom formula 

g2 4~ 

4~ = (kel/(q) = (lIN - iN,)1n(-q2/A2) (7) 

where A ,... 200 MeV is a nonperturbative physical constant that appears in the 
theory on account of renormalization. The coupling depends on the momentum 
transfer, q, corresponding to the inverse of the characteristc interaction distance. 
For large q or small distances the coupling vanishes because of the impossibility 
of localizing a color charge. The gluons, so long as N, < 121 N, smear the color 
charge of a quark over a scale"" A-I. So if we look very close to a heavy quark we 
will only find a small fraction of its original color charge. 

On the other hand, at large distances the coupling becomes large. In fact, (7) 
has a singularity in perturbation theory at finite momentum transfers t = -A 2 • 

Nonperturbative analysis suggests that (kel/ should have a simple pole at q2 = 0 
instead corresponding to a linearly rising potential at large distances. In a many 
body medium not only by vacuum fluctuations but also by the polarizability of 
the medium modify the gluon propagator. In the one loop approximation [18]-[20] 
the the J.l = v = 0 part of the static (wo = 0) gluon propagator is modified such 
that the infrared singularity is screened away via 

(8) 

where the color electric mass is given by 

m~ '" g' [( N, + Nt /2)T' /3+ (1/2"') E Jl}] , (9) 

in terms of the termperature T and flavor chemical potentials J.l,. Of course, as T 
and J.l tend to zero this many body correction tends to vanish. This modification of 
the gluon propagator implies from linear response theory that static color electric 
fields are screened on a length scale mE?' called the Debye length. The physical 
origin of such screening is clear. Since the particles in the plasma carry color 
electric charge, a cloud of particles of opposite charge tend to accumulate around 
any external charge put into the plasma. On very small distance scales or large q 
the properties of the many body medium are of course irrelevant and the effective 
coupling just follows the asymptotic freedom form. 

Thus in a plasma only we only need to consider the coupling on distance scales 
~ m E/ . As the temperature or density increases that scale decreases and thus 

4 



the basic asymptotic freedom property causes the coupling to decrease. Thus, 
we see that perturbation theory might apply at extreme energy densities with an 
effective coupling ae/l "'"' 1/ log(T / A). In perturbation theory, (5,6) the properties 
of matter at extreme energy densities would become very simple. 

However, there is real trouble with QCD perturbation theory in higher orders 
associated with the lack of perturbative color magnetic screening as discussed in 
Refs.[21]. The thermodynamic potential diverges in the infrared limit for orders 
n ~ 6. Diagrams involving higher order interacting magnetic gluons, Ai, diverge 
because of the infinite range of color magnetic interactions in perturbative QCD. 
The problem is that there are no particles in the theory which carry color magnetic 
charge to screen such interactions. Color electric interactions are on the other 
hand easily Debye screened by the quarks and gluons which carry color electric 
charge. Screening of long range magnetic interactions requires nonperturbative 
effects in the plasma. A recent proposal [23] is that color magnetic monopoles 
could be spontaneously created to regulate the magnetic sector of QCD. Given 
such a "cure" of higher order infrared divergences, it may turn out in practice 
that lowest order perturbation theory could give good qualitative results. 

Recent results using nonperturbative lattice techniques tend to confirm the 
qualitative picture of dense matter painted above. For details we refer to [1]-[9]. 
While the numerical results have still not converged to everyone's satisfaction, the 
following conclusions seem to be emerging. At some critical temperature, Tc "'"' A, 
there is a rapid increase of the energy density with temperature until an energy 
density of a few GeV /Fm3 is reached. Whether the transition is first or higher 
order remains unsettled. For T > Tc the Stefan-Boltzmann law seems to hold 
remarkably accurately. There are some warnings, however, that this may be only 
accidental because there are indications the quasi-particles in the plasma are not 
the naive massless quarks and gluons[23,24]. In the absence of dynamical quarks, 
calculations [22] have now been performed on sufficiently finely grid lattices that 
the continuum limit of lattice theory is thought to be under control. The inclusion 
of dynamical quarks remains the greatest challenge of the lattice world and only 
calculations on very small lattices are practical at this time. It may take a new 
generation of computers to settle the issue with quarks (see Weingarten in [4]). 

So where does this leave us from a phenomenological point of view? The most 
certain point is that qualitatively new phenomena will occur in hadronic matter at 
an energy density scale about one order of magnitude above (0. The exact nature 
of those phenomena depend on the quasi-particles and effective interactions that 
still remain to be determined. In constructing a quark-gluon plasma transport 
theory these uncertainties must always be kept in mind. 

3. PLASMA INITIAL CONDITIONS 

Unlike the controlled theoretical laboratory where the properties of the quark-
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gluon plasma can be studied at leisure on a lattice, heavy ion experiments force 
us to consider plasmas in highly dynamical situation. In particular we need to 
get some idea of possible initial configurations the plasma may be produced in. 
Then we could go on to consider the dynamical evolution of that plasma to the 
detectors. We will consider here one particular model for the initial conditions 
based on ideas in string models [25]-[29]. We begin by reviewing the calculation[12] 
pair production in covariant constant SU(N) fields. We show that in the one 
loop approximation the quark gluon systems behaves as a simple multicomponent 
Abelian plasma. 

In string or color rope models multiparticle production arises because multiple 
soft gluon exchange leaves both projectile and target in color non-singlet states. 
This leads to the creation of a color electric field, which due to confinement extends 
between the receeding projectile and target fragments in narrow color flux tubes 
of finite transverse area AJ.. '" lfm2. The field is assumed to be a constant along 
the beam direction with a strength E '" gQ 1 AJ.., where Q is the net "charge" on 
the projectile. In Abelian string models [25,26,28,29], Q is treated simply as an 
integer. 

The string field configuration is however unstable with respect to pair produc­
tion at a rate per unit volume, Wl/2 (u, m), for qq pairs of mass, m, is taken from 
the well known Schwinger formula [25]. 

u ()() 1100 u
2 

wl(u,m) = 0(U)-2 E - dEl exp(-mrEl/u) ~ 9(u)- , 
2 411" n=1 n m 2 2411" 

(10) 

with 9(x) = 0(1) for x < (»0, and where the approximation holds for lI"m2 lu ~ 1. 
In the above expression u = gE is the effective string tension, which phenomeno­
logically is taken to be on the order of 1 GeV Ifm. With (10) the rate with which 
the external "color" field is neutralized due to qq production can be estimated as 
in Ref.[29]. First we recognize that conservation of energy requires that in order to 
produce a pair, each with transverse energy mJ.. and zero longitudinal momentum, 
that pair must separate by at least a distance rc '" 2mJ../u. The minimum volume 
for pair production is thus 6V '" AJ..2mJ../u. Once a pair has been produced in 
this finite volume element the field between them is reduced by 6E = g/AJ.. if we 
assume that all flux lines are confined to the original flux tube. With this crucial 
model assumption we can then estimate [29] 

d~(t) ~ -A
g 

w!oV ex u(mJ..) = -aE(t)s/2 , (11) 
t J.. 2 

where a is a positive constant. The power 3/2 follows from dimensional considera­
tions since locally E(t) is the only dimensioned quantity that can set the time scale 
(also (mJ..) ex El/2 for the same reason). Writing E(t) = gQ(t)/AJ.., the solution 
of (11) is simply 

(12) 
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with Tl/" = TlI v'Qo in terms of the characteristic time Tl -- 1 fmlc required to 
neutralize 314 of the field strength in an elementary string with unit charge. The 
most important feature of the above solution is that it shows that the neutral­
ization time of strong (Qo ~ 1) Abelian fields decreases as Q~1/2. This is good 
news from the point of view of creating a quark-gluon plasma. The faster the 
fields neutralize the more time will there be for the quarks and gluons to come 
into chemical and thermal equilibrium and thus to produce interesting signatures 
[1]-[4] of this new state of matter. 

Encouraged by the above Abelian analysis we turn next to investigate non­
Abelian aspects of the problem. In particular, how do we treat the non-Abelian 
character of the charges of both quarks and gluons? How do quarks and gluons 
compete in the neutralization process? How close is the resulting quark-gluon 
plasma to local equilibrium conditions at time Til"? To answer these questions we 
compute the pair production rates for SU(N) in the one-loop O(h) approximation 
[12]. 

In conventional notation the generators, ta, a = 1"", N 2 - 1, of SU(N) in 
the fundamental representation satisfy [ta, tb] = iJabctc, tr(tatb) = ba.bI2. The 
gluon field matrix is denoted by Ap = A:ta, the covariant derivative matrix by 
Dp = 8 p+igAp, and the field tensor by Fpv = [Dp, Dvl/(ig). The Heisenberg field 
equations for quarks and gluons are 

where Jv = E/ fP/lvtatP/ta and J labels the quark flavors. 

(13) 

(14) 

A covariant-constant field [30], which satisfies Eq.( 14) in the source free region, 
is of the form 

(15) 

where (Fpv) is independent of xp, and na is an N2-1 dimensional color vector. The 
unitary matrix U(x) = exp(iOa(x)ta) implements arbitrary local gauge transforma­
tions. The covariant derivative is given by Dp = U(x)(8p -lig(Fpv)xVnata)Ut(x). 

Since nata is Hermitian, there exists an Xp independent matrix V E SU(N) such 
that V nata vt is diagonal. We can thus transform the external field into diagonal 
form by making a gauge transformation G = vtut(x) under which Dp -+ GDpGt. 
Since all real N x N traceless diagonal matrices can be expanded in terms of the 
N -1 diagonal matrices, ht, representing the Cartan subgroup of SU(N), it is then 
most convenient to expand Ap in that gauge in terms of the Cartan-Weyl basis of 
SU(N). That basis consists [32] of N -1 Abelian generators, hi, and the N(N -1) 
non-Abelian generators, {~i' i,j = 1"", Nj i =I j}, which satisfy 

[h;,hi ] = 0 , [hi,eik] = (iiik)ieik , [eii,eik] = J2eik for i =I j =I k. (16) 
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The hj are the Gell-Mann matrices hj = (2j(j + 1))-~diag(I, ... ,I,-j,O, ... ,O), 
with - j appearing in the j + 1 column. The iiij = fi - '4 are the root vectors 

of SU (N) as expressed in terms of the elementary weight vectors fi = (h)ii = 
(( hI )ii' ••• , (h N -1 )ii) . (Note that fij = ei e} / y'2 in terms of the N orthonormal 
unit vectors ei.) . 

In the gauge which diagonalizes (AI£), the external field can be expressed in 
terms of N - 1 Abelian components, jjl£ = (Hi,"" H~_I)' as 

N 

(AI£) = LHr~ = jjl£. h , (17) 
i=l 

where h = (h17 • •• , hN - 1 ). To take quantum fluctuations around this external field 
into account, the gluon field operator can then be written as 

AI£ = (AI£) + BI£ = jjl£ • h + BI£ , (18) 

where BI£ represents the quantum fluctuations. 
The physical significance of fi can be seen from Eq.(13) by considering the 

equation of motion for the tranformed quark field, t/J' = Gtt/J. Eq.(13) then reduces 
to the set of equations 

(19) 

The approximation of neglecting higher order quantum fluctuations beyond 
the one loop order is equivalent to neglecting the O(Bt/J') terms on the right hand 
side of (19). We therefore see that the equations for the N quarks (of each flavor) 
in the prime basis decouple and reduce to Abelian type equations in the one loop 
approximation with jjl£ playing the role of an effective electromagnetic potential 
that couples to quarks with effective "charges" gEe' Since we already know (10) 
the pair creation rate, W! ( eFI£'" j m), of fermions in an external Abelian field FI£V, 

:I 

we can immediately write down the pair creation rate per unit volume of t/J~ quarks 
of flavor f as 

wqc,l = w~(gfc' FI£"'jm,) , (20) 

where Fl£v = al£ jjv - av jjl£ is a constant N - 1 dimensional vector. 
Turning next to gluons, the equations of motion. for BI£ in the one loop ap­

proximation are obtained by linearizing Eq.(14) in BI£. It is most convenient to 
expand BI£ in the Cartan-Weyl basis as 

N 

BI£ = Bol£to = 61£ . h- + '" Wl£e ~ ij ij . (21) 
i-:j;j=1 

Inserting (18) into Eq.(14) and using the Cartan-Weyl expansion (21) for BI£ to­
gether with the algebra (16) leads to the following equations of motion for the 
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fluctuations CII and W!n in the (linearized) one loop approximation to 

all(allCV - aVCII) = 0 , 

(Dmn)II(D~nW~n - D~nW~n) - (Wmn)II[D~n,D~nl = 0 , 

where the effective covariant derivative D~n is given by 

DII = all + ig;{ . HII mn ·tmn· 

(22) 

(23) 

(24) 

We therefore see that the Abelian fluctuations, CII, obey free field equations 
whereas the non-Abelian fluctuations, W!n obey Abelian vector field equations 
in the external field, HII, with an anomalous magnetic moment coupling [31]. 
Note that [D~n' D~n] = igifmn . Fllv. Obviously these equations decouple in this 
approximation. The effective "charge" of the W!n gluon is given by gr;mn' Pair 
production in SU(N) covariant constant fields is thus equivalent to N(N - 1)/2 
different SU(2) problems. Therefore, the pair creation rate per unit volume of 
WmnWnm gluon pairs can be calculated from the known [30,31] rate, wl(gFIIV), of 
vector mesons for SU(2) covariant constant fields as 

(25) 

where Fllv is the same external covariant constant SU(N) field as in Eq.(20) and 
the spin 1 rate is given by [33] 

o 00 ( l)n+1 roo 1 
wdo ) = 6(0)-2 L - 10 dpi exp(-n7rp~./o) = -Wl (OJ 0) . 

411" n=l n 0 2 :3 

(26) 

The case of particular interest in phenomenological applications [25,27] corre­
sponds to constant color electric fields created between interacting partons in high 
energy collisions. For that case Fso = -Fos = E = QEo, where Eo = g/Al. for a 
flux tube of transverse area Al. and ±Q are the effective color charges of the pro­
jectile and target. The elementary qij string corresponds in this picture to Q = le. 
The adjoint gg string corresponds to Q = r;i;. Note that r;·r;/(l·fj = 2N/(N -1). 

In high energy nuclear collisions [27] or very high energy hadronic collisions 
multiple soft gluon exchange may lead to large effective charges. If J./ gluons are 
exchanged with random charges, then (Q2) = J./(1 + N-1)-1 since only N(N -1) 
of the N 2 

- 1 gluons are "charged" with r;i; . r;i; = 1. Of course such color electric 
fields are unstable against pair production as we saw above. The pair production 
rate per unit volume of massless quark-anti quark and gluon pairs is given from 
Eqs.(20,25) by 
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where Wo = (gEO)2/(2411") and N, is the number of quark flavors such that 1I"m}/0 ~ 
1. 

We can now answer one of our initial questions. The ratio of quarks to gluons 
just after the color field is neutralized is (q/g)neut ~ 2N,/2N = 1 for N = N, = 3. 
In comparison, local equilibrium at zero chemical potential is characterized by 
(q/ g)equil = (~N N, )/(N2 - 1) = 0.84. Thus, this ratio is surprisingly close to 
equilibrium in spite of the fact that non-equilibrium tunneling was involved. Note 
however that no "neutral" gluons are produced via pair production. 

Generalizing the discussion in the Abelian case, we can estimate the rate of 
neutralization for strong covariant constant fields (Q2 ~ '12 = 1) by 

d(E) gfi gih; -;u- ~ - L?: TWl;6Vli - ~ T W;;ij 6V;;ij , '4 ~ ~~ ~ 
(28) 

where the pair production rates per unit volume and effective volume elements, 
6Vq, depend Ion the particular charges, if, as well as on the mean external charge, 
(Q(t» = (E(t»A~/g. The minimum volume elements for pair production are 
again constrained by energy conservation [29] with now rc - 2m~/0(if, Q) and 
where the effective string tension is given by 

(29) 

Here 0A = g2 /(2A~) is the effective string tension for adjoint strings. The factor 
of two arises due to interactions between the pairs as discussed in Refs.[12,26]. 
The average volume required for pair production is therefore 

(30) 

The neutralization rate is dominated by production of pairs with small mass 
(1I"m2 /0 ~ 1), for which (m~),I=~ = (2 - 2-1/2)-1(m~),I=1' Therefore, Eq.(28) 
reduces to 

where 1"1 ex: (g\/o A) -1 is independent of Q and where the sums are restricted to 
charges with if· Q > O. 

Eq.(31) controls the rate of color neutralization of strong covariant constant 
SU(N) fields and is the natural generalization of the equation derived for the 
Abelian case in Ref.[29]. The SU(N ~ 3) case is only complicated by the fact 
that Eq.(31) is a vector equation. The power 3/2 again follows from dimensional 
considerati0E-s under the assumption that the only dimensional quantity in the 
problem is E. 

10 

'.;/ 



For Q(O) pointing along one of the weight or root vectors Eq.(31) reduces to 
an Abelian equation 

(32) 

where the relaxation time is given in the two special cases by 

r(€) = r~((N - 1)/2N)l/4 [NI ((1 - N-1)s/2 + N-S/ 2) + (1 - 2-S
/
2)Nr

1 

(33) 
The terms proportional to NI are those due to qq pair production. For SU(2) the 
two times are of course identical. Amazingly, for SU(3) they only differ in the 
fourth decimal place for NI = 3. 

The numerical coincidence of r(€) and r(71) for SU(3) has the pleasant conse­
quence that r(n) ~ 0.18rl is independent of the orientation of the color charge 
in the Cartan subspace to a very high accuracy. Therefore for SU(3), the vec­
tor nature of Eq.(31) is irrelevant, and the solution is accurately given by (12) 
with Q replaced by the N - 1 dimensional Cartan charge vector, Q and with the 
characteristic time required to neutralize 3/4 of the initial color field replaced by 

( ) 
-1/2 rl/4 Qo = 0.36 rl Qo . (34) 

The factor 0.36 represents the combined effect of both qq and gg production and 
significantly shortens the neutralization time over the Abelian case where only qq 
contribute. 

There are several interesting phenomenological consequences of the above re­
sults in connection with ultra-relativistic nuclear collisions. First, most of the 
quarks and gluons produced in the neutralization of strong color fields may ap­
pear at proper times an order of magnitude smaller than in elementary pp or 
e+ e- collisions. Obviously shorter times imply that plasmas with higher initial 
energy densities can be produced [29] and the chances that local equilibrium can 
be reached are greater. On the other hand, the equilibration time due to ordinary 
kinetic phenomena could be long compared to the neutralization time [34]. For­
tunately, the color neutralization mechanism leads to initial conditions that are 
not far from local equilibrium. First, as we noted, in strong fields the neutral­
ization mechanism leads to production of quarks and gluons at comparable rates 
(for SU(3)). Furthermore, u,d,s quarks are produced with nearly the same abun­
dance since their masses become irrelevant. Thus the chemical composition of the 
non-equilibrium plasma produced through neutralization is not far from that in 
local equilibrium. Second, the distributions of transverse momenta from (10,26) 
are approximately exponential as in local equilibrium although gluons materialize 
with ........ 30% larger transverse momentum than quarks due to their larger effective 
charge. Thus we conclude that the non-equilibrium quantum tunneling dynamics 
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and the specific non-Abelian features of gluon pair production may play an im­
portant role in creating plasma initial conditions close to local equilibrium at very 
early times in the collision. 
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4. QUANTUM CHROMO TRANSPORT THEORY 

Once the quarks and gluons are produced, they are subject to accelerations in 
the neutralizing external field and scatter with each other as the plasma evolves 
closer toward equilibrium. To follow that evolution in detail we must turn to 
transport theory. First, we recall the familiar classical transport theory leading 
to the Vlasov- Boltzmann equation. Then the Wigner function and its equation 
of motion are derived in non relativistic quantum mechanics. The formulation of 
gauge covariant quantum transport theory is then introduced. A generalized 
quantum Vlasov and associated constraint equation are derived in connection 
with Abelian QED. Finally, features of non-Abelian transport theory are 
analyzed in the Abelian Dominance Approximation. 

4.1 Classical Transport Theory 

A classical plasma is characterized by the phase space density, f(x,p, t) = 
Ei 6(x - xi(t))6(p - Pi(t)) , where the classical trajectories (Xi(t),Pi(t)) obey 

(35) 

where Fezt is the external force and F2 (y) = J d8 xd8pV zV(y - x)f(x,p, t) is the 
self-consistent force that is a functional of the phase space density. From (35) we 
see that 

i = ~(:i;iVzi + PiVpJ6(x - xi(t))6(p - Pi(t)) = -(~ . Vz + F(x)· Vp)f(x,p,t) . 
- I 

(36) 
Taking the ensemble average of this (Klimontovich) equation leads to the Vlasov­
Boltzmann equation: 

(md/dt+p.Vz+m{F(x)) . V p ) (f(x,p,t)) = C((f)) , (37) 

where the mean force is given by Fezt + F2 with f replaced by its ensemble average, 
(f), and where the collision term can be extracted [35] from the correlation term 

C(f) = -m I d8 x'd8p'V z' V (x-x')V p'( (f(x, p, t)f(x', p', t))-(f(x,p, t)} (f(x', p', t))) 

(38) 
Neglecting two-body correlations in the plasma is equivalent to neglecting the col­
lision term. In that case (37) reduces to the Vlasov equation which applies only 
to "collisionless" plasmas. What makes the collision term particularly difficult 
to calculate in QED is the infinite Coulomb cross section. Medium polarization 
effects that screen long range fields must then be taken into account. In addition 
a physical assumption must be made regarding different relaxation time scales for 
correlation functions (the BBGKY hierarchy). This procedure leads in the quasi­
linear approximation to the Balescu-Lenard form for the collision term involving 
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the dielectric function. 

4.2 Quantum Transport 

The quantum mechanical analogue of the phase space density is the Wigner 
function [36]. We know that .,pt(x)tjJ(x) is the density of particles in coordinate 
space. Also tbt(p)tjJ(p) is the density in momentum space. A natural candidate for 
the density in (x, p) phase space is then 

W(x,p) = .,pt(x)c5(p - p}.,p(x) , (39) 

where p is the momentum operator. The delta function acts as a projector onto 
momentum space and is defined by the Fourier transform as 

(40) 

Recall that exp(iyp/1i) generates a translation by y when acting to the right or 
-y when acting to the left. In order to make W Hermitian we will make it act 
halfway to the left and halfway to the right by representing p as li1i( az - al). In 
this way we recover the familiar expression for the Wigner function 

(41) 

in terms of a mixed Fourier transform. The second quantized Wigner operator, 
W, is then obtained by replacing .,p (x) by the Heisenberg field operator ;), (x). The 
advantage of second quantization is of course that it allows us to pass from a 
single particle to many body quantum theory. The ensemble average of W is what 
corresponds to the classical phase space density. 

The equation of motion for W obviously follows from the Schrodinger equation, 
(i1iat _1i2V2 /2m + fr(x))~(x) = O. To proceed we compute p' VW(x,p). Within 
the integration, p can be replaced by -i1i V II after integrating by parts. Then, 
since V II • V z = HV;+1I/2 - V;_1I/2) ' we obtain using the Schrodinger equation 

ds . 
A ! y . IlL I A A A t A 

p,VzW = m (211'1i)Se IPII (-;Jt+h[U(x+!y)-U(x-!y)]).,p (x+!y).,p(x-!y) 

(42) 
Expanding in Taylor series, U(x + !y) = exp(!yV z)U(x), we can pull the- expo­
nential out of the integral by replacing y by -i1i V P term by term in the series. 
With this trick, the right hand side of (42) can be written formally as 

2 .. A 

m( -at + h[sin(l1i.6)UDW , 
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where we introduced [13] the "triangle" operator, 6. = V z· V p with V z only acting 
on the potential and V p only acting on the Wigner operator. In this way we have 
derived the non-relativistic quantum transport equation (see also [44]) 

where the "quantum" operator is given by 

(44) 

In the Ii - 0 limit we recover the Vlasov-Boltzmann equation. The Vlasov part 
follows from approximating the ensemble average of UW on the l.h.s. by (U) (W). 
The collision term is contained in the correlation function C(x,p) = 6.((UW) -
(U) (W)) just as in the classical case. The terms on the right hand side correspond 
to genuine quantum corrections. It is however important to note that quantum 
corrections also occur in the collision term, C, since quantum fluctuations affect 
correlation functions [37]. 

The importance of quantum corrections in the collisionless domain depends 
on the magnitude of the dimensionless ratio li6. "'" 1i/(!:::&Ru!:::&Pw ), where ARu is 
the characteristic spatial scale of variation of the potential and where !:::&Pw is the 
characteristic momentum scale over which W(x,p) varies appreciably. Classical 
Vlasov transport theory thus applies only for relatively slowly varying potentials 
and phase space densities. In Ref. [37] it was shown that quantum corrections 
modify the collision terms if the density is so'high that the two body scattering rate 
approaches Ii/O, where 0 is the characteristic single-particle energy in the plasma. 

4.3 Gauge Covariant Wigner Operator 

Turning next to gauge theories we are faced with the new complication of 
formulating transport theory in a gauge invariant way. Recall that under a general 
non-Abelian gauge transformation, G(x) = exp(iOa(x)ta), the fields, tjJ(x) and 
A",(x) , in the fundamental and adjoint representations transform as 

tjJ(x) - G(x)?/l(x) , AI'(x) - G(x)AI'(x)Gt(x) + G(x)aI'Gt(x)j(ig) (45) 

Thus, the covariant derivative and field tensor transform covariantly, i.e., DI'(x) _ 
G(x)D",(x)Gt(x). The relativistic generalization [38,39] of Wigner operator (39) 
as given by 

WQ~(x,p) = ~~64(p - p)~Q(x) (46) 

is not satisfactory for gauge theories because under a gauge transformation: 
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We must demand that W transforms covariantly to insure for example that the mo­
mentum distribution, f d4x(TrW(x, p)), is gauge invariant. The problem is that 
ordinary derivatives do not commute with G(x). Thus the ordinary derivative 
of a field, at/J(x) = lim(t/J(x + f) - t/J(x))/f is not well defined in a gauge the­
ory because under a gauge transformation it transforms inhomogeneously, at/J -+ 

G{at/J + (G-1aG)t/J}. The field at neighboring points can be compared only with 
the covariant derivative, D,,(x). -Under a gauge transformation D,,(x)t/J(x) -+ 

G(x)D,,(x)t/J(x). This is of course why covariant derivatives were invented in the 
first place. In addition, the covariant derivative is special because it represents the 
kinetic in contrast to the canonical momentum. Recall that in classical electrody­
namics the kinetic momentum is given by 7f''' = p" - eA", where p" is the canonical 
momentum conjugate to the coordinate x". In quantum mechanics p" can be rep­
resented when sandwiched between ~t and ~ by the operator p" = ~i(a" - at,,) 
where at acts to the left in bilinear forms. Thus, the operator representing the 
kinetic momentum can be represented by i" = p" - eA,,(x) = ii(D - Dt) in terms 
of the gauge covariant derivatives. Note that up to spin corrections it is 7f''' and not 
p" which is on shell since ;r' = m' + 0(11.) follows from the Dirac equation. We are 
thus led as emphasized in [13,14,15] to define the gauge covariant Wigner operator 
by substituting the gauge covariant derivative D" and its adjoint in place of a" 
and its adjoint in the naive gauge dependent definition. Applying this minimal 
substitution rule gives 

The symbol ® indicates that W is a 4 x 4 matrix in spinor indices and a N x N 
matrix in color indices. Because i" transforms covariantly, so does W Not only 
have we achieved gauge covarian'ce but also it is now obvious that (TrW(x,p)) has 
the desired interpretation of being the Lorentz scalar density of particles at x with 
kinetic momentum p. 

Next we need to know how exp( -y . D(x)) acts on t/J(x). We note [13] that 

lim (1 - l1y(8z + igA(x)) t 
n--+oo 

lim ('(1- igt::.y. A(x)) e- dllolJ
,. (1 + O(l1y2)) )n 

n--+oo 

- J!'~ (1 - igl1y. A(x)) ... (1 - igl1y . A(x - (n - 1)l1y) exp( -y ·8z ) 

- U(x, x - y)e- lIolJs 
, (48) 

where l1y = yin. Thus the effect of the covariant translation operator is to 
translate the field and keep track of the phase via the path ordered phase factor 
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(or link operator) 

{ r dz'" } 1 U(b, a) = Pexp -ig 10 ds ds A",(z(s)) = P !! (1 - igA(z(s)) . dz(s)) , (49) 

Note that the path of integration is uniquely determined to be a straight line 
between the end points, z(s) = z(b, a, s) = a + (b - a)s with 0 ~ s ~ 1. 

Finally, we can express the gauge covariant Wigner operator in the form pro­
posed in Ref.[40], 

,.. f d
4
y . - 1 1 ( 1 1 W(x,p) = (271")4 e-1p

·" ¢(x + 2Y)U(X + 2Y' x) ® U x, x - 2Y)¢(X - "2Y). (50) 

The advantage of our definition (47), is that there is no path ambiguity on ac­
count of the physical requirement that the momentum variable corresponds to the 
kinetic momentum. Of course, U(b, a) depends on the path except in the trivial 
case, when A'" ex: 8a"'8-1 is a pure gauge field with F"'V = o. 

4.4 Gauge Covariant Operator Equation 

To derive the equation of motion for W we need the following relation derived 
in [13] for how the link operator varies when the endpoints are varied: 

SU(b, a) U(b + db, a + da) - U(b, a) 

- -igA(b)· db U(b, a) + igU(b, a)A(a) . da 

+ig 10
1 

ds U(b, z(s))F",v(z(s))U(z(s) , a) (b - a)"'(da + (db - da)st , 

(51) 

with z(s) = a + (b - also 
Consider first the equation obeyed by the kernel of the Wigner operator 

(52) 

where Xl = x - !Y and X2 = x + !Y and thus x = HX1 + X2). From the Dirac 
equation 

fl,(X2)U(X2' x) ® U(x, xI) (h'" D",(xI) - m) ¢(xI) = 0 

Taking the derivative to the left we get 

(i--y",D"'(xd - m)p(x2' xd = A"'(xd¢(X1) 

(53) 

+i--y",fl,(X2)U(X2, x) ® [a:
1 
U(x, X1)]¢(X1) 

+h",t/J(X2)[a:1 U(X2' x)] ® U(x, Xdt/l(X1) , (54) 
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where we have defined the product of any operator 0 times p such that 

Op(X2' Xl) - tb(X2)U(X2, X) ® OU(x, X1)"'(X1) 

P(X2' X1)0 - tb(X2)U(X2, x)O ® U(x, X1)"'(X1) 

Using (51) we find that 

a:
1 
U(HX1 + X2), Xl) = -ligA"(x)U(x, Xl) + igU(x, x1)A"(X1) 

(55) 

+ig 101 
ds U(x,z)Fj'(XjZjX1)U(Z,X1)' HX2 - xd"· (l-ls) , (56) 

and, 

a:1 U(X2' HX1 + X2)) = +~igU(X2' x)A"(x) 

+ig 101 
ds U(X2' Z)F.,"(X2j Zj x)U(z, X) . HX2 - X1t . HI - s), (57) 

where F".,(bj Zj a) = F".,(z) for Z along the straight line path between a and b. The 
Wigner kernel thus obeys 

hI' (a:1 P(X2, Xl) + ~ig[A"(x), P(X2' Xl)]) - mp(X2' Xl) 

= -lg(X2 - X1t'"Y" (10
1 

ds (1 - ~s)U(x, z)F.,,,(Xj Zj X1)U(Z, X1)U(XI, X)P(X2' Xl) 

+P(X2' Xl) 10
1 

ds HI - s )U(x, X2)U(X2' z)F.,,,(X2j Zj x)U(z, X») . (58) 

To simplify this expression further, we define the covariant derivative of a second­
rank tensor T by 

D(x)T(x) = az T(x) + ig[A(x), T(x)] • (59) 

One may show by a similar proof as in eq.(48) that 

e-lIoD (z) T (x) = U(x, X - y) T (x - y)U(x - y, x) (60) 

Changing variables from x2, Xl to the midpoint and relative distance variables 
X = HX1 + X2) and y = X2 - x!, and using eqs.(59, 60), we can write (58) as 

-hI' (a; - ~D"(x») p(x + ly, x - ~y) - mp(x + ly, X - ~y) 

(61) 
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Taking the relative Fourier transform of (61) and reinstating 11" we obtain finally 
the following equation for the Wigner operator: 

(/~P~ - m + !i11,/~D~(x)) W(x,p) = ~11,g/~ ({Ql(!11,.6) F~v(x),a~W(x,p)} 

+ [Q2(!11,.6) F~v(x),a~W(x,p)]) , (62) 

where 

Q () 
.sin x sin x - x cos x Q () .x sin x + cos x-I 1 - cos X 

1 X =, --+ 2 ' 2 X =, 2 + . (63) x x x x 
and the triangle operator, .6, is given in this case by 

(64) 

We emphasize that D(x) on the right hand side only acts on Fv~. To obtain this 
final expression we used the same trick as in the non-relativistic case of replacing 
y by iap using f d4ye-ipolJ J(y)g(y) = J(iap) f d4ye-ipolJg(y) and performing the s 
integral explicitly. Because D~, F~v, .6 and W(x,p) transform. covariantly under a 
gauge transformation, eq.(62) is the sought after gauge covariant operator equation 
of motion. The ordering of the field operators follows the rules (55). 

Equation (62) is completely equivalent to the original Dirac's equation for the 
Heisenberg field~. However, it is in a form that allows us to extract the quantum 
transport equation. As we shall see in the next section it in fact contains two 
equations. One is the generalized quantum transport equation. The second is a 
generalized mass shell constraint equation that arises on account of the Heisenberg 
uncertainty principle. 

4.5 Quantum Vlasov and Constraint Equations in the Abelian Limit 

The physical content of (62) is especially clear in the Abelian limit when in 
addition F~v is replaced as the self-consistent c-number field [15]. In that case 
the operator ordering is irrelevant. Specifically we consider the Hartree approxi­
mation in which F~v is approximated by the mean (c-number) field F~v satisfying 
Maxwell's equations 

(65) 

Of course, an arbitrary external current could be added to the r.h.s. of (65). The 
trace is over spinor indices of W H (x, p) = (W (x, p)) corresponding to the ensemble 
average of the Wigner operator in the Hartree approximation. In this case the 
triangle operator is simply the mixed derivative 

(66) 
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Notice that the triangle operator has the dimension of inverse action so that in 
units where h t- 1 it always appears multiplied by h. Therefore, a power series 
expansion of the Bessel functions coincides with an expansion in terms of the ratio 
of Ii to a characteristic angular momentum, L, of the plasma. That characteristic 
angular momentum measures the product of the space-time scale, Il.RF , over which 
the field tensor, F"'v (x), varies appreciably and the momentum scale, Il.Pw , over 
which the Wigner function varies appreciably. Therefore, a necessary condition 
for the validity of a power series expansion of the Bessel functions is that the mean 
field is slowly varying in the sense 

(67) 

In the Abelian case the linear equation (62) can be written in the following 
suggestive form: 

b·K - m) WH(x,p) = 0, 

in terms of the operator K'" = II'" + liliV"', where 

V'" = 8'" - eJ·o(!lit6.) F"'v 8P 
- z 2 v, 

(68) 

(69) 

(70) 

and where ii(X) are conventional spherical Bessel functions. We have reinstated Ii 
explicitly to show clearly the quantum character of this equation. 

To second order in Ii these operators are given by 

(71) 

The generalized constraint and transport equations can be extracted by first mul­
tiplying (68) by b·K +m). Noting that "Y",,·t = g"'V -iu"'v, the following quadratic 
quantum equation of motion follows: 

(K2 - m 2 -liu"'V[K""Kv ]) WH(x,p) = 0 . (72) 

Adding and subtracting the adjoint of this equation then leads to 

(II2 - m 2 - ~li2V2) WH(x,p) _ It:.I"'V{ WH( )} 1·1i "'V[ H()] .. -4'" u",v, x,p + 4' R u",v, W x,p 

(73) 

(74) 

where the l.h.s. of the quantum transport equation (74) acquires the remarkably 
simple form on account of the relation [V"" II"'] = 0 that holds to all orders in h 
because of the special form of II'" and V'" and the relation dJo(z)/dll = -iJ(z). 
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The real operators R and I associated with the spin terms on the r .h.s. are 
given by 

Rp.v + ilp.v 

(75) 

The generalized quantum constraint and quantum Vlasov equations [15] (73) 
and (74), specify the dynamics of Abelian plasmas in the "collisionless" regime. 
They generalize the non-relativistic quantum transport equation (43) to QED of 
spin-l particles. Unlike previous work [42]-[45] based on gauge dependent formu­
lations and/or with assumptions about "slowly varying" fields, the above Lorentz 
covariant, gauge invariant equations apply for arbitrarily strong and varying c­
number fields. Quantum corrections in the colisionless domain may be computed 
systematically to any order in h by expanding the Bessel functions in powers of 
the triangle operator. Together with eq. (65) they form a coupled set of equations 
to determine simultaneously the fermion Wigner function and the field FP.V(x) in 
a self-consistent way. They form a closed set of equations because the expecta­
tion value of the current is directly related to the Wigner function in the Hartree 
approximation via (65) 

The "collision" terms neglected in this approximation follow from the operator 
equation (62) only when correlations such as (Fp.v W) - Fp.v Ware not neglected, 
i.e., only if the operator character of the gauge field is explicitly taken into account. 
Using the methods outlined in Ref. [38] for non-gauge theories, it is possible to 
compute explicitly such collisions terms. However, for gauge theories with long 
range forces, such as QED, the infrared divergences arising in perturbation theory 
need special care [43J. We note again that quantum corrections to the collision 
terms are small only in relatively dilute plasmas [37]. 

To second order in h, the quantum Vlasov equation including spin corrections 
is thus given by 

(p·az - epp.Fp.va~) WH(X,p) + ~ieFP.v [Up.v,WH(x,p)] 

= -112h2eLFp.v[a~ - eFV~a~]a; WH (x,p) - ~heLFP.v {Up.v, WH (x,p)} 

(76) 

Equation (76) reduces to the equation derived in [41] for scalar QED when the 
spin terms are neglected. 

It is important to appreciate that the above quantum Vlasov equation is not 
complete without the quantum constraint equation (73). As soon as quantum 
corrections become important in the transport equation, quantum corrections to 
the constraint equation must also be considered as emphasized in [15]. To second 
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order in Ii, the constraint equation in the Hartree approximation is given by 

(77) 

From eqs. (76) and (77) we see that quantum transport theory reduces to classical 
transport theory only if several conditions are satisfied simultaneously. In addition 
to the condition (67) necessary for the validity of the triangle operator expansion, 
the field strength must be small compared to the typical energy scale of particles 
in the plasma, i.e., 

(78) 

Thus the field strength has to be relatively weak and slowly varying for classical 
theory to hold. In addition, spatial and momentum gradients of the Wigner func­
tion need to be sufficiently small so that ~m2 = :li2(az - ePa,,)2 <: m 2. These 
off mass shell corrections obviously arise as a result of the uncertainty principle. 

We remark that in the Hartree approximation the spinor structure of the above 
equations has been resolved in Ref.[1S]. The scalar and axial vector components 
of W H were shown to specify W H completely to any order in Ii. Furthermore 
the classical BMT equation for spinning particles was derived from (76) in the 
semiclassical limit. 

4.6 Quark Transport and the Abelian Dominance Approximation 

We turn next to the non Abelian features of (62). There is a very important 
difference between the triangle operator expansion in the Abelian and non-Abelian 
cases. The Abelian expansion is equivalent to the semiclassical expansion in powers 
of Ii. In the non-Abelian case, there appears a commutator in (64) that is of 
zeroth order in Ii!! We can still write the linear operator equation in the form (68). 
However, the operators II~ and v~ are now given by 

v~ = V: - ~g{ImQl(~Ii~) F~v, } a~ - ~g[ImQ2(~Ii~) F~v, ] 

1 
hig[A~(x), 1 + a: - ~g{F~v, }a~ - 2

1.l{[AQ
, [AP,F~vll, }a~a:a~ + ... 

(79) 

We see that something terrible has happened. The non-Abelian commutator has 
changed the leading order in Ii, for the operator v~ to be 0(1/1i), and there now 
arise an infinite number of commutators and anti-commutators to zeroth order in 
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h. Thus the simple classical limit we found in the Abelian case becomes hopelessly 
complicated in the non-Abelian case. 

The only sensible semiclassical limit of a non-Abelian theory is one where the 
covariant derivative of F"v is small. Only for covariantly slowly varying fields, in 
the sense that 

(80) 

is it possible to carry out an expansion in powers of the ~ operator. The covariant 
constant field case considered in section 3 trivially satisfies this condition. In 
particular for covariant constant fields, the linear operator equation for W reduces 
to 

In the general case for strong or rapidly varying fields the full quantum equation, 
eq.(62), must be solved. This would be equivalent to solving the original field 
equations, i.e. hopeless at this time. Only under the rather restrictive conditions, 
(80), can we expect that the transport theory for quarks reduces to a simpler, 
more manageable form. 

Pro~eeding as in the Abelian case, we can isolate the transport equation for 
(81) by converting it into a quadratic equation and isolating the anti-Hermitian 
part. This leads to the semiclassical transport equation for the QeD Wigner 
operator [13]: 

p. Vex) W(x,p) + ~gp"a; { Fv,,(x), W(x,p) } + ~ig [ u"V F"v(x), W(x,p) ] 

- - 1iga: [ F"v(x), (VV(x) W(x,p)) ] 

+ O(~F) . (82) 

Equation (82) is the non Abelian generalization of Vlasov's equation in the fol­
lowing sense: i) it is still an operator equation; ii) the first and second term on 
the l.h.s. of eq.(82) present the usual combination of phase space variables and 
derivatives, however, modified by (anti) commutators; iii) explicit spin-dependent 
corrections arise; iv) quantum corrections can be systematically calculated via ex­
pansion in powers of the ~ operator. The general form for the transport equations 
valid to all orders in ~ was also derived in Ref.[13]. Neglecting all but the first two 
terms on the l.h.s. recovers the classical transport equation for spinless quarks first 
derived in Ref.[40]. Furthermore, we have shown that the O(~F) corrections not 
involving u"V that follow from (62) reproduce the result for scalar quarks obtained 
in Ref.[46] modulo a sign error therein. 

For covariant constant or slowly varying fields, the color structure of the above 
equation is particularly transparent. We consider essentially Abelian fields such 
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that all components of F~v can be simultaneously diagonalized in the same gauge: 

(83) 

where hi the N - 1 diagonal Gell-Mann matrices and S(x) is a particular gauge 
transformation. We now make the bold model dependent ansatz that the ensemble 
of quarks is such that W is diagonal in the same gauge where (F~v(x)) is diagonal. 
By assumption then we can express 

(

N-l ) (W) = S(x) :; W;h; + WOl S-l(X) (84) 

in terms of N Wigner functions depending on (x, pl. The decomposition in spinor 
space proceeds as in the Abelian case [15]. Note that the property Wf = ')'ow'l 
insures that the N diagonal elements in color space (W}ii are real numbers after 
taking appropriate traces in spinor space. Equation (84) is a strong model assump­
tion and we refer to it as the Abelian Dominance Approximation [32] for reasons 
that become clear below. There is no guaranty that such ensembles of quarks exist 
in nature or how well they approximate the conditions of the quark-gluon plasma 
formed in nuclear collisions. We proceed in the spirit of the MIT bag and. string 
models and adopt this assumption for phenomenological purposes. 

When (84) holds, it is most convenient to work in the S(x) gauge, where 
A ........ 0 ........ 0_ 

(W}i; = (W . h + Wi;l) = 6i;(W . f; + W ) = 6i;l; , (85) 

where the "charges" f; are just the elementary weight vectors of SU(N) discussed 
in section 3. 

The semiclassical transport equations for the I;(x, p) in this approximation are 
obtained by taking the expectation value of eq.(82) in this ensemble. We see that 
the color structure of those equations simplifies considerably: 

(p. Oz + 9f;' F~vpva:) I;(x,p) = -~i9f;' F~v [C1~V,I;(x,p) ] + Ci(x,p) , (86) 

where Ci represents correlation terms of the form 

. C;(x,p) = -~gp~o; (({Fv~, W(x,p)}} - 2(Fv~}(W(x,p))) i + ... (87) 

As usual, the collision terms are contained in such correlations. 
Note that all the non-Abelian commutator terms dropped out for the model 

ansatz (84) and the transport theory for quarks has reduced to an effective multi­
component Abelian plasma theory. The li(X,P) just correspond to the phase space 
densities for quarks with "charge" g~. Just as the pair production rate for qiqi in 
the semiclassical limit could be computed as if the ith colored quarks couple with 
an effective Abelian field with eiF:;' = g~ . F~v, we see that those quarks obey 
an effective Abelian Vlasov equation with the same eiF:;' appearing in the force 
term. Therefore, the quark plasma dynamics is very simple and intuitive in this 
Abelian Dominance Approximation. 
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4.7 Gluon Transport and the Abelian Dominance Approximation 

To develop a gauge covariant transport theory for gluons we start with the 
following definition of the gauge covariant gluon Wigner operator proposed in Ref. 
[14]. 

! ~y 1 1 I' "v(x,p) = (271")4 e-ipolI[e'2I1°P(Z) F/(x)] ® [e-illoP(z) FAv(X)] , (88) 

where the covariant derivative of a second-rank tensor T is defined as in (59). 
The connection between gauge dependent and independent Wigner functions for 
Abelian photons is discussed in detail in Ref. [15]. In eq.(88) we suppressed four 
color indices of I' but explicitly indicated its tensor structure. I' is closely related 
to the energy-momentum tensor of the field, 

T"v(x) = Tr (F/ FAv + 19"vFA,.FA,.) = Tr ! d4p (I' "v(x,p) -lg"vr AA(X,p)) , 
(89) 

where the trace refers to color indices, Tr A ® B = AabBba. Eq.(89) provides the 
connection between I' and observables of the gauge field. Formally, 

(90) 

which shows that Trr(x,p) measures the energy-momentum flux of gluons at x 
with kinetic momentum p. 

The derivation of the quantum transport equation for I' proceeds as for W [14]. 
We want to calculate p. VI' "V, where the generalized covariant derivative acting 
on tensors of the structure of I' is defined by 

DA ® B == [DA] ® B + A ® [DB] (91) 

Expressing the action of the covariant translation operators in (88) in terms of 
link operators, we carry p . V into the integrand converting p -+ -ia" (by partial 
integration) and y -+ iap • We calculate all necessary derivatives of link operators 
which occur in the integrand by applying eq.(51). These straightforward though 
tedious manipulations lead to a very complex equation for I' "v(x,p) recorded in 
[14]. That equation becomes manageable only in the semiclassical limit obtained 
by expanding it to lowest order in powers of 6. ,..., napD. 

However, there is an additional complication for gluons not encountered for 
quarks. The F"v field contains in general coherent as well as incoherent parts. 
The coherent part corresponds to the external or self-consistent mean field F. 
The incoherent part describes the interesting fluctuation part that most closely 
corresponds to a random gas of gluons for which (F"v) = o. We separate these 
two parts by denoting the incoherent part of I' by 

(92) 
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where r 1£11 is defined by eq.(88) with F - F A (Ft Barred quantities he~ceforth 
refer to A. It is important to realize that (f) =1= f and therefore G = (G) =1= o. 
The classical mean field is determined from 

(93) 

where (JII) is the mean color current due to quarks and (ill) is the mean induced 
color current due to the incoherent gas of gluons. We determine that induced 
current so as to simplify the transport equation for G. 

We found that current source terms can be eliminated from in the transport 
equation by choosing the induced gluon current to satisfy 

with (Tr'G)GC = Gabbc • In this case the gauge covariant analogue of Vlasov's 
equation for gluon fluctuations was found [14] to be 

p. D Gj£lI = ~gp(7 8; {[F~(7' Gj£lI]R + [ G 1£11' F~(7 ] L } 

+~ig8; {[F:, D~Gj£lI]R [D~Gj£lI' F: ]L} 

+..!.ig28(78" 
16 P P { [ F~(7' [F~, G 1£11] R + [Gj£lI,F~]L ]R 

- [ [F~, G 1£11] R + [ G 1£11' F~] L ' F~(7 ] L } , (95) 

where the commutators are defined by 

Eq.(95) describes a gluon plasma in the so-called collision less regime to zeroth 
order in the triangle operator expansion. Eqs.(93,94,95) together form a consistent 
set of gauge covariant equations for the study of gluon fluctuations under the 
influence of a classical color field. Note that there is no need to solve for r since 
eq.(93) determines the classical field. Corrections to the above equations in powers 
of 6. ,..., n8p D can be calculated systematically from the exact transport equation 
in [14]. 

The color structure of the above equations simplifies greatly in the Abelian 
Dominance Approximation. IT Fj£lI is to have the simple form in (83) then so must 
the mean currents. In particular Tr'G must be diagonal in the same gauge as F 
is. This means that it must be possible to decompose G as 
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with G~v = Gt~ and G~v = Givw In this case 

[h- G] - n··Giie ·· 10. e·· , R - '11, I, '0' ,I (98) 

The induced gluon current satisfying (94) is 

(iv(x)) = - / d4 p / d4q i q
·
z q: diag( ... , ~ L {Gijv(q,p) - G!!,Jq,p)} , ... ) 

q ioiti 
(99) 

The N - 1 Abelian mean fields, F/'v, related to F by F"v = F/,v hi satisfy in 

this approximation 
(100) 

Inserting eq.(97) into the transport eq.(95), we can isolate the transport equa­
tions for the Gii, Gi-components by multiplying with eii, hi respectively and taking 
traces. Thus we find that the N - 1 diagonal components of G defined in eq.(97) 
obey Abelian transport equations, 

(101) 

Since Gi do not contribute to (j) in (99), and do not interact with the mean field 
F, the N - 1 neutral gluons described by its components Gi completely decouple 
from the dynamics of the system in this approximation. Using eq.(98), the Vlasov 
type equations for the N (N - 1) charged gluons described by the components Gii 
are found to be 

(102) 

Notice the appearance of the effective coupling gif for charged gluons just as for 
quarks we found the effective coupling to be gE. 

In conclusion, we see that the transport theory for quark-gluon plasmas re­
duces in the Abelian Dominance Approximation to a multicomponent effectively 
Abelian plasma theory. In SU(N) there are N quarks with effective charges g~, 
N - 1 neutral gluons, and N(N - 1) charged gluons with effective charges gifii. 
These particles are produced in pairs and accelerate in an effective N - 1 compo­
nent mean field, F"v. This suggests a simple extension of Abelian string models 
and transport theories that could be applied in the phenomenology of nuclear col­
lisions [13]. Obviously, we have only scratched the surface of the topic of Quantum 
Chromo Transport theory and many fascinating theoretical challenges remain: the 
structure of collision terms with attention to color electric and magnetic screening, 
the inclusion of source terms in the phase space formulation due to color neutral­
ization, and a deeper understanding of whether there exists a classical plasma 
transport limit for quark-gluon plasmas in the first place. 

Acknowledgments: We especially thank U. Heinz for many stimulating discussions. 
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