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No-scale supergavity theories with the minimal low-energy particle content are 

shown to become untenable for a top quark mass mT much less than 40 Ge V. 

For mT < 55 GeV, a stringent upper bound operates on t:'1e mass of the lowest­

lying Higgs scalar. Further, the Higgs pseudoscalar is constrained to be nearly 

a quarter as massive as the gluino. 
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No-scale supergravity theories with the minimal low-energy particle content 
are shown to become untenable for a top quark masa mr much less than 
40 GeV. For mr < 55 GeV, a stringent upper bound operates on the 
masa of the lowest-lying Higgs scalar. Further, the Higgs pseudoscalar is 
constrained to be nearly a quarter as masaive as the gluino. 

No-scale N = 1 supergravity theories 1) hold a 
lot of interest these days. Such a theory is likely 
to be the effective low-energy limit2) of the het­
erotic superstring3). The scalar potential in this 
type of a theory is flat. That is ensured by a non­
compact SU{n, 1)/ SU(n) x U(l) symmetry in the 
Kahler sector. Consequently, the Kahler poten­
tial is characterized by a particular logarithmic 
form, specifically -3In[/(z) + r(z) + g(tPtl,~)I, 
where z is a generic gauge singlet scalar and ~'s 
are n -1 gauge nonsinglet ones, / and 9 being an­
alytic and real functions, respectively. The grav­
itino masa gets decoupled from the scale of global 
supersymmetry breaking at laboratory energies. 
The latter is seeded by a universal gaugino masa 
M at the grand unifying scale Maur. Since such 
theories have difficulties·) admitting a fourth gen­
eration, I shall consider only no-scale supergrav­
ity theories with the minimallow-energy particle 
content - namely, three fermionic generations, 
the 3-2-1 gauge bosons, two Higgs doublets and 
superpartners for all. 

An important question concerns the requirements 
of stability and electroweak symmetry breadkown 
in the light Higgs sector. These tightly constrain 
the squared mass parameters 1'1 defined through 
the quadratic part of the Higgs potential in terms 
of the Y = ±1 doublets tPf,tPl as 

V(2) = (41 tPT ( I'~ -1';) ( 411 ) 
H 1 f -I'; 1'1 tPT 

Radiative effects make 1'1 :: I'let) , t being 
In(MJurQ- 2) with Q as the energy scale. These 
functions of t evolveS) to tw = In(MJurMw2) 
• Permanent address. 
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from their boundary values at t = O. Extrapola­
tions, based on the observed values of the Wein­
berg angle and the rationalized fine structure con­
stant, imply Maur - 3.2 x 1018 GeV and tw == 
66.95. The boundary conditions at t = 0 are, 
however, determined from the flavor-independence 
and the universality of gravitational interactions 
in the underlying supergravity theory. When the 
latter is of the no-scale type, all global supersym­
metry breaking constants - except M - vanish 
at t = O. Consequently, very stringent experi­
mentally verifiable restrictions8) emerge. In ef­
fect, these constraints pr ~vide laboratory tests of 
the type of theories cons~:lered here. 

Recall that, in the simplest softly broken super­
symmetric extension of the standard 3-2-1 theory, 
the matter fields of the latter are extended into 
chiral superfields. Thus 

( ~) = qi - Qi (v) = t.. - ii 
iL e iL 

c ·c 
t&iL - Ui 

The general form of the superpotential is 

/ = >'~Q;f!f ~f+>'~Qibf ~1 +>.~iiEf ~1 +I'~f'~l 
(1) 

where>. 's are Yukawa couplings and I' is a Higgs 
mass-mixing parameter. The soft supersymme­
try breaking part of the Lagrangian is character­
ized by masses M,. of the gaugino fields >.,., scalar 
masses m.; as well as mass parameters 1'3 and Aii 



- ~ E .. M .. X,,~ .. + ~~( tPt . tPl + h.c.) - I: m!. 1 Zi 12 
-[(~UAU)ijQiUFtPt + (~DAD)ijQiDftPl 

(2) 

Returning to the Higgs potential, let me recapit­
ulate the conditions7) imposed by minimization 
and stability, i.e., 

coel (tPY) == IJ = sin-l 2 2~~w 2 real, (3e1) 
(tP~) "'lW + "'2W 

1 2 2 (2 2 cos2 1J 
-2Mz=-"'1W+ "'1W-"'2W) 21J .2 ... (3b) 

cos - Sin " 

and that required by electroweak symmetry bread­
kown, namely 

(4) 

The four physical Higgs masses m: ....... obey the 
constrair.ts7) 

,_ 2 + 2 _ '+ 2 22M,2 rna - "'lW "'2W - mea m. - m" = m: - w 

m. ~ Mzl coa21J I~ Mz 1 (m~w-",=w)(",~w+",~w)-l 1 
m .. ~ max(Mz , me) 

The boundary conditions at t = 0 are m •• (0) = 
:;;ri (0) = ",i, = 0, "'fo = ~~o = ~, M .. (O) = M 
and az.s(O) = 5/3al(0) = a(O) = 1/961f. Renor­
malizat..on group evolution8

) makes "'~ and "'= in­
crease and decrease with t, respectively, the main 
driving term being Ar = ~~. Thus (3b) im­
plies 1/2 < coalJ < 1. Moreover, for mr < 
55 GeV, the Alvarez-Gaume, Polchinski, Wise 
analysis9

) showing that (tP~) - (~y) and 1/2 -
cos'lJ holds so that all Yukawa couplings except 
Yr = (Ar/4",)2 can be safely neglected in the 1-
loop evolution equations. The latter are shown in 
Table 1. These are now analytically integrable. 
The solutions can best be expressed in terms of 
certain evolution functions displayed in Table 2. 

Recall first that a"wa;J = MGwM-' = (1 + 
a"ob"tw)-1 where the b,,'s are given in Table 1. 
The other relevant analytic solutions to the 1-100p 
renormalization group equations at t = tw may 
be written in terms of the evolution functions of 
the table and the dimensionless ratio 
3Fw(2V2",2Ewcos20)-lGpmi- = .8(8). 
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~(M .. a;l) - 0, 1;a;' - b .. , 
(b .. b2 , bs,) = (-3,1,11) 

( d +6Y; 16- 3- 13-)y: di r - 3"a s - a, - gal r = 0 

(1; + 3Yr - 3a, - ad",' = 0 
1;",I = 1;",' + 3a,u: + a1M : 

(1; + 6Yr)("'~ - "'~) = 3YrA~ + Yr· 

. [If(M: - W) + 9(M2 - Ml) + ~(M2 - Mn] 
(1; + iYr - fa, -iatl",= 
= J.&(3Ar - 3a,M, - atMl ) 

(1; + 6Yr)Ar = lfasMs + 3a,M, + !fal M1 

Table 1: I-loop evolution equations with non top 
Yukawa couplings neglected 

E(t) = (1- rlwr'f (1- ~.r (1 + 11l~) i: 
F(t) = fJ drE(r), 
H(t) = if. li(t) = FH - tE + F 

H'(t) = Y. [(1 - s~ .. )-Z - 1] + 6 [1- (1 + ~ .. )-2] 
_1 [1 + 11_' )-2] 

9 160 .. 

F(t) = I [(1- S! .. )2 -1] + ~ [1- (1 + nl~")'] 
get) = i [1- (1 + ~ .. )-2] + -Ii [1- (1 + 11l~ .. )-2] 
G(t) = f~ drE(r)[l'(r) -1H'(r)! 
~~[4FH2 - 4Hli - 2JJ drE(r)H2(r)l 

K(t) = B(H - ~) + ~G, L(t) = (H _ 1l)2, 
Set) = ..L [1 + ..L)-1 + 1(1 + ll_,_)-ti 

32.. 96.. 5 160..' J 

Table 2: Useful evolution functions 

, 2 ( tw ) 2 ( t) tr 
JJ.w = "'0 1 + 00; 1 + 1116~'" (1 - .8(0» t 

(5) 

The substitution of "';w from (5) into inequality 
(3), together with the numerical evolution of the 
evolution constants up to the third decimal place, 
leads to 

tlJ tlJ2 
,,' + (0.707 - 0.223-.- + 0.002--)" 

cos·1J cos. 0 

W tlJ2 
+0.284 - 0.149-Z0 + 0.002-- < 0 (6) 

cos cos· 8 

" 



In (6) " == M-'J.'~ and w = (mT/40 GeV)'. 
For 1/2 < cos' 8 and mT < 55 GeV, the real 
non-negativity at " turns out to necessarily im­
ply the negativity of the ,,-independent part in 
(6). (Note that a vanishing 1-'0, and hence J.'w, 
as suggested by the dimensional reduction') of 
superstring theories, yields this result directly.) 
The consequences are twofold: 

(1) 0.5 < cos' 8 < 0.5085w 

i.e., ~ <I cos 28 1< 1.017 (~)' -1 (7) 

(2) 0.983 < w, i.e., 39.6 GeV~mT (8) 

> 
2 

. J 
! 
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Figure 1: Plvt of the upper bound on m. against 
mT in n~scale theories (solid curve, 
with the dotted band representing the 
estimated error from radiative cor­
rections). The daahed curve is the 
bound (Drees et aI.IOl ) for more gen­
eral N = 1 supergravity theories. 

Figure 1 shows tne upper bound (7) plotted against 
mT in comparison with the earlier weaker result10) 

for more general N = 1 supergravity theories. For 
mT < 42 GeV, the error due to radiative correc­
tions (dotted band) becomes quite large. As mT 
goes below 39.6 GeV, the bound becomes imagi­
nary. On the other side, it saturates at unity aa 
mT exceeds9l 55 GeV. The pseudoscalar mass is 
given by 

m~ = J.'~w + J.'~w 
= M' (2" + 1.066 - 0.279w cos- 2 8 

+ 0.004w2 cos-4 8) 
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with" varying between a and ,,+(cos8,w) which 
is the higher root of the quadratic equation cor­
responding to (6) being an equality. For mT < 
50 GeV, the absolute upper bound on " is 
,,+(0.15,1.25) = 0.097 so that one finds by use 
of m2 ~ 0.112mJ that 0.21m; < m. < 0.28m;, 
where m; is the gluino mass. 

It is my conclusion that n~scale N = 1 super­
gravity theories with the minimal low-energy par­
ticle content face rather critical experimental tests 
in the near future through (7) and (8). 

This work was done in collaboration with P. Ma­
jumdar. I thank Mary K. Gaillard for the hos­
pitality of the Theory Group at LBL where this 
talk was written up. 
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