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Studies on Current Distribution in Electrochemical Cells 

John Owen Dukovic 

ABSTRACT 

Three studies of electrochemical current distribution have been performed usmg 

potential-theory models and the boundary-element method (BEM). 

1. The steady-state behavior of cells with nonuniform current density over a pas

sivating anode is investigated. Current distributions calculated for a test cell, using 

the measured kinetic behavior of nickel in acid-nickel-sulfate solution, are compared to 

estimates from earlier models. Although current-density profiles determined by weight 

loss on a segmented rotating cylinder agreed satisfactorily with model calculations, the 

measured length of the passive zone exceeds the theoretical value. The model's appli

cability to anodic protection is demonstrated for a stainless-steel sulfuric-acid holding 

tank. 

2. A model is established to describe the effects of attached bubbles on the poten

tial drop at gas-evolving electrodes including: 1) ohmic obstruction within the electro

lyte; 2) area masking on the electrode surface, which raises surface overpotential; and 

3) decreased local supersaturation, which lowers the concentration overpotential. The 

model, based on pseudosteady-state diffusion of dissolved gas within a concentration 

boundary layer, is applied to an example of hydrogen evolution in KOH solution. 

Under Tafel kinetics, the current distribution is nearly uniform over the unmasked 

electrode, and the increase in surface overpotential is the dominant effect. Outside the 

Tafel regime, the current density is strongly enhanced near the bubble, and the lower

ing of concen tration overpoten tial is a major voltage effect. 

3. A model of electrodeposition in the presence of diffusion-con trolled leveling 

agents is developed. The evolution of groove profile during deposition of nickel from a 

\-Vatts-type bath containing coumarin is predicted and compared to measurements 

reported in the literature. -
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Introduction 

Each chapter of this dissertation describes a separate study of current distribu tion 

In electrochemical cells. While these pertain to different areas of electrochemical tech

nology, and one project also involves an experimental investigation, the unifying t.hread 

of this work is the numerical solution of potential- and concentration- field problems. 

The first chapter, "Current Distribution in Electrochemical Cells with Passivating 

Kinetics" pertains to corrosion control. Chapter 2, "The Influence of Attached Bub

bles ... ", takes a close view of bubbles in gas-evolving electrolysis. The final chapter. 

"Simulation of Leveling ... ", deals with the evolution of surface roughness during elec

trodeposition. Each chapter can be viewed as an independent study, with separate 

abstract, symbol table, and list of references. The Fortran computer programs used in 

each study are listed in Appendix A. 

Part of the aim of this research has been to examme the vaflOUS numerical 

methods available for solving current-distribution problems and to compare their 

features. My direct predecessor on this project, Geoffrey Prentice (1), worked with t.he 

finite-difference method (FDM). I have written several codes based on the finite

element method (FEM) and used them in early for Chapters 1 and 2. However, all of 

the calculations reported in the body of the dissertation were performed with the 

boundary-element method (BEM). A relative newcomer among numerical methods, 

BEM is described in a number of publications, notably the monographs by Brebbia. et 

al. (2,3); a short description relevant to the present work is given Chapter 2. 

A widely reaching review of numerical methods and solutions of curren t

distribution problems was presented by Prentice in 1982 (4). The period since this sur

vey has been characterized by the continued use of FDM, the entrenchment of FEM, 
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and the introduction of BEM. Significant contributions are named below. 

The finite-difference work of Prentice and Tobias is documented in three papers 

(5,6,i). Some earlier FDM work by Riggs, Muller and Tobias, applied to electrochemi

cal machining, has been published (8). :r,,1enon and Landau have employed FDM in a 

model that incorporates diffusion, migration and unsteady-state effects in stagnant elec

trolytes (9). 

Landolt and coworkers have continued to apply the finite-element method, simu

lating electrode shape change in anodic leveling (10,11,12). Alkire and Reiser have 

applied FEM to simulate electrodeposition on an array of parallel strips (13). A FEM 

program general to both electrodeposition and etching has been developed by Peskin, 

working with Sani (14). Finally, FEM was applied to the calculation of ohmic drop 

near a Luggin probe by Tokuda, et al. (15) 

The studies using the boundary-element method have all been published since the 

Prentice review. Deconinck, et al. have applied BEM (with linear basis functions) to 

simulations of both electrodeposition and electrochemical machining (16). Hume, et al. 

have used BEM (with quadratic basis functions) to model electrodeposition through 

polymeric masks (Ii). In a later paper (18), the same authors have given a detailed 

comparison between BE~\'1 and FE.M for potential problems with moving boundaries. A 

brief comparison of these two methods appeared earlier in a publication by Pam, et al. 

on jig design in electroplating baths (19). A three-dimensional BEM model (using con

stant basis functions) has been developed for cathodic protection systems with time

dependent boundary conditions (20). Finally, a boundary-integral-equation method 

(related to BEN!) based on an iterative solution technique arid promising improved 

computational efficiency has been presented by Cahan, et al. (21). 

J 
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Comparison of one method to another has frequently been the subject of lively dis

cussion. Each method has its proponents, and there are few thorough studies that con

sider them on an equal basis. The study by Hume, et al. is a rare and excellent contri

bution. These aut.hors compare three formulations of the BEt.,,1 to a FEM code on a 

moving-boundary potential problem for which the exact solution is known. For a 

bounded domain, the quadratic BEM was found superior to the linear BE~1 in 

efficiency and accuracy. However, the biquadratic FEM proved more efficient for a 

given accuracy than either. For an unbounded domain, a special formulation of the 

BEM was found superior. 

The distinguishing characteristic of the boundary-element method is the reduction 

III the number of dimensions: the problem is stated and solved on the boundaries of 

the domain, and the advantages of BEM over the domain methods (FEM and FDj\f) 

stem from this feature. Only the boundary must be discretized (sometimes only por

tions of the boundary), requiring fewer nodes and resulting in a smaller matrix prob

lem. However, since the matrix is fully populated rather than sparse, there IS no 

significant advantage in computational efficiency. In moving-boundary problems, the 

repositioning of nodes is less cumbersome with the BEM. Finally, it is easier to formu

late and enter the nodal representation of the problem geometry. From my experience, 

this advantage has been underrated by many. Although most finite-element codes pro

vide for automatic grid generation, there are some geometric configurations for which 

this is not practicable; an example is given in Appendix B-1. Compared to BE~f, FE~f 

requires the extra work of specifying the coordinates of internal nodes, judiciously 

numbering the nodes, and specifying the element topology. This requires considerable 

time and attention from an analyst, and it is easy to make costly mistakes. As the 

cost of computing power continues to drop rapidly, this consideration could soon 
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overwhelm the others. 

There is another, perhaps more important consideration, also related to the 

increasing availability of computing power. Numerical modeling is already extending 

to physical problems of great complexity, for example, electrochemical systems in\'olv-

ing concentrated-solution transport or convective diffusion with complicated fluid flow. 

It is quite significant that boundary-element methods are restricted to a subset of 

linear differential equations. While BEM may occupy important niches, such as pot en-

tial theory, the domain methods are likely to dominate in general practice; expertise 

acquired in FEM might be of greater lasting value to the scientist or engineer. 
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Chapter 1 

Current Distribution in Electrochemical Cells 
with Passivating Kinetics 

This chapter is dedicated to the memory of Larry Galovich, who built 
the segmented-electrode apparatus for this project. 



Current Distribution in Electrochemical Cells 
with Passivating Kinetics 

A. Numerical Evaluation 

ABSTRACT 

i 

A numerical model is developed for the evaluation of current distribution In elec

trochemical systems that exhibit passivity. The boundary-element model, based on 

poten tial theory, employs a detailed fi t of the active-passive polarization curve as the 

anode boundary condition. The model is used to investigate the steady-state behavior 

of active-passive systems with nonuniform current density, in particular the condition 

of coexisting active and passive regions on the anode surface. Calculations are per

formed for a test cell of high aspect ratio using overpotential data determined on 

Nickel-ZOO in 2M H2S04,O.SM NiS04 solution. The results are compared to the pred

ictions of simple, one-dimensional models reported in the literature. Application of the 

model to anod ic protection is demonstrated in a series of calculations for a stain less

steel sulfuric-acid holding tank. 
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In trod uction 

Many electrochemical current-distribution problems of practical significance have 

been addressed in recent years as computing power has become more available and as 

numerical methods have improved. Surprisingly, relatively little atten tion h as been 

devoted to the class of electrochemical systems involving passivating kinetics. Pas

sivity is a critical phenomenon in many corrosion-control schemes. One technique. 

anodic protection, in which a structure is systematically polarized into the passive 

state, requires strict attention to "throwing power," the distance range that the protec

tive passive film can be projected. Here, one may want to know the current distribu

tion over an irregularly shaped electrode that exhibits complicated active-passive 

kinetic behavior. 

Our alln has been to develop a numerical model for calculating current distribu

tion that would: 1) apply to irregular, tw~dimensional and axisymmetric 

configurations, and 2) incorporate the detailed active-passive polarization behavior of 

the anode. 

Prior efforts at predicting active-passive curren t distribu tion can be divided in to 

two groups. The first is a series of treatments of an iron rotating-disk electrode by 

Newman and various coworkers (1,2,3). In these, potential and current density at the 

disk surface are obtained as a global combination of Legendre polynomials (2), and a 

multidimensional Newton-Raphson scheme is used to iterate on the nonlinear boundary 

condition. 

Vahdat and Newman (1) treat a freely corroding, iron rotating disk in salt water, 

and calculate the nonuniformity in current density that results from nonuniform tran

sport of dissolved oxygen. The anodic overpotential neglects mass transfer, and con-
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sists of a continuous analytic function representing the active-passive kinetic charac-

teristic. Calculated current distributions include cases wherein the outer portion of the 

disk is passive while the inner portion is actively corroding. 

Law and Newman (3) calculate the current distribution at an iron rotating-disk 

anode in sulfuric acid. Again the coexistence of active and passive regions is predicted. 

Their active-passive polarization curve consists of a discontinuous function: constant. 

low current density in the passive range and, in the active range, a modified Butler-

Volmer expression corrected for mass-transfer limitations. In another paper (4), the 

same authors approach the problem of free corrosion of an iron rotating disk in oxy-

genated salt solution. They improve on the treatment of Vahdat and Newman with a 

thorough treat.ment of hydrodynamics and mass transfer. Again, they employ a kinetic 

expression that is discontinuous between active and passive states. In both treatments 

by Law and Newman, it was necessary to perform an external iteration on the location 

of the active-passive transition point. 

The foregoing analyses are restricted to the relatively simple disk configuration. 

The treatments are somewhat more sophisticated than our own in that they include 

mass transfer, but in many passivating systems, especially in anodic protection, mass 

transfer does not playa significan t role.} 

The other arena of activity in active-passive current-distribution calculation is the 

field of anodic protection. An excellent and comprehensive review of the theory and 

1 In the case of iron in H2S04 or NaCI solution studied by Newman, et al.J., the peak ac
tive current density icr is relatively high, on the order of 1000 mA/cm-; thus, even 
under strong convection, mass transfer limits the dissolution rate over a substantial po
tential range and must be accounted for in any model of value. In contrast, many pas
sivating systems (such as 316 stainless steel in 67-percent H2S04 at 25 0 C with i(r on 
the order of 1 mA/cm2

) never approach the limiting current, and the influence of 
mass-transfer is slight. 
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practice of this anticorrosion technique is gIven by Riggs and Locke (5). An updated 

overview is also available (6). 

Edeleanu and Gibson (7) give a very clear discussion of the important considera-

tions in throwing power for anodic protection. They derive a simple formula for 

predicting Lp
oo , the distance along the inside of an infinitely long2 metal tube (or a wire 

inside an insulating tube) that the passive zone can be "thrown" from a cathode POSl-

tioned at one end: 

R Ep 
(1) 

where EA IS the potential range of the active segment of the polarization curve, as 

illustrated III Figure lA-I; Ep is the potential range spanned in the passive regime 

and depends on the applied voltage II APP according to 

Ep = V APP - EA ; (2) 

., is the arithmetic mean current density in the active loop of the polarization curve; p 

is the electrolyte resistivity; R is the tube radius; and r is the radius of the wire 

(r =R for a metal tube). Of particular interest is the limit Ep
max , the full potential 

range between the active and transpassive states (also showIl-on Figure lA-I). This 

corresponds to the maximum extent of passive coverage, Lp
max , on the anode surface. 

The authors affirm Equation 2 by experiments on 18-8 stainless steel wire in 3D-percent. 

H2S04, For anodes of finite length, a clear distinction is made between the distance 

over which one can reestablish passivity and the distance over which passivity can be 

maintained; the latter is acknowleged to greatly exceed the former in most cases. 

Incidentally I Edeleanu and Gibson state that the transition from active to passive 

2 The superscript 00 is our desi~nation that the superscripted variable applies to svs-
terns of infinite as opposed to fimte length. . 
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is generally gradual with potential, and they gIve a mechanistic basis for this. Only 

syst.ems with substantial ohmic pot.ential drop display an abrupt transition. The 

misrepresentation of the iron polarization curve as a discontinuous function is perhaps 

a consequence of the impossibilit.y of experimentally distinguishing ohmic drop from 

kinetic overpotenital for this system because active current densities are so high for 

Iron. 

Mueller (8) presents a similar but more detailed one-dimensional treatment. A 

simple, two-piece analytic expression approximates the polarization curve. Potential 

and position are related by an ordinary differential equation, which is solved analyti-

cally, producing relatively simple expressions for the passive length of a pipe of finite or 

infinite length. He also derives a simple expression for the length of a tube that can be 

maintained entirely in the passive state: 

(3) 

where ip is the current density in the passive regime, assumed independent of pot.en-

tiai. (For simplicity, we adhere to the nomenclature used by Edeleanu and Gibson.) 

By comparing the two cases (Eqs. 1 and 3) Mueller concludes that 

(4) 

lcr -1 LAt 
As -.- often exceeds 10, -- can be greater than 100. 

lp Lpoo 

Fokin and Timonin (9), using a similar analysis, also derive an approximate length 

for the passive section of an infinitely long tube: 
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1 

L/1:) = Ep . 
[ 

R ]2 
2 icr EA P 

(5) 

Their analogous expression for a cylindrical anode within an insulating annulus is 

(6) 

These authors also derive an approximate length for the active portion of an infinitely 

long tube: 

1 

[ 
'2EA ]2 R. , 

lcr P r 
(7) 

where icr is the peak current density on the polarization curve. They claim that a 

finite tube of length Lpoo + L/'o can be driven completely passive. 

r..hkarov, et al. (10) derive similar one-dimensional formulae with mmor 

modifications. They allow for cases in which the passive current density is not negligi-

ble (such as 1020 mild steel in 97-percent sulfuric acid at 50
0 C (11) or nickel in 6-1-

percent HzS04 at 25 0 C (12) ). They also provide a more detailed description of the 

polarization curve by using a piecewise-exponential expression for current density. 

Both Meuller and Makarov, et al. state that the passive zone is longer in tubes of finite 

length than in infinite tubes, but no quantitative measure of this difference is given. 

Timonin and Fokin (13) return to the issue of the longest tube that can be pas-

sivated directly. They experiment on wire electrodes of various lengths and confirm 

Eq. 5. For engineering calculations, they suggest an effective permissible length, 

< L 00 + .!.L 00. 
- p '2 A (8) 

The above treatments (7,8,9,10,13) reflect the evolution in understanding of distributed 

active-passive systems relevant to anodic protection. Compared to our model, they 
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rely on many simplifying assumptions; most importantly, they apply to one-

dimensional rather than multidimensional cell configurations. However, they are con-

venient to use when applicable, the compact equations illustrate important trends, and 

they provide a valuable poin t of departure for models of greater generality. 

Mathematical Model 

As III most current-distribution calculations (14), our starting point IS potential 

theory: Laplace's equation holds for the potential within the electrolyte, 

(9) 

This is valid when concentration gradients can be ignored so that the electrolyte con-

ductivity K is nearly uniform. Equation 9 follows from Ohm's law 

= - K 'V¢>, ( 10) 

and the steady-state charge balance 

'V . i = O. (11 ) 

The domain n of the field problem is shown schematically in Figure lA-2. The condi-

tions on ¢> at the boundaries of this region are as follows. Since no current may cross 

an insulating wall, r 2, or a symmetry axis, r 4, there can be no normal derivatin of 

poten tial at either: 

a¢> = o. 
an ( 12) 

At the cathode surface, r 3 , we ignore overpotential for simplicity and set the potential 

to the arbitrarily chosen value of zero. In current-distribution problems, the voltage of 

interest is the compontent of the cell voltage, 

v = ¢>M - ¢>M, (13) 

that drives the irreversible process of current flow: we define V APP as the voltage 
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applied to the cell minus the open-circuit voitage,3 

V APP = V - Vo c . (14) 

Accordingly, we can simplify the problem by subtracting the open-circuit potential 

from the problem and considering the anode metal to be at the potential V APP rela-

tin to the cathode. 

The potential in solution adjacent to the anode surface, r It differs from 9~~ by a 

surface overpotential, 'I, which depends on the local current density i: 

<P = V APP - 71{ i ). (15) 

This provides the final boundary condition for the elliptic field problem. The above 

boundary-value problem has been solved by numerous workers for various geometric 

configurations with the function 71{i) given by a linear, logarithmic, or Butler-Volmer 

relations. In the present study, we focus on passivating electrodes, for which overpo-

tential and current density are related in a more complicated way. An example of this 

dependence is shown in Figure lA-I, in which the regions of active dissolution, pa.s-

sivity, and transpassivity are labeled. Clearly, 71 is not a single-valued function of i, 

and this leads to multiple solutions and difficulty with convergence, as discussed later. 

Numerical Method 

We use the boundary-element method with quadratic elements. Details of our 

implementation are given in another communication (15). As the anode boundary con-

dition is nonlinear, it is necessary to iterate to a solution. The starting point of the 

cycle is to supply an estimate of 1.. the vector of current-density values at the 

8 Except in the case of a corrosion couple, where the open-circuit potential is not. dic
t.ated purely by tQermodynamics, V APP can be thought of as the irreversible com
ponent of the cell voltage. 
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electrode-surface nodes. The Laplace equation is solved with this condition imposed. 

and the resulting overpotential profile is converted to current density according to the 

overpoten tial expression, i (77) (e.g. Fig. lA-I). (This direction for the cycle is preferred 

because. in the opposite direction, one would need to evaluate the function 11(i), which 

is not single valued. The difference between the supplied estimate of i and t.he newly 

calculated value is the residual, which is sought to vanish. The scheme we generally 

use for revising the starting iterate is the multivariable Newton-Raphson method. The 

strongly nonlinear and multivalued character of the the anodic boundary condition 

poses a problem with convergence. In the expamples presented in this chapter, the 

method often failed to converge for high values of V APP' This problem was solved by 

recourse to predictor-corrector continuation (16), with V APP as the continuation 

parameter. The scheme is to begin by solving the field problem at a low value of 

V APP, at which convergence is easy; then V APP is successively raised, giving the con-

verged solution at each step until the desired value is reached. Euler's method is used 

I to "predict" the starting iterate for the Newton-Raphson algorithm at each new value 

of V APP: 

i( V APP + A ~i APP) = i( V APP) + A V APP [ Bi 1 (16) 
BV APP v APP 

The derivative is evaluated numerically using a small perturbation in V APP ' The 

value of A V APP is adjusted at each continuation step according to the number of 

Newton-Raphson iterations used on the previous step. A "backtracking" feature 

guarantees that A V APP will always be small enough to lead to a converged solution. 

On the approach to any "limit point" on the solution curve, where the Jacobian used 

in the Newton-Raphson algorithm becomes singular, A~' APP becomes successively 

smaller, and the continuation algorithm stalls. 
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As an example, the boundary-element nodal structure of Figure 1A-3B contains 

113 nodes, 69 of these on the anode surface, with some refinement in the region where 

the actiye-passive transition is expected to fall. Dual nodes are employed at corners 

and at the flush boundary between anode and insulator (point A on Figure 1A-3A). As 

an example, the problem corresponding to the curve labeled V APP = 1200 m V in Fig-

ure lA-4 required 29 continuation steps from V APP = 5 to V APP = 1200 mY, requir-

ing a total of 98 Newton-Raphson iterations. Thus the solu tion required 6860 solu tions 

of Laplace's equation (a single forward-reduction step followed by 6860 back-

substitution steps on the 113 X 113 boundary-element matrix), and 98 inversions of the 

69X69 Jacobian matrix. The calculation required 866 c.p.u. seconds at double preci-

sion on a VAX 8600 computer. 

Demonstration of the Model for a Laboratory-Scale Cell 

We apply the model to the cell diagrammed in Figure 1A-3A. The electrolyte 

occupies an annular volume between the long anode and an insulating outer wall. The 

annulus is bordered at one end by an insulator and at the other by the cathode. There 

is a 0.64-cm section of insulator on the inner cylinder separating the two electrodes. 

The configuration and dimensions were chosen to be workable in the laboratory; the 

corresponding program of experiments is described in Part B of this chapt.er (22). 

Another feature of this cell is its high aspect ratio: since the flow of current is predom-

inately axial, we approach the one-dimensional case studied by the aforementioned 

authors (7,8,9,10,13). The boundary-element nodal structure for this configuration is 

shown in Figure IA-3B. 

The particular passivating system we shall consider is Nickel-200 in 2M H~S04 and 

1 -;:;-:M NiS04 . Figure 1A-l is an approximation of a polarization curve for this system 
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formed by joining linear segments. The polarization measurement is discribed in detail 

elsewhere (22). A low voltammetric scan rate was used, 8.3 millivolts per minute, in an 

attempt to determine the steady-state polarization behavior. 4 We have used 30 

straigh t-line segmen ts in this represen tation; greater detail could be easily achieved 

with no noticeable increase in computing time by fitting more segments. 

The predicted current distribution is shown in Figure 1A-4 for a series of applied 

voltages. For F APP below about 500 mY, the current density is highest at the anode 

edge closest to the cathode, and decreases monotonically with distance, as would be 

expected for a nonpassivating metal. For V APP above about 600 mY, we predict that 

some portion of the anode near the cathode is passivated. Farther from the cathode, 

current density rises steeply, attains a maximum, and then declines in the manner seen 

at lower V APP' The maximum corresponds to the peak anodic current from the over-

potential curve of Figure 1A-l and is denoted on Figure 1A-4 by the dotted line. One 

can consider that we have effectively "mapped" the i -TJ characteristic on to the anode 

surface. Another view is the following: in Figure lA-I, the polarization behavior of 

the anode is resolved temporally, i.e. determined by recording one i -TJ pair at a time 

on a microelectrode; in Figure 1A-4, the i -TJ characteristic is resolved spatially over a 

macroelectrode. 

As the V APP is raised (e.g. 900 through 1688 m V), the length Lp of the passIve 

zone. Increases, while the active portion of the current-density profile approximately 

1 It is questionable whether voltammetry on the time scale of hours can truly determine 
steady-state active-passive behavior. Current densities at fixed potential have been ob
served to drift downward for weeks after the establishment of passivity (5). Changes 
in the condition of the anode surface over such an interval can be significant and 
difficult to characterize. However, for obvious reasons, the passive portion of the polar
ization curve has far less impact on the current distribution than does the active por
tion. Transients in the active range are shorter-lived: in studies of the dependence of 
polarization data on potentiodynamic scan rate, on nickel in IN H"SOt (Ii) and on two 
steels in sufuric acid (18). icr was found to be roughly independent 01 scan rate below 
30 mY/min. 
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retains its shape. As explained earlier, the computational method progresses to higher 

values of V APP USIng predictor-corrector continuation. The curve labeled 

F APP = 1688 marks the point in this progression at which the continuation algorithm 

stalls; if F APP is raised beyond this, the Newton-Raphson algorithm will diverge. 

However, if one changes the iteration procedure by conducting a series of relaxed

substitution steps (using a relaxation factor of 0.01 for 20 iterations) before the 

Newton-Raphson iteration, the system does converge beyond this limit point. The 

resulting solution is the condition of complete passivity. A reasonable physical 

interpretation is that a partially active condition cannot be maintained for V APP 

higher than 1688 mY, and there is a transition to the fully passive condition. 

Interestingly, although not contrary to expectation, one can use con tin uation to 

proceed downward in ~"APP from this point, remaining in the regime of complete pas

sivity, until another limit point is reached. As the passive current density is small so 

that the ohmic drop is slight, this limiting value, V APP = 637 mY, is near the Flade 

potential, T/F = 517 mY. 

Actually, in this example, for V APP slightly exceeding 1688 m V, the anode is not 

entirely passive because the edge near the cathode displays the initial stage of transpas

sivit.y (see Fig. lA-4). With further increases in V APP, as shown in Figure lA-5, the 

current distribution is described by a series of curves similar to those seen at low 

V' APP (e.g. the curve for V APP = 300 m V in Fig. lA-4) However, now the distribu

tion is complicated slightly by the secondary-passivation effect (the minimum in the 

curve for V' APP = 2000 m V.) 

The dotted line represents the peak anodic current from the polarization curve 

used in the model. If the numerical implementation of the model were perfect, the 
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peaks of the curves labeled BOO, 900, 1200, 1500 and 1B88 m V would all meet this line. 

Another manifestation of the imperfection of the numerical method, is the slight excur-

sion below zero current density shown on some curves at the active-passive transition. 

Both artifacts are consequences of the limited ability of the quadratic basis function to 

represent the sharp variat.ions as at current-density maxima and at the abrupt active-

passive transition. The impact. of these local imperfections on overall accuracy is prob-

ably quite small. 

A better understanding of the behavior of a distributed active-passive system can 

be gained by plotting an aggregate property of the solution, e.g. the total current, I, 

as a function of the applied potential, V APP' This is done for the presen t system in 

Figure lA-B. The solid portions of the curve contain I - V APP pairs representing con-

verged solutions. The 'dotted portion is drawn arbitrarily to suggest how the two 

"stable branches" are likely to be connected. A method exists to solve for this dotted 

curve (19). We did not implement this technique, partly because this "unstable 

branch" of the solution curve is not of practical importance.s Based on the mathemati-

cal description, prior reported studies (20,21), and direct experimental investigations 

(22), our understanding is that, as V APP is slowly raised, a real system will jump to 

complete passivity (downward arrow, Figure lA-B) and on subsequent lowering of 

V APP, the sy?tem will jump to partial (or total) activity (upward arrow, Figure 1A-6). 
I 

One parameter characterizing the current dens·ity profiles of Figure 1.-\-4 IS Lp. 

defined earlier as the distance from the anode edge oyer which the passive region 

extends. This is of primary concern in anodic protection and is closely related to the 

6 I.t may be pos~ible, however, .to obtain portions of the unstable branch experimentally 
usmg the techmque of Epelbolll et al.(20), further demonstrated by Russell and New
man (21). 
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"throwing power" of the system. Lp provides a convenient basis for comparIng the 

model to the simpler one-dimensional models, as presented in Figure IA-7. In this plot. 

of Lp versus V APP, the numerical model's prediction is represented by the heavy solid 

curve. The dashed vertical line denotes the transition to complete passivity at 1688 

m V. Plotted for comparison are the predictions made using the models of Edeleanu 

and Gibson (7) (the fine solid line) and of Fokin and Timonin (13) (the dotted line). 

For all three models, the onset of transpassivity is marked by an open dot. The exten-

sion of the dotted line beyond this point represents the prediction that would be made 

discounting the transpassive portion of the polarization curve (i. e. if transpassivity did 

not occur as for Titanium). This is done to illustrate the point at which the transition 

to complete passivity would occur, according to the model of Fokin and Timonin. The 

two one-dimensional models agree remarkably well, considering their different forms6 

(cf. Eqs. 1 and 6). The numerical model agrees fairly well with both. The difference is 

probably due to the approximations inherent in the simpler treatments and to the 

departure 9f the cell configuration under study from a one-dimensional description. 

It is instructive to observe how the current distribution predicted by the model 

changes when a different i -1] characteristic is entered as the boundary condition. Fig-

ure lA-8 shows a piecewise-linear fit of a second polarization curve having a substan-

tially lower value of icr . As the transpassive tail of the curve is not provided, we sim-

ply extrapolate to higher overpotentials with the dotted line at ip . The resulting series 

of current-density profiles is shown in Figure lA-g. Compared to those of Figure lA-4. 

these profiles display lower peaks and greater axial extension: the active-passive transi-

tion is more gradual, and Lp is greater for a given V APP' This last fact. follows 

8 If one were to correct Edeleanu and Gibson's formula for the fact that, in the present 
example, the anode is not a negligibly thin wire, this estimate for Lp would be 13 per
cent lower. 
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expectation: since there is less current to be supplied to the active zone, the axial 

current along the passivated portion of the annulus is lower, and a greater distance can 

be traversed before the axial ohmic drop exceeds Ep. According to Equation 8, we 

should expect Lp to be inversely proportional the square root of icr . The two values 

of Lp at V APP = 1500 m V taken from Figures lA-4 and lA-9 are consistant with a 

variation of Lp with icr to the power -0.28. 

Demonstration of the Model in an Application to Anodic Protection 

To illustrate how the model may be applied to systems of practical interest in 

anodic protection, we carry out a sample calculation for a sulfuric-acid holding tank. 

(Storage vessels for concentrated sulfuric acid are the most frequent application of 

anodic protection to date (6).) The tank contains 67-weight-percent sulfuric acid at 

24.20 C and is constructed of 316 stainless steel. Sudbury, Riggs and Shock (23) present 

anodic polarization data for this system. A 7-segment trapezoidal fit, which closely 

approximates the published curve, is given in Figure lA-IO. (We take the the open

circuit potential as the zero of TJ, and we neglect ohmic potential drop.) The 

temperature-corrected handbook value (24) for the electrolyte conductivity IS 0.302 

ohm-Icm-I. 

We consider a 5800-liter holding tank, of the shape and dimensions shown in Fig

ure lA-11A. The cathode is a length of pipe entering through the roof and extending 

along the centerline to within 12 em of the floor. Although an axisymmetric 

configuration is not often employed in practice, it does afford the simplicity of reducing 

the problem from three dimensions to two. Also for simplicity, we assume that the 

cathode boundary is an isopotential surface. While it would be more realistic to pro

vide for a secondary current distribution here, we choose not to do so in this prelim-
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inary analysis where we are focusing on the behavior at the anode. Neither do we 

define the position of the reference electrode, other than to say it is near the cathode, 

not interfering with the potential field. 

The nodal structure for this configuration is shown in Figure lA-lIB. Ninety

three nodes represent the domain boundary in this quadratic boundary-element formu

lation: 45 of these on the anode (the tank wall) and 39 on the cathode. The axisym

metry line is not discretized. Heavy dots represent element borders; small dots are the 

internal nodes of the three-node quadratic elements. 

The predicted current distribution on the tank wall is shown in Figure IA-12 for a 

series of applied voltages, V APP' The horizontal coordinate is distance from the center 

of the tank floor, measured along the inside surface. Points A, Band C correspond to 

the similarly labeled points on Figure lA-llA. Point B is in the "bend" between floor 

and side wall. As before, we mark the peak anodic curren t density from the overpoten

tial curve by a horizontal dotted line. No curve is shown for the condition V APP = O. 

Our model would predict uniformly zero current density. This will be unrealist.ic when. 

for example, the tank wall is nonuniformly accessible to dissolved oxygen, which is not 

accounted for in the model. Of course, at open circuit, the corrosion rate is not zero; 

rather there is a corrosion couple (steel dissolution and hydrogen evolution). The 

anodic component of this corrosion reaction must exceed ip , or else anodic protection 

wou ld be poin tless. When the vessel wall is polarized anodically, we appropriately 

neglect the cathodic process and relate total current density to corrosion rate by 

. Faraday's Law. 

At ~,. APP = 200 mY we see that there is active anodic current over the entire 

tank wall, approximately 0.1 mA/cm2
, higher near the cathode tip than elsewhere, and 
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slightly depressed in the less accessible region where the side wall meets the floor. This 

behavior follows expectations. The current distribution for V APP = 400 m V is quali-

tatively similar, while expectably of higher current magnitude. For an applied poten

tial of 600 mY, the peak anodic current density, 0.58 rnA/em::!, appears on the tank 

bottom near the cathode tip. Toward the centerline, the current density falls to about 

3.7 rnA/em::!. At V APP = 800 m V a small region of the tank floor is passivated. The 

transition to the peak active current and beyond is gradual, and there remains a sligh t 

relative shortage of current to the corner where wall meets floor. When V APP is 

increased to 1000 mY, the current-density profile shows a larger disk of passive protec-

tion centered on the floor (72 em in diameter); a maximum, still on the floor, but 

farther out; and current densities at the side wall within 4 percent of the peak value. 

Slightly beyond this potential, at V APP = 1039 m V, the trend reaches a limit: the 

peak anodic current density is obtained near the top of the wall. 

The practical significance of the value V APP = 1039 m V is that this must be 

exceeded in order to establish or to reestablish anodic protection on this system? One 

might remark that 1039 mV is close to the overpotential of the onset of transpassivity, 

1JTR = 1070 m V. This means that the vessel under study is nearly the largest that 

could possibly be driven entirely passive without recourse to special techniques (5).8 

In terms of total cell current vs. applied potential, the steady-state behavior of the 

tank system is shown in Figure 1A-13. While this shows many similarities to Figure 

lA-6, the currents are much higher in magnitude, and there is a small potential range 

7 So far we continue to disregard transient behavior. Further, we know that, once 
complete passivity has been established, we need only keep V APP above 420 in V to 
maintain protection. 

8 It is possible to have \/ APP exceed '1Tf/ witho~t having '1 exceed '1TR anywhere on 
the anode, by relying on a nonzero ohmiC potential drop, but this may not be practi
cally advisable. 
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where only the passive state is allowed. 

A rigorous accounting for the establishment of passivity in an anodic protection 

installation would have to include transient behavior. The time to passivity might be 

much shorter than the achievement of steady-state polarization behavior. In general, 

the initial current exceeds the steady-state value at any given overpoten tial, and 

decreases asymptotically to the steady state with time (5,18). This means that our 

steady-state model would underestimate the total current required to establish pas

sivity and overestimate the size of the largest vessel that could be passivated in a prac

tical length of time. A fully satisfactory treatment of the system would require tran

sient analysis. Such a model could be built on the foundation laid here. Since tran

sients in surface overpotential are certainly much slower than adjustments in the 

potential field, a pseudosteady-state treatment with time stepping could be used. 

Computational expense would be significantly higher than for the present steady-state 

model. A transient analysis of anodic protection would also require good characteriza

tion of the unsteady kinetic behavior, either empirically or in terms of a model of the 

growmg passive film. Time-varying polarization has been included in models of 

cathodic protection (25), which, moreover, employ the boundary-element method In 

three dimensions. 

Conclusions 

A numerical model has been devised for the calculation of current distribution in 

active-passive systems. In example computations, the method is shown to be conver

gent over an important range and moderate in cost. The model can be used to explore 

the behavior of distribu ted active-passive systems. In its present form (using 

predictor-corrector continuation) one can trace certain portions of the solution curve in 
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1-\/ APP space. The results are consistant with a hysteresis behavior similar to that 

expected for the simpler system of uniform current density at a passivating anode with 

ohmic resistence in series. We conjecture that the portions of the solution curve acces

sible by t.he present model correspond to stable physical states of the actual syst.em, 

and that the unconverged regions correspond to physically unstable conditions. 

In a nearly one-dimensional cell with an axial anode and the cathode positioned at 

one end, the position of the active-passive transition is a roughly linear function of 

applied potential. Reasonable agreement with analytic one-dimensional models in the 

anodic-protection literature is observed. 

In a preliminary study, the model's application to anodic protection systems has 

been demonstrated. The results suggest that the model could ultimately be used to 

deterimine I) a lower bound for the the total current required to achieve complete pas

sivity on a given structure, 2} the size of the largest vessel that can be driven to com

plete passivity, and 3) the size of the largest vessel that, once passive, can be so main

tained. The model could also aid in design decisions regarding yessel shape and place

ment of the counter electrode. 

For the cell geometry of Figure IA-3A, which is nearly one-dimensional in charac

ter, reasonable agreement is found ,with the one-dimensional, analytic models in the 

literature (7,13). The distinguishing feature of the new model is that it is generally 

applicable to two-dimensional and axisymmetric geometries such as the tank 

configuration of Figure IA-ll. Extension of the model to three dimensions could be 

done by implementing a three-dimensional boundary-element routine; these are 

increasingly common especially in problems of linear elastostatics (26), and have found 

application in current-distribution calculations for cathodic protection (25). 
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electrolyte resistivity, ohmcm 
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Current Distribution in Electrochemical Cells 
with Passivating Kinetics 

B. Experimental Determination 

ABSTRACT 

An experiment.al st.udy of current dist.ribution in passivating systems is presented. 

with special attention to the steady-state coexistence of active and passive regions on 

the anode surface. Current-density profiles were measured by weight. loss on a seg

mented rotat.ing-cylinder anode of nickel in acid nickel sulfate electrolyte, with the 

cathode placed so as to produce a highly nonuniform potential field. Independent 

measurements of the steady-state, anodic current-overpotential characteristic were 

made on rotating-disk and rotating-cylinder electrodes. The measured current-density 

profiles were compared to predictions from a theoretical model developed for this pur

pose. The agreement is generally satisfactory. but the measured length of the passive 

zone exceeds the predicted value, implying that the model would supply a conservative 

estimate of throwing power in anodic protection. 
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Introduction 

Passivity is a phenomenon of great importance in electrochemical technology, par-

ticularly in the field of Corrosion (1,2). The kinetics of passivating electrodes are com-

plex, involving the format.ion and sustained existence of a thin oxide film. The 

beh avior of an active-passive syst.em is especially complicated when the curren t distri-

bution is nonuniform, as it is in most practical electrochemical cells. A particularly 

int.eresting condition is the side-by-side coexistence of active and passive zones on the 

anode surface. An improved understanding of distributed active-passive systems would 

benefit the technology of anodic protection 1 (3) and assist in the interpretation of 

active-passi\'e polarization measurements (for example on a large rotating disk with 

nonuniform current densit.y). 

\Vhile numerous experimental determinations of current distribution han' been 

reported in the literature (eg. 4,5,6,7,8,9,10) measurements on active-passive systems 

have been quite limited. LaQue (11) observed regions of differing corrosive attack on 

rotating iron disks in seawater. The regions correspond to active and pasSlYe zones 

arising from uneven oxygen transport. The entire current-distribution could not be 

accurately measured by this technique, but t.he position of the active-passive boundary 

was recorded and shows fair agreement with a model by Newman and Law (12). 

Epelboin, el al. (13) also observed the localized dissolution of an iron rotating-disk 

electrode at different currents and rotation speeds. They determined electrode profiles 

by depth-of-field measurement with an optical microscope. A sharp boundary between 

the active and passive regions was seen. Under certain conditions, the peripheral 

region of the disk was found to passivate while the center of the disk underwent active 

1 Anodic protection is a corrosion-control technique in which the passive state is elec
trochemically induced over the surface of the st,ructure to be protected. 
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dissolution. In other cases this pattern was reversed, and in still other instances, there 

was a ring of active attack bordered both inside and outside by passive zones. 

Russell and Newman (14) made an indirect experimental determination of the posi

tion of the active-passive transition on iron rotating disks in Hv1 H2S04 by interpreting 

current-voltage curves in terms of a model developed by Law and ;'\ewman (1.'}). 

Russell and Newman found that, with rising electrode potential, the average current 

density on the active inner portion of the disk increases as the size of the active area 

decreases. 

In experiments conducted by researchers in the anodic-protection field (16,17), the 

anode was a thin wire stretched along the axis of a glass tube filled with electrolyte. 

and the cathode was positioned at one end. On the anodes used (18-8 steel in 30-

percent H2S04, and steel 3Kh13 in 3-percent H2S04) the active region turns black; 

thus it is easy to locate the active-passive transition. However, other details of the 

current distribution are not available by this technique. The measured data were used 

to confirm various one-dimensional models (16,17,18,19,20). 

The purpose of the present experimental study is to examIne the steady-state 

behavior of active-passive systems with nonuniform current distribution. Our 

approach is to use a sectioned electrode to measure the steady-state current distribu

tion at different values of applied potential. One of our goals is to validate the theoret

ical model presented in Part A. 

Experimental Apparatus 

For the experimental determination of current distribution In active-passive sys

tems. we designed and built a special laboratory cell. To promote a highly nonuniform 

current distribution (especially the coexistence of active and passive regions) we 
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employed a highly asymmetric electrode configuration. 

A rot.ating-cylinder electrode (RCE) was chosen for several reasons. First, this sys

tem ensures a uniform, controlled mass-transfer condition over the electrode surface. 

While this criterion is also met with a rotating-disk electrode, the RCE is much easier 

to divide into segments. A long, segmented. rotating cylinder offers the possibility of 

good spatial resolution of current densit.y. Finally, in contrast. to planar electrodes in a 

channel-flow cell, the RCE has the advantage ofaxisymmetry: it can be machined and 

polished on the lathe, and there is less trouble with edge effects. 

The anode chosen for this study was nickel in 21\1 sulfuric acid, 0.5 M nickel sul

fate. (The nickel salt was added to prevent large relative changes in concentration dur

ing an experiment.) Nickel was chosen for a number of reasons. The anodic dissolu

tion of nickel in aqueous H2S04 is relatively simple and well underst.ood (21,22,23). 

There is a single oxidation state, and the current efficiency is essentially 100 percent. 

An acceptably pure grade of nickel, Nickel 200, is available in drawn-pipe/form. suit

able for the manufacture of rotating-cylinder electrodes. The material is well suited for 

machining and polishing and does not present a severe t.oxicity hazard. The peak 

active current density i cr is of the proper magnitude for observing the active-passi\'e 

transition in the laboratory on the convenient scale of 10 cm. (The throwing-power 

formula of Edeleanu and Gibson (16) suggests that icr is too high for this on iron and 

too low on many stainless steels.) Finally, the passive potent.ial range IS sufficiently 

broad for experimen tation over a range of applied pot.en tials. 

Figure 1B-1 is a photograph of the anode spindle. The nickel surface is approxI

mately' 2.5 em in diamet.er and 15 cm in length. From the phot.ograph, as with t.he 

unaided eye, it is difficult to discern the boundaries between the ring segmen ts that 
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Figure IB-l. Assembled rotating-cylinder anode. 
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compose the nickel surface . Figure 1B-2 shows the spindle dissembled. Each flng 

slides snugly onto the Lucite shaft . The rings have an inside diameter of 2.29 cm and 

are either 1.27 or 0.64 cm in height . The shorter rings are positioned where the 

active-passive transition is expected to occur to provide greater resolving power in that 

region. The top ring is 1.91 cm long and contains a step on its inside surface. When 

the threaded nickel headpiece is screwed into the Lucite shaft, the headpiece presses 

axially against the inside step of the top ring, making electrical contact , and compress

ing all of the rings in to a snug column of electrically-connected segments. The bottom 

ring butts against a collar of Lucite that is integral with the shaft and supported from 

below by a stainless-steel tailpiece. This tailpiece is electrically isolated from the nickel 

segments and inserts in a teflon bore in the stationary cell floor, keeping the end of the 

shaft on center. The tailpiece is attached to the Lucite shaft by a hexhead drawbolt 

tightened to a torque higher than that used to compress the rings or to attach the 

spindle assembly to the rotator shaft; accordingly, this hexhead can be used to tigh ten 

either of the latter joints. The nickel headpiece contains a steel stud, threaded at the 

top, which is used to attach the spindle assembly to the rotator shalt . The headpiece 

is protected from contact with electrolyte by a teflon sleeve, which is compressed when 

the spindle is joined to the shaft . 

The rotating-cylinder cell is provided with axial flow so that the electrolyte could 

be exchanged with a large reservoir. Reasons for this provision are discussed late r. 

The cell is depicted schematically in Figure 1B-3 and photographed in Figure IB-4. 

The electrolyte volume is an annulus bounded by the anode spindle on the inside and a 

Lucite tube on the outside. Since the latter is transparent , one can observe the anode 

surface during the course of the experiment. A fiber-optic lamp is used to illuminate 

the subject. The electrolyte is pumped through the floor of the cell , a Lucite disk , 2.4 
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Figure IB-2 . Disassembled rotating-cylinder anode, showing 
Lucite shaft, headpiece, and set of nickel rings . 
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Figure IB-3 . Rotating-cylinder cell : A-anode spindle , Lucite ; 
B-cathode, platinum mesh; C-Luggen-capillary port; 

D-rotator shaft ; E-fiow inlet; F-flow outlets . 
Teflon parts are shaded ; o-rings are in black. 
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Figure IB-4. Rotating-cylinder cell , wit.h 
anode in place and floor installed. 

XBB 869-77 36 
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cm in thickness , with a dense, regular pattern of 0.32-cm holes. Below this manifold is 

a conical flow separator to promote uniform inlet flow . This cell floor is detachable for 

convenient installation of the anode spindle and access to the anode during pretreat

ment . At the t.op of the cell, there is an overflow chamber with three exit ports. Th ere 

are also two ports for a nitrogen-gas blanket. Five cent.imeters above the top nickel 

ring on the rotator shaft, there is a teflon seal with a steel retaining spring. 

The rotator shaft is belt driven by a gO-watt , variable-speed motor. The shaft is 

supported by three ball bearings and contains a bellows join t. Electrical con tact IS 

made to the shaft via four sets of "finger contacts," flexible brass sheets cut in a 

finger-like pattern. The resistance of the rotating contact was determined to be below 

1 mn (by measuring from one set of fingers, through the shaft, to another set). 

The flow-through cathode is a flat disk of platinum mesh (200-micron wires spaced 

600 microns apart) . This is mounted horizontally 0.64 cm above the top nickel ring on 

the anode spindle. There is a 2.S4-cm hole cut in the mesh , and lined with platinum 

wire, to accommodate the spindle . It was necessary to drill an additional hole, 0.8 cm 

in diameter, to allow the passage of bu bbles that would otherwise aggregate under the 

mesh . Electrical connection to the potentiostat is made with a platinum wire through 

the cell wall. 

The reference-electrode chamber is a glass tube located outside the cell body and 

connected by Bev-a-line IV tubing (ethyl-vinyl-acetate tubing lined with polyethylene). 

The connection is made to a nipple on the cell wall , which leads to an aperture less 

than 0.05 cm in diameter at the inside surface of the Lucite wall. This aperture is 

located at the same vertical position as the cathode and serves as a flush-moun ted lug

gin capillary. The glass reference chamber is immersed in a bath to keep the reference 
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electrode at nearly the same temperature as the flowing electrolyte. The reference elec

trode is a saturated mercurous-sulfate electrode, Radiometer America K601. 

The cell is equipped with a pretreatment vessel and two rinse columns shown 

(behind the anode) in Figure 1B-S. The pretreatm ent vessel is a Lucite column fitted 

with a. Nickel-200 sleeve, to which electrical contact is made through th e vessel fl oor. 

With the cell floor dismounted, the vessel can be raised into the cell body , as shown in 

Figure IB-6 . The nickel sleeve forms a cylindrical counter electrode for the pretreat

ment electrolysis , keeping with the annular configuration necessary for uniform current 

distribu tion. Accordingly, the floor of the pretreatment vessel is a horizon tal insu lator , 

and the upper insulating boundary is formed by the free surface between the pretreat

ment electrolyte and the nitrogen blanket. To aid in adjusting the level of this inter

face , the pretreatment vessel is outfitted with a thin transparent side-column , which 

connects to the main column at its base. The Lucite rinse columns are of proper size 

to be raised into the cell body, immersing the anode spindle in rinse water. 

The electrolyte flows vertically upward through the annular cell and returns to a 

reservoir. The total volume of electrolyte used in the system is 7 liters , sufficient to 

preven t relative concen tration changes greater than 1 percent over the course of a typi

cal experiment . The flow system is diagrammed in Figure 1B-7 and pictured in Figure 

1B-8. An 8-liter desiccator jar with a Lucite top serves as the electrolyte reservoir . 

The top is clamped to the jar and seals to the ground-glass lip of th e jar with an 0 -

rmg; the airtight chamber is kept under a nitrogen blanket prior to and during each 

run . A glass down tube leading to an 8-cm fritted-glass disk is provided for nitrogen 

sparging. Temperature control is actuated with a 300-watt , Sethco TH-300, quar tz

tube immersion heater . For runs below room temperature, a stream of -10 0 C 

methanol from a Lauda Ultra UK60D cryostat is passed through a glass cooling coil 



Figure IB-S. Electrode-pretreatment vessel (left) , 
rinse columns (center and right) , 

with anode in foreground . 
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Figure IB-6. Pretreatment vessel being raised into position . 
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Figure IB-7. Flow system : A-cell , F-filter, 
M-flowmeter, VI-recycle valve, 

R-reservoir, H-immersion heater, 
C-temperature controller, S-sparging tube, 

T-temperature probe, K-cryostat , 
P-presparger, LI & L2-rinse columns 
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Figure 1B-8. Rotating-cylind er apparatus. 
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immersed in the electrolyte reservOir. Temperature is monitored ill this reserVOir, III 

the cryostat reservoir and in the reference electrode chamber. 

Electrolyte exits the reservoir through a Lucite drawtube and travels through 1-

cm-ID Bev-a-line IV tubing to the pump intake. The gO-watt March AC-5C-MD cen

trifugal pump is equipped with magnetic coupling so that the fluid contacts only 

polypropylene and Viton. There is an immediate recycle loop at the pump, controlled 

by valve VI, shown in Figure IB-6. The plumbing and valves are 1.8-cm-ID PVC pipe, 

and all connecting tubes are Bev-a-line IV. A variable-area dial flow indicator with 

316-stainless-steel interior is used (Fischer-Porter lOA2227 A). A fritted-glass phase

separator/ filter is used to prevent particles or bubbles from entering the cell. A secon

dary recycle line to the reservoir is provided for circulation and temperature stabiliza

tion before filling the cell. Cell effluent is returned directly to the reservoir, where most 

of the hydrogen bubbles separate from the solution. The number of materials brought 

in contact with the electrolyte has been kept as low as possible: glass, PVC, 

polyethylene, polypropylene, stainless steel, teflon, Lucite, quartz and Viton. 

Nitrogen gas (Liquid Carbonic "Hi Pure") is carried through O.6-cm Tygon tubing 

to the reservoir sparger, the reservoir head, the cell head (particularly when the cell 

floor is dismounted, to flush the cell volume and exclude oxygen) , and to sparging tubes 

for the two pretreatment rinse columns. The nitrogen used to sparge the reservoir 

passes first through a glass sparging column of identical electrolyte to prevent concen

tration changes in the reservoir upon sparging. 

The cell IS powered with a Princeton Applied Research 371 

Potentiostat/ Galvanostat, capable of delivering 7 Amperes. During the potential ramp 

to steady state, the potentiostat is programmed by a Hewlett-Packard 3325A 
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Synthesizer/ Function Generator . Tot.al cell current and the Anode pot.ential are moni

tored on a Nicolet 4094 Digital Oscilloscope . After each run, these data are dumped to 

a Hewleltt-Packard 982.5A desktop computer and stored on a floppy disk . Th e 12 

Amperes of pretreatment current are provided by a Hewlett-Packard 6259B DC P ower 

Supply. The current is measured as voltage drop across a 5-milliohm shun t usin g a 

Ki ethl )' 173A Digital ~\'Iu ltim eter . The rotor speed is con t rolled by a Minarik Digi-Loc k 

speed controller , and calibrated with a handheld digital t :1c hometer. Th e temperatu re 

cont.roller is a Versatherm 2156 proportional controller using YSI 400 Th ermist.or 

probes . Temperature is measured on a Digi tec HT 5810 digit.al thermometer with YSI 

700 thermistor probes . 

Experimen tal P roced ure 

Each experiment uses seven liters of fresh electrolyte, 2.00 M H2S04 / 0.50 ~f 

NiS04, prepared from crystalline nickel-sulphate hexahydrate and 9S-percent sulfuric 

acid (both Mallinkrodt , Analytical-Reagent grade) and dionized , distilled water. 

The set of nickel rings to be used for a single experiment is mounted on a brass 

polishing spud; the rings slide snugly onto one section of the spud and are compressed 

axially when the other section is screwed into place . This assembly is mounted on the 

lath e with less than 100 microns radial runout using a six-jaw chuck and a live-ce nte r 

tailstock . If the surface is initially very rough , such as after a previous run wherein 

part of the surface has been severely pitted , it is necessary to mak e a finish cu t with a 

carbide tool. The first stages of polishing are done with dry , emery-cloth strips . On e 

lOG-cm strip of each grade, 180, 240, 400 and 500, is used for roughly ten minut es at 

1800 rpm . After this , the surface is polish ed with 9-micron di amond paste using a strip 

of felt polishing cloth . Finally , the same is done with I-micron diamond past.e. Th e 
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surface is buffed with clean polishing cloth and then with cotton . 

After polishing, the rings are dismounted from the polishing spud and cleaned by 

serial immersion in 1) technical-grade hexane , 2) acetone , 3) Alconox solution (followed 

by tap-water rinse) , 4) deionized water and .5) reagent-grad e acetone . Paint brushes 

are used in baths 1 and 3 to clean the entire surface of each ring. Taking care to 

preserve the order and orientation in which the rings were polished, they are stacked 

vertically on a wooded dowel to dry. At this time the remaining peices of the anode 

assembly are thoroughly washed in hexane and deionized water and allowed to dry. 

Using a cotton glove , each ring is weighed to within 0 .1 mg on an analytical bal

ance and transferred to a second wooden dowel , again preserving order and orientation. 

The rings are carefully slid onto the Lucite shaft , and the headpiece is threaded into 

place , snugly compressing the column of rings. No attention is paid to the angular 

orien tation of the rings . 

All possible preparations to the flow system are made before the electrolytic pre

treatment step . The flow system is cleaned by filling the reservoir with deionized water 

and circulating to all parts of the system . Each time th e system is drain ed, th e lin es 

are detached at the pump inlet and at the filter , and a su ction hose is used to remOH 

the last fluid in the reserYoir . The rinse and drain steps are rep eated. Two hours 

before run time , the cryostat is t urned on and the methanol coolant is brought to 

-10 < C. An hour before the run , the reservoir is charged with electrolyte and this is C'ir

cu lat ed th rou gh th e recycle loops of the flow system . Coolan t fI ow is s ta rt eel. the 

temperature-con trol system is turned on , and t he system is a llowed to come to tem

perature. The floor is detached from the cell body and a stream of nitrogen is suppli ed 

to flu s h o ut the cell. 
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For the purpose of rendering the anode surface in a uniform, reproducible condi

tion before the experiment , an electrolytic pretreatment step is performed. Effort is 

made to minimize the time interval between this pretreatment and the beginning of the 

run , and , during this stage , to protect the surface from exposure to ambient oxygen . 

The pretreatment vessel is charged to the fill line with 50-percent sulfuric acid . Elec tri

cal connections are made to the high-current power supply . Both rinse columns are 

filled with deionized water and sparged with nitrogen for 15 minutes before pretreat

ment . Using a special positioning jig, the anode spindle is raised into position in the 

cell and threaded into the rotator shaft. The motor is turned on and the shaft is spun 

at 30 rpm to ensure circumferential uniformity of current density . 

When all preparations have been made, the pretreatment vessel is raised into posi

tion and the electrolyte level is adjusted . (If the starting level of acid in the pretrea t

ment vessel has been judicious, no adjustment is necessary .) This is done by adding or 

removing fluid in the clear side column until the meniscus coincides with a mark level 

with the top edge of the anode surface . If the level is too low, part of the anode does 

not receive pretreatmen t . If the level is too high, there is an excessive path way for 

current to the upper edge of the anode ; the local current density will be higher there , 

and any weight change of the anode can no longer be assumed to be unif.ormly distri

buted in the axial direction . (It is impossible to weigh the rings after installation . so if 

is important to be able to accurately estimate the weight change of each ring during 

pretreatment.) The power supply is turned on for the preset time interval , which is 

measured to within one second. In most runs , an anodic pretreatment was performed 

at 100 mA/ cm:! for 60 seconds . In other instances an equivalent cathodic current was 

passed, either for 50 or 10 seconds . Once the current has been turned off, the pretreat

ment vessel is lowered and quickly replaced with the first rinse column . There is a 
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sufficient back pressure of nitrogen maintained at the cell head that whenever the cell 

bottom is open (i.e . not occupied by the pretreat vessel or a rinse column) the nitrogen 

efflux prevents the influx of air. The spindle is rinsed for two minutes at 30 rpm before 

the second rinse column is exchanged rapidly with the first. Upon remoying the second 

column. the cell floor is quickly replaced and fastened. This done , the electrolyte , 

which has been circulating, is shunted through the cell. The total time between pre

treatment electrolysis and cell filling is usually about five minutes. 

In every run , the electrolyte throughput was 55 ± 5 cm3/ s , corresponding to an 

axial superficial velocity of 3 .6 cm l s in the cell. Once there is electroly te in the cell , 

the reference-elect.rode chamber is also filled as soon as possible . This is done by plac

Ing a ground-glass fitting into the tube and pulling a vacuum on the sealed chamber; 

this draws electrolyte from the cell along the connecting line into the reference 

cham ber . Once the reference electrode is in place and all connections are made 

between the electrodes and the potentiostat, the cell potential is allowed to reach a 

st.eady value. The oscilloscope sweep is triggered at this point to record the approach 

to equilibrium, which usually takes from 10 to 30 minutes . The sweep duration must 

be long enough to record the cell current and potential during the entire run . When 

the potential ceases to drift, the potentiostat is switched from the direct-measurement 

mode to the null mode and the appropriate potential differenc e needed to null the cell 

is applied. Since this open-circuit potential is the mixed potential of a corrodi ng sys

tem , it depends on mass transfer and hence on rotation speed. The null measurement 

is made at. the rotation speed of the run , 800 rpm . 

At this point , the electrolysis is commenced . The potentiostat is sw itched to the 

control-potential mode. The funct.ion generator , which has been programmed to deliYE'f 

a pot.ential ramp of preset slope up to the desired steady-state potential difference , is 
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triggered. Applied potential and cell current are monitored on the oscilloscope . When 

the desired steady-state potential is reached, the ramp is halted, and this potent.ial is 

applied for the remainder of the run. Temperature is monitored at five-minute inter

yals: the reference chamber is kept within 2
0 

C of the reserYoir temperature (in the 

runs at 3 0 C ice is added to the bath) . Visual observations of the anode surface are 

periodically recorded . 

At the end of the preset time interval for steady-state electrolysis (usually 70 

minutes) , the current is shut off. Before stopping the rotation , the open-circuit pot. en

tial is again recorded . The pump is turned off and the cell is drained . The cell fl oor is 

detached , and the anode spindle is removed , rinsed in water , and disassembled . Some

times the rings are frozen on the Lucite shaft , and they can be more easily removed 

after immersion in ice water . Each ring is rinsed in water and acetone and allowed to 

dry before weighing. \Vit.h the rings stacked on a dowel in their original patt.ern , the 

appearance of the anode surface is recorded. The flowcell and reservoir are drained 

and rinsed with deionized water. The oscilloscope data are dumped to the comput er 

and stored on a floppy disk . 

Calculation of average current density from the weight loss from a ring IS by 

straightforward application of Faraday 's law , based on the assumption of st eady-state 

oxidation of nickel to ~i:!+ ion with lOO-percent current efficiency. It is impossible t.o 

account rigorously for the transient period associated with the initial potential ramp : 

this is treated by adding half of the ramp time to the duration of the isopotenti al por

tion of the run . The weight loss during anodic pretreatment is ascribed to the same 

reaction and is assumed to occur uniformly over the anode surface . In an indep end en t 

experiment , the current efficiency for this reaction was measured to be 96 ± 5 percent. 

!lficroelectrode Polarization Measurements 
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Two kinds of microelectrodes were used t.o obtain overpoten tial curves for Nickel 

200 in 2 M H 2S04 / 0 .5 M NiS04: a rotating-disk electrode (RDE) , and a small 

rotating-cylinder electrode (SRCE) constructed with a single ring segment from the 

larger anode assembly . 

The Pine ASRP2 rotator with ASR speed con trol was used for both sets of me as

urements. The rotating-disk electrode , pictured in Figure 1B-9 was mad e in our 

machine shop. As illustrated in Figure 1B-1O, the active area is one fac e of a cylindri

cal section cut from a piece of the same Nickel-200 stock from which the nickel rings 

were machined . This was done to ensure that both the RDE polarization me as ure

men ts and the RCE current-distribution measurements were being made on the same 

anode material. It is noteworth y, however , that the surfaces of the two electrodes 

(RDE and RCE) are oriented differently with respect to the direction in which the tub

ing was drawn during fabrication . The nickel core, 0.117 ± 0 .001 em in diamet er , is 

thermally shrink-fit into the stainless-steel shaft , 1.78 em in diameter, with 0.3 cm pro

truding from the shaft. The lower 7 centimeters of this are cast in epoxy and then 

machined on the lathe to a diameter of 1.96 cm . 

The small disk diameter is desirable in that the current distribution approaches 

uniformit.y. By comparison with published data (24) , one can estimate that the max

imum local deviation from the average current densit.y will be less than 5 percent. 

The ohmic resistance of the RDE cell can be approximated as 2/ 1.'2/\'r 0 (1 .5): at th e 

peak anodic current density , the ohmic drop is less than 2 mY. This can be safe ly 

neglected , and when the anode potential is referred to its open-circuit value it app roxi

m a tes the surface overpotential, T/ . 

It is desirable to measure both the polarization behavior and the cu rrent 



65 

I 

Figure IB-9 . Rotating-disk electrode. 
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Figure 1B-10. Steps in the fabrication of the rotating-disk 
electrode B from a section of the nickel tu bing A used 

to make the rotating-cylinder anode . 
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distribution at the same condition of mass transfer. Th e RCE is spun at 800 rpm . 

According to the correl ations for mass transfer to a RCE (25) and to a RDE (::W) , the 

disk speed that giYes the same limiting current is 1580 rpm . 

The glass RDE cell is shown in Figure IB-ll . Th e area of exposure of the electro

lyte to the atmosphere is kept to a minimum , and the chamber is constantly sparged 

and/or blanketed with nitrogen during operation. The counterelectrode is a platinum

foil strip with an immersed surface area of 30 cm 2
. As in the RCE cell, a saturated 

mercurous sulfate reference electrode is used ; this is positioned in a side chamber 

separated by glass frits from the main compartment. Depending on the desired operat

ing temperature, the glass vessel is either wrapped with heating tape and thermostated 

with the same controller used in the RCE setup, or partially submerged in an ice bath. 

Much of the procedure and instrumentation is identical to that used in the RCE exper

iment. 

For pretreatment, the same current-density/ time program is applied to the RDE 

as to the RCE. The RDE is small enough that both the pretreatment and the yoltam

mogram can be performed with a Princeton Applied Research 173 

Potentiostat / Galvanostat . The pretreatment is carried out in 20-ml of 50-percent 

H2S04 in a 50-ml beaker, with a l-X-5-cm piece of platinum foil as the counter elec

trode. 

Immediately after pretreatment, the RDE is quickly rinsed in the two sparged-H:p 

rinse columns used with the RCE and transferred to the RDE chamber which has been 

sparged with nitrogen for 20 minutes and brought to operating temperature. Upon 

connection of the three-electrode circuit, the open-circuit potential is monitored and 

allowed to reach a constant value. From this value, the potential is ramped at 8.6 
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Figure IB-ll. Cell vessel for rotating-disk electrode. 
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m V j min USlDg the function generator in conjunction with the PAR 173 potentiostat, 

taking about three hours to scan to the onset of transpassivity. Temperature is moni

tored and controlled to within 1 0 C. Current-potential data are recorded on the 

Nicolet 4096 oscilloscope and subsequently transferred to the HP 9825 computer and 

disk storage. 

The second electrode used for polarization measurmen ts is the sm a 11- rot atin g 

cylinder electrode . This was built to closely approximate the electrode surface condi

tion of the larger RCE cell while preserving a nearly uniform current distribution. The 

active surface is a single ring segment from the larger anode assembly. The SRCE is 

shown schematically in Figure IB-12 and photographed in Figures IB-13, 14 and 15. 

The shaft is machined from a bar of aluminum and mounts in the Pine ARCP2 Rota

tor. The nickel ring, 1.27 cm in height, fits snugly on the bar making electrical con

tact, and is compressed between a teflon sleeve above and a teflon cap below, which is 

fastened to the shaft with a teflon bolt (Figure IB-14). The ring surface is inset 0.18 

cm from the cylindrical teflon surface; this prevents edge effects in the primary current 

distribution. A Lucite frame was fashioned to hold the short annular platinum foil 

strip, also 1.27 cm in height, in proper axial and concentric alignment to the anode sur

face (Figure IB-15) . Straight current lines within the interelectrode volume are 

enforced by a floor and ceiling; these each contain a sparse arrangement of holes to 

allow the fluid in the interelectrode gap to communicate with the rest of the solution in 

the vessel. Each run is made with a fresh nickel ring from a single complete set , pol

ished according to the procedure described above. Pretreatment electrolysis is carried 

out using the same counterelectrode jig, in a different beaker containing 50-percent 

H2S04, The entire assembly is rinsed twice in deaerated deionized water before immer

sion in the electrolyte. Again, a saturated-mercurous-sulfate reference electrode is used ; 
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XBB 869-7741 

Figure IB-13. Small rotating-cylinder electrode , assembled 
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Figure IB-14. Small rotating-cylinder electrode , disassembled , 
showing aluminum shaft, ni ckel ring , teflon cap and screw 
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XBB 869-7743 

Figure IB-15. Small rotating-cylinder cell 
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this is housed in a separate chamber connected by a line of electrolyte to an aperture in 

the ceiling of the interelectrode volume, 2.7 cm from the centerline. The shaft is 

rotated at the same speed (800 rpm) as the large RCE. 

Results and Discussion 

Polarization Measurements 

Figure 18-16 shows three polarization curves obtained on the RDE at three 

different temperatures. In each case a potential ramp of 8.3 m V /min was used. Tem

perature was varied to find the most advantageous operating condition for the RDE 

experiment. We chose to perform all but one RCE experiment at 3 0 C for two reasons: 

1) the broad passive-potential range (high Epmax as defined in Part A) allows a greater 

range of applied potentials, Y APP, for the RCE experiment, and 2) the low act.ive

current-densit.y peak, i cr> allows for a greater range of Lp on our RCE according to t.he 

one-dimensional models (Refs. 7-11, Part A). The first series of theoretical current

densit.y profiles presented in Part A was calculated using Curve 1 (Figure IA-I of Part 

A). There is a secondary passivation phenomenon at this low temperature, but this 

falls outside the potential range of the RCE experiments. While only one voltammo

gram at 3 0 C is shown in Figure IB-16, five others were recorded under identical condi

tions, three with anodic pretreatment and two with cathodic pretreatment. Reprodu

cibility was fairly good : the mean value of icr was 37 .6 mA/ cm 2 with a standard devi

ation of 3.6 mA/ cm2 (less than ten percent), and all curves were of similar shape. The 

curves taken using cathodic pretreatment showed no discern able differences from the 

others . 

Three examples of polarization data measured on the small rotating-cylinder elec

trode are shown in Figure IB-17. Each scan was made at 50 m V / min and was 
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terminated before the onset of transpassivity. (Comparison to other data taken at 

8.3m V j min showed no significant difference .) It is immediately apparent that t.he 

repeatability of the measurement is low: i cr ranges from 12.0 to 38 .5 mA/ cm2
, and 

there is also variation in shape and in the Flade potential. 'vVe do not have a satisfac

tory expla.nation for this scatter. However, there are some im portan t differences 

between the SRCE measurements and the more reproducible RDE measurements. 

Compared to the RDE, the SRCE has roughly 800 times the surface area to be pol

ished and pretreated. As explained earlier, the two electrode surfaces are orien t.ed 

differently with respect to the grain structure. Furthermore, the SRCE is prepared for 

each experiment by a carbide-tool "face cut," which may introduce extra work ha.rden

ing , and this is followed by unidirectional abrasion and polishing on the lathe. In con

trast , the RDE surface is not machined each time , and the abrasion by hand and pol

ishing on the wheel are in random directions. 

For the comparison of the experimentally measured to the theoretically predicted 

current distribution, there is the question of which polarization curYe to use in the 

model. The predictions presented in Part A are based on two polarization curves 

chosen to represent two extremes in the range of the curves measured : Curve 1 of Fig

ure 1B-16 and Curve 4 of Figure 1B-17 (corresponding to Figures lA-l and 1:\-8 of 

Part A). 

Current-Distribution A1easurements 

Table lA-l summarizes ten experiments conducted on the rotating-cylinder 

apparatus. Each experiment was performed with a newly polished set of nickel seg

ments from one of five sets. The cell-current history for one experiment (Run number 

2) is shown in Figure IB-18. The lower box shows the applied-potential program , and 

the upper one shows the response in cell current.. The current rises quickly during the 
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Table lA-I: Summary of Rotating-Cylinder Experiments 

Run Pretreatment Pretreatment Ramp FA?? Stable A/ P 
N umber Type Duration Rate Coexistenc e? 

(8) (mV/ min) (mV) 

11 anodic 60 333 1000 yes 

2 anodic 60 300 1350 yes 

3 anodic 60 300 1200 no 

-4 anodic 60 300 1200 yes 

, ' 
5 anodic 60 300 1275 yes 

cathodic 60 

6 cathodic 10 2400 1200 yes 

7 cathodic 10 2400 1200 no 

8 cathodic 10 2400 11)-" ~,;) no 

9 anodic 60 

cathodic 3002 300 11)-" ~I;) yes 

10 anodic 60 300 1000 yes 

1 at 25 · C 
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first part of the ramp , reaches a peak value , and then declines to a nearly steady-state 

value within about seven minutes . After the initial transient , which outlasts the poten

tial ramp by two to three minutes, the current descends gradually , but does not change 

by more than 10 percen t. Th e drift could be a consequence of the changing condition 

of t,he electrode surface as the dissolution proceeds . It is not. eworthy that no oscillatory 

beh av ior is apparent on a time scale greater than 4 seconds . 

In three experiments (Runs 3 , 7 and 8) , the behavior was quite different from t he 

that described above. During the potential ramp , the current rose as usual but leveled 

off at a value lower than normally observed. Then , within fi ve m inutes of the start of 

electrolysis , the current dropped by two orders of magnitud e, indicating that. th e ent ire 

electrode surface had reached the passive state. Attempts to reactivate the anode by 

repeating the potential ramp resulted in even more rapid jumps to to t a l passivity. 

The passive film on nickel is known to be on the order of one nanometer in thick

ness and. of course , invisible . How eve r , after about ten minutes of electrolysis. the 

border between the regions of passive protection and active dissolution can be dis

cerned . The position of this border can be traced over the cou rse of the run and. in 

general , is seen to move about 0 .3 em downward from beginning to end . 

Figure 18-19 shows the condition of the anode surface after an experiment (Run 

1). Near the top (which was nearest the cathode) t here is a zone of passive protection 

A , where the surface has retai ned some of its original lustre. Below this is the actiYe

passive transition B : a speckled region . silver in color. which changes ab ru ptly in to a 

zone of heavy attack C . Here t he surface is brown in color and appears rough and pit

ted . Magn ifi cat. ion reveals that t he rough ness corresponds to crys tal grains etched to 

different d<.>pths. Th e grains are axia lly elongated , re fl ect in g t hat t he ni ckel t ubin g was 
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Figure 1B-19. Nickel rings after a 70-minute experiment: 
A-zone of passive protection , 

B-act.ive-passive transition , 
C- zone of heavy attack, 

and D-zone of mild attack. 
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drawn in fabrication. The brown color is probably iron oxide , as iron is a major impur

ity in Nickel 200. With increasing distance down the anode, there is a gradual transi

tion to a zone of mild attack D : the degree of roughness diminishes, as does the inten

sity of the brown coloration. The bottom portion of the anode also has a shininess 

characteristic of the original polished surface. There are some markings visible in Fig

ure IB-19 that coincide with the joints between rings. It is noteworthy , however, that 

the abrupt transition from silver to brown falls within one ring and not at the boun

dary between two rings; this is a sign that the segments do in fact simulate a continu

ous surface. 

Calculation of average current density on a given ring is by straightforward appli

cation of Faraday's law, based on the assumption of steady-state electrolysis. It is 

impossible to account rigorously for the transient period associated with the initial 

potential ramp; this is treated by taking half of the ramp time and adding this to the 

duration of the isopotential portion of the run. A current efficiency of 100 percent is 

assumed, for oxidation of pure nickel to Ni2+ ion. The weight loss during anodic pre

treatment is assumed to correspond to the same reaction and to occur uniformly over 

the anode surface. In an independent experiment, the current efficiency for this reac

tion was measured at 100 percent, within 2 percent experimental error. 

Figure IB-20 contains the current-density profiles determined in Experiments 6, 4, 

5 and 2. Current density is plotted versus the distance along the anode, measured 

from the edge near the cathode to the opposite edge 15.24 cm away. Panel A of this 

figure corresponds to Experiment 6, with V APP = 1200 m v. The steplike character of 

the profile reflects the segmenting pattern of the anode: in this example, the shorter 

rmgs were positioned between 5.7 and 10.2 cm . The profile agrees qualitatively wit.h 

expectations: the region nearest the cathode displays a relatively low cu rren t density 
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Figure 18-20. Experimentally deterimined current-density profiles: 
A-Experiment 6, V APP = 1200 mY; 

B-Experiment 4, V APP = 1200 mY, with 
theoretical predictions based on 
two sets of polarization data; 

C-Experiment 5, V APP = 1275 m V; and 
O"":""Experiment 2, V APP = 1350 mY. 
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characteristic of the passive state; there is a transition to higher, active curren t den

sity, which reaches a maximum and then decays with distance along the anoele. The 

gross features of the distribution are adequately resolved by the segmented-electrode 

technique. 

The experiment was designed to measure the steady-state current-den~ity profile. 

However, as we have discussed, the cell current does drift slightly, and the obsel'\'ed 

active-passive transition migrates a short distance during the experiment. Thus it is 

possible that the profiles shown in Figure IB-20 contain some "blurring." i.e. t.he 

curren t distribu tion may have shifted slightly during the experimen t, the resulting 

weight-loss distribution reflecting an average of this course. 

Figure IB-20B shows the distribution recorded in Experiment 4, performed at the 

same conditions. This profile differs slightly from that in Panel A, most ostensibly in 

the position of the current-density maximum, but also in the steepness of the active

passive transition. The comparison gives an indication of the reproducibility of the 

experiment, although a more complete evaluation is made later from Figure IB-21. 

Plotted for comparison on Panel B are two theoretical predictions of the current distri

bution, smooth curves PI and P4, based on Polarization Curves 1 and 4. It is 

apparent that neither prediction matches well with the experimental data of Panel B 01' 

of Panel A. While the total integrated currents and the current-density maxima match 

PI more closely, the positions of these maxima and the slopes of the actin'-passin' 

transition agree better with P4. The current densities experimentally determined in 

the passive zone exceed those of both PI and P4. 

Panels C and D of Figure IB-20 display measured profiles corresponding to Experi

ments 5 and 2 (V APP = 1275 and 1350 mV). The passive current densities agree 
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bet.ter with the predictions than in panels A and B. The peak current densities lie 

between those of Polarization Curves 1 and 4. However, in both examples C and D, 

Lp exceeds the value predicted using either Curve 1 or Curve 4. 

Finally, we present Figure 1B-21, a comparison of all of the current-distribution 

measurement.s \vit.h the theoretical calculations, in terms of the length passiYateci, Lp. 

Each open dot represents an experiment; the number labels correspond to Table l. 

Experiment 1 was conducted at 2.5 0 C and should be compared to the dotted line seg

ment. Not appearing on the plot are the three experiments, 3, 7 and 8, in which the' 

entire anode became passive within five minutes. It should be remembered that, 

although we have striven to promote the partly passive condition, the fully passiye con

dition does correspond to a valid solution of the mathematical model. Moreover, the 

occurrence of complete passivation is by no means undesirable in applications of anodic 

protection. It is tempting to attribute the scatter in the measured Lp -versus -loAPP 

data to the scatter in the measured polarization behavior. Figure 1B-21 indicates that 

such a claim may be partly, though not entirely, valid. The points for Experiments 2, 

9 and 10 lie well outside the envelope outlined by curves Dl and D4. Despite the low 

reproducibility of the RCE experiments, we observe without exception that the meas

ured Lp values exceed the model's predictions. \Ve do not have a satisfactory explana

tion for this. From the standpoint of anodic protection, the model seems to proyide a 

consistent "worst case" estimate of throwing power. This work suggests that a large 

obstacle to successful application of the model will be the uncertainty in determining 

the active-passive kinetic data, and, in turn, the uncertainty in the initial condition of 

the anode surface. The large variability of active-passive kinetic data and the high 

sensitivity to the initial condition of the anode surface are perhaps largely responsible 

for the slow acceptance of anodic protection in the corrosion-control industry. 
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Conclusion 

An experimental study of an active-passive cell with nonuniform current distribu-

tion has been performed. The condition of partial passivity was successfully produced 

on the anode, and the steady-state current distribution was determined with good spa-

tial resolution by the segmented-electrode, weight-loss technique. There was limited 

reproducibility in the experiment, very likely due to variability in kinetic behavior, as 

evidenced by the scatter in the polarization measurements. This variability, in turn, 

probably stems from a. high sensitivity to the initial condition of the anode surface and 

the difficulty of preparing the anode surface in a reproducible manner. A more fastidi-

ous program of experiments might give more reproducible results, but the applicability 

of these results to systems of practical interest, in which the anode surface cannot be 

methodically prepared, is uncertain. The scatter in the current-distribution measure-

ments precludes a conclusive evaluation of the theoretical model of Part A. Howenr, 

in every instance, the extent of the passive zone measured in the experiment exceeded 

the prediction by the model. Accordingly, the experiments suggest that the model pro-

vides a conservative estimate of throwing power. 
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V APP 

LIST OF SY1\,fBOLS 

maximum potential range that can be spanned in the 
passive regime withou t incurring transpassivity, m V 

current density, mA/cm2 

peak active current density on polarization curve, rnA/em::! 

current density in passive potential range, rnA/em::! 

cell current, rnA 

length of the passive zone, em 

radius of rotating-disk electrode, em 

voltage between anode and cathode in excess 
of the open-circuit value, m V 

electrolyte cond uctivity, ohm -lcm-l 

surface overpotential, m V 
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Chapter 2 

The Influence of Attached Bubbles 
on Potential Drop and Current Distribution 

at Gas-Evolving Electrodes 

ABSTRACT 

A theoretical study is presented of the effects of bubbles attached to the surface of 

a gas-evolving electrode, with emphasis on their influence on the local current distribu-

tion and on the potential drop at the electrode. The mathematical model accounts for 

the combined influence of: 1) ohmic obstruction within the electrolyte; 2) area mask-

ing on the electrode surface, which raises surface overpotential by increasing the 

effective current density; and 3) decreased local supersaturation, \vhich lowers the con-

centration overpotential. The electrolytic transport is described by potential theory, 

and the dissolved gas is assumed to obey steady-state diffusion within a concentration 

boundary layer. The coupled field equations are soh-ed numerically using the 

boundary-element method. The model is applied to hydrogen evolution in potassium-

hydroxide solution. For gas evolution in the Tafel kinetic regime, the current distribu-

tion is nearly uniform over the unmasked electrode area, and the increase in surface 

overpotential is the dominant voltage effect. However, outside the Tafel regime (eg. on 

cathodes of greater catalytic activity) the current density is strongly enhanced near the 

bubble-contact zone, and the supersaturation-lowering effect is quite strong, largely 

offsetting the ohmic and surface-overpotential effects. Proceeding from a set of base 

conditions, we perform a systematic examination of attached-bubble effects, their rela-

tive importance, and their dependence on system variables. 
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Introduction 

Electrochemical gas evolution continues to occupy a prominent role in the electro

lytic industries. The chloralkali industry alone, which consumes nearly two pE'rcent of 

the electric power generated in the U.S., calls for research that can lead to decreased 

energy losses. Gas-evolving cells are characterized by the abundance and complicated 

behavior of electrolytic bubbles, which give rise to numerous effects on the electrode 

process and on cell performance. In studies aimed at raising the level of fundamental 

understanding of gas-evolution, it is helpful to examine these effects individually. 

While such isolation is often difficult to achieve experimentally, theoretical analysis can 

sometimes serve as a valuable probe, identifying trends, ranking the importance of 

competing effects, and suggesting improvements. The scope of this paper is restricted 

to those bubbles that are attached to the surface of a gas-evolving electrode, and we 

use a theoretical model to examine their influence on the reaction. We further restrict 

our inquiry to voltage effects: the influence of attached bubbles on ohmic drop and on 

electrode polarization. 

Much of the literature on bubble-induced ohmic drop deals with the increase in 

bulk-electrolyte resistivity caused by dispersed bubbles. These studies are reviewed by 

Meredith and Tobias (1) and more recently by Vogt. (2). The major relations that have 

won acceptance are Maxwell's equation (3), the Bruggeman equation (4), and an equa

tion developed by Meredith and Tobias (1,5). 

There is also a growing body of literature on the thin layer of electrolyte close to 

the electrode surface. This layer is known to be more crowded with bubbles than the 

bulk electrolyte, and the contribution of this "bubble curtain" to the total cell resis

tance has received special attention. Efforts to characterize this layer and its voltage 

effect have been both experimental and theoretical. Janssen and Barendrecht (6) have 
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measured the relative Increase III surface-layer resistance at a rotating-disk electrode 

using AC-impedance methods. In a particularly illuminating· study, Bongenaar

Schlenter et al. (7) used a microscopic technique to determine the density of bubbles as 

a function of distance from the electrode surface. They report t".-o regions: a "layer 

adjacent to the electrode, crowded with bubbles," and a second region where "the bub

ble population is much lower." The crowded layer is at least several average bubble 

diameters in thickness and features a gas void fraction that drops nearly linearly with 

distance. These authors proceed to advance a resistance model which is based on the 

Bruggeman equation and takes into account the spatial variation of void fraction. 

Other authors (6,8,9) have estimated the increment in resistance due to the surface 

layer of bubbles using bulk-dispersion models such as the Bruggeman equation. These 

treatments generally assume a bubble-layer thickness of approximately one average 

bubble diameter. Comparison with the analogue experiments done by Sides and 

Tobias (10) shows that these bulk-dispersion models are relatively successful at predict

ing the ohmic effect of attached bubbles in the absence of polarization (even though, as 

Sides and Tobias (11) point out, attached bubbles offer less obstruction than free bub

bles since the field disturbance due to an attached bubble is truncated by the isopoten

tial electrode surface). 

Another approach is the constriction model of Sides and Tobias (10), in which, at 

any plane parallel to the electrode surface, current density through the "unvoided" 

electrolyte is taken as uniform. Lanzi and Savinell (12) present a modification of this 

approach wherein the electrolyte among the attached bubbles is taken as a three

dimensional dispersion of smaller bubbles. 

This paper will focus entirely on those bubbles which are actually attached to the 
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electrode surface, or "fixed" as opposed to "free." We carry out a separate treatment 

of these fixed bubbles, not because they are more crowded (since we know that the 

crowding extends beyond the fixed layer), or because their ohmic effect is significantly 

different from that of the free bubbles (the successful applicat,ion of bulk-dispersion and 

constriction models to the fixed layer suggests that this is not so). Rather, the main 

reason for devoting special attention to attached bubbles is that they exert two other 

voltage effects beyond ohmic considerations: they increase the surface overpoten tial by 

masking portions of the electrode and raising the current density over the remaining 

area, and they change the concentration overpotential by influencing the level of gas 

supersaturation at the electrode surface. Accordingly, the attached bubbles can be 

expected to exert a disproportionately large effect on cell voltage. 

The two overpotential effects have received little attention In the literature. The 

kinetic effect is given cursory mention by Hine et al. (13) and Lanzi et al. (12) and is 

treated in slightly more dept4, by Hine et al.(14). To our knowledge, only Sides (15) 

has described a "total voltage penalty associated with the presence of bubbles," which 

includes all three components (ohmic, kinetic, and concentration). He circumvents 

analysis of distributed effects by treating spatial averages of surface and concentration 

o\'erpotential, and defines "hyperpolarization" as the excess surface overpotential attri

butable to the presence of bubbles. He measures this quantity in an analogue experi

ment by a current-interruption technique. 

A rigorous theoretical description of the electrical effects of attached bubbles must 

account for the nonuniform distribution of current density and gas supersaturation, 

Since this requires solution of difficult field problems in two and three dimensions, few 

distributed models have been put forth. Sides and Tobias (11) give an exact solution 

of the potential field around an isolated bubble tangent to an electrode surface. 
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neglecting polarization effects. From this result, they proceed to calculate the resIs

tance increment due to a sparse array of such bubbles. Wilson and Hulme (16) extend 

this analysis to bubbles of arbitrary contact angle. In addition, these authors solve for 

gas supersaturation, which, they acknowledge, influences the electrode potential; how

eYer, they do not account for this concentration overpotential in coupling the potential 

field to the concentration field, and moreover, they employ an unrealistic boundary 

condition away from the electrode. 

In the present analysis, we calculate the influence of attached bubbles on the 

potential drop at a gas-evolving electrode, including both surface- and concentration

polarization effects. The procedure is to solve numerically for the potential and gas

concentration fields around a single attached bubble, and then to extend this result to 

a pattern of bubbles on the surface. The model is first developed in general terms, and 

then discussed in the context of a specific example, namely hydrogen evolution under 

conditions typical of a membrane-type chloralkali cell. 

The Model 

Reported observations of gas evolution on the microscopic scale reveal that the 

electrode surface is the site of frequent nucleation, growth, and detachment of bubbles. 

At any instant in time, there are many attached bubbles in different stages of growth, 

randomly arranged on the surface. 

Our first step in constructing a tractable model for predicting the voltage effects of 

attached bubbles is to restrict our attention to one point in time, and to solve the tran

sport problem prevailing at this instant. We make the key assumption that the tran

sport phenomena are pseudosteady-state with respect to bubble growth. The validity 

and consequences of this assumption are discussed in detail later in this section. 
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A second idealization is to describe the assortment of attached bubbles as a mono

sized array: all bubbles are taken to be spherical, each having the same diameter and 

the same contact angle with the electrode surface. Moreover, the geometric arrange

ment. of bubbles on the surface is idealized as a regular hexagonal array. This allows 

us to solve the field problem for one bubble in its hexagonal unit cell, and to extend 

this solution by symmetry to the entire array of bubbles. (This idealizat.ion is used by 

Sides (10).) 

In a furt.her simplification, the hexagonal unit cell is replaced by a cylinder of the 

same projected area. This "equal-area-cylinder" approximation, illustrated in Figure 

2-1, reduces a three-dimensional problem to an axisymmetric one. (The validity of this 

approximation will be addressed later in the discussion of Figure 2-6.) 

The boundary-value problem corresponding to the physical model chosen to 

describe the vicinity of a single attached bubble is stated in Table 1, which refers to 

Figure 2-2. The next four paragraphs give a physical interpretation of this problem 

statement. 

The electrolytic transport can be described by potential theory (1 i) since, in most 

important instances of gas evolution, the electrolyte concentration is high and does not 

vary significantly, even within the mass-transfer boundary layer. Thus the potential 

obeys the Laplace equation throughout the electrolyte (Eq. 1). (The fact that we have 

restricted our attention to a single instant in the course of the bubble's growth does 

not introduce any error at this point, since the potential field and the electrical double 

layer relax much more quickly than the bubble diameter increases.) 

The gradient in potential can have no componeht crossing either the axis of sym

metry f3, the bubble surface f2' or the cylindrical boundary f& (Eq. 2). Far from the 
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Table 1: Problem Statement 

Dimensional Dimensionless Domain 
Form Form or Eq. 

Boundary 

" 0 ,,/' ¢' 0 DA (1) 'V~rp - -
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a¢ 
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a¢>' 
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az 
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az 

" 0 
", , 

0 DB (4) 'V~Cg - 'V~ cg -

aCg aCg 
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r 3B, r 5B (5) 
-- - 0 -- - 0 on an , 

SAT , 
1 r2 (6) cg - cg cg -

BULK Cg 
BULK rc (i) cg - cg , 

cg - SAT Cg 

aCg a¢> aCg 
, 

a¢>' fl (8) 8g K 
- - - - -w --

az n F Dg az az az' 

¢> ¢>' 
, . 
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Figure 2-2. Geometric configuration of the dual boundary-value problem. 
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electrode, the potential gradient is fixed (Eq. 3) at the value corresponding to the aver-

age current density applied at the electrode, iAI/E' according to Ohm's law: 

z \l<P = --. 
I\, 

(1l ) 

At the electrode surface r 1, the potential of the metal electrode differs from the poten-

tial in solution by a total overpotential TI, which obeys the relation: 

a,F 
---1'/ 

_ e RT (12) 

Variations in electrolyte concentration are ignored. The total overpotential, TI, IS the 

sum of the concentration overpotential, 

8 g RT cg 
TIc = - --F In SAT' n Cg 

( 13) 

and the surface overpotential TIs, expressed in this study by the Butler-Volmer expres-

slon, 

( 14) 

with 

(1.') ) 

(It is assumed that Q a + Q c = n .) 

The transport of dissolved gas is coupled to the electrolytic transport. This cou-

piing is expressed in the two matching conditions at the electrode surface (Eqs. 8 and 

9). These conditions link the two boundary-value problems (concen tration and poten-

tial). One of these matching conditions, the overpotential expression (Eq. 9), has 

already been discussed. Perhaps the simplest interpretation of this condition is the 
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following: a buildup of dissolved gas at the elect.rode surface tends to promote the 

reverse reaction and diminish the overall current density; as current density is propor-

tional to the potential gradient, it is clear that the potential problem is coupled to the 

concentration problem. 

The other matching condition is a flux equality (Eq. 8). This states that the rate 

at which charge is conducted through the electrolyte to the electrode surface is related 

by stoichiometry to the rate at which dissolved-gas product is formed and carried away 

by diffusion. 

In treating the transport of dissolved gas, we make two important simplifications. 

The first is to assume that the dissolved gas moves only by diffusion within a stagnant 

boundary layer. Beyond this Nernst diffusion layer, the solution is taken to be well 

mixed. The second key simplification, which has already been introduced, is the 

pseudosteady-state assumption. This allows us to treat a single instant in the lifetime 

of a growing bubble as a steady-state problem, as if the bubble were not actually 

changing in size. This approximation holds only if the time constant of bubble growth 

greatly exceeds the time constant for relaxation ~f the concentration field around the 

bubble. One might expect that, since both of these events occur by the same mechan-
I 

ism (diffusion), the two time constants should be on the same order of magnitude. 

Comparison of the diffusion time constant, 

( 16) 

to the age of a bubble growing according to Scriven's model (18) confirms this expecta-

tion. It is therefore clear that the pseudosteady-state approximation represents a 

departure from full rigor. 
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In summary, neither the stagnant-layer assumption nor the pseudosteady-state 

assumption is strictly valid, but they are both of great value in simplifying the problem 

to the point where it can be solved. (The unsimplified problem would require solving 

the transient convective-diffusion equation, which first requires solving the transient 

fluid flow around a growing bubble, including proper initial conditions and the 

influence of gross stirring by free bubbles. The computational effort required for this 

problem is prohibitive.) 

It should be emphasized that the loss of rigor ensuing from these two assumptions 

affects only those cases in which the effect of supersaturation plays a significant role. 

As will be shown later, there is a wide and important range of conditions over which 

supersaturation does not influence the voltage drop. In these instances, the secondary 

current distribution prevails and, as explained earlier, the pseudosteady-state approxi-

mation is fully justifiable. 

Finally, it is important to consider that, despite the idealizations made in posing 

the concentration problem, the model still offers considerable value as: 1) a preliminary 

investigation of super~aturation effects of attached bubbles, useful for identifying 

trends and parameter ranges of interest; 2) a valuable limiting-case solution;t and 3) a 

starting point for more sophisticated models. 

With the concentration problem idealized to pseudosteady-state diffusion, we can 

write the Laplace equation for the dissolved-gas concentration within the Nernst 

diffusion layer (Eq. 4). No gas is allowed to diffuse across the axis of symmetry r 3B or 

across the cylindrical boundary r SB (Eq.5). At the bubble surface r z, the electrolyte 

tit is safe to say that the pseudosteady-state analysis predicts an overall 
supersaturation-lowering effect that is uniformly exaggerated. 
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solu tion contacts the gas phase which is, to a good approximation, at the operat.ing 

pressure of the electrolyzer. Assuming phase equilibrium, we set the dissolved-gas con-

centration to its saturation value at this surface (Eq. 6). Beyond the diffusion boun-

dary layer. the solution is assumed to be well mixed: the bulk concentration of dis-

solved gas obtains at the boundary-layer edge r 6 (Eq. 7). 

The complet.e solution to the problem consists of the entire potential and concen-

tration fields, but of primary interest is a quantity we refer to as 6.l1 : this is the net. 

change in the cell voltage which arises from the presence of bubbles on the surface of 

the electrode in question. ~ l' is calculated by first using the model to calculate the 

average poten tial difference between the boundary r 4 and the electrode metal in the 

presence of bubbles, and then subtracting this same difference calculated (by a simple, 

one-dimensional calculation) in the absence of bubbles. 

Application of the Buckingham-n theorem (19) indicates that, for a gIven 

geometry, six independent dimensionless groups are essential to the problem. One 

o 
advantageous set of dimensionless groups consists of 8, J, _a , \II, Sg' and 6. V". The 

°c 
last parameter ~ l''' contains ~ V, the voltage increment defined above, which embo-

o 
dies the solution to the problem. The first three parameters, 8, J, and _a_, are used 

°c 
by Newman (20) to characterize the secondary current distribution. One can think of f:, 

as the dimensionless average current density, and J as the dimensionless exchange-

o 
current density; the ratio _a_ reflects the asymmetry of the reaction kinetics. The 

°c 
group \II characterizes the proportionality between the dissolved-gas flux at the elec-
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trode surface and the current density.t 

For a given problem, our procedure is to set the values of the first five parameters 

O'a 
b, J, -, IV and Sg to solve the dual field problem, and finally to eyaluate the sixth 

O'c 

parameter, ~ V" , from the solution. The geometric configuration for a given problem, 

assuming spherical bubbles, can be characterized by three parameters: the contact, 

angle (), the interbubble spacing !..., and the diffusion-boundary-Iayer thickness In 
a a 

the examples reported here (with i generally not smaller than unity), the exact shape 
a 

of the boundary layer near the bubble is found, surprisingly, to exert no significant 

influence on the solution. The explanation for this is that concentration effects are felt 

only at the electrode surface, which, in the vicinity of the bubble, is much more 

strongly influenced by the bubble itself than by the diffusion-layer edge, which is rela-

tively far away. For our purposes, then, the curved boundary r 6 in Figure 2-2 can be 

redrawn for simplicity as the straight dotted line r 6' . 

Base Case 

In developing the present model for attached bubbles, we sought to make it as 

general as possible so that it could be applied to different gases and a wide range of 

conditions (current densit.y, bubble density, gas solubility, contact angle, transport and 

kinetic properties, bubble size, etc.). It is necessary, however, to select one reaction as 

an example and to choose a set of base conditions typical for that system. From these 

base conditions, we can vary one parameter at a time to learn how the system behaves. 

IWhile '" is not an operating variable, but rather a constant for a given reacting system 
(fixed by stoichiometry, temperature, gas solubility and transport properties), it is 
sometimes artificially set to zero as a convenient means of excluding supersaturation 
effects from the model. 
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For the basis of our study, we have chosen hydrogen evolution in aqueous potassium 

hydroxide. To the extent possible, we adhere to conditions typical of hydrogen evolu-

tion in a membrane-type chloralkali cell. The base conditions taken for this study are 

summarized in Tables 2, 3, 4 and -5. The remainder of this section serves to explain 

and support t.he choices made. 

The properties listed in Table 3 represent best estimat.es available from the litera-

ture, sometimes adjusted for temperature differences. References are cited in the t.able. 

The diffusivity of dissolved hydrogen was estimated by starting with the value in pure 

water at 16· C (22) and correcting this according to the Walden rule to the appropriate 

viscosity (23) and temperature. The solubility of H2 was temperature corrected from a 

value at 30· C (24) by analogy to solubility-vs.-temperature data in pure water (25). 

The first exchange-current density listed is an average of several figures cited for 

Table 2. Base Case: Operating Conditions 

Reaction: 

Electrolyte: 

Temperature: 

Current density: 

Pressure: 

Hydrogen evolution 

+ e + 1 -H.., 
2 -

30-weight-percent KOH in water 

80· C 

300 rnA/em:! 

1 bar 
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Table 3. Base Case: Physicochemical Properties 

Property Symbol Value Reference 

Conductivity I\, 0.94 n-1cm-1 (21 ) 

Dissolved-gas diffusivity Dg 7.1 X 10-5 cm 2/s (22) 

Gas solubility cg 
SAT 9.5X 10-8 mole/cm 3 (24) 

Exchange-current density 
• 0 
to 0.1 rnA/em:! (26) 

(conventional cathode) 

Exchange-current density '0 
to 160 rnA/em:! (27) 

(activated cathode) 

Transf er coefficien ts Q'a 0.57 (26) 

Q' c 0.43 

hydrogen evolution in 30-to-.50-percent NaOH at 80 0 C on nickel and graphite (26). 

The transfer coefficients were obtained from the same source. The second value of 

exchange-current density listed was calculated t from polarization data reported for an 

activated cathode recently developed by the Dow Chemical Company (27). 

In the present work, we take the gas concentration beyond the boundary layer, 

C
g 

BuLK, to equal the solubility, cg SAT. Vogt (50) reports that cg BULK usually exceeds 

cg SAT, but that the degree of supersaturation in the bulk is very small compared to 

I With the values of the transfer coefficients Q'a and Q'c unavailable, we adopt the 
values listed in Table 3. 
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that at the electrode surface. 

Table 4 gives a geometric description of the attached-bubble layer. The choice of 

these values for our base case is based upon detailed descriptions of the bubble layer 

which are reported in the literature. 

Sillen and van Stralen (32) report an average radius of 20 I'm for bubbles in the 

bulk at our base conditions (hydrogen evolution at 300 rnA/em:! in 30-percent KOH at 

80 < C) with a background flow velocity of 30 cm/s. We take this value as our figure 

for attached bubbles, knowing that further growth by diffusion after detachment is 

minimal, and that coalescence is relatively unimportant in alkaline hydrogen evolution 

(33,28,32). 

There is little published data on contact angle. Glas and Westwater (31) report 

from their observations that "the contact angle always changes during the growth of 

Table 4. Base Case: Geometry 

Parameter Symbol Value 

Bubble radius a 20 I'm 

Con tact angle e 40 0 

Diffusion- bou ndary-layer thickness , 20 I'm 

Interbubble spacing s 1 bubble diameter 
(closest packing) 
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every electrolytic bubble." Hydrogen bubbles in 30-percen t HzS04 range from iO° to 

20 0 as they grow. We take 40 0 for our base value in this study. 

The thickness of the diffusion boundary layer is discussed by varIOUS researchers 

(33,30,34) in characterizing mass transfer at gas-evolving surfaces. Janssen (33) reports 

a value of 20 Jim for hydrogen evolution at 300 mA/cmz in 6 ~,1 KOH on a horizontal 

platinum electrode. This is obtained by measuring the limiting current density of an 

indicator ion (indirectly, by determining the quantity of indicator ion reduced during 

an experiment). The Nernst-diffusion-Iayer thickness, I, is defined by the well-known 

equation: 

(1 i) 

where Dr' cp and iL are the diffusivity, bulk concentration, and limiting current of 

the indicator ion. The above estimate agrees reasonably well with other measurements 

at similar conditions (29,30,35). 

From varIOUS qualitative descriptions of alkaline hydrogen evolution, the bubble 

curtain is known to be densely packed with bubbles. Since the maximum void fraction 

attainable is higher for a distribution of bubble sizes (with small bubbles occupying the 

interstices of larger ones) than for a monosized array (the idealization made in our 

model), we chose an interbubble spacing of unity (closest packing) as the most realistic 

condition under the constraints of the model. Indeed, the void fraction in the 

attached-bubble layer is estimated by Bongenaar-Schlenter, et at. (i) to range from 

0,60 to 0,85; the lower figure agrees well with the void fraction of a close-packed hexag-

on al array, t 

t The experimental findings of Janssen, et al. (28), while not performed at exactly the 
same conditions of concentration, temperature, and current densitv as listed in Table 2, 
do suggest that the closest-packing assumption may exaggerate the true density of at" 
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The values selected to describe our base case (Tables 2, 3 and 4) are used to evalu-

ate the dimensionless groups that enter the model. These base-case parameter values 

are listed in Table 5. 

Numerical Method 

The coupled pair of boundary-value problems is solved In a cyclic iteration scheme, 

which employs a Newton-Raphson routine to speed convergence. The starting point in 

the cycle is to choose an initial estimate of the current distribution on the electrode 

sur(ace. This fixes both the potential gradient and the concentration gradient at the 

Table 5. Base Case: Dimensionless Parameters 

Parameter Symbol Value 

Dimensionless current density b 2.0.5 X 1O-:! 

Dimensionless exchange-current density J 6.84 X 10-6 

Dimensionless gradient ratio \11 2.25 X 104 

Stoichiometric ratio 
Sg 1 -

n 2 

Ratio of transfer coefficients 
O'a 

l.3:3 --
O'c 

tached bubbles. These authors define the degree of screening by attached bubbles, p. 
as "the fraction of the electrode surface covered by projection of the bubbles," and re
port for example, a value of p = 0.56 for unstirred hydrogen evolution at 150 
mA/cm'2 in unstirred 1M KOH at 30 0 C on a transparent nickel electrode, whereas the 
base case chosen for our model corresponds to p = 0.91. 
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electrode surface and, in doing so, supplies the full complement of boundary conditions 

for each elliptic partial differential equation (PDE). The potential-field problem and 

the concentration-field problem are solved independently by the boundary-element 

method. Finally, the newly calculated surface values of potential and concentration are 

used in the overpotential matching condition (Eq. 9) to produce a revised estimate of 

the current distribution. 

For solving the field problems, the boundary-element method (BEM) was chosen. 

A relatively new technique, related to boundary-integral-equation methods (BIE~1) and 

influenced by finite element (FEM) concepts, BEM offers several attractive features, 

most of which are consequences of the reduction in dimensionality of the problem: the 

boundary-value problem is restated and solved entirely on the boundaries of the 

domain. Among other benefits, this greatly reduces the amount of input data to 

describe the problem geometry, while the method appears to be better than or compar

able to the domain methods (finite-element and finite-difference) in terms of accuracy 

and computational efficiency. 

Quadratic elements were chosen to represent the boundary in our problem: each 

element contains three nodes so that both the element's shape and its functional inter

polation are parabolic. Double nodes are employed at the corners of the domain. Fig

ure 2-3 is an example of a boundary-element nodal structure used in this work. The 

discretization for the potential-field problem contains 46 elements and 96 nodes: the 

concentration-domain contains 34 elements and 72 nodes. 

The Fortran code written for the present model is based on a direct formulation of 

the boundary-element method for potential problems outlined by Brebbia (36). Special 

provision is made for the axisymmetric problem. The element matrices are generated 
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Figure 2-3. Boundary-element nodal structure for an example problem. 
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by integrating the source function u and its normal derivative q over the aXIsym

metric domain boundary. Integration in the circumferen tial direction is straightfor

ward and gives expressions containing the complete elliptic integrals. Su bsequen t 

integration in the longitudinal direction is performed by 12-point Gaussian quadrature, 

but is complicated by a logarithmic singularity at the source point. This difficulty can 

be circumvented in the integration of q, since the diagonal matrix elements can be cal

culated by difference as outlined by Brebbia (3i). The u integration, however, requires 

special attention. The procedure used in this work is the following: the integrand is 

expanded using the polynomial approximation for the elliptic integrals; since only one 

term in the expansion is unbounded at the point of singularity (38), this term alone is 

integrated analytically while the remainder of the expression is integrated by quadra

t,ure. (An I~lSL (39) library subroutine is used to evaluate the elliptic integrals.) Com

pared to the other integration schemes used in the relatively few published papers on 

boundary-element solutions of axisymmetric potential probl~ms (40,41,42,43),' this 

approach represents an improvement in simplicity (no subdivision of the element is 

needed) and accuracy (no additional approximation is introduced to treat the singular

ity) . 

The convergence order of the method was found to be two or higher, in a series of 

runs with successively refined nodal structures for a primary-current-distribution prob

lem. 

The matrix problems are solved by Gaussian-elimination with full pivoting. A 

substantial savings is achieved by performing the expensive forward-reduction step 

only once for each problem geometry. The forward-reduced matrices and a record of 

row manipulations and pivots are stored so that, upon each subsequent field calculation 

in the iterative cycle, only the back-substitution step must be repeated. 
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As an example of a typical calculation, we solve the base-case problem for the 

activated cathode (J = 0.011) and an interbubble spacing of 2 (the nodal structure 

shown in Figure 2-3). (Figure 2-16 contains the voltage-increment answer to this prob

lem.) The two system matrices (potential and concentration) are 96X96 and 72X72 in 

size. The Jacobian matrix is 27X27, as there are 27 nodes on the electrode boundary. 

Convergence to a relative tolerance of 10-10 is achieved in 7 Newton-Raphson itera

tions, each requiring 56 solutions of Laplace's equation. This takes 300 seconds of CPU 

time on a VAX 8600 computer at double precision. A subsequent problem having the 

same node configuration takes only 8-1 seconds. 

Results and Discussion 

Throughout. this article, the dimensionless groups will sometimes be referred to by 

incomplete names for brevity. For example, b will be called "current density," which 

deemphasizes the fact that b also embodies the scale of the problem and the conduc

tivity. 

Primary Current Distribution 

Our starting point is to use the model to solve the primary distribution, for which 

overpotential is neglected (in the context of our model, J = 00 and 'It = 0). The elec

trode surface is at a uniform potential, the electric field problem is directly analogous 

to heat conduction problems, and the current distribution depends only on geometry. 

Figure 2-4 shows the primary current distribution for a lone bubble with a contact 

angle of 40 degrees. As in the other current distribution plots in this paper, the 

current density is normalized with respect to iAVE , the current density that would pre

vail if no bubbles were present on the surface. As expected for a primary distribution, 

the current density falls to zero where the bubble touches the surface at an acute 
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Figure 2-4. Primary current distribution near an isolated 
attached bubble with a contact angle of 40 degrees. 
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angle. Far from the bubble, of course, its influence is not felt, but several radii away 

from the cen terline, the current density sligh tly exceeds its average value, compensat-

ing for the decreased current on and near the bubble contact area. This same behavior 

is predicted by Sides and Tobias (11) in their analytic solution of the primary distribu-

tion around a tangent bubble (contact angle = 0). We find that when the contact 

angle, and consequently the bubble's contact area with the electrode, is nonzero, the 

magnitude of the compensation effect is increased. In this first plot of current distribu-

tion, an outline of the bubble profile is drawn so that the geometry can be better visu-

alized. Also, in this figure and in subsequent current-distribution plots, there are three 

horizontal lines below the abscissa which describe the geometric configuration: the bot.-

tom line spans the electrode region covered by the bubble; the middle line covers the 

projected area of the bubble; and the top line represents the the equal-area cylinder 

used to approximate the hexagonal symmetry cell. (In the case of Figure 2-4, for a lone 

bubble, this cylinder is of infinite radius and the top line spans the entire radius scale.) 

According to visual observations (7,28,30,31,44,45,51), the attached bubbles on a 

gas-evolving electrode are usually quite crowded and the treatment of an isolated bub-

ble is not applicable. With the use of the equal-area-cylinder idealization, the model is 

able to describe arrays of attached bubbles of arbitrary interbubble spacing. Figure 2-5 

is a plot of primary current distribution near one bubble in 'a hexagonal array; each 

cune represen ts a differen t interbu bble spacing. For example, 'the curve labeled 

s = 1.4 corresponds to a regular hexagonal array of attached bubbles, with nearest 

neighbors centered 1.4 diameters apart. The curve ends at a radius approximately five 

percent higher than half the spacing, according to 

( 18) 
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Figure 2-5. Primary current distribution near a 40-degree bubble 
with interbu bble spacing, s , as a parameter. 
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This is the position of the symmetry boundary. As should be expected, each current

density profile meets the symmetry boundary with zero slope. For the finite values of 

interbubble spacing represented on this figure, the current density is also at its max

imum at this boundary. (However, the current corresponding to s =.5, for example, 

would not be expected to follow this description.) The value of this maximum current 

density is seen to increase with the density of bubbles on the surface. This is con

sistent with expectations because, when the bubbles are more crowded, a greater frac

tion of the electrode area is unavailable for passing current, and so to compensate for 

this loss, a greater current density must pass on the remaining area. Not surprisingly 

the current density is highest away from those recessed regions near the contact area to 

which the flow of current is sterically deterred. 

As mentioned in the previous section, it is the extra potential drop caused by the 

presence of attached bubbles that is of primary interest to engineering practice. Figure 

2-6 shows how this voltage increment, A V-, depends on the interbubble spacing of a 

hexagonal array. For a primary potential problem (neglecting polarization), we achie\'e 

a more general expression of the solution by plotting resistance increment, ~ V * /0, 

instead of voltage increment, ~ V-. (Once polarization has been introduced, the solu

tion is no longer general to all values of b.) The solid curve is predicted by the model. 

There is a pronounced increase in the voltage increment as spacing approaches unity 

(the condition of closest packing). 

The asterisks on Figure 2-6 are data from an analogue experiment performed by 

Sides and Tobias (10). In t.his experiment, dielectric spheres were placed inside an elec

trochemical cell which is hexagonal in cross section, and whose walls correspond to the 

symmetry boundaries of a hexagonal unit cell (see Fig. 2-1). The good agreement 

between our model and the analogue experiment indicates that the equal-area-cylinder 

I 
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approximation is well justified. The dotted line in Figure 2-6 corresponds to the vol

tage increment that would be calculated if one were to begin with the isolated-bubble 

result and extrapolate this on a unit-area basis to closer spacings. (The dotted line is 

straight since we han plotted the inverse square of int.erbubble spacing on the 

abscissa.) As can be seen, and as discussed by Sides and Tobias (10), the latter simplis

tic approach su bstantially underestimates the voltage increment due to densely-packed 

attached bubbles. The reason for this difference is that an isolated attached bubble 

creates a disturbance in the potential field which extends radially for several bubble 

diameters. whereas, when the bubbles are closely packed, their potential-field distur

bances interact. \Vhen the bubble layer is crowded, the current can no longer take a 

wide detour around each bubble, but must pass through the narrow interstitial voids. 

It should be noted that Figure 2-6 does not correspond exactly to the current

distribution family of Figure 2-5; the former is for tangent bubbles (allowing direct 

comparison to the analogue experiment (10)) whereas the latter is for a 40-degree con

tact angle. 

Secondary Current Distribution 

In this section, we introduce the surface overpotential (i.e. we consider finite 

values of J) while continuing to ignore concentration polarization (i.e. W is fixed at 

zero ). 

Figure 2-i shows the influence of bubble density on the voltage increment with J 

as a parameter and b fixed at its base-case value. (Again, J is the dimensionless 

exchange-current density, a measure of the kinetic speed of the electrode reaction.) The 

lowest curve, for infinite J, is very similar to the curve from Figure 2-6; (they are for 

different contact angles). As a trend, the smaller the value of J, the largrf is the 
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voltage increment caused by the layer of attached bubbles. Conceptually, one can vie\v 

each higher curve as having more sluggish kinetics and, in turn, requiring an increas-

ingly large surface overpotentiai to drive the electrode reaction. In the limit of J = 0, 

the voltage increment can be calculated purely from kinetic effects as follows: 

~V" = In _I_ 
I - (1 , 

(19) 

where (1 is the fraction of the electrode area masked by attached bubbles. In this limit, 

the voltage increment is due solely to the rise in surface overpotential associated with 

the reduction in area available for the electrode reaction. In the context of our model. 

(1 is related to bubble spacing and contact angle by a simple geometric argument: 

(1 = (20) 

At 80 0 C, the maximum value of ~ V" (at J = 0 and s = 1) corresponds to an incre-

ment of 39 millivolts. 

As explained in the section on base conditions, we have chosen closest packing 

(s = 1) as the base condition for our example of alkaline hydrogen evolution. The 

remainder of the results presented correspond to this case. 

The interplay between ohmic and kinetic effects can also be vividly seen in the 

current distribution. Figure 2-8 shows a family of current-density profiles for different 

values of J (at base values of b, s, (), and with'll = 0). The limiting case of J = oc is 

the primary current distribution for this geometric configuration (presented on a 

different scale in Figure 2-5). The current density vanishes at the bubble contact area. 

For successively smaller values of 1, the distribution becomes more uniform. In the 

limit. of J = 0, all ohmic effects disappear, and the current density is uniform o\"er the 

region on the electrode surface that is not masked by bubbles. The figure clearly illus-
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trates that this current density exceeds the superficial current density, iAVE . In this 

particular example the effective curren t density is 50 percent higher than (4. VE. 

In the section describing the model, the voltage increment for a gIVen geometric 

configuration was shown to depend on five dimensionless groups. Two of these, Wand 

Sg , are concerned with concen tration effects and can be disregarded in a treatmen t of 

secondary current distribution. In such a problem, then, D. V ~ is a function of three 

Q a 
parameters, b, J, and --, and it is difficult to obtain and represent the general solu

Q c 

tion III any manageable way. Figure 2-9 shows how D. V~ depends on 8 and J for a 

Q 

given bubble configuration (the base case) and at a single value of _a_ (the base value 
Q c 

of 1.33). This log-log plot spans a very wide range of 8 and J and its features are in ter-

preted in the following paragraph. 

In the limit of high current density, the voltage increment due to attached bubbles 

is dominated by the ohmic effect (which is linear with current while surface overpoten-

tial is only logarithmic.) Accordingly, the exchange-current density plays no role, and 

the family of curves collapses into a single curve. Perhaps the best way to interpret 

the remainder of the plot is to begin on this high-current asymptote and to follow one 

curve at a time into the low-current region. Beginning with the curve labeled 

J = 5.8X 10-2 (facile kinetics), one sees that this curve departs only slightly from the 

ohmic asymptote because there is little kinetic resistance. At the opposite extreme, a 

case with very slow kinetics, such as J = 5.8X 10-7, the behavior is more complicated: 

Proceeding downward from the high-current region, there is first a departure from the 

asymptote, reflecting the combined influence of ohmic and kinetic resistance, with the 

electrode kinetics in the Tafel region. Farther down, a horizontal asymptote is 
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reached: this is a regIme dominated by Tafel kinetics. Here, the voltage increment· 

depends neither on the exchange current nor on the current and can be expressed solely 

as a function of (7, the fractional electrode coverage by bubbles. Continuing to lower 

currents, one departs from the horizontal asymptote into a region where the kinetic 

overpotential (which c~ntinues to dominate the voltage increment) is in transition 

between Tafel and linear behavior. Finally, in the low-current limit, one reaches a 

linear-kinetics asymptote. The other curves for low J in the family obey the same 

description. However, when the reaction is relatively fast (eg. J = 6.8X 10-2) the 

Tafel region is skipped, and the low-current asymptote represents the combined contri-

butions of linear kinetics and the ohmic effect. 

It is quite instructive and useful to restate the dependence of .6. V ~ on 0, J and 

Q: a 
in a different form. While on a rigorous basis,t three parameters are required to 

characterize the secondary current distribution, it is customary in electrochemical-

engineering practice to use a single dimensionless group, the Wagner number, 

w = I a'l8] 
Ti (H.E K (21) 

a 

where the function TJ8 (i) is given by Eq. 14. Conceptually, the \Vagner number is the 

ratio of kinetic to ohmic resistance. A plot of the resistance increment .6. V· /8 as a 

function of W is given in Figure 2-10; all computed points used to construct Figure 2-9 

now fall very nearly onto a single curve. Not shown are several points calculated at 

Q: 
different values of _a_, which also collapse fairly well onto the curve. With due con-

°e 
sideration for the fact that the one-parameter treatment is approximate, and that there 

taccording to the Buckingham-IT theorem (19) 
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is no guarantee of equal success for other geometric configurations, it is import.ant to 

recognize the practical value of this way of correlating the data: a three-parameter 

model collapses into a one-parameter correlation. 

The dependence of the resistance increment on Wagner number can be described 

In terms of three regimes shown on Figure 2-10. At low \Vagner number, the ohmic 

effect overwhelms the kinetic effect, and the extra resistance due to the presence of 

attached bubbles is constant (the horizontal asymptote). At high Wagner numbers, 

kinetic limitations overwhelm the ohmic effect and .6. V· Ib is proportional to W (the 

diagonal asymptote). At this limit, the kinetic regime can be linear, Tafel or between 

the two. Finally, there is the transition region, for \Vagner numbers on the order of 

unity, where both ohmic and kinetic effects are important. 

The versatility of the Wagner number in characterizing secondary current

distribution problems can be partially understood in terms of its limiting forms: in the 

Tafel region, where J is unimportant and the solution depends on b, W is identical to 

lib; conversely, in the linear regime, where J is dominant, W is identical to 1/ J. 

Current distribution is another aspect of the solution, besides the resistance incre

ment, which can be characterized to good accuracy by vVagner number. Figure 2-11 

sho\\!s a family of current-density profiles, each at a different Wagner number, for the 

base configuration. Two limiting cases are apparent: the primary dist.ribut.ion at 

IF = 0, and the uniform distribution (over the unmasked electrode area) at H' = 00. 

The effect of attached bubbles on potential drop and current distribution also 

depends on the contact angle of the bubbles. Figure 2-12 shows the dependence of vol

tage incremen t on con tact angle for a close-packed array of bu bbles at base conditions. 

This dependence is shown to vary strongly with the degree of kinetic control. \Vhen 
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kinetic resistance dominates (the case of J = 0) the voltage increment due to the pres

ence of attached bubbles rises dramatically with contact angle. Again, the overriding 

consideration is the area available for the electrode reaction. At a contact angle of 90 

degrees (hemispherical bubbles) there is a maximum in electrode coverage and, conse

quently, in voltage increment. At the opposite extreme of no kinetic resistance (the 

case of J = 00), the voltage increment decreases with contact angle. This agrees with 

the expectation that, in terms of ohmic effects alone, half a bubble offers less obstruc

tion than a whole bubble. It should be remembered that Figure 2-12 pertains to the 

case of closest packing of bubbles; at lower packing densities, the dependence on con

tact angle will be weaker. It is also valuable to return to Eq. 20 and recall that contact 

angle, together with interbubble spacing, determines the electrode coverage, (1', which, 

in the important limit of kinetic control in the Tafel regime, uniquely determines the 

voltage increment. 

Supersaturation Effects 

In treating the combined effects of surface overpotential and dissolved-gas

concentration overpotential, (the general case of finite J and nonzero'll), we begin by 

examining the current distribution. Figure 2-13 shows a family of current-density 

profiles calculated for hydrogen evolution at base conditions. This is the same problem 

as illustrated in Figure 2-8 except that, in the present case, 'II has been set to its base 

value of 22,500. The most striking feature of Figure 2-13 is the inversion in the 

current distribution: the current density is highest where the bubble touches the elec

trode. This curious effect can be explained in terms of decreased concen tration overpo

tential in the vicinity of the bubble. Away from the bubble, the electrolyte near the 

electrode becomes supersaturated to a high degree with the dissolved-gas product 

(46,4i,48). This gives rise to a substantial concentration overpotential. At the bubble 
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surface (including the ring at which the bubble contacts the electrode), there can be no 

supersaturation if phase equilibrium is obeyed; therefore, the concentration overpoten

tial can be expected to be depressed near the bubble and to vanish entirely at the con

tact ring. This localized depression of a large voltage obstacle causes current to be pre

ferent.ially attracted to the region near the bubble. This phenomenon will be referred 

to subsequent.ly as the "enhancement effect" of attached bubbles on current density. 

Interestingly, the enhancement effect, which can be quite dramatic under certain 

conditions, is seen to die out completely in the limit of slow electrode kinetics; the 

current-density profile labeled J = 0 in Figure 2-13 is level, exactly as would be 

predicted in the absence of supersaturation effects (cf. Fig. 2-8). This important 

phenomenon, the disappearance of supersaturation effects under slow electrode kinetics, 

is worth discussing in both mathematical and physical terms. 

In the equation for electrode kinetics, Eq. 10 of Table 1, the reaction rate IS 

expressed in two exponential terms. For small J, one term vanishes; this limiting case 

corresponds to the Tafel regime of electrode kinetics. Since the dissolved-gas concen

tration appears only in this vanishing term, the influence of concentration on the reac

tion rate must vanish as weI!. Physically, the two terms correspond to the fonvard and 

reverse components of the electrode reaction. In the Tafel regime, the forward reaction 

(hydrogen evolution) overwhelms the reverse reaction (oxidation of hydrogen gas), in a 

complete departure from the reversible or Nernstian condition. The strong potential 

driving force essentially prohibits the back reaction, and it becomes impossible for the 

concentration of the prod ucts to influence the rate of reaction. Accordingly, in the 

Tafel hnetic regime, the buildup of supersaturated gas product has no influence on the 

overpotential of the reaction. Finally, since this overpotential is the only way for con

centration to enter the potential-field problem, we see that, in the Tafel regime, neither 
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the current distribution nor the bubble-induced voltage increment is sensitive to super

saturation effects. 

Given that the enhancement effect disappears in the sluggish-reaction limit, it is 

remarkable how strong the effect can be under relatively slow kinetics. The most 

nonuniform current-density profile in Figure 2-13 is obtained for J = 0.02, at which 

value the secondary distribution would hardly deviate from uniformity (cf. Fig. 2-8). 

Results at higher values of J are not reported because the strong variation in current 

density begins to exceed the resolving power of the numerical method. 

The inclusion of supersaturation effects into the model also has a profound 

influence on the voltage increment calculated for an array of attached bubbles. Figure 

2-14 shows how the voltage increment depends on current density with different elec

trode kinetics. This figure is directly analogous to Figure 2-9, the only difference being 

the inclusion of base-case concentration effects. The most noteworthy feature of these 

results is that, under some conditions, the calculated value of ~ V· is negatiYe. This 

means that the net effect of having bubbles present on the electrode surface is to lower 

the voltage of the cell. It should be remembered that .6. V· is referred to a hypot.heti

cal condition in which dissolved gas is transported entirely by diffusion across a 

bubble-free boundary lay'er. When bubbles are present, they act as sinks for the 

supersaturated gas and decrease the concentration overpotential. A negative value of 

.6. ll"· reflects that this beneficial concentration effect of attached bubbles has 

outweighed the disadvantageous ohmic and kinetic effects. 

The nature of the supersaturation effects can be better understood by comparing 

Figure 2-1-1 to Figure 2-9. With slow electrode kinetics (J = 6.8 X 10-7 or 

J = 6.8 X 10-6), the behavior is iden tical: at moderate curren t densities, the reaction is 
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In the Tafel regime (where supersaturation has no effect), and at current densities low 

enough to be in the linear regime, the degree of supersaturation is negligible. For 

J = 6.8 X 10-5, the reaction is facile enough to permit mild supersaturation in the 

linear kinetic regime (at low 6) so that there is slight depolarization. (Figure 2-14 

shows a downward deviation from the analogous line on Figure 2-9.) At still faster 

kinetics (J = 6.8 X 10-4, the supersaturation-lowering effect is strong enough to pro

duce a net depolarization of the electrode, i.e. ~ V" becomes negative. At lower 

current densities, the magnitude of this effect approaches zero asymptotically. This 

case of J = 6.8X 10-4 is the highest exchange-current densit.y for \\ihich the computa

tional procedure converged with 6 less than 10-3 . Under more facile kinetics, 

(J = 6.8X 10-3 and J = 6.8X 10-2
), there is significant depolarization at moderate 

current densities. The lowest values of ~ V" calculated are roughly equal in magni

tude and opposite in sign to the value of ~ V" corresponding to Tafel kinetics, which 

translates to 30 m V for the present example. 

A different vantage point is achieved by considering how the voltage increment 

depends on exchange-current density at a given current density (namely 6 = 0.020.5. 

the base case). Figure 2-15 shows this behavior for cases with ('II = 22,500) and 

without ('II = 0) supersaturation effects. In the Tafel limit (low J or slow kinetics), the 

curves coincide as expected. 'With increasingly facile kinetics, ~ V" drops for the no

supersaturation case and eventually approaches a constant value corresponding to the 

ohmic limit. With supersaturation effects included in the model, ~'V" depart,s from 

the other curve as soon as the reaction departs from the Tafel regime (i.e. as soon as 

there is some appreciable reverse component to the electrode reaction). With increas

ing J the voltage increment drops steeply, passing through zero and continuing to 

negative values until the convergence limit of the method is reached. Fortuit.ously: 
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b. V * becomes negative at roughly the value of J that corresponds to the activated 

cathode listed in Table 3. 

It is important to recognize that, at the base conditions chosen to represent hydro

gen evolution on conventional surfaces, the reaction is in the Tafel regime and hence 

there is no influence from-supersaturation effects. Supersaturation effects may indeed 

be unimportant in many instances of present industrial practice. On cathodes that are 

more catalytically active (27,49) (for example, the activated cathode introduced in the 

previous section), a departure from Tafel kinetics is realized at these same operat.ing 

conditions, and supersaturation effects do come into play. On such a surface, one can 

expect to see marked differences upon introduction of supersaturation effects into the 

model. Figures 2-16 and 2-17 illustrate these differences. In Figure 2-16, the depen

dence of voltage increment on interbubble spacing is shown. The supersaturation effect 

produces a net depolarization of the electrode over the entire range of bubble densities. 

The difference between the two curves, a measure of the magnitude of the concentra

tion effect, is seen to increase with bubble density. In Figure 2-17, the effect of contact 

angle is shown for base conditions (including closest packing) on the activated cathode 

(J = 0.011). Again, when supersaturation effects are included, the model predicts a 

lower voltage incremen t due to attached bubbles, with b. F· negatiye for con tact 

angles below 40 degrees. The magnitude of this voltage lowering is nearly independent 

of contact angle. 

Conclusions 

A model has been developed for predicting the current distribution and the incre

ment in cell voltage caused by the presence of bubbles attached to the electrode sur

face. 



• > 
<J 

.. 
I-
Z 
w 
2 
W 
a::: 
u 
Z 

W 

" 4: 
I-
-1 
0 
> 

1 .0 _. __ .. ...1_ .. " ____ 

, 
I .., 

,-.... 
(f) 
(f) 
w 

0.5 ..J I 
Z 

I 0 
(f) I 
Z I 

1 
w l ~ 

0 
I '"'" 

0 

-0.25 
00 1 .2 

INTERBU88LE SPACING 

(BUBBLE DIAMETERS) 

Figure 2-16. The effect of interbubble spacing on the voltage increment A V * 
due to a hexagonal array of bubbles on an activated electrode (J = 0.011), 

with (III = 22,500) and without (III = 0) concentration effects. 
(At base conditions) 

l3i 

, 

;.. 

! 
I 

1 



• > 
<J 

" r-
z 
w 
~ 
W 
~ 
U 
Z 

W 
<.:) 
<t: 
r-
...J 
0 
> 

138 

6 

5 

,..... 
4 (/) 

(/) 
UJ 
.-J 3 z 
0 
(/) 

z 2 
UJ 
~ 

Cl 1 -....,; 

0 

-1 
0 20 40 60 75 90 

CONTACT ANGLE, (;) 

(DEGREES) 

Figure 2-li. The effect of contact angle on the voltage increment Q. V" due to 
a hexagonal array of bu bbles on an activated electrode (J = 0.011), 

calculated at base conditions with (III = 22,500) and 
without (III = 0) concentration effects. 



139 

The model necessarily relies upon several idealizations of the actual condition at a 

gas-evolving surface. Accordingly, we do not emphasize its quantitative, predictive 

value but rather its usefulness as an aid to fundamental understanding of gas evolu-

tion. 

In describing the geometric configuration of the bubble layer, great compu tational 

savings are achieved by approximating the hexagonal symmetry cell with a cylindrical 

one. This approximation is shown to be successful by comparison with analogue meas-

urements of primary resistance (10). 

When supersaturation effects do not influence the problem (either because they 

have been omitted or because they are precluded by irreversible electrode kinetics), 

both the current distribution and the resistance increment associated with attached 

bubbles can be accurately correlated, for a given geometric configuration, by a single 

parameter, the Wagner number. \-Vhen supersaturation does influence the problem, the 

a . 
solution depends on five parameters (0, J, _4_, \II, and Sg), and the model predicts a 

a c 

lower voltage increment than would be calculated without including concentration 

effects. In this case, the current distribution is strongly nonuniform, with highest 

current density to the electrode region nearest the bubble contact area. These effects 

depend strongly on electrode kinetics as well as on contact angle and on the density of 

the attached-bubble layer. 

Calculations made at conditions typical for hydrogen evolution In the chloralkali 

industry reveal several things: 

1) The ohmic penalty paid for attached bubbles is small compared 

to the extra voltage needed to drive charge transfer with part of 
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the electrode surface area masked by bu bbles. To a good approxi-

mation, the voltage increment due to attached bubbles can be cal-

culated solely on the basis of this area loss. 

2) On conventional cathodes, operating in the Tafel region of elec-

trode kinetics, the level of gas supersaturation (which may be 

significantly altered by attached bubbles) has no effect on cell vol-

tage. 

3) On cathodes of higher catalytic activity, where there is a depar-

ture from Tafel kinetics, the attached bubbles exert a 

supersaturation-lowering effect, which can decrease the overall vol-

tage increment due to attached bubbles even to the extent that a 

net depolarization of the electrode is achieved. 
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Chapter 3 

Simulation of Leveling in Electrodeposition 

ABSTRACT 

A numerical model is developed for simulating the evolution of electrode 

microprofiles with deposition in the presence of a diffusion-controlled leveling agent. 

Current distribution is calculated by potential theory, and the electrode boundary is 

adjusted according to Faraday's law at each forward-Euler time step. The dependence 

of cathodic current density on surface overpotential and leveling-agent flux is expressed 

as an interpolation of electrode-kinetic data measured at several well-defined conditions 

of mass transfer. The agent-flux distribution is solved at each time step assuming 

steady-state diffusion within a concentration boundary layer. Both fields (potential 

and agent-concentration) are solved by quadratic boundary elements, and the boundary 

is advanced by a flexible algorithm. Application of the model is demonstrated in an 

example with coumarin in a Watts nickel bath: published polarization data are 

employed, and predicted leveling performance is compared to profilometric measure

ments reported in the same study (3). 
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Introduction 

The purpose of this work is to develop a model for simulation of the electrode 

shape change in leveling: given polarization data at several conditions of mass tran

sport, we seek to predict the evolution of an arbitrary electrode microprofile under 

specified conditions. The model employs a rigorous treatment of dilute-solution tran

sport phenomena and direct curve fitting of measured kinetic data for the inhibited 

deposition reaction; the latter could be easily replaced by more fundamental kinetic 

relations should they become available. 

Leveling can be defined as the attenuation of electrode-surface features smaller 

than 100 microns during electrodeposition. "True" leveling requires the presence of a 

dilu te additive or leveling agent, and should be distinguished from "geometric leveling," 

which occurs under any condition of nearly uniform current density (1). Advances in 

the understanding of leveling are documented by several authors (1,2,3,4,.5,6). The 

widely accepted explanation of the leveling effect is the "adsorption-diffusion theory" 

(1,7,8,9,10,11): deposition is preferentially inhibited on those portions of the electrode 

surface that are more accessible to the leveling agent by mass transport. 

Much effort has been devoted to characterizing the leveling power of certain plat

ing baths and developing a fundamental basis for the prediction of leveling perfor

mance. The relationship between leveling performance and the influence of mass

transfer condition on polarization behavior has been recognized qualitatively by a 

number of researchers (3,5,9,12,13,14,1.5,16,17). Several of these workers (7,8,9.18,19) 

have proposed theoretical treatments that allow one to predict leveling performance 

from polarization data at different concentrations or mass-transport conditions. 

As early as 1957, Watson and Edwards (9) derived a relation between leveling 
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power and polarization curves measured at different bulk leveling-agent concentrations, 

They define leveling power as the normalized difference in current density 

between two points, "peak" and "recess," on the cathode profile: 

Leveling Power 

For low-amplitude features and high electrolyte conductivity, they propose 

fli e ~ulk 
- k B17 Bi 

Be lulk BT/' 

(1) 

(2) 

(\Ve take the liberty of reexpressing their original equation III our nomenclature: Z IS 

current density, e lulk is bulk leveling-agent concentration, T/ is surface overpotential.) 

The constant k characterizes the profile geometry and the choice of location for peak 

and recess. Watson and Edwards suggest evaluating k by the analogy between the 

concentration field and the primary current distribution, available for certain geometric 

configurations. They evaluate the partial derivatives in Equation 2 from families of 

polarization curves, each measured at the same hydrodynamic condition but at 

different c lulk Predicted leveling performance shows qualitative agreement with 

deposit-profile measurements for three leveling agents in a Watts nickel bath over a 

wide range of e lulk . 

In earlier work, Kardos and Foulke (7,8) present "a qualitative or crudely semJ-

quanititative method for predicting current distribution on microprofiles by substitut-

ing the polarization curve obtained with strong stirring for the polarization cune on a 

peak point and the curve obtained without stirring for the polarization curve on a 

recess point." Assuming uniform overpotential, they achieve fair agreement with 

profilometric measurements. They proceed to outline a more quantitative approach 
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based on evaluating the equivalent boundary-layer thickness l ON, at various points on 

the profile, by analogy to primary current distribution. Again, they assume uniform 

overpoten tial on the microprofile, affirming that this is approximately valid in t.ypical 

plating baths. The proposed treatment is detailed more fully in a later publication by 

the same authors (4). 

Kruglikoy and Smirnova (18) review the aforementioned "indirect methods" for 

predicting leveling performance from polarization data, and develop a formula for the 

amplitude decay of a sinusoidal profile. Their basis is the analytic formula, 

_ 41rH P , 
a 

(3) 

where ip and ir refer to peak and recess, a is wavelength, and H is amplitude. The 

above follows by analogy to the primary current distribution and is restricted to 

H « a <0N-ve
. For diffusion-controlled leveling, an expression for P is postulat.ed, 

(4) 

and recognized by the authors as equivalent to the "leveling power" parameter of Wat-

son and Edwards (9). Evaluating P in difference form from polarization measuremen ts 

at two different agitation conditions (at which ON is obtained by limiting-current tech-

niques with an indicator ion), Kruglikov and Smirnova found that the predicted level-

ing agrees fairly well with measurements by profilometry. These authors are t.he first 

to apply polarization data taken under well characterized conditions of mass transport. 

Kruglikov et al. (3,15) make extensive use of the rotating-disk electrode for this pur-

pose. 

1 As clearly explained by Ibl (12), ON may deviate dramatically from the actual mass
transfer boundary-layer thickness. 
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The above methods suffer from some or all of the following limitations: 

1. The full current distribution and profile shape change are not predicted. Only 

relative growth between two points on the profile is described. 

2. The analogy to analytic solutions of primary distribution holds only when profile 

amplitude is much smaller than the diffusion-layer thickness. 

3. Analytic solutions to primary-distribution problems are available only for the 

simplest geometries, and most of these become inapplicable once the profile has 

been modified by deposition. 

4. A one-parameter description of the leveling effect is accurate only for small devia-

tions in ON and i from their average values. Even low-amplitude profiles can defy 

this description. 2 

5. As we shall demonstrate later in this chapter, the assumption of uniform overpo-

ten tial is on Iy approximately correct. 

Model 

According to the adsorption-diffusion theory, leveling arises from the nonuniform 

supply of leveling agent to the electrode surface. This means that the agent is continu-

ously consumed at the electrode, and that the rate of consumption is influenced by 

mass transfer. In fact, there is abundant evidence that mass transfer controls the rate 

of consumption of leveler, i.e. its codeposition is very facile, and is limited in rate by 

its arrival by convective diffusion. Citing articles (11,20,21,22,23) by five different 

Z For example, on a triangular-wave profile, diffusive flux is infinite to the peak and 
zero to the recess. 
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research teams, Ibl (12) states, "It can be concluded that for the three systems - depo-

sit ion of nickel from a Watts bath containing thiourea or coumarin, deposition of 

copper from an acid copper bath with thiourea - the codeposition rates of coumarin 

and thiourea3 are completely mass transport controlled, with Ce =0." Moreover, it is 

reasonable to assume that an effective leveling system will operate under transport con-

trol: since some degree of transport influence is necessary for leveling, we would expect 

the highest leveling power in the limit of transport con trol. Our model will be based 

on the assumption of mass-transfer control. 

The manner in which a leveling agent IS consumed has been the subject of 

numerous studies (20,24,25,26,27,28,29,30,31). In the most general description, the 

leveling-agent A undergoes a series of transformations after reaching the electrode sur-

face. These may include adsorption, reaction (often electroreduction) leading to one or 

more products, incorporation of the intact agent or its breakdown products in the 

growing deposit, desorption of products, further reaction of products, etc. A variety of 

adsorbed species, Bj*, may reside on the electrode surface before desorbing, reacting. or 

being covered by fresh deposit. 

It is logical to assume that, in the ongoing electrode process, each adsorbed species 

Bj* will assume a steady-state surface concentration, r B o. For a given leveling system 
J 

at a given temperature, these surface concentrations will be dictated by the detailed 

kinetics of the consumption reaction. In addition, they will depend, at most, on the 

following: the surface overpotential of the electrode, 7]; the supply rate of leveling 

agent, N A; and the flux of depositing metal, N M' Accordingly, we postulate the func-

3 Ihl refers to coumarin and thiourea as "the typical leveling agents studied so far." 
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tional dependence:4 

(5) 

discounting temporarily the possibilit,y that 1], N A, and NM are not independent. 

Turning to the kinetics of the metal deposition, and acknowledging that the adsor

bates Bj* are responsible for the inhibition effect and assuming that the consumption 

reaction is not influenced by any foreign species or by the transport of desorbed pro-

ducts from the electrode, we propose the following functional dependence: 

(6) 

Combining Equations 5 and 6, we arrive at the premise 

(7) 

namely, that the depos£t£01l rate depends exclusively 011 the overpotential and 011 the flux 

of the leveling agent. This will hold regardless of whether mass transfer limits the con-

sumption of leveler. However, if there were mixed control between mass transfer and 

kinetics, it would be impossible to determine N A without knowing the detailed kinetics 

of the consumption reaction. Under mass-transport control, we can calculate N A from 

transport considerations alone, ignoring consumption kinetics, which may be quite com-

plicated and specific to a given leveling system. 

Having postulated the above functional dependence for the inhibition effect, the 

next step is to supply the actual function. This can be derived from an analysis of the 

kinetics of inhibited deposition, or alternatively, constructed by interpolation from 

polarization measurements. We follow the latter approach, which offers a direct link 

1 It is noteworthy that this description applies equally to those levelers known to incor
porate in the deposit and to those that do not. The sole criterion is that the leveling 
agent be consumed at the electrode surface at a rate dictated entirely by mass tran
sport. 
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between measured kinetic data and the model's kinetics expression. 5 The rotating-disk 

electrode is ideally suited for such measurements, as the limiting flux of the leveling 

agent can be precisely controlled and modulated by changing rotation speed. 

Leveling-agent mass transfer is idealized in terms of a Nernst boundary layer (12), 

a hypothetical stagnant region near the electrode surface, in which the leveling agent 

moves by diffusion alone, and beyond which concentration obtains its bulk value. In 

our examples, the Nernst layer envelops all electrode-surface features, and its ou ter 

boundary is smooth on the microscale. 

Further, we make the "pseudosteady-state assumption:" transien ts in the concen-

tration field die out much more quickly than the boundary moves. This holds when-

ever the time constant for deposition, 

greatly exceeds the time constant for diffusion, 

L n F p 
iM 

(8) 

(9) 

In the examples presented in this chapter, typical of leveling systems, TDEP - 15,000 

seconds and TDIF - 3.4 seconds. 

Finally, we describe electrochemical transport by potential theory (32). This is 

appropriate when the conductivity is nearly uniform, as in a well supported plating 

bath at moderate curren t density. 

Having made the foregoing assumptions, we can describe the system by the dual 

6 It is emphasized. however, that the former approach could be easily implemented in 
the numerical model with the modification of a smgle subroutine. 



boundary problem stated in Table 1, which 

Table 1: Problem Statement 

Equation 
or 

Condition 

PDEA 

BCIA 

BC 2A 

BC 3A 

PDEB 

BC IB 

Be 2I3 

BC 3I3 

an 

Dimensional 
Form 

CA - 0 

- 0 

nF aCA 
- -- N M(TJ,---) 

II: an 
where 

TJ--I/> 

a¢ = 0 
an 

a¢> = 
ay - II: 'AVE 

Dimensionless 
Form 

,,* • 
V'~ C A - 0 

ac A* 

an* - 0 

* (* • - -NM TJ ,N A ) 

where 

- 0 

-8 
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Domain 
or Eq. 

Boundary 

(12) 

(13) 

(14) 

(1.5) 

( 16) 

(Ii) 

(18) 

refers to the diagram in Figure 3-1. The solution procedure is first to calculate the 

leveling-agent concentration field, (BVP A). This supplies the profile of fluxes, N A, at 

the electrode surface, which is required in the electrode boundary condition (Eq. 15) of 
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A 

Figure 3-1. Geometric configuration of the dual boundary-value problem. 
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the potential-field problem (BVP B). 

The concentration-field problem is the Laplace equation with zero fi ux at either of 

two parallel symmetry boundaries, A2A and A4A ; concentration fixed at its bulk value at 

the boundary-layer edge, A3A ; and zero concentration at the electrode surface, AI. The 

potential field must also obey Laplace's equation and satisfy the following conditions: 

no current may cross either symmetry boundary, A3B and A4B; current density is uni-

formly fixed far from the electrode, A3B; and current density is related to surface 

potential at the electrode, AI' by the overpotential expression, Eqs. 1.5 and 16. 

Here we have assumed that 

, 
NM = nF' (19) 

which is only approximate because the electroreduction of the leveling agent may con-

sume a small fraction of the current. 6 Nevertheless, we shall treat the function 

i ( T}, N A ) as virtually equivalent to N M ( T}, N A ). 

Expressions for the function i ( T}, N A ) can, of course, be alternatively determined 

from mechanistic models of the inhibited electrodeposition reaction. Obstacles to this 

a.pproach are 1) the unavailability of such kinetic models for systems of interest, 2) the 

limited predictive power of existing treatments, and 3) wide variations in mechanism 

from system to system. A pragmatic alternative, the approach we follow, is to con-

struct the expression by in terpolation among measured kinetic data. These can be col-

lected in a straightforward manner on a rotating-disk electrode: one need only record a 

series of polarization curves at a different value of NA (varied by changing either rota-

e It would be no more difficult to account for this current component, except that, in 
some of the cases studied, the exact flux of leveling agent is not reported and/or the 
number of electrons transferred in this step is not known. 
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tion speed or bulk leveling-agent concentration). Such measurements are reported by 

Kruglikov, et al. (3,15) for several common leveling systems. A leveling model based on 

measured kinetic data offers generality and the promise of descriptive power for specific 

applications. 

Our functional expression is a simple interpolation among experimentally measured 

values. Since our solution algorithm calls for an evaluation of 11 as a function of i and 

N A, we interpolate the function 11 ( i, N A) rather than i ( 11, N A)' (This keeps with 

the literature practice of recording electrode poten tial at given values of N A and i, 

forming a rectangular grid in i -11 space). We use piecewise-bilinear interpolation, a 

common finite-element functional representation, in which linear interpolation is done 

in both dimensions within the rectangle formed by the four surrounding points (33). 

Numerical Method 

The field problems are solved by the boundary-element method (BE"t-.'f) using qua

dratic elements. We have followed Brebbia's formulation for potential probl-ems 

(34,35). Figure 3-2 shows the nodal structure used for the simulation shown in Figure 

3-6D. Integration is by six-point Gaussian quadrature. Additional details of our imple

men tation are given elsewhere (36). 

As the overpotential boundary condition (Eq. 15) IS nonlinear, we use Newton

Raphson iteration to produce the converged solution. As an example, the solution 

corresponding to Figure 3-6D, obtained using the nodal structure of Figure 3-2, 

required six iterations on the first time step (with uniform overpotential as the starting 

iterate) but only two to three iterations on subsequent steps. The laO-step simulation 

required 4500 C.P.U. seconds on a VAX 8600 computer. 
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Figure 3-2. Boundary-element nodal structure for 
the grooved-electrode problem of Figure 3-6D. 
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The basis for the moving-boundary scheme is common to other electrode-shape

change studies (37,38,39,40,41,42,43,4-1,45, 46,4i,48): in the course of a small time step, 

each point moves, in a direction normal to the surface, a short distance corresponding 

to the volume of metal that would deposit according to the local current density and 

Faraday's law. Within this description, there remain many alternatives for reposition

ing the nodes. The boundary-element method provides a certain advantage of simpli

city, as there are no interior nodes to relocate. However, the algorithm developed for 

this study, illustrated in Figure 3-3, is still somewhat complicated because of its 

emphasis on versatility. The procedure involves five steps: 

1) Move each node (plain dots) the prescribed distance normal to the surface 

(lower curve). 

2) Construct a "false" surface (upper curve) by interpolating among these new 

nodes (X's). 

3) Locate the new nodes (circled dots) by arranging them according to their origi

nal relative arc-length spacing on the portion of the false surface that lies within 

the symmetry boundaries (11 and 12)· 

4) On each vertical symmetry boundary, reposition the nodes agalD preserving 

their original relative spacing. 

5) Move each node of the boundary-layer edge vertically, maintaining a fixed dis-

tance between it and the highest point on the electrode profile. 

Figure 3-3 illustrates only steps 1, 2 and 3, showing some of the subtleties of the algo

rithm. Node A moves outside the symmetry domain and is ultimately repositioned on 

the boundary by interpolation along the false surface. Node B is the border between 

two quadratic boundary elements, eland e 2. As the profile slope may be discontinu

ous across this border, we begin by moving normal to each element, and then we locate 

a "compromise" false node at the intersection of perpendicular vectors as shown. Node 



Figure 3-3. Exaggerated illustration of the scheme for repositioning 
the electrode-surface nodes in the movingeboundary algorithm 
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C is another "border" node, which, instead of overlapping, "diverges" into two, and we 

bridge these with a circular arc centered at C. Finally, node D strays inward from the 

symmetry line /2' and we bridge this gap also with a circular arc. 

The above scheme is flexible and especially advantageous for electrode profiles that 

do not m~et the symmetry boundary at a right angle (eg. for triangular notches and 

wans), or for steep-walled or overhanging profiles. Other moving-boundary algorithms 

in the electrochemical literature are, as a rule, somewhat less flexible or more restric

tive, especially those based on the domain methods (finite-element and finite

difference). 

From the standpoint of numerical analysis, leveling problems are advantageous in 

that profile features do not grow. Accordingly, there is no tendency for the simulation 

to become unstable as in ordinary electrodeposition. Consequently, it is unnecessary to 

resort to smoothing routines such as those employed in various other simulations of 

electrodeposition. 

For the purpose of testing the moving-boundary algorithm against a known ana

lytic solution, a simulation of pure geometric leveling was performed on a semicircular 

profile as shown in Figure 3-4. The solution to this classical problem is a simple 

geometric construction with each semicircle growing evenly in radius from fixed centers. 

The challenge posed by this problem to the moving-boundary algorithm is to describe 

the semicircular recess as it vanishes. In the example shown, each symmetric section of 

the electrode boundary contains 27 nodes with pronounced refinement near the sym

metry plane at the recess. Deviations in the simulation from the known solution are 

visible but not large. After depositing one profile amplitude, the deviation from the 

exact solution is below 0.5 percent. 



Figure 30 4. Demonstration of the moving-boundary algorithm for uniform 
current distribution on a semicircular electrode profile. 
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Demonstration of the Model 

To illustrate how the model is used and to conduct a preliminary evaluation of its 

effectiveness, we apply it to a specific example. There are few published works contain-

ing both leveling performance measurements and polarization measurements on a given 

system at well defined conditions of mass transport. The case chosen for our example 

is coumarin in a Watts nickel bath as studied by Kruglikov, et al. (18). Specifically, we 

seek to simulate, using t.heir measured polarization data shown in Figure 3-5, the level-

ing of a triangular groove, 50 microns in depth and with an included angle of 60 

degrees. The bath contains 300 gil NiS04 . 7H:P, 15 gil NaCl, and 30 gil H3B03 , at 

pH 4.5 and at 30 0 C. The average current density is 10 mA/cm 2. Figure 3-6 shows 

simulated electrode-profile histories for four different leveling conditions. In panel A, 

no coumarin is present. Panels B, C and D are at a bulk coumarin concentration of 

0.68 millimolar, at three different rotating-disk speeds: 150, 360 and 900 rpm. Using 

the Levich equation (49), 

2 1 1 

N A = 0.620 D A 3 1/-6 w"2 c ;ulk 

1 

and a value of 5.01 X 10-4 cm-s -"2 for the constant7 

2 1 

[( = 0.620 D A 3 1/ 6, 

. the corresponding effective boundary-layer thicknesses, 

D c bulk 
b = A .~ 

N Nim 

(20) 

(21 ) 

(22) 

were calculated: 36.5, 23.6 and 14.9 jlm. This distance IS used III the model as the 

diffusion-layer thickness away from the triangular groove. 

7 K is not reported directly by Kruglikov, et al. but is available from their conversion 
of the data. 
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Figure 3-2 gives the boundary-element nodal structure used for the simulation of 

Figure 3-6D. The domain extends far beyond the groove, approximating a semi-infinite 

expanse. Since the concen tration-field solu tion becomes triv ial several bound ary-layer 

thicknesses beyond the groove, we truncate this domain, and simply impose the value 

of flux at the "cutoff" point over the remainder of the electrode surface. Dual nodes 

are employed at all sharp corners of the boundary. A total of i6 nodes make up the 

potential domain boundary, with 3i of these on the electrode surface; the concent.ra

tion domain boundary contains 44 nodes, 19 of these on the electrode. 

Each simulation pictured was carried out for 100 time steps with each step depo

siting an average thickness 0.01 times the original groove depth. From the starting 

profile (bottom) every fifth time step is shown. 

The polarization data used in the model are plotted in Figure 3-5. Each marker 

type corresponds to a different limiting flux of coumarin, N}m. Some of the points 

represent coinciding data from different combinations of rotation speed and coumarin 

concentration but corresponding to the same value of limiting flux, N}m. Each point 

shown is used to construct the bilinear interpolation function, ,,(i ,N A)' used in the 

electrode boundary condition for all four of the simulations of Figure 3-6. Kruglikov, 

et al. made the measurements on a O.6-cm rotating-disk electrode. Temperature, bath 

concentration, and current density were the same as for the leveling performance meas

urements. Each point was recorded after 1 to 2 minutes of steady-state electrolysis at 

the prescribed curren t density and rotation speed. 

Panel A, the case with no leveler present, shows, as expected, the poor leveling 

performance associated with geometric leveling. Current density is at all times uniform 

to within 5 percent. Panels B, C and D show rising leveling performance with succes-
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Figure 3-6. Simulated leveling of a triangular groove in a Watts-nickel bath 
with coumarin ((4.vE=lO mA/cm2

): A - no coumarin present; 
B, C and D - c lUllt = 0.68 mM a.t rotation speeds 150, 360 and 900 rpm. 
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sively decreasing average boundary-layer thickness. This trend is easily explained for 

the triangular-groove geometry since the local flux of inhibitor at the angular recess is 

fixed at zero, while the average flux increases; wider variations in flux N A promote 

stronger leveling. 

Figure 3-7 shows the decay of feature amplitude (groove depth) wit.h time for the 

four cases pictured in Figure 3-6. Below gO-percent decay, each curve of the semiloga-

rithmic plot is slightly sigmoidal in shape, but roughly in agreement with the linear 

dependence (exponent.ial decay) reported by various experimenters (18,.50). Beyond 90 

percent, there is a departure from exponential decay, a deceleration of leveling. \Ve 

have not seen any experimental data in this amplitude range for comparison. 

The model's predictions are compared to the leveling measurements by Kruglikov, 

et al. in Figure 3-8. Leveling performance is reported as the percent decrease in groove 

depth after depositing 5 Jim far from the groove. The literature data were taken at 

three rotation speeds (150, 360 and gOO rpm) over a range of coumarin concent.ration 

(0.3 to 2.7 millimolar). The simulations are for varying rotation speed at a concentra-

tion of 0.68 millimolar coumarin. 

The model's prediction significantly exceeds the measured leveling performance· 

over the range studied. (Simulations for N A higher than 3.3X 10-9 mol/cm~-s require 

polarization data beyond the range provided by Kruglikov, et al.) The deviation is 

greater at higher coumarin flux. There are several possible explanations for the dispar-

it.y. It may be that, in a groove as deep as 50 microns, there is some circu lation of the 

electrolyte. This could substantially raise the local flux inside the notch above that 

predicted on the basis of diffusion alone, lessening the flux non uniformity responsible 

for leveling. If this were the case, it would mean that the model should not be applied 
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to such large features, or that its treatment of convective diffusion should be improved. 

Another possibility is that the polarization data used were not entirely compensated for 

ohmic resistance. Or, the surfaces of the two electrodes (one for polarization measure

ments and the other for profilometry studies) may not have been prepared in exactly 

the same way. Finally, the flat portion of the electrode may have been different from 

the groove walls, either in surface finish or because of the influence of crystallographic 

orientation on kinetics. It is not advisable to draw major conclusions about a model's 

value from a single comparison to experiment. The authors are confident that. further 

tests of the model will produce better agreement, and we are certain that such com

parative studies, and the refinements in the model that they suggest, will lead to a 

better understanding of leveling phenomena. 

Conclusion 

A model is advanced for simulation of leveling III electrodeposition based on the 

detailed dependence of surface overpotential on current density and leveling-agent fI ux. 

Using polarization data from one published study (18), the model predicts leveling that 

agrees with qualitative expectations, but exceeds the measured leveling performance of 

the experimental study. For conclusive evaluation and ultimate refinement of the 

model, further well defined experimental measurements of both polarization behavior 

and leveling performance will be required. The model promises to serve as a predictive 

tool in applications of electrodeposition, and as a conceptual device for evaluation and 

advancement of our present understanding of leveling. 
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LIST OF SYMBOLS 

wavelength of sinusoidal profile, em 

species adsorbed to the electrode 

concentration of leveling agent mole/cm3 

concen tration of leveling agen t in the bulk electrolyte, mole/ cm 3 

leveling-agent concentration at the electrode surface 
(nomenclature of Ibl (12)), mole/cm3 

diffusivity of leveling agent in electrolyte, cm 2/s 

Faraday's constant, 96,48i C/equiv 

amplitude of sinusoidal profile 

current density, mA/cm 2 

average current density away from the electrode surface, mA/cm2 

local current densities at 'peak' and 'recess' of electrode profile, 
mA/cm2 

constant characterizing profile geometry 

Levich constant 

characteristic length 'of electrode profile, cm 

atomic mass of depositing metal, g/mol 

num ber of electrons participating in the deposition reaction 

flux of leveling agent, mole/cm 2-s 

limiting flux of leveling agent, mole/cm 2-s 

fl ux of metal, mole/cm 2-s 

parameter expressing leveling power, dimensionless 

unit vector normal to domain boundary, dimensionless 

horizontal distance, cm 

vertical distance, cm 

surface concentration of adsorbed species j, mole/em 2 

equivalent boundary-layer thickness, em 
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average equivalent boundary-layer thickness, cm 

Laplacian operator nondimensionalized 
by the characteristic lengt.h L 

electrolyte conductivity, ohm-1cm-1 

surface overpoten t.ial, m V 

interpolated surface overpotential, m V 

kinematic viscosit.y, cm::!/s 

potential, m V 

density of depositing metal, g/cm3 

rotating-disk speed, radian/s 

175 



liG 

Appendix A-I 

Boundary-Element Code for Active-Passive Model 

The following Fortran code was used in the calculations of Chapter 1. A sample 

input-data file is given at the end of the program listing. Import.ant variables are 

defined in subroutine 'input' or else as they appear in the code. 
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program becur 

c This program calculates the current distribution In an 
c electrochemical cell. The cell configuration can be either 
c planar or axisynmetric. 

c Documentation: 
c Input vari'ables and parameters are explained as they are 
c read in the' 'input" subroutine. All other variables are 
c introduced as they appear in the program. 

c Polarization: 
c The model allows for polarization 
c of one electrode by any of four kinetic relations: 1) Butler-
c Volmer kinetics, 2) linear kinetics, 3) Tafel kinetics, and 
c 4) active-passive kinetics using a trapezoidal curve fit 
c the active-pasive polarization curve. 

c Sign Convention: 
c The open-circuit potential of the cell is effectively 
c subtracted out of the problem by referring all potenitials 
c to their open-circuit values. The working electrode (the 
c electrode at which we consider polarization) is always taken 
c to be at zero potential. Under this system, the anode is 
c always the more positive electrode. As always, current 
c and overpoiential are positive at the anode and negative 
c at the cathode. Current density at an electrode is 
c opposite in sign to the dot product of the potential 
c gradient and the inward-pointing surface normal vector. 

c Method: 
c Laplace's equation is solved by quadratic boundary elements. 
c Solution of the matrix equation is by Gauss elimination with 
c full pivoting; the forward-reduction step is carried out only 
c once. 

c Convergence: 
c The boundary conditions may be applied either as 
c essential or natural conditions (except for the active-passive 
c case which is natural only) so that the more stable iter:ltion 
c scheme can be chosen for a given problem. 

c Library Subroutines: 
c The method requires evaluation of Eliptic Integrals. 
c As written, the code relies on the n .. ISL library for this. 
c ("link code, sys_imsls/lib" on the LBL CSA cluster of V-\..\:',) 
c Alternatively, the Elliptic integrals can be evaluated 
c within the code (albeit less accurately) using functions 
c Ell and EI2. 

Appendix A-I program becur maIn program 



implicit double precIsion (a-h,o-z) 

common/nri/ surf, delsurf 
common/piv/ ipivot(I50), jpivot(150) 
common/setO/nonelec 
common/setl/nonods 
common/set2/coords(150,2) 
common/set2a/keyloc(150) 
common/set3/iaxism,rinner 
common/set4/a(150,150) 
common/set5/c(150,150) 
common/set6/x(150) 
common/set7/bc(150) 
common/set8/keybc(150),keyode(150) 
common/setlOa/tol,fracfp,fracnr 
common/setlOb/mctr ,mctrmax ,mswi tch ,mconsec 
common/setlOc/nctr,nctrmax,ndivmax 
common/setIOd/ncon,nconmax 
common/setlOe/ntot,ntotmax 
common/setll/nogauss,wfgauss(12) ,abgauss(12) 
commonjset12/scale 
common/setI4/ikin 
commonjset14a/xchcur,alphaa,alphac 
common/setI4b/nopts,curap(40),curchar,etaap(40),vchar 
C onmo n / set 15/ del v , del v 0 , nod e I v f , del v f ( 4 0) , del del v , del pma x 
common/set16jnctrsp,ispotpr,intspot 
conmon/set17/tmax 
common/set21/ibctype 
c ommo n / set 22 / ire s t r t , ike e p 
common / set 24 / i g rid, xmi n , xmax , ymi n, ymax 

dimension b(150), surf(150), surfnew(150), delsurf(150) 

c Read in all data and print it out if iprint = 1. 
call input 

c If you want a plot of the nodal structure, make it here. 
c Subroutine' 'grid" uses the graphics package' 'DI3000." 

if ( igrid . ge . I ) then 
call grid(nonods ,coords ,keyode ,keyloc) 
if ( igrid . eq . 2 ) stop 
endif 

c See if this run is a restart ( irestrt = 1). If so, 
c skip the costly' 'matrix" and' 'gaussl" routines and 
c rea din the i r pro d u c t s from the res tar t fi Ie, for 0 0 3 . d at.. 

10 if ( irestrt . eq . 1 ) then 
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c 

c 

call rsread 

e Is e 

Formulate the matrix problem (once and for all.) 
call matrix(nonods,coords,keyloc,A,C,keybc,keyode) 

Do forward reduction on the matrix (once and for all.) 
call gaussl(nonods,A,ipivot,jpivot) 

endif 

c If requested, write the contents of pivot vectors and a and 
c c matrices into a restart file, for008.dat. 

if ikeep . eq . 1 ) call rswrite 

c We now have the forward-reduced form of the system ri13.trix 
c and we're ready start into the iteration cycle. 

c Initialize surf (either phi or its derivative at 
c the electrode surface). Judicious starting values 
c were assigned to bc(i) in the input routine. 

do 100 i = 1, nonelec 
surf(i) = bc(i) 

100 continue 

c Carry out the iterative scheme for convergence. 
c Th i sin v 0 I v esc a I lin g the "c 0 n tin u e " r 0 uti n e , 
c which in turn calls the' 'converge" routine. 

call continue 

c Tell the world what you've calculated. 
call output 

stop 
end 

c •••••••••••• ******* Su'BROUfIl'-"E INPuT ************** 
subroutine input 

implicit double precision (a-h,o-z) 

c Th iss u b r 0 uti n ere ads ina I I the i n put d a t a and, i f 
c desired, prints it all back out agaIn as a check. 
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common/setO/nonelec 
common/setl/nonods 
common/set:2/coords(150,2) 
common/set2a/keyloc(150) 
common/set3/iaxism,rinner 
common/set7/bc(150) 
c omno n / set 8/ key b c ( 1 50 ) ,k e y 0 de ( 1 50 ) 
c onmo n / set lOa / t 0 I , f r a c f p , f r a c n r 
common/ set lOb /mc t r ,mc t rmax ,mswi t ch ,mcons e c 
common/setl0c/nctr,nctrmax,ndivmax 
common/setiOd/ncon,nconmax 
common/setiOe/ntot,ntotmax 
c onnlO n / set 11 / no g au s s , w f g a u s s ( 12 ) , a b g a us s ( 12 ) 
common/set12/scale 
common/setI4/ikin 
common/set14a/xchcut,alphaa,alphac 
c ommo n / set 14 b / n 0 p t s , cur a p ( 40 ) , cur c h a r , eta a p ( 40) , \' C h a r 
c omnon / set 15/ del v, del v 0, nod e I v f , del v f ( 40) , del del v , del pmax 
comnon/setI6/nctrsp,ispotpr,intspot 
corrmon/set17/tmax 
corrmon/set2I/ibctype 
c ommo n / set 22/ ire s t r t , ike e p 
corrmon/set:24/igrid,xmin,xmax,ymin,ymax 

c --- First, give all run directions: 

read (1,300) 
300 forma t (j / / /) 

c Read iprint (print all data unless iprint equals zero), 
c ispotpr (values are spot-printed every 'intspot' 
c iterations if ispotpr = I), and intspot. 
c Also read igrid, key for plotting grid. 
c igrid==O run, no plot 
c igri~l run and plot 
c igrid=2 plot, no run 

read (1,30'1) iprint, ispotpr, intspot, igrid 
301 format(j//il,9x,il,9x,i3,IOx,il) 

c Is this run a restart of an earlier one? 
c ( yes: i restrt = 1; no: irestrt = 0 
c Do we want to save matrix values and pivot keys 
c in a restart file? (yes: ikeep = 1; no: ikeep 0) 

read (1, 3 0:2) i res t r t, ik e e p 
30:2 forma t (j / / iI, :2 9 x , i 1 ) 

c··· Next, give instructions for convergence, etc.: 
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c In which direction shall we iterate around the loop? 
c Read the value of ibctype (1: essential bc; 0: natural) 

read (1,303) ibctype 
303 format(///il) 

c To help convergence, we judiciously initialize the 
c electrode value (be it potential' 'guessv" in mVor 
c current density' 'guessi" in m\jcm2). 

read (1,304) guessv, guessi 
304 format(///el0.3////el0.3) 

c The value of the relative convergence tolerance. 
read (1,305) tol 

305 format(///el0.3) 

c The fraction of the new value taken in the relaxed 
c substitution, "fracfp" for the fixed-point 
c iteration, and "fracnr" for the 
c Newton-Raphson iteration: 

read (1,306) fracfp, fracnr 
306 format(///fl0.8,7x,fl0.8) 

c The max allowed fixed-point iterations, "mctrmax", 
c the value of "mctr" at which we switch over to 
c Newton-Raphson, "mswitch" (less than "mctrmax"): 
c and "mconsec" the number of consecutive decreases 
c in "tmax" required to switch to N.R.: 

read (1,3065) mctrmax, mswitch, mconsec 
306 5 forma t ( / / / i 4 , 7 x , i 4 , 7 x , i 4 ) 

c The number of Newton-Raphson iterations allowed, "nctrmax." 
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c the number of diverging iterations before quitting, "ndi"max," 
c and the total allowed number of Newton-Raphson i terat ions: 

read (1,307) nctrmax, ndivmax, ntotmax 
307 forma t ( / / / i 4 , 7 x , i 4 , 7 x , i 4 ) 

c Some continuation paramters: 
c The conservative starting value of delv, "delvO", 
c the in i t i a lin creme n tin del v, "d e Ide I v' " (b 0 t h in mY), 
c the number of continuation steps allowed, "nconmax", 
c and the maximum allowed increment, "delpmax": 

rea d (1, 30 i 3) del v 0, del del v, nco nma x, del pma x 
3 0 7 3 forma t ( / / / f 8 . 1 , ix, f 8 . 3 , ix, i 4 , 7 x , f 8 . 1 ) 

c Initialize "delv" to "delvO." 
delv = delvO 

c··· Next, describe the electrochemical problem: 
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18:2 

c \\'hat is the applied voltage between the electrodes? 
c (The ultimate delv approached in the continuation scheme) 
c This is the counter-electrode potential minus the 
c working-electrode potential, MI~VS the value of that same 
c potential difference that would prevail at open circuit. 
c (expressed in millivolts.) 
c (The' 'working electrode" IS the one with the overpotential.) 

read (1,3075) nodelvf 
3075 format(///i2///) 

read (1,30ii) ( delvf(i), 1, nodeld ) 
3 0 7 7 forma t ( 8 x , f 8 , 1 ) 

c \\hich kinetic law shall we use? l==Butler-Volmer; 
c 2=linear; 3=Tafel; and 4=active-passive. 

read (1,308) ikin 
308 format(///il) 

c To characterize the kinetics In cases 1, 2 and 3, 
c we input three parameters: 

c Dimensionless exchange current density (Newman's J), (+) 
read (1,309) xchcur 

309 format(///elO,3) 

c Ratio the transfer coefficients, alphaa and alphac. 
read (1,310) alphaa, alphac 

310 format(///f7.4,10x,f7.4) 

c For active-passive runs, we need a nondimensionalized 
c polarization curve. For convenience, ~e read in the 
c curve in m\/cm2 vs Volts, along with the characteristic 
c current density and voltage. 

c Th e numb e r 0 f cur - eta po i n t s for the t rap e z 0 ida I fi t. . 

read (1,311) nopts 
311 format(///i2) 

c 

31:2 

313 

The cur-eta pairs (m<\./cm2 and mV) 
read (1,312) 
format(///) 
read (1,313) ( curap(i), etaap(i), 
forma t ( 5 x , flO. 6 , 2 x , f 6 , 1 ) 

1, nopts ) 

c The characteristic current density in m\.jcm2, always 
c positive: (This is conductivity times RT/F divided 
c by characteristic length) 

read (1,314) curchar 
3I~ format(///elO.3) 
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c The characteristic voltage (RT/F) In millivolts: 
read (1,315) vchar 

315 format(jjjf7.2) 

c *** Lastly, all geometric description: 

c Read iaxism. If this reads zero, the problem is not 
c axisymmetric. A value of one or anything else indicates 
c axisymmetry. 

read (1, 316) i ax i sm 
3 1 6 forma t (j j j i 1 ) 

c The number of nodes In the nodal structure. 
read (1,317) nonods 

317 format(jjji3) 

c The number of nodes on the electrode surface .. 
read (1,318) nonelec 

318 format(jjji3) 

c Read in the scale factor for the model representation 
c of the domaim. SCALE is the number of model length units 
c per dimensionless length unit. Since we have 
c nondimensionalized the problem with respect to 
c ' , c h a r I , " SCALE is" c h a r I " e x pre sse din mo del 
c units. Generally, we take scale> 1 to get the 
c coordinates in round nwnbers. 

read (1, 319) sea I e 
319 format(jjjf7.1) 

c 'Vertices of smallest rectangle that encloses the domain 
c (for graphics use.) 

read (1,320) xmin, xmax 
3 20 forma t (j j j j f 7 . 1 ,Ix , f 7 . 1 ) 

read (1,321) ymin, ymax 
32 1 forma t ( j j f 7 . 1 ,Ix , f 7 . 1 ) 

c The value of rinner. This is the distance (in the 
c distance units of the model) from the innermost point 
c of the nodal structure to the centerline. If the 
c problem is not axisymmetric, we don't need 
c rinner, but we must read a value anyhow. 

read (1,322) rinner 
3g0 format(jj/f9.1) 

c 
c 
c 

Read the coordinates 
As a convention, we 
with the electrode. 

of each node in global order. 
number counter clockwise beginning 
Also read in the keys for the 
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c boundary condition type (' 'keybc"), the boundary-segment 
c type ("keyode") and the node location ("keyloc"). 

read (1, 323 ) 
323 format(lll) 

read (1,324) (coords(i,I),coords(i,2),keybc(i),keyode(i), 
$ key 10 c ( i ) , i 1, nonod s ) 

3 2 4 forma t ( 8 x , f 9 . 1 ,Ix , f 9 . 1 , 4 x , i 2 , 2 x , i 2 , 2 x , i 2 , 4 x ) 

c Since this program is general to two different 
c iteration schemes, we set the values of keybc 
c here according to the value of ibctype: 
c keybc = 1 for ibctype = 1, and keybc = 1 
c for ibctype = 1. Thus it doesn't matter what 
c is read in for keybcl on the electrode above. 

do 326 i = 1, nonelec 
keybc(i) = ibctype 

326 continue 

c Initially fill the boundary-condition vector with zeros. 
do 330 i = 1, nonods 

bc(i) = O. 
330 continue 
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c Set any node on the counter electrode to 'delv' (dimensionless) 
do 331 i = 1, nonods 

k = keyode(i) 
if ( k . eq . 2 ) then 

bc(i) = delvO I vchar 
endif 

331 continue 

c Initialize electrode values whether they are potentials 
c or gradients. Later you might want to change these initial 
c values to aid convergence. 
c A Iso set key b c=1 for i b c t Y P e=1; key b c=O for 
c ibctype=O on the electrode. 

do 333 i=l,nonelec 
if ( ibctype . eq . 1 ) then 

bc(i) guessv I vchar 
keybc(i) 1 

e I s e 
bc( i) -guessi I ( curchar * scale) 
keybc(i) 0 

endif 
333 continue 

c Set the values of the gaussian quadrature abscissas and 
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c weighting factors. 

c Six-point gaussian quadrature coefficients: 

nogaus s = 6 

abgauss(l) 
abgauss(2) 
abgauss(3) 
abgauss(4) 
abgauss(5) 
abgauss(6) 

wfgauss(l) 
wfgauss(2) 
wfgauss(3) 
wfgauss(4) 
wfgauss(5) 
wfgauss(6) 

return 
end 

-0.932469514203152 
-0.661209386466265 
-0.23861918608319i 
0.238619186083197 
0.661209386466265 
0.932469514203152 

0.171324492379170 
0.360761573048139 
0.467913934572691 
0.467913934572691 
0.360761573048139 
0.171324492379170 

c **************** SuBROUTI~E CO~TI~uE ********************** 

18.') 

c This is the master routine for the iterative solution scheme. 
c To give the best chances for convergence, it uses first-order 
c con tin u at ion 0 nth epa r arne t e r "p": the" con v erg e " r 0 uti n e 
cis c a I led e a c h time the val u e 0 f "p" has bee n ad van c e d . 
c ~ny problems will not require recourse to continuation: 
c these can be solved by a single call to the "conyerge" routine. 

subroutine continue 

implicit double precision (a-h,o-z) 

common/nrl/ surf 
eommon/setO/nonelec 
common/setl/nonods 
e ommo n / set 4/ a ( 1 50 , 1 50 ) /' 
common/set5/e(150,150) 
common/set6/x(150) 
eommon/set7/be(150) 
common/set8/keybe(150) ,keyode(150) 
common/setl0a/tol,fracfp,fracnr 
conmon/ set lOb/me t r ,me t rmax ,mswi t c h ,meons ec 
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common/setl0c/nctr,nctrmax,ndivmax 
common/setl0d/ncon,nconmax 
common/setlOe/ntot,ntotmax 
common/set14b/nopts,curap(40),curchar,etaap(40),vchar 
common/set15/p, pO, nopf, pf(40), delp, delpmax 
common/set21/ibctype 
c ommo n / set 30/ f p rime ( 1 50 , 1 50 ) , i p i v 0 t 4 ( 1 .50 ) , j p i v 0 t 4 ( 1 5 0 ) 

dimension b(150), surf(150), surfp(150), surf 0(150) 
dimension dxdp(150), dfdp(150), shift(150) 
dime n s i on f p rime 0 ( 150 , 150) , i p i v 0 to ( 150) , j p i v 0 to ( 1 50 ) 

c ~1thin this routine, the continuation parameter' 'delv' I 

cis calle d "p." (s e e c ommo n set 1 5 . ) 

c Count the Newton-Raphson iterations: 
ntot=O 

c Count the continuation steps: 
ncon = 1 

c This will go to unit.y when we've reached "delvf:" 
kf = 0 
ipf = 1 

c Numerical perturbation: 
pert = 0.000001 

c If this is the very first continutation step, you are 
c not starting from a converged solution. In this case, 
c jump down to line 250 where "converge" is called. 

if ( ncon . eq . 1 ) go to 250 

c ***** Top of the' 'continuation loop" ***** 
100 neon = ncon + 1 

c Form "df/dx" and "df/dp" based on the 
c present converged solution. 

c Temporari ly perturb bc: 
do 110 i = 1, nonods 

if ( keyode(i) . eq . 2 ) bc(i) 
110 continue 

bc(i) + pert 

c Eva 1 u ate per t u r bed sur fa: c e val u e s, "s u r f p : ' , 
if (ibctype eq 0) call natural(surf,surfp,O) 
if ( ibctype . eq . 1 ) call essential(surf,surfp) 

c Evaluate the derivati\'e df/dp, knowing that f=O (since 
c we ha\'e recently converged to a low tolerance). 

186 

Appendix A-I program becur subroutine continue 



I 

do 120 i = 1, nonelec 
fpert = surfp(i) - surf(i) 
dfdp(i) = fpert j pert 

120 continue 

c Restore bc to its unperturbed value: 
do 130 i = 1, nonods 

if ( keyode(i) . eq . 2) bc(i) = bc(i) ~ pert 
130 continue 

c 
c 
c 
c 
c 

Now obtain the derivative dxjdp by solving the 
algebraic system "FPR~E * dxjdp = dfjdp" 
us ing the so lver "gauss2." (Recall that we have 
already forward-reduced FPRTh1E in the' 'newton" 
routine by calling "gaussl.") 

cal 1 g au s s 2 ( non e 1 e c , f p rime , d x d p , d f d p , i p i YO t 4 , j p i v 0 t 4 , 0 ) 
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c In case you diverge on this' 'p" step and need to backtrack. 
c rna k e a 'c 0 p y' 0 f "s u rf ". ( Th e ' 0 rig ina 1 ' w i I I b e 
c mo d i fi e d e a c h time by the "c 0 n v erg e " r 0 uti n e . ) 

do 150 i = 1, nonelec 
surfO(i) surfli) 

150 continue 

c Now rev i s e "d e I p " bas e don the n wnb e r 0 f 
c Newton-Raphson iterations for the last iteration: 

if (nctr It 3) delp 2.0 * delp 
if (nctr eq. 3) delp 1.00 * delp 
if (nctr gt. 3) delp 0.56 * delp 
if ( dabs(delp) . gt . dabs(delpmax) ) delp de I pmax 

c Ad van c e "p:)) 
pold = p 
p=p+delp 

c Near the end, take only as big a step as you need: 
t est = ( p - pO ) j ( p f ( i p f) - pO ) 
if ( test. ge . 1.0 ) then 

p =pf(ipf) 
kf = 1 
del p = p f ( i p r) - po I d 
endif 

nbak = 0 
c ***** Top of the' 'backtrack loop" ***** 
200 key con = 0 

c Quit if you've done too many total iterations: 
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if ( ntot . ge . ntotmax ) then 
write (2,210) ntotmax 

210 forma t ( , Ex c e e d e d n t 0 tmax =' , i 4 ,lx, , i t era t ion s . ' ) 
return 
endif 
J 

c Quit if "delp" has gotten ridiculously small: 
if ( dabs(delp) . Ie . 0.1 ) then 

wr i t e (2,212) 
2 1 2 forma t ( I ' con tin u at ion has s t a I led. del del v < O. 1 ' / J 

return 
end if 

c Set the' 'surf" vector to its original value for this 
c continuation step. (It may have been changed 
c by calls to the "converge" routine.) 

do 215 i = 1, nonelec 
surf(i) surfO(i) 

215 continue 

c Determine "shift," the change in "surf" for this step: 
do 220 i = 1, nonelec 

shift(i) - dxdp(i) * delp / vchar 
220 continue 

c Update "surf" and the boundary-conditon vector, "be": 
do 230 i = 1, nonods 

if (keyode(i) eq 1) surf(i) surf(i) + shift(i) 
if (keyode(i) eq 2) bc(i) p / vchar 

230 continue 

c Call the' 'converge" routine, which tries to produce 
c the converged solution (using Newton-Raphson) for 
c the new value of the continuation variable, "p." 
250 keycon = 0 

cal I converge(keycon) 

c If this is the first continuation step and it doesn't 
c converge, you have to stop. 

if ( key con . eq . 0 . and. neon. eq . 1 ) then 
write (2,260) 

260 format( 'The very first step never converged.'J 
stop 
endif 

c If, on any other step, you failed to converge, 
c backtrack and take a smaller "p" step. 

if ( keycon . eq . 0 ) then 
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c Count the number of times you have to backtrack, "nbak." 
nbak nbak + 1 
write (2,2iO) nbak 

270 forma t ( / ' Ba c k t r a c kin g , , 3 x , i 3 , , t h time') 

c 

c 

Revise values of "delp" and' 'p:" 
pold = p - delp 
frac 0.5 
delp frac * delp 
p pold + delp 

Return to the top of the' 'backtrack loop." 
go to 200 
endif 

c If the' 'converge" routine does succeed, keep 
c going with the continuation scheme: 

if ( kf . eq . 1 . and . nbak . eq . 0 then 
write (2,280) pf(ipf) 

280 format(j'You have your answer. delv ',f8.2) 
write (4,285) pf(ipf) 

285 forma t ( , del v = ' , f 8 . 1 ) 
call plotfile 
kf = 0 
if ( ipf . eq . nopf ) return 
ipf = ipf + 1 
endif 

if ( ncon . gt . nconmax ) then 
write (2,290) 

290 format(j'Exceeded nconmax iterations.') 
return 
endif 

c Return to the top of the' 'continuation loop:" 
go to 100 

end 

c ***************** SUBROUTI~E CONVERGE ********************* 
c This iterative routine produces the converged solution 
c for a given value of the continuation parameter' 'p." 

subroutine converge(keycon) 
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implicit double precision (a-h,o-z) 

common/nrl/ surf, delsurf 
common/piv/ ipivot(IS0), jpivot(150) 
common/setO/nonelec 
common/setl/nonods 
common/set2/coords(150,2) 
common/set2a/keyloc(150) 
common/set3/iaxism,rinner 
common/set4/a(150,150) 
common/setS/c(lSO,IS0) 
common/set6/x(IS0) 
common/set7/bc(IS0) 
common/set8/keybc(IS0) ,keyode(IS0) 
c ommo n / set lOa / to I , f rae f p , f rae n r 
common/setl0b/mctr,mctrmax,mswitch,mconsec 
eommonjsetl0c/nctr,nctrmax,ndivmax 
common/setl0d/ncon,nconmax 
common/setlOe/ntot,ntotmax 
c ommo n / set 11/ n 0 g au s s ,w f g a u s s ( 12 ) , a b g au s s ( 1 2 ) 
common/setI2/scale 
common/setI4/ikin 
common/set14a/xchcur,alphaa,aiphac 
common/set14b/nopts,curap(40),eurehar,etaap(40),vchar 
c ommo n / set IS / del v , del yO, nod ely f , d e i y f ( 40) , del del y , del pma x 
common/set16/nctrsp,ispotpr,intspot 
common/setI7/tmax 
common/set21/ibctype 
c ommo n / set 30/ f p rime ( 1 50 , 1 50) , i p i v 0 t 4 ( 1 50 ) , j p i v 0 t 4 ( 1 5 0 ) 

dimension b(150), surf(IS0), surfnew(150), delsurf(150) 
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c Initialize parameters for iteration, convergence, divergence tests. 

c Number of iterations: 
me t. r 0 
netr 0 
kconsec 0 

c Number of iterations for which "tmax" has gone "UP minus 
c the number of times it has gone ro\:\f: 

nd i v 0 
e If tmax ever gets this high, quit: 

tmaxmax 1000000. 
c Largest change in x on any node In a Newton-Raphson step: 

tmax 100. 
if ( mctrmax . eq 0) then 

keyiter = 1 
else 
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c 
c 
c 

c 
120 

122 
$ 

c 

keyiter 0 
endif 

***************** Start of Iteration ******************** 
Perform an iteration, I.e. operate on "surf" to 
g i v e "s u r f n ew. ' , 

Heading for output: 
if ( nctr . eq . 0 . and. mctr . eq . 0 ) then 

write (2,122) ncon 
forma t ( i 4, , t h con tin u a t ion s t e p : ' / / 3 x , , mc t r ' 6 x , 

, n c t r ' , 8 x , , tma x ' , 8 x, 'n con' , 6 x , , n tot ' ) 
endif 

If it's time, switch from fixed-point to Newton-Raphson: 
if ( mctr . ge . mswitch . and. nctr . eq . 0 ) then 

keyiter = 1 
wr i t e (2, 125 ) 
forma t ( , sw i t chi n g toN. R. ' ) 
end if 

c Decide which type of iteration to do: fixed-point 
c or Newton-Raphson: 

c Choice of fixed-point iteration: 
if ( keyiter . eq . 0 ) then 

mc t r = mc t r + 1 
mtot = mtot + 1 
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c I f you' vee x c e e de d the max a I I owed i t era t ion s, say so and qui t . 

if ( mctr . ge . mctrmax ) then 
write (2,180) delv, mctr, nctr, deldelv 
write (2,130) 

130 format ('You exceeded nctrmax i terat ions. ') 
keycon = 0 

c 
c 
c 

return 
endif 

Call the' 'fixedpoint" routine to operate on the vector 
"surf" returning a vector of corrections "delsurf' 
(the difference between "surfnew" and "surf") 

call fixedpoint 

end if 

c Choice of Newton-Raphson iteration: 
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if ( keyiter . eq . 1 ) then 

nctr 
ntot 

nctr + 1 
ntot + 1 
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c I f you've exceeded the max al lowed i terat ions, say so and qu it.. 
if ( nctr . ge . nctrmax ) then 

w r i t e (2, 1 8 0) del v, mc t r, n c t r, del del v 
if ( nctrmax . eq . 0 ) then 

write (2,135) 
13.') format('divergence, no n.r. called for') 

e I s e 

write (2,140) 
140 format ('You exceeded nctrmax iterations.') 

endif 
keycon = 0 
return 
end if 

c 
c 

Call the "newton" routine to operate on the vector "surf", 
returning a vector of corrections' 'delsurf." 
cal I newton 

endif 

c Regardless of the iteration scheme used to obtain' 'delsurf'), 
c obtain the corrected vector' 'surfnew". 

do 145 i = 1, nonelec 
surfnew(i) = surf(i) + delsurf(i) 

145 continue 

c ******************* Substitution ********************** 
c Here we make the susbstitution (relaxed if elected, and 
c the weighting factor may be different for a fixed-point 
c iteration) 
c to produce "surf" for the next iteration. 
c At the same time, we find the biggest change In "surf" 
c on the electrode for the convergence test. 

tmaxold = tmax 
tmax = o. 

c Find "tmax," the largest relative change in "surf": 
do 150 i = 1, nonelec 

t = dabs ( surfnew(i) - surf{i) / dabs{ surf{i) + 2.0e-G 
if (t gt tmax) then 

tmax = t 
end if 
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if ( keyiter . eq . 0 ) then 
surf(i) fracfp * surfnew(i) + (1.0 fracfp) * surf(i) 

else 
surf(i) fracnr * surfnew(i) + (1.0 fracnr) * surf(i) 

endif 
150 continue 

c As a diagnostic, print out tmax for each iteration: 
write (2,160) mctr, nctr, tmax, ncon, ntot 

1 6 0 forma t ( 3 x , i 4. , 6 x , i 4 , 6 x , g 1 0 . 4 , 6 x , i 4 , 6 x , i 5 ) 

c 
c 

*************** Convergence Test 
If you have converged, return to 

if ( tmax . It . tol ) then 

**************** 
the "continue" 

c Integrate to obtain the total cell current: 
cal I curint(curtot) 
write (2,170) 

liO format( 'converged') 
write (2,180) delv, mctr, netr, deldelv, curtot 

180 format( 'de I "'l=' ,g14.8,3x, 'mctr=', i3,3x, 'nctr=', 
$ i3,3x,'deldelv=',gI0.4/ 
$ 'if"1 unit = 1 cm, curtot in mA=',g14.8//) 

keycon = 1 
c cal I output 

return 
endif 

c Test for divergence two different ways: 

c 1) If tmax exceeds tmaxmax then bailout. 
if ( tmax . ge . tmaxmax ) then 

wr i t e (2, 180) del v, mc t r, n c t r, del del v 
write (2,190) 

190 format( /'divergence. tmax exceeds tmaxmax.'/ 
keycon = 0 
return 
endif 

routine. 

c 2) Keep a running tally of the pattern of convergence 
c In the Newton-Raphson iteration scheme: If tmax goes 
c CP n d i vma x time s mo ret han i t go e s IX)\N 0 v era n y 
c interval, announce this and quit. 

if ( keyiter . eq . 1 ) then 
if (tmax ge tmaxold) ndiv ndiv + 1 
if (tmax It tmaxold) ndiv ndiv 1 
if (ndiv Ie 0 ) ndiv 0 
if (ndiv ge ndivmax) then 

w r i t e (2, 1 8 0) del v, mc t r, n c t r, del del v 
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write (2,195) 
format( /'divergence. ndiv exceeds ndivmax. '/ ) 
key con = 0 
return 
endif 

end if 

c If requested i.e. if mconsec < mctrmax ) 
c swi tch to Newton-Raphson when tmax has gone down 
c "mconsec" consecutive times. 

if ( keyiter . eq . 0 ) then 
if ( tmax . It. tmaxold ) then 

kconsec = kconsec + 1 
else 

kconsec 0 
end if 

if ( kconsec . ge . mconsec ) then 
keyiter = 1 
write (2,200) 

200 forma t ( , sw i t chi n g toN. R . - ten dec rea s e sIn a row')' 
endif 

endif 

c If you have neither converged nor shown sIgns 
c of divergence, do another iteration. 

go to 120 

end 

194 

c ***************** SL~~I~E FIXEDPOI~T ********************** 
c Th i s r 0 uti n e simp I y go est h r 0 ugh the c y c Ie ... 

subroutine fixedpoint 

implicit double precision (a-h,o-z) 

common/nrl/ x(150), delx(150) 
common/setO/nonelec 
common/set21/ibctype 

dimension xp(150), xpnew(150), b(150), f(150) 

do 5 i = 1, none I ec 
xp(i)=x(i) 
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S continue 
keepoff = 0 
if ( ibctype 
if ( ibctype 

eq 
eq 

do 10 i = 1, nonelec 

o 
1 

call natural(xp,xpnew,keepoff) 
call essential(xp,xpnew) 

delx( i) = xpnew(i) - xp(i) 
10 continue 

return 
end 

c ***************** Su~ROUTI~E N~\TO~ ***************** 
c This routine does multivariable Newton-Raphson on the 
c function evaluated in either one of the routines 
c ' 'n a t u r a I " 0 r "e sse n t i a I ' , ). Th esc heme i s 
c "xnew = g(xold)" which we solve by defining the 
c function "f(x) = g(x) - x", and then solving the 
c s y stem "FPRIME * del x = - f" for the v e c tor 0 f 
c corrections, "delx." 

subroutine newton 

implicit double precision (a-h,o-z) 

c orrrno n / n r 1 / x ( IS 0), del x ( 1 SO) 
corrrnon/piv/ ipivot(IS0), jpivot(ISO) 
corrrnon/setO/nonelec 
corrrnon/set21/ibctype 
corrrnon/set30/fprime(IS0,IS0) ,ipivot4(IS0),jpivot4(IS0) 

dimension xp(ISO), xpnew(ISO), b(IS0), f(ISO) 

c Set "pert" the value of the perturbation In x used 
c toe val u ate the n ume ric a Ide r i vat i ve . 

pert = 0.0001 

c Create the jacobian matrix' 'fprime" In four steps: 

c 1) Evaluate function of unperturbed set. 
c This may seem strange but we do this again in step 2 for 
c keeps; the only reason we do it here first is to fix the 
c value of the offset voltage in the gslow routine 
c (if applicable). If this offset voltage is not 
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c held fixed while we perturb the xp's, then the jacobian 
c will turn out singular. 
c "keepoff" is an argument of "glsow" which instructs 
c the gslow routine whether to KEEP the OFFset voltage 
c calculated during the last time through the routine, 
c or to calculate a new offset value for the present call. 

do 5 i = 1, nonelec 

5 
xp(i)=x(i) 
continue 

keepoff = 0 
if ( ibctype 
if ( ibctype 

eq 
eq 

o 
1 

call natural(xp,xpnew,keepoff) 
call essential(xp,xpnew) 

c 2) Fill matrix with functional evaluations of perturbed x's. 
do 30 j = 1, non e I e c 

\ 

do 10 i =1, nonelec 
xp(i) = x(i) 
if (i eq. j ) xp(i) xp(i) + pert 

10 continue 
keepoff = 1 
if ( ibctype . eq . 0 call natural(xp,xpnew,keepoff) 
if ( ibctype . eq . 1 call essential(xp,xpnew) 
do 20 i = l,nonelec 

fpr ime ( i ,j ) = xpnew( i) 
20 continue 
30 continue 

c 3) Evaluate function of unperturbed set. 

40 

do 40 i = 1, nonelec 
xp(i)=x(i) 
continue 

keepoff = 0 
if ( ibctype 
if ( ibctype 

eq 
eq 

o 
1 

call natural(xp,xpnew,keepoff) 
call essential(xp,xpnew) 

c 4) Sub t r act ve c tor "x p new" from e a c h col unm 0 f the rna t r i x . 
c Then divide each difference by pert. 
c Lastly, subtract unity from each diagonal element. 

do 70 j = 1, nonelec 
do 60 i = 1, nonelec 

fprime(i,j) (fprime(i,j) xpnew(i)) / pert 
i f ( e q . j ) f p rime ( i , j) = f p rime ( i , j) - 1. 0 

60 continue 
70 continue 

c Evaluate the vector' 'f," (f(x) = g(x) - x ). 
c (Recall that the last evaluation of g was for the 
c unperturbed vector x.) 
c Actually fill vector f with MI~US the value it should han 
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c so that we can consider delx an additive correction. 
do 80 i = 1, nonelec 

qi) = - ( xpnew(i) - x(i) 
80 continue 

c Solve the system' 'FPRThE * delx = f" using the solvers 
c "gaussl" and' 'gauss2" also used for the field problem. 

call gaussl(nonelec,fprime,ipivot4,jpivot4) 
c a I I g au s s 2 ( non e I e c , f p rime, del x , f , i p i v 0 t. 4 , j p i v 0 t 4 , 0 ) 

return 
end 

c **************** SuBROUTINE ESS~TIAL **************** 
c This routine operates on a set of potential values 
c "phi" at the electrode and returns a new set 
c "phinew" by using phi as an essential boundary 
c condition iri the field problem and then calculating 
c overpotentials (choice of 1) Butler-Volmer, 2) linear, 
c or 3} Tafel kinetics) corresponding to the 
c new current-density profile. 

5 U b r 0 uti nee sse n t i a I ( phi , phi new) 
implicit double precision (a-h,o-z) 

c onmo n / p i v / i p i YO t ( IS 0), j p i v 0 t ( 1 SO) 
conmon/setO/nonelec 
conmon/set1/nonods 
conmon/set4/a(lS0,IS0) 
conmon/setS/c(IS0,150) 
conmon/set6/x(lS0) 
conmon/set7/bc(lS0) 
conmon/set12/scale 
conmon/setI4/ikin 
conmon/set14a/xchcur,alphaa,alphac 
c onmo n / set 14 b / no p t s , cur a p ( 40 ) , cur c h a r , eta a p ( -10) , Y C h a r 
c onmo n / set IS / del v , del v 0 , nod e I v f , del \" f ( -10 ) , del del Y , del pmo. x 

dimension b(lS0) 
dimension phi (ISO) ,phinew( 150) 

c Set bc(i). 
do lIS i=l,nonelec 

bc(i) phi(i) 
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115 continue 

c Apply the BCs; make vector b. 
call makeb(nonods,c,bc,b) 

c Call routine "gauss2" to back-substitute and 
c get nodal derivatives. 

neumann = 0 
call gauss2(nonods,a,x,b,ipi\'ot,jpivot,neumann) 

c Calculate the corresponding profile of electrode 
c potentials using the o\'erpotential expression. 

do 130 i = 1, nonelec 

c 

c 

c 

c 

c 

c 

c 

c 

c 

Concentration o\,erpotential: (we neglect it.) 
etac o. 

Activation overpotenital: 

cur - xli) * scale 

Branch to the Kinetic Expression of choice: 

1) Butler-Volmer kinetics 
if (ikin eq. 1 ) then 

ratio cur / xchcur 
etas o. 
call bvkin(ratio,etas,alphaa,alphac) 
end if 

2) Linear kinetics 
if ( ikin . eq 2) .then 

etas cur / ( xchcur * ( alphaa + alphac ) ) 
end if 

3) Tafel kinetics: 
if ( ikin . eq . 3 ) then 

This shouldn't happen in Tafel: 
if ( cur. eq . o. ) then 

etas = o. 
endif 

Anode: 
if ( cur 

etas = 
end if 

Cathode: 

gt . o. ) then 
dlog( cur/xchcur) / alphaa 
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c 

c 

if (cur It. o. ) then 
etas = - dlog( -cur/xchcur ) / alphac 
endif 

end if 

Total overpotential: 
etat etac + etas 

Calculate new surface values of phi' 'phinew". 
phinew(i) etat 

130 continue 

return 
end 

c ****************** SUBROUTINE N~TL~~ ******************** 
subroutine natural(grad,gradnew,keepoff} 

c This routine begins with an estimate for the phi derivative 
c· "grad" at the electrode surface, and produces a new set. of 
c derivatives' 'gradnew" by first solving 
c for phi at the polarized electrode and then using an 
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c inverted kinetic expression (choice of Butler-Volmer, linear, 
c Tafel, or active-passive kinetics) to give current densities. 

implicit double precision (a-h,o-z) 

common/piv/ ipivot(150), jpivot(150} 
common/setO/nonelec 
common/setl/nonods 
common/set4/a(150,150} 
common/set5/c(150,150) 
common/set6/x(150) 
common/set7/bc(150) 
common/set8/keybc(150) ,keyode(150} 
common/setI2/scale 
conmon/setI4/ikin 
common/setI4a/xchcur,alphaa,alphac 
c ommo n / set 14 b / no p t s , cur a p ( 40 ) , cur c h a r , eta a p ( 40) , v c h a r 
c ommo n / set 15/ del v , del v 0 , nod e I v f , del v f ( 40 ) , del del v , del pma x 

dime n s ion b ( 1 5 0 ) 
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c 

dimension gradnew(IS0), grad(IS0) 

Set bc(i). 
do 100 i = 

b c ( i ) 
1, nonelec 
grad(i) 

100 continue 

c Apply the Bes. 1-'1ake vector b. 
call makeb(nonods,c,bc,b) 

c \Ve enforce an essential condit.ion at the 
c counterelectrode or elsewhere on the boundary. 

neumann = 0 

c Call routine' 'gauss2" to back-substi tute and 
c get node values' 'x" for potential. 

c a I I g au s s 2 ( non 0 d s , a , x , b , i p i v 0 t , j pi\" 0 t , n e uma n n ) 

c Vector' 'x' 'now contains electrode-surface values 
c of potential. Use the electrode boundary condition 
c to calculate the new profile of gradients at the 
c electrode,' 'gradn.ew." 

c 

c 
c 
c 

c 

c 

c 

c 

do 110 i = 1, nonelec 

Neglecting concentration overpotential, we have: 
etas - x(i) 

Branch to one of four kinetic expressions: 
1) Butler-Volmer, 2) Linear, 
3) Tafel, or 4) Active-Passive. 

1) Butler-Volmer Kinetics: 
. eq . 1 ) then if ( ikin 

anod 
cath 
cur 

dexp ( alphaa * etas 
- dexp ( - alphac * etas 
xchcur· anod + cath ) 

end if 

2) Linear Kinetics: 
if (ikin eq. 2 ) then 

cur ( alphaa + alphac 
endif 

3) Tafel Kinetics 
if ( ikin . eq . 3 ) then 

Shouldn't happen In Tafel: 
if ( etas. eq . O. ) then 

* xchcur * etas 
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c 

c 

cur o. 
endif 

Anode: 
if ( etas 

anod -
cur 
endif 

Cathode: 
if ( etas 

cath 
cur 
endif 

end if 

ge . o. 
dexp ( 
xchcur 

) then 
alphaa * etas ) 

* anod 

It . o. ) then 
dexp ( - alphac * etas ) 

- xchcur * cath 

c 4) Active-Passive Kinetics 
if ( ikin . eq . 4 ) then 

cur = polcurv(etas) 
end if 

c Express each current as a normal potential derivative and 
c pass it back into the calling routine as "gradnew(i)." 

gradnew{i) - cur / scale 

110 continue 

return 
end 

c **************** SuBROUTI~~ ~l~TRIX ******************* 
subroutine matrix(nonods,coords,keyloc,A,C,keybc,keyode) 

c This routine does the following 
c 1) F 0 rmu I ate rna t r ix' 'G) ) 
c in pro b I em G q = H u ) 5 tor e din ,; C) ) 
c 2) F 0 rmu I ate rna t r ix' 'H) » S tor e din " A' , 
c 3) Interchange columns to get coefficients of 
c unknowns all on the same side. 

implicit double precision (a-h,o-z) 

common/set3/iaxism,rinner 
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c Onnl0 n / set 11 / no g au s s , w f g a us s ( 12 ) , a b g au s s ( 12 ) 

dimension coords(150,2), keyloc(150) 
dimension A(150,150), C(150,150) 
dimension keybc(150), keyode(150) 

external hgrand, ggrand 

c At each node j on the surface we calculate an integrated 
c local influence from each concentrated point charge i on 
c the boundary. 

c (For a given concerrtrated unit charge, ~ach element on the 
c surface will feel an influence. Along each of these 
c elements, we carry out a surface integration 
c of the potential function and its normal derivative 
c and associate these values with the node(s) 
c located on the element. Thus we create matrices G(i,j) 
c and H(i,j) where i is the index of point sources and j 
c is the index of nodes at which the integrated local influence 
c is calculated.) 
c Nbtrix H is cal led A here, G is called C. 
c The BE equations are G q =H u. 

do 390 j=l,nonods 

key=keyloc(j) 

c Branch according to the local node number of the node 

if ( key. eq . 0 go to 340 
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c ••••••••• Case of node j at the end of its element .• ******** 

n 1 j 
rl coords(nl,l) + rlnner 
zl coords(nl,2) 

c Element ahead (clockwise) of node 

sign = 1.0 

n2 j + 2 
if j. eq . nonods ) n2 = 2 
r2 coords(n2,1) + rinner 
z2 coords(n2,2) 

n3 j + 1 
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if j. eq . nonods ) n3 = 1 
r3 coords(n3,1) + rinner 
z3 coords(n3,2) 

do 310 i-I,nonods 

rl coords( i ,I) + rlnner 
ZI coords( i ,2) 

C(i,j) = gquad(ggrand,nogauss,wfgauss,abgauss, 
u key,iaxism,ri ,zi ,rl,zl,r2,z2,r3,z3) 

A(i,j) = sign * gquad(hgrand,nogauss,wfgauss,abgauss. 
u key,iaxism,ri ,zi ,rl,zl,r2,z2,r3,z3) 

310 continue 

c Element behind (counterclockwise) node 

sign -1 .0 

n2 - 2 
if J eq 1 ) n2 = nonods - 1 
r2 coords(n2,1) + rlnner 
z2 coords(n2,2) 

n3 J - 1 
if j eq 1 ) n3 = nonods 
r3 coords(n3,1) + rlnner 
z3 coords(n3,2) 

do 320 i = 1, nonods 

rl coords(i,l) + rinner 
ZI coords(i,2) 

C( i , j) = C( i , j) + 
u gquad(ggrand,nogauss,wfgauss,abgauss. 
u key,iaxism,ri ,zi ,rl,zl,r2,z2,r3,z3) 

A( i , j) = A( i , j) + 
u sign * gquad(hgrand,nogauss,wfgauss,abgauss, 
u key, i ax i sm, r i , z i , r 1 , z 1 , r 2 , Z 2 , r 3 , z 3 ) 

320 continue 

c End of end-node fork 
go to 390 

c *********** Case of node as middle node. ************ 
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340 nl J - 1 
rl coords(nl,l) + rinner 
z 1 coords(nl,2) 

n2 j + 1 
r2 coords(n2,1) + rinner 
z2 coords(n2,2) 

n3 J 
r3 coords(n3,1) + rlnner 
z3 coords(n3,2) 

do 350 i = 1, nonods 

r I coords(i,l) + rinner 
z I coords( i ,2) 

C(i ,j) = gquad(ggrand,nogauss,wfgauss,abgauss, 
u key,iaxism,ri ,zi ,r! ,zl ,r2,z2,r3,z3) 

A(i,j) = gquad(hgrand,nogauss,wfgauss,abgauss, 
u key, i ax i sm, r i , z i , r 1 , z 1 , r 2 , z 2 , r 3 , z 3 ) 

350 continue 

390 continue 

c Obtain the diagonal elements of H by satisfying the no-
c ftux-at-uniform-potential condition. (i.e. sum of H(i,j) 
c on a given row is zero) 

do 399 i 1, nonods 

A( i , i) O. 
sum = O. 
do 395 j=l,nonods 

sum = sum + A( i , j) 
395 continue 

A( i , i) = - sum 

399 continue 

c 
c 
c 
c 
c 
c 
c415 
c4::!O 

If you need to, save matrices G and H for later use In 
evaluating internal potentials and currents. 

do 4::!O i=l,nonods 
do 415 j=l,nonods 

G( i , j) = C( i , j ) 
H( i , j) = A( i , j ) 
continue 

continue 
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c Rearrange matrices G and H so that H contains only the 
c coefficients of unknowns. This will be returned as '"A." 

do 4·10 j=l,nonods 
key = keybc(j) 
if (key.eq.O) go to 440 
do 435 i l,nonods 

ho I d A( i , j ) 
A(i,j) -C(i,j) 
C(i,j) -hold 

435 continue 
4·10 continue 

return 
end 

c ******************** SUBROl~I~E M~(EB ******************** 
subroutine makeb(nonods,C,bc,b) 

implicit double precision (a-h,o-z) 

dimension C(150,150), bc(150), b(150) 

c This routine does the tiny task of multiplying the vector 
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c 0 f b 0 u n dar yeo n d i t ion s "b c" by the con s tan teo e ff i c i e n t rna t r i x . 
c "c" (formed by moving all coefficients of knowns to one side 
c of the BE equations) to form the vector "b" (which will enter 
c the matrix problem A x = b, solved later by subroutines 
c " g a u s s 1 " and " g au s s2 . " 

do 610 i = 1, nonods 
b(i)=O. 
do 605 j = 1, nonods 

b(i) = b(i) + C(i,j) * bc(j) 
605 continue 
610 continue 

return 
end 

c ***************** SuBROVTI~E G~USSI **************** 
subroutine gaussl(n,a.ipivot,jpivot) 

c This routine does the first stage of Gauss Elimination 

Appendix A-I program becur subroutine matrix 



206 

c on the matrix a. Subroutine "gauss2" will follow and 
c do backsubstitution with the vector b to give the vector 
c of unknowns x. 

implicit double precision (a-h,o-z) 

dimension a(150,150) 
dimension ipivot(150), jpivot(150) 

c One at a time, we will select n-l rows (index k) 
c and reduce elements of the matrix by subtracting multiples 
c of row k. \Ve do not take the rows in order, however, 
c but instead select each 'key row' by a criterion and then 
c use full pivoting to 1) move the chosen row into the key 
c position (i=k) and 2) move the largest element in the key 
c row into the 'key column' (j=k). The criterion for selecting 
c the key row is that the ratio of its largest element to its 
c second-largest element be the greatest among all the rows that 
c have not been already chosen. A record of the row exchanges 
c is made in vector "ipivot," a record of column exchanges In 
c vector' 'jpivot," and a record of row operations in the 
c elements of a that have been zeroed. 

c Initialize the bookkeeping vectors 
do 505 i = 1, n 

ipivot(i) -
jpivot(i) 

505 continue 

c For each of n-l rows do the following: 
nml = n - 1 
do 590 k = I, nml 

c 
c 
c 
c 

Search the unreduced portion of the matrix. Find 
the largest element in the row having the largest 
ratio of biggest to second-biggest elements 

c 

c 

(in absolute value). Keep track of locations. 

quomax = o. 
Search each row. 
do 530 i = k, n 

big I o. 
big2 o. 
j I = k 
Look at each element on row 1. 

do 520 j = k. n 

if ( dabs( ali ,j) . ge . bigl ) go to 510 
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510 

c 
520 

if (dabs( a(i,j) ) 
big2=dabs( a(i,j) 
go to 520 

big2 = bigl 
bigl =dabs( a(i,j) ) 
j 1 = j 

It . big2 ) go to 520 

End search on a gIven row. 
continue 

quo12 bigl / ( big2 
if ( quo12 . It quomax 
quomax = quo12 
Ip IV I 
j P i v= j I 

+ 1.0e-20 ) 
) go to 530 

c End s e arc h among rows. 
530 continue 

c We are finished searching. 
c Record the location of the pivot ,element for later 
c use in the back substitution routine, "gauss2." 

ipivot(k) ipiv 
jpivot(k) = jpiv 

c Perform the pivot. 

cRow p'ivot. Do not move the history elements. 
do 540 j = k, n 

hold a(ipiv,j) 
a(ipiv,j) a(k,j) 
a(k,j) hold 

540 continue 

c 

550 

c 
c 

Co I umn p i v 0 t : 

do 550 i = 1, n 
hold 
a(i,jpiv) 
a( i ,k) 
continue 

a(i,jpiv) 
a ( i ,k) 
hold 

If the diagonal element of the new key row IS nearly zero. 
quit here and declare the matrix singular. 

diag = a(k,k) 
zero = 1.0e-6 
if ( dabs(diag) . Ie . zero) then 

write (2,555) 
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5.').') forma t ( , Th e rna t r i XIS sin g u I a r, 0 Ids p 0 r t . '.) 
s t.op 
end if 

c Divide the key row by its diagonal element, except for 
c the diagonal element itself which is retained as is. 

kpl = k + 1 
do 570 j = kpl, n 

a (k , j) = a (k , j) / d i ag 
570 continue 

c Proceed with forward reduction. 

do 580 i = kpl, n 

c Reduction: 
do 575 j = kpl, n 

a(i,j) = a(i,j) - a(i,k) * a(k,j) 
575 continue 

c Store the history of fwd reduction where zeros belong. 
a(i,k) = a(i,k) / diag 

580 continue 

590 continue 

return 
end 

c ****************** SDBROVllNE G\USS2 ******************** 
sub r 0 uti neg au s s 2 ( n , a , x , b , i p i v 0 t , j p i v 0 t , n e uma n n ) 

c This is the companion routine to "gaussl." Together, they 
c solve the matrix problem A x = b. They are separated into 
c two routines so that the forward reduction (gaussl) can be 
c carried out only once for multiple executions of the back 
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c substitution.' 'Gauss2" picks up after the matrix has been. 
c reduced to upper triangular form with the lower elements 
c carrying a record of the operations which must be done on the 
c vector b before doing the back substitution. 
c Also, vectors ipivot and jpivot contain records of the row 
c and column exchanges that were carried out. in "gaussl." 
c Lastly, if we are dealing with a Neumann problem (neumann=l), 
c we prevent the arbitrary additive constant in the solution 
c from adversely influencing precision by setting x(n) = 0.0. 
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implicit double precision (a-h,o-z) 

dimension a(150,150), b(150), x(150) 
dime n s ion i p i v 0 t ( 1 5 0), j p i v 0 t( 1 5 0 ) 

c Do the same series of manipulations on vector b that you did 
c on matrix A in gaussl. 

c 

c 

kmax = n - 1 
do i30 k 1, kmax 

kpl = k + 1 
ix = ipivot(k) 

If no row exchange IS called for, skip the ~xchange. 

if (ix.eq.k) go to il0 

Perform 
hold 
b(k) 
b ( i x) 

the row 
b(k) 
b ( i x) 
hold 

exchange. 

c Do k+lst row reduction on vector "b." 
iiO do i20 i = kpl, n 

i20 

c 
c 

b(i) = b(i) - a(i,k) * b(k) 
continue 

Divide the' 'key" element of "b" by the corresponding 
diagonal element of the matrix' 'A." 
b(k) = b(k) / a(k,k) 

i30 continue 

c Vector b now contains just what it would have if it had 
c been carried along with the forward reduction of matrix A. 

c Now do back substitution. Vector x gets progressively 
c filled with the answer from bottom to top. 

c Recall that b(n) is the only element of vector 
c "b" which was not divided by the old diagonal 
c element of matrix a. (If we have a neumann problem, 
c we'll set x(n) In the next section.) 

c 
c 
c 
c 

if ( neumann. ne . 1) x(n) = b(n) / a(n,n) 

If this IS a Neumann problem, we can only solve 
for the field variable within an additive constant. 
In this case we set x(n) to zero ( so as to retain 
precision by keeping the additive constant from 
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c 

c 
c 

i40 

turning out to be l.el9 for example). 
if ( neumann. eq . 1 ) x(n) = O. 

Remember that the diagonals of the matrix A are really 
all ones, but we are storing different values there. 

do i50 kcompl = 2, n 
k = n + 1 - kcompl 
sum= b(k) 
kpl = k + 1 

do i40 j = kpl, n 
sum = sum - a(k,j) * x(j) 
continue 

x (k) = + sum 
i50 continue 

c Recalling that colunm pivoting was done during the forward 
c reduction in "gauss2,') we must now unscramble our answer 
c vector. Procede in reverse of the order in which the 
c colunm exchanges were originally made. 

iiO 

do 7iO kcompl = 2, n 
k = n + 1 - kcompl 
m= jpivot(k) 
hold x(m) 
x(m} = x(k} 
x(k) = hold 
continue 

return 
end 

c ************** SuEROUTI~ ClRI~T ****************** 
subroutine curint(curtot) 

implicit double precision (a-h,o-z) 

c This routine integrates current density over the working 
c electrode surface (axisymnetric problems) to glye 
c the total cell current' 'curtot'). 

comnon/setO/nonelec 
comnon/setl/nonods 
cornmon/set2/coords{150,2} 
comnon/set2a/keyloc(I50} 
c ornno n / set 3 / i ax i sm, r inn e r 
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-

conrnon/set6/x(150) 
conrnon/set7/bc(l50) 
conrnon/set8/keybc(l50) ,keyode(150) 
conrnon/setlOa/tol,fracfp,fracnr 
c onrno n / set lOb / me t r , me t rma x , ms wit c h , me 0 n sec 
conrnon/set10c/nctr,nctrmax,ndivmax 
conrnon/set10d/ncon,nconrnax 
conrnon/setlOe/ntot,ntotmax 
conrnon/set12/scale 
conrnon/set14/ikin 
conrnon/set14a/xchcur,alphaa,alphac 
c onrno n / set 14 b ! no p t s , cur a p ( 40 ) , cur c h a r , eta a p ( 40) , v c h a r 
c onrno n / set 15 / del v , del v 0 , nod e I v f , de Iv f ( 40 ) , del de I v , del pma x 

dimension arcl(150) 

c Calculate the arc-length addresses of nodes along the 
c working-electrode surface. Store these in vector 
c "arcl". Also calculate the total current to the 
c anode surface, "curtot." 

c 
c 

narc = 200 
narco2 = narc / 2 
noeelec = ( nonelec - 1 ) / 2 
arc O. 
curtot = O. 
do 20 1= 1, noeelec 

n1 2 • 1 
n2 2 • + 1 
n3 2 • 

rl coords(nl,l} + rlnner 
r2 coords(n2,1} + rlnner 
r3 coords(n3,l) + rinner 

zl coords(n1,2) 
z2 coords(n2,2} 
z3 coords(n3,2) 

cdl bc(nl) • curchar • 
cd2 bc(n2) • curchar * 
cd3 bc(n3) • curchar * 

ds = 2.0 / fioat(narc) 

sea Ie 
sea Ie 
scale 

Divide each element up into' 'narc" segments and take tbt> 
arc length by adding up short tangents. 
do 15 k = 1, narc 
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if k . eq . 1 arcl.(nI) = arc 

s - 1.0 + 2.0 * flo at ( k - 1 ) j 

pI 0.5 * s * ( 1.0 - s 
p2 0.5 * s * { 1.0 + s 
p3 ( 1.0 - s ) * ( 1 .0 + s 

r pI * rl + p2 * r2 + p3 
edd pI * edl + p2 * ed2 + p3 

dplds s 0.5 
dp2ds s + 0.5 
dp3ds 2.0 * s 

drds rl * dplds + r2 * dp2ds + 
dzds z I * dplds + z2 * dp2ds + 

dr drds * ds 
dz dzds * ds 

dare dsqrt dr ** 2 + dz ** 2 
arc arc + dare 

pi = 3.14159265358979323846 
deurtot = darc * 2.0 * pl * r * cdd 
cur tot 

i f 
i f 

k 
k 

15 continue 

20 continue 

return 
end 

cur tot + dcurtot 

eq 
eq 

nareo2 ) arcl{n3} 
narc } arcl(n2} 

arc 
arc 

float(nare} 

* r3 
* ed3 

r3 * dp3ds 
z3 * dp3ds 

c ************** SuBROl~INE PLOTFILE ****************** 
subroutine plotfile 

implicit double precision (a-h,o-z) 

c This routine prints out the answer. 
commonjsetO/nonelec 

212 

Appendix A-I program becur subroutine curint 



common/seti/nonods 
common/set2/coords{I50,2) 
common/set2a/keyloc{I50) 
common/set3/iaxism,rinner 
common/set6/x{I50) 
common/set7/bc{I50) 
common/set8/keybc{I50) ,keyode{I50) 
c OnTIlO n / set lOa / to 1 , f r a c f p , f r a c n r 
c ommo n / set lOb / me t r ,me t rma x ,ms wit c h , me 0 n sec 
common/setiOc/nct.r,nctrmax,ndivmax 
common/setiOd/ncon,nconmax 
common/setiOe/ntot,ntotmax 
common/setI2/scale 
common/setI4/ikin 
common/setI4a/xchcur,alphaa,alphac 
c orimo n / set 14 b / n 0 p t s , cur a p ( 40 ) , cur c h a r , eta a p ( 40) , v c h a r 
common/setI5/delv,delvO,nodelvf,delvf(40),deldelv,delpmax 

dimension arcl{I50) 

c Calculate the arc-length addresses of nodes along the 
cworking-electrode surface. Store these in vector 
c "arcl". Also calculate the total current to the 
c anode surface, "curtot." 

narc = 200 
narco2 = narc / 2 
noeelec = ( none lee - 1 ) / 2 
arc O. 
curtot = O. 
do 20 1= 1, noeelec 

ni 2 * 1 
n2 2 * + 1 
n3 2 * 

rl coords{nI,I) + rlnner 
r2 coords{n2,I) + rlnner 
r3 coords{n3,1) + rlnner 

z 1 coords{nl,2) 
z2 coords{n2,2) 
z3 coords{n3,2) 

cdi bc{nI) * curchar * 
cd2 bc{n2) * curchar * 
cd3 bc{n3) * curchar * 

ds = 2.0 / ftoat{narc) 

sea Ie 
s ca Ie 
s c a Ie 
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c Divide each element up into "narc" segments and take the 
c arc length by adding up short tangents. 

do 15 k = 1, narc 

i f k eq 1 arcl(nl)=arc 

s 1.0 + ~.O * float( k - 1 I float(narc) 

pI 0.5 * s * ( 1.0 - s 
p~ 0.5 * s * ( 1 .0 + s 
p3 ( 1.0 s ) * ( 1 .0 + s 

r pI * rl + p~ * r2 + p3 
cdd pI * cdi + p2 * ed~ + p3 

dpids s 0.5 
dp~ds s + 0.5 
dp3ds - 2.0 * s 

drds rl * dpids + r2 * dp2ds + 
dzds z 1 * dpids + z~ * dp~ds + 

dr drds * ds 
dz - dzds * ds 

dare dsqrt dr ** 2 + dz ** ~ 

arc are + dare 

pi = 3.14I59~65358979323846 

dcurtot = dare * 2.0 * pi * r * cdd 
curtot curtot + dcurtot 

i f 
if 

k 
k 

15 continue 

~O continue 

eq 
eq 

narco2 
narc 

arcl(n3) 
arcl(n~) 

arc 
arc 

* r3 
* cd3 

r3 * 
z3 * 

c Create a special file (for004) for plotting idist: 

write (4,61) 
61 format(/'titleI: descriptive information'/) 

write (4,62) 
6 2 forma t ( I ' tit I e 2 : ' / ) 

write (4,63) 
6 3 forma t ( / ' tit I e 3 : ' / ) 

write (4,64) 

dp3ds 
dp3ds 
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6 4 forma t (j , tit I e 4 : ' j) 
wr i t e (4, 65) 

6 5 forma t ( / ' tit I e 5 : ' / ) 
write (4,66) 

6 6 forma t ( / ' tit I e 6 : ' / ) 
write (4,67) 

6 7 forma t ( / ' tit I e 7 : ' / ) 
write (4,68) 

68 format(/'title8: '/) 
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c Pass these default values if only to mark ~here the nwnber goes: 
radmax = 240.0 
curmax 50.0 
curml nO. 0 
curpeak 38.35 
i log = 0 
writ.e (4,69) radmax, ilog, curmax, curmln. curpeak 

69 format(/'radmax' ,2x, 'ilog' ,5x, 'curmax' ,8x, 'curmin', 
$ 8x, , curpeak' /Ix, f6. 2, 7x, iI, 5x, e8. 2, 5x, e8. 2, 5x, e9. 3) 

noaxes = 0 
ifont = 3 
write (4,70) nonelec, scale, noaxes, bIt, edt, ifont 

7 0 forma t ( j , non e lee ' , 7 x , , sea Ie' , 7 x , 'n 0 a xes ' , 
$ 7x, 'b It' , 7x, ' ed t ' ,6x, ' i fon t' j2x, i 4, 7x, f8. 2, 7x, ii, 7x, 
$ f7.3,7x,f7.3,5x,i2) 

write (4,80) 
80 forma t ( j , nod e ' , 2 x , 'b e ' , 2 x , 'p hi, mV' , 6 x , , i, pol', 3 x , 

c 
c 

c 
c 
c 

$ 'i,m-\jcm2',3x,'arclength',3x,'r or y',2x,'x or z') 

Co n v e r t pot e n t i a 1 s, "p t ," i n tom i I I i v 0 Its; cur r e n t 
"cd," into milliamps per square centimeter: 
do 100 i = 1, nonods 

if ( keybc(i) . eq 
pt x(i) * 

o ) then 
vchar 

cd bc(i) * curchar * scale 
e I s e 
pt 
cd 

end if 

bc(i) * vchar 
x(i) * curchar * scale 

In the case of active-passive kinetics, 
write out the current calculated by the 

densit ies, 

polarization curve "polcurv," "e" for comparison. 
c = 0.0 
if ( ikin . eq . 4 ) then 

if ( keyode( i) eq. 1 ) then 
overpot = - pt j vchar 
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c curchar * poleurv(overpot) 
endif 

endif 

write (2,110) i, keybc(i), pt, c, cd, 
$ arcl(i), coords(i,I), coords(i,2) 

write (4,110) i, keybc(i), pt, c, cd, 
$ arcl(i), coords(i,I), coords(i,2) 

100 continue 

1 1 0 forma t ( i 4 ,Ix , i 2 ,Ix , g 1 0 . 3 ,·1 x , g 1 0 . 3 ,Ix , g 1 0 . 3 ,Ix , 
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$ fl0.3,lx,f8.1,lx,f8.1) 

write (4,115) curtot 
format(/'curtot, m~ if 1 unit 

return 
end 

1 em' / g 1 0 .4/ j) 

c ************** Sl~INE OV~l~ ****************** 
subroutine output 

implicit double precision (a-h,o-z) 

c This routine prints out the answer. 
common/setO/nonelee 
common/setl/nonods 
common/set2/coords(150,2) 
common/set2a/keyloc(150) 
c ommo n / set 3/ i a xis m, r inn e r 
common/set6/x(150) 
common/seti/be(150) 
e ommo n / set 8/ key b c ( 1 50) , key 0 de ( 1 50 ) 
common/setl0a/tol,fraefp,fracnr 
c ommo n / set lOb / me t r , me t rma x ,ms wit e h ,me 0 n see 
common/setl0c/nctr,netrmax,ndivmax 
eommon/setl0d/ncon,nconmax 
eommon/setlOe/ntot,ntotmax 
eommon/setI2/seale 
eonmon/setI4/ikin 
eommon/setI4a/xehcur,alphaa,alphae 
e ommo n / set 1 4 b / no p t s , e u rap ( 40 ) , e u r c h a r , eta a p ( 40) , v c h a r 
C orrmo n / 5 e t 15/ del v , del v 0 , nod e I v f , del v f ( -10) ,d e Ide I v , del pma x 
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dimension arcl(150} 

c Calculate the arc-length addresses of nodes along the 
c working-electrode surface. Store these in vector 
c "arcl". Also calculate the total current to the 
c anode surface, "cur tot. " 

c 
c 

narc = 200 
narc02 = narc / 2 
noeelec = ( nonelec - 1 ) / 2 
arc O. 
curtot = O. 
do 20 1= 1, noeelec 

ni 2 • 1 
n2 2 • + 1 
n3 2 • 

rl coords(nl,I} + rlnner 
r2 coords(n2,1} + rlnner 
r3 coords(n3,1} + rlnner 

z 1 coo r d s ( n I , 2 ) 
z2 coords(n2,2} 
z3 coords{n3,2} 

cdl - bc{nl} • curchar • 
cd2 - bc(n2} • curchar * 
cd3 bc(n3} • curchar .. 
ds = 2.0 / fioat(narc} 

scale 
scale 
scale 

Divide each element up into' 'narc" segments and take the 
arc length by adding up short tangents. 
do 15 k = 1, narc 

i f k eq 1 arcl{nI} = arc 

s - 1.0 + 2.0 • fioat( k - I / float(narc} 

pI 0.5 * s • ( I .0 - s 
p2 0.5 * s * { 1 .0 + 5 

p3 ( 1.0 - s ) * { 1.0 + s 

r pI * rl + p2 * r2 + p3 * r3 
cdd - pI * cdi + p2 * cd2 + p3 • cd3 

dplds s 0.5 
dp2ds - 5 + 0.5 
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15 

20 

dp3ds - 2.0 * s 

drds r1 * dplds + r2 * dp2ds + 
dzds zl * dplds + z2 * dp2ds + 

dr drds * ds 
dz dzds * ds 

darc dsqrt dr ** 2 + dz ** 2 
arc arc + da.rc 

pi = 3.141592653589i932384G 
dcurtot = darc * 2.0 * pi * r * cdd 
curtot curtot + dcurtot 

i f 
i f 

k 
k 

continue 

continue 

write (2,25) 

eq 
eq 

narc02 
nar c 

arcl{n3) 
arcl{n2) 

arc 
arc 

format(j'heres the vector full of answers') 

write (2,30) 
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r3 * dp3ds 
z3 * dp3ds 

30 f (/ ' d' '> 'b' '> 'h· iV' 6 ,. I' 3 ormat no e ,.X, c ,.X, p I,m, x, 1, po ,x, 

c 
c 

c 
c 
c 

$ 'i,m-\/cm2',3x,'arclength',3x,'r or y',2x,'x or z') 

Co n v e r t pot en t i a Is, "p t , " i n tom i I I i v 0 Its; cur r e n t 
"cd," into milliamps per square centimeter: 
do 100 i = 1, nonods 

if ( keybc{i) . eq 
pt x(i) * 

o ) then 
vchar 

cd bc( i) * curchar * scale 
e I s e 

pt 
cd 

end if 

bc(i) * vchar 
- x{i) * curchar * scale 

In the case of active-passive kinetics, 
write out the current calculated by the 

densit.ies, 

polarization curve "polcurv," "c" for comparison. 
c = 0.0 
if ( ikin . eq . 4 ) then 

if ( keyode{ i) . eq . 1 ) then 
overpot = - pt / vchar 
c curchar * polcurv{overpot) 
endif 
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end if 

write (2,110) i, keybc(i), pt, c, cd, 
$ arcl(i), coords(i,I), coords(i,2) 

100 continue 

11 0 forma t ( i 4 ,Ix , i 2 ,Ix , g 1 0 . 3 ,Ix , g 1 0 . 3 ,Ix , g 1 0 . 3 ,Ix , 
$ fl0.3,lx,f8.1,lx,f8.1) 

write (2,120) nctr 
120· forma t ( / is, 1 x , , i t era t ion s ' ) 

return 
end 

c ************* ~~Io.~ GQU.AD ************* 
c This function integrates the function "prom') by gaussIan 
c quadrature with "nogauss" points. 

function gquad(prom,nogauss,wfgauss,abgauss,key,iaxism, 
u ri ,zi ,rl,zl,r2,z2,r3,z3) 

imp I i cit do ubI e pre cis ion (a - h , 0 - z ) 
dimension wfgauss(12), abgauss(12) 

sum = O. 
do 810 igauss = 1, nogauss 

e abgauss( igauss) 
wf wfgauss(igauss) 
eval prom(key,iaxism,ri ,zi,rI,zI ,r2,z2,r3,z3,e) 
sum sum + eval * wf 

810 continue 
gquad sum 
return 
end 

c ************* FL~CTIo.~ GGR~~ **************** 
c This function calculates a contribution to an 
c element of the matrix G. It works for both the on- and 
c off-diagonal elements, differing only by a correction term 
c for the singularity. 
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function ggrand(key,iaxism,ri,zi,rl,zl,r2,z2,r3,z3,e) 

implicit double precision (a-h,o-z) 
double precision mmdelk 

ggrand = O. 
sma I I = 1 .0 e - 5 

c If the next node IS negligibly far away, return a zero 
c contribution to the matrix. 

dlength = dsqrt ( (rl-r3)*(rl-r3) + (zl-z3)*(zl-z3) 
if (dlength Ie. small) go to 890 

pI - 0.5 * e * ( 
p2 0.5 • e • ( 
p3 ( 1 .0 - e • ( 

r pI • rl + p2 • 
z pI • zl + p2 • 

drde = (e - 0.5) • rl 
dzde = (e - 0.5) • zl 
abjacob = dsqrt ( drde 

1.0 e ) 
1.0 + e ) 
1 .0 + e ) 

r2 + p3 • r3 
z2 + p3 * z3 

+ (e + 0.5) • r2 2.0 • e 
+ (e + 0.5) • z2 2.0 * e 
• drde + dzde· dzde ) 

* r3 
* z3 

c Set the weighting function for integration along the element 
c ( basis function in quadratic interpolation) according to 
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c whether node j IS an end node or a middle node on its element. 
if key eq 1) basis pI 
if key eq. 0 ) basis = p3 

pi 3.14159265358979323846 

c Branch according to whether the problem IS axisynmetric 
c (iaxism=l) or planar (iaxisrn=O) 

if ( iaxism . eq . 0 ) go to 840 

c·············· Case of Axisynmetric Problem •••• *.******** 

c If rl and r3 are both zero, than we are looking at 
c the centerl ine and we should make no contribution to 
c the system matrix. 

if (dabs(rl) Ie and . 
$ dabs(r3) Ie 

small 
small go to 890 

x= 
$ 

(r-ri)·(r-ri) + (z-zi)·(z-zi) 
(r+ri)*(r+ri) + (z-zi)·(z-zi) 

/ 

c Here we need the eliptic integral of x (ml In abromowitz) of the 
c first kind. Use the ThlSL routine to get it to 16 digits. 
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temp = nmd elk ( 3, x, i e r k 1 ) 
temp = temp / d s q r t ( (r+ r i ) * ( r+ r i) + (z - z i ) * ( z - z i) ) 
ustarr = temp * r / pi 

ggrand = ustarr * basis * abjacob 

go t.o 8iO 
c End of axisynnletric branch 
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c ****************** Case of Planar Problem ******************* 

840 dist = dsqrt ( (r-ri)*(r-ri) + (z-zi)*(z-zi) 
ustar = - dlog ( dist ) / ( 2.0 * pi ) 
ggrand = ustar * basis * abjacob 

c End of planar branch 

c ***************** Correction for Singularity **************** 
c See if i and j are the same point (diagonal element 
c or components of a dual node.) If so, add on a correction 
c which accounts for the singularity. 
8iO if{key eq 1 rj rl 

if (key eq 1 zj zl 
if {key eq 0 rj r3 
if (key eq 0 zj z3 
d = dsqrt ( (ri-rj)*(ri-rj) + (zi-zj)*(zi-zj) 
if (d. ge. small) go to 890 

c The correction term for the singularity IS the 
c same for axisynmetric and planar problems. 

c Branch according to the position of node j on the element. 

if ( key. eq . 0 go to 880 

c Case of end node: 
ubjacob = dsqrt 

u ( 1 .5 * ( r3 - rl 0.5 * r2 - r3 * 
u ( 1 .5 * ( r3 - rl 0.5 * r2 - r3 + 
u ( 1 .5 * ( z3 - z 1 0.5 * z2 - z3 * 
u ( 1.5 * ( z3 - z 1 0.5 * z2 - z3 

two = 2. 
cor = ( dlog(l. + e) + 1 . - dlog(two) ) * ubjacob / ( 2 . 
ggrand ggrand + cor 
go _ to 890 

c Case of internal node: 

* pi) 
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880 ubjacob 0.5 * dsqrt 
u ( r2 - rl ) * ( r2 - rl ) + 
u ( z2 - z I ) * ( z2 - zi ) ) 

cor = ( 1. + dlog( dabs(e) ) ) * ubjacob / ( 2.0 * pi 
ggrand ggrand + cor 

890 return 
end 

c *************** Fl~~ION l~~~ ***************** 
c This function evaluates a contribution to each 
c element of matrix H. VVe never use it for diagonal element.s. 

function hgrand(key,iaxism,ri,zi,rl,zl,r2,z2,r3,z3,e) 
implicit double precision (a-h,o-z) 
double precision mmdelk, mmdele 

hgrand = o. 
sma I I = I .0 e - 5 

c If the next node IS negligibly far away, return a zero 
c contribution to the matrix. 

dlength = dsqrt ( (rl-r3)*(rl-r3) + (zl-z3)*(zl-z3) 
if ( dlength . Ie. small) go to 990 

c If nodes i and j have the same coordinates ( either i = 
c or i and j make a dual node) then the contribution to 
c the matrix will involve a singularity which we do not 
c handle here. These contributions are taken care of in the 
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c "matrix" subroutine where we satisfy the' 'no-flux-at-uniform-
c potential condition." 

if (key eq 1) rj rl 
if (key eq 1) ZJ z1 
if (key eq 0) rJ r3 
if (key eq 0) zj z3 
d = dsqrt ( (ri-rj)*(ri-rj) + (zi-zj)*(zi-zj) 
if (d. Ie. small) go to 990 

pi - 0.5 * e * ( 1.0 - e 
p2 0.5 * e * ( 1.0 + e 
p3 ( 1.0 - e * ( 1.0 + e 

r pI * rl + p2 * r2 + p3 * r3 
z pI * z I + p2 * z2 + p3 * z3 

drcle = (e - 0.5) * rl + ( e + 0.5) * r2 
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dzde = (e - 0.5) * zl + (e + 0.5) * z2 2.0 * e * z3 

abjacob = dsqrt ( drde * drde + dzde * dzde ) 

dircosr 
dircosz 

- dzde / abjacob 
drde / abjacob 

c Set the weighting function for integration along the element 
c ( basis function in quadratic interpolation) according to 
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c whether node j is an end node or a middle node on its element. 
if (key eq 1) basis = pI 
if ( key. eq . 0 ) basis = p3 

pi = 3.141592653589i9323846 

c Branch according to whether the problem is axisymnetric 
c ( i ax i s~I) 0 r p I ana r (i ax i sm=O) 

if ( iaxism . eq . 0 ) go to 940 

c ************** Case ofAxisymnetric Problem ************** 

c If rl and r3 both equal. zero, then we are looking at the 
c centerline and we should make no contribution to the 
c system matrix. 

u 

u 

i f dabs(rl) Ie small and 
dabs(r3) Ie small go to 990 

x (r-ri)*(r-ri) + (z-zi)*(z-zi) ) / 
(r+ri)*(r+ri) + (z-zi)*(z-zi) ) 

fl = 1.0 / pi 
fl = fl / dsqrt ( (r+ri)*(r+ri) + (z-zi)*(z-zi) ) 
tl =mmdelk(3,x,ierk2) / (2.0 * r) 
t2 =mmdele(3,x,ierel) * ( r*r - ri*ri - (z-zi)*(z-zi) ) 
t2 = t2 / ( 2.0 * r * ( (r-ri)*(r-ri) + (z-zi)*(z-zi) ) ) 
t3 =mmdele(3,x,i~re2)·(z-zi) / ((r-ri)·(r-ri)+(z-zi)·(z-zi)) 

qstarr - fl • r * ( ( tl + t2 * dircosr + t3 * dircosz ) 

hgrand qstarr * basis * abjacob 

go to 990 
c End of axisymmetric branch 

c·················· Case of Planar Problem * ••• ** •••• * •••• ***. 
940 dist dsqrt ( (r-ri)·(r-ri) + (z-zi)·(z~zi) ) 

temp = ( (r - r i) • d i r cos r + (z - z i) • d i r cos z ) 
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qstar = - temp / ( 2.0 * pi * dist * dist ) 
hgrand = qstar * basis * abjacob 

c End of planar branch 

990 return 
end 

c ************* FlNCTION Ell *************** 
c Til i s fun c t ion a p pro x i rna t est h e c omp let eel i p tic i n t e g r a I 0 f 
c the fi r s t kin d 0 f the c omp I erne n tar y par arne t e r x (c a I led m1 
c by Abromowitz and Stegun.) 
c This is not used in this program unless the LvISL library 
c IS unavai lable 

function eil(x) 
imp I i cit double precision (a-h,o-z) 

p=( ( ( ( 
u 0.01451196212 ) * x + 
u 0.03i42563i13 ) * x + 
u 0.03590092383 ) * x + 
u 0.09666344259 ) * x + 
u 1.38629436112 

q=( ( ( ( 
u 0.00441i8i012 ) * x + 
u 0.03328355346 ) * x + 
u 0.068802485i6 ) * x + 
u 0.1249859359i ) ole x + 
u 0.50000000000 

eil = p - q ... dlog(x) 

return 
end 

c ************* Fl~DTIQ~ El2 ************** 
c Th i s fun c t ion est i rna t est h e val u e 0 f the c omp let eel lip tic 
c i n t e g r a I 0 f the sec 0 n d kin d wit h c omp I i me n tar y par arne t e r x. 
c This is not used in this program unless the ThISL library 
c is unavailable 

function ei2(x) 
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imp I i cit double preCISIon (a-h,o-z) 

p=( ( ( ( 
u 0.01736506451 ) * x + 
u 0.04757383546 ) * x + 
u 0.06260601220 ) * x + 
u 0.44325141463 ) * x + 
u 1.00000000000 

q=( ( ( ( 
u 0.00526449639 ) * x + 
u 0.04069697526 ) * x + 
u 0.09200180037 ) * x + 
u 0.24998368310 ) * x + 
u o. 

ei2 = p - q * dlog(x) 

return 
end 

c ***************** ~CTIQ~ POLCUR\T ****************** 

c This routine does a trapezoidal interpolation of 
c current-density,/overpotential pairs (cur/eta) to 
c return a value of current "polcurv" corresponding 
c to the supplied value of dim~nsionless overpotential "eta\·al. 
c A set of "nopts" current-density/overpotential pairs 
c are passed in vectors "curap" and "etaap." 
c Pay attention to units: "etaval" is a dimensionless 
c overpotential and' 'polcurv" is a dimensionless current 
c density. However, curap and etaap are in m<\/cm2 and 
c mY, so we temporarily convert to these real units inside 
c the function, and convert back before returning. 

c 

c 
c 

function polcurv(eta) 

implicit double precision (a-h,o-z) 

c oumo n / set 14 b / no p t s , cur a p ( 40 ) , cur c h a r , eta a p ( 40) , v c h a r 

Co n v e r t "e t a " tom i I I i v 0 Its : 
etamv eta * vchar 

Corrective treatment of case (unrealistic) of subzero etaval 
(Just a convergence trick) 
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if ( eta. Ie . O. 
polcurv = - eta ... 
return 
end if 

then 
0.001 

c Trapezoidal interpolation of current density: 
do 20 j = 2, nopts 

if (etamv . Ie. etaap(j) ) then 
curma = curap(j-l) + ( curap(j) - curap(j-l) ) ... 

$ ( e tam\" - eta a p ( j - 1) ) / ( eta a p ( j) - eta a p ( j - 1 ) 
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c 1'\0 n dime n s ion a liz e the cur r e n t den sit y be for ere t urn i n g : 

20 

polcurv curma / curchar 

return 
endif 

continue 

return 
end 

c .................. .................. ......... ... ............... Sl1BROOTIT'\E B\'KIN ......................................................... * * * * 
subroutine bvkin(ratio,etas,alphaa,alphac) 

implicit double precision (a-h,o-z) 

c This routine solves for surface overpotential "etas" In the 
c Butler-Volmer kinetic expression. "ratio" is the ratio of 
c the current density to the exchange-current density. 
c "alphaa" and "alphac" are the transfer coeficients. 
c "etas" has been made dimensionless by "vchar." 

c The Newton-Raphson al gor i thm: 

c Relative convergence tolerance: 
tol = 1.Oe-15 

c Maximum number of iterations: 
nctrmax = 100 

c Initialize: 
nctr = 0 

c Initializations for the Tafel 
if (ratio.ge.I.Oe+4) etas 
i f (r at i 0 . Ie. - I .0 e+4 ) eta s = 

extremes: 
dlog( ratio) 

-dlog(-ratio) 
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10 nctr = nctr + 1 

c Fu n c t ion "f" wi I I got 0 Z e r 0 at con y erg e n c e . 
anod = dexp alphaa * etas 
cath = dexp - alphac * etas 
f anod cath ratio 

c We d i ITer en t i ate a n a I y tic a I I y : 
fprime alphaa * anod + alphac * cath 

c Newton-Raphson 
deletas 

increment: 
f / fp rime 

c Don't 
dmax 

let etas change too much between iterations: 
1.0 

dmi n - 1.0 
if ( deletas 
if ( deletas 

gt 
I t 

dmax 
dmin 

deletas 
deletas 

c Newton-Raphson correction: 

c 

etas etas + deletas 

Convergence: 
if ( dabs(deletas) 

return 
endif 

It . tol ) then 

c Divergence: (Too many iterations) 
if ( nctr . gt . nctrmax ) then 

write (2,20) etas 

dmax 
dmin 

20 format ('too many iterations on bvkin. '/'etas='g8.2) 
stop 
endif 

c Keep iterating: 
go to 10 

end 

c ******************* SDBRODTI~E RSR£~ ********************** 
c If this run is a restart ( irestrt = 1 ) we skip the costly 
c "matrix" and' 'gaussl" routines and merely read In 
c their products from the restart file, for003.dat. 

subroutine rsread 
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implicit double preCISion (a-h,o-z) 

common/set1/nonods 
c ommo n / p i v / i p i v 0 t ( 150), j p i v 0 t ( 150 ) 
common/set4/a(150,150) 
common/set5/c(150,150) 

write (2,10) 
10 format(/'This run was done from a restart file. 'I) 

c Read from the restart file. 

read (3,20) 
20 forma t (j / / / / j) 

30 
read (3,30) ( ipivot(i), jpivot(i), 
forma t ( lOx, i -1 , 6 x , i 4 ) 

read (3,40) 
4 0 forma t (j j) 

1, nonods ) 

read (3,100) ( ( a(i,j), c(i,j), j=l,nonods ), i=l,nonods ) 
100 format(10x,e20.14,2x,e20.14) 

return 
end 

c ******************* SL~ROGTI~E R~\RlTE ***************** 
c If requested, write the contents of pivot vectors and a 
c and c matrices into a restart file, for008.dat. 

subroutine rswrite 

implicit double precision (a-h,o-z) 

common/setl/nonods 
'common/piv/ ipivot(150), jpivot(150) 

conmon/set-1/a(150,IS0) 
common/set5/c(IS0,150) 

write (2,10) 
10 forma t. ( / 'A res tar t fi Ie wa s c rea ted. ' ) 

write (3,20) 
20 format(//////) 
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30 
write (3,30) ( i, ipivot( i), jpivot(i), 
forma t ( i 4 , 6 x , i 4 , 6 x , i 4 ) 

write (3,40) 
40 forma t (j /) 
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1, nonods ) 

write (3,100) ((i,j,a(i,j),c(i,j),j-I,nonods), i I,nonods) 
100 format(i4,Ix,i4,Ix,e20.14,2x,e20.14) 

write (3,110) 
11 0 forma t. (j /) 

return 
end 
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Input-Data File 

Th i sis a fi leo fin put d a t a for pro gram "b e cur' , 
for the nickel problem corresponding to the experiment. 
Fine nodal structure. 
- lin e-
- lin e-
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iprint ispotpr intspot 
1 1 1 

100 

igrid (0 run, 1 both, 2 plot) 

o 1 

irestrt ikeep 

o 1 

ibctype ( 0 natural; 1 essential 
1 

o 

o 

guess" (mY) (only used for essential bc at electrode) 
sd.dddEsee 
-1.0 e+02 

g u e s s i (mAl c rn2 ) ( 0 n I y use d for nat u r a I be ate lee t rod e ) 
sd.dddEsee 
5.0 e-02 

to I 
sd.dddEsee 
1.000e-06 

fracfp 
d.dddddddd 
0.2 

mc t rmax 
1111 

1 

nc t rmax 
1111 

10 

de 1\·0 
dddddd.d 

-,).0 

nodelf 

mswi tch 
1111 

o 

ndivmax 
1111 

3 

fracnr 
d.dddddddd 
1 .0 

mconsec 
1111 

10 

ntotmax 
1111 

500 

deldelv 
dddddd.d 

-100.0 
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nconmax 
1 I 1 I 

300 

program becur 

de I pmax 
dddddd.d 

-2000.0 

input file 



1 1 

1 

del d (p h i (CE) - phi (\\E) ) - same at 0 pen c k t . (mV) 
index dddddd.d 

1 -1200.0 

ikin (1 Butler-Volmer, 2 Linear, 3 Tafel, 4 passivating) 

xc h cur (nA/ cm2) 
sd.dddEsee 
2.5 e-03 

alphaa 
dd.dddd 
0.5 

alphac 
dd.ddd 
0.5 

nopts 
11 

number of cur-eta pairs to fit polar. curve 
(applicable only for ikin=4) 

30 

cur-eta pa 1 r s (m<\j cm2 , mY) 
point cur eta 

ddd.dddddd dddd.d 
1 0.0 0.0 
2 0.197 30.4 
3 0.393 60.9 
4 0.590 91 .3 
5 0.787 122.0 
6 0.983 152.0 
7 1.967 183.0 
8 6.883 213.0 
9 12.29 243.0 
10 19.67 274.0 
11 29.50 304.0 
12 35.40 335.0 
13 38.35 365.0 
14 3·1 .41 396.0 
15 2·1.58 426.0 
16 16.22 456.0 
17 0.98 487.0 
18 0.5 517 .0 
1 9 0.5 1371.0 
20 1 .86 1523.0 
21 4.23 1599.0 
22 9.83 1675.0 
23 19.66 1765.0 
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24 19.66 
25 9.83 
26 6.88 
')--, 9.83 
28 19.66 
29 49.15 
30 i4. il 

curchar 
sd.dddEsee 
5.233e+00 

vchar 
dddd.dd 

24.08 

I aXI sm 

1 

nonods 
iii 
113 

nonelec 
I I I 
69 

s c a Ie 
ddddd.d 

20.0 

li80.0 
li8i .0 
1828.0 
18i6.0 
1904.0 
1942.0 
1980.0 

vertices of sma lie s t rectangle enclosing the domain 
xmln xmax 
ddddd.d ddddd.d 

0.0 250.0 
ymln ymax 
ddddd.d ddddd.d 

0.0 20.0 

rlnner 
ddddddd.d 

40.0 

node coordinates 
node r or y 

ddddddd.d 
1 0.0 
2 0.0 

Appendix A-I 

keys 
z or x bc ode loc 

ddddddd.d II i i I I 
240.0 0 1 1 
23i .5 0 1 0 

program becur 
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3 0.0 235.0 0 1 1 
4 0.0 232.5 0 1 0 
5 0.0 230.0 0 1 1 
6 0.0 22i .5 0 1 0 
7 0.0 225.0 0 1 1 
8 0.0 222.5 0 1 0 
9 0.0 220.0 0 1 1 
10 0.0 217 .5 0 1 0 
11 0.0 215.0 0 1 1 
12 0.0 212.5 0 1 0 
13 0.0 210.0 0 1 1 
14 0.0 20i .5 0 1 0 
15 0.0 205.0 0 1 1 
16 0.0 202.5 0 1 0 
17 0.0 200.0 0 1 1 
18 0.0 197 .5 0 1 0 
10 0.0 19.5.0 0 1 1 
20 0.0 192.5 0 1 0 
21 0.0 190.0 0 1 1 
22 0.0 18i .5 0 1 0 
23 0.0 185.0 0 1 1 
24 0.0 182.5 0 1 0 
<)~ 
_0 0.0 180.0 0 1 1 
26 0.0 177.5 0 1 0 
27 0.0 175.0 0 1 1 
28 0.0 172.5 0 1 0 
29 0.0 liO.O 0 1 1 
30 0.0 167 .5 0 1 0 
31 0.0 165.0 0 1 1 
32 0.0 162.5 0 1 0 
33 0.0 160.0 0 1 

~ 
34 0.0 157.5 0 1 0 
35 0.0 155.0 0 1 1 
36 0.0 152.5 0 1 0 
37 0.0 150.0 0 1 1 
38 0.0 147.5 0 1 0 
39 0.0 145.0 0 1 1 
40 0.0 142.5 0 1 0 
41 0.0 140.0 0 1 1 
42 0.0 135.0 0 0 
43 0.0 130.0 0 1 1 
44 0.0 125.0 0 1 0 
45 0.0 120.0 0 1 1 
46 0.0 115.0 0 1 0 
47 0.0 110.0 0 1 1 
48 0.0 105.0 0 1 0 
49 0.0 100.0 0 1 1 
50 0.0 95.0 0 1 0 
51 0.0 90.0 0 1 
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52 0.0 85.0 0 1 0 
53 0.0 80.0 0 1 1 
54 0.0 75.0 0 1 0 
55 0.0 70.0 0 1 1 
56 0.0 65.0 0 1 0 
57 0.0 60.0 0 1 1 
58 0.0 .55.0 0 1 0 
59 0.0 50.0 0 1 1 
60 0.0 45.0 0 1 0 
61 0.0 _40.0 0 1 1 
62 0.0 35.0 0 1 0 
63 0.0 30.0 0 1 1 
64 0.0 25.0 0 1 0 
65 0.0 20.0 0 1 1 
66 0.0 15.0 0 1 0 
67 0.0 10.0 0 1 1 
68 0.0 5.0 0 1 0 
69 0.0 0.0 0 1 1 
70 0.0 0.0 0 0 1 
i1 5.0 0.0 0 0 0 
72 10.0 0.0 0 0 1 
73 15.0 0.0 0 0 0 
74 20.0 0.0 0 0 1 
75 20.0 0.0 0 0 1 
76 20.0 10.0 0 0 0 
77 20.0 20.0 0 0 1 
78 20.0 30.0 0 0 0 
79 20.0 40.0 0 0 1 
80 20.0 50.0 0 0 0 
81 20.0 60.0 0 0 1 
82 20.0 70.0 0 0 0 
83 20.0 80.0 0 0 1 
84 20.0 90.0 0 0 0 
85 20.0 100.0 0 0 1 
86 20.0 110.0 0 0 0 
87 20.0 120.0 0 0 1 
88 20.0 130.0 0 0 0 
89 20.0 140.0 0 0 1 
90 20.0 150.0 0 0 0 
91 20.0 160.0 0 0 1 
92 20.0 170.0 0 0 0 
93 20.0 180.0 0 0 1 
94 20.0 190.0 0 0 0 
95 20.0 200.0 0 0 1 
96 20.0 207.5 0 0 0 
97 20.0 215.0 0 0 1 
98 20.0 222.2 0 0 0 
99 20.0 230.0 0 0 1 
100 20.0 235.0 0 0 0 
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101 20.0 240.0 0 0 1 
102 20.0 245.0 0 0 0 
103 20.0 250.0 0 0 1 
104 20.0 250.0 1 2 1 
105 15.0 250.0 1 2 0 
106 10.0 250.0 1 2 1 
107 5.0 250.0 1 2 0 
108 0.0 250.0 1 2 1 
109 0.0 250.0 0 0 1 
110 0.0 247.5 0 0 0 
III 0.0 245.0 0 0 1 
112 0.0 242.5 0 0 0 
113 0.0 240.0 0 0 1 
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Appendix A-2 

Boundary-Element Code for Attached-Bubble Model 

The following Fortran code was used in the calculations of Chapter 2. A sample 

input-data file is given at the end of the program list.ing. Important variables are 

defined in subroutine 'input' or as, they appear in the code. Subroutines 'matrix,' 

'makeb,' 'gaussl,' 'gauss2,' 'rsread' and 'rswrite' as \vell as functions 'gquad,' 'eiI,' 'ei2.' 

'ggrand' and 'hgrand' are listed in Appendix A-I. 



program bebub 

c This program is intended to solve for the current 
c distribution in the vicinity of an electrolytic bubble 
c attached to an electrode. Laplace's equation is to 
c be solved for two variables: 
c 

c 
c 

subscript 
1 

variable 
potential, phi 
concentration of dissolved gas, cg 

c We solve for the concentration over the diffusion boundary 

23i 

c layer (dbl) or "domain 2," while phi is solved over a larger 
c region,' 'domain 1", comprising the qbl, with matching 
c conditions at the electrode. 

c The overpotential acting at the electrode surface comprises 
c activation overpotential (given by the Butler-Volmer 
c expression) and the I, incomplete" concentration overpotential 
c (the remainder of the "complete" concentration overpotenial 
c is accounted for in the electrostatic potential drop across 
c the boundary layer. ) 

c The program is general to axisyrrmetric and planar problems. 

c This is a boundary-element program using quadratic elements. 
c Be sure that, for both domains, the node numbering is done 
c counterclockwise beginning with the first electrode node. 

implicit double precision (a-h,o-z) 

corrmon/nrl/ surf, delsurf 
corrmon/pivl/ ipivotl(150), jpivotl(150) 
corrmon/piv2/ ipivot2(150), jpivot2(150) 
corrmon/setO/nonelec 
corrmon/setl/nonodsl,nonods2 
corrmon/set2/coordsl(150,2) ,coords2(150,2) 
c orrmo n / set 2 a / key I 0 cl ( 1 50) , key I 0 c 2 ( 1 50 ) 
corrmon/set3/iaxism,rinner 
corrmon/set41/al(150,150) 
corrmon/set42/a2(150,150) 
corrmon/set51/cl(150,150) 
corrmon/set52/c2(150,150) 
common/set61/xl(150) 
common/set62/x2(150) 
common/setil/bcl(150) 
common/set72/bc2(150) 
c ommo n / set 8 1 / key b c 1 ( 1 50 ) , key 0 del ( 150 ) 
c ommo n / set 82/ key b c 2 ( 150) ,k e yo de 2 ( 150 ) 
conmon/setIO/tol ,param,paramnr,nctrmax,nmaxnr,nctr,nctrnr 
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commonjsetlljnogauss,wfgauss(12) ,abgauss(12) 
commonjset12jscale 
commonjset13jiflag 
commonjsetI6jnctrsp,ispotpr,intspot 
common/set17jtmax 
commonjset18jepsilon,theta,omega,enoYrz2 
commonjsetI9/speed,beta 
commonjset20jsl,sg,el,eg 
commonjset2ljixport,ifast 
conmonjset22jirestrt,ikeep 
c onmo n / set 23/ phi e far, phi e de, bIt, edt, phi e ( 150 ) 
c ommo n / set 24 jig rid, xmi n , xmax , ymi n , ymax 

dime n s ion b 1 ( I 5 0 ), b 2 ( 1.50 ) 
dimension surf(150), surfnew(150), delsurf(150) 

c Begin by reading in all the data for the problem. 
c Call the input subroutine. 

call input 

c If requested, create a plot of the problem geometry. 
c Act according to the key' 'igrid": 
c igrid=O run but no plot 
c igrid=1 run and plot 
c igrid=2 plot only ( no run 

if (igrid It. I ) go to 10 
call grid(nonodsl,coordsl,keyodel,keylocl) 
cal I grid(nonods2,coords2,keyode2,keyloc2) 
if ( ixport . ne . I ) 

$call grid(nonods2,coords2,keyode3,keyloc2) 
if ( igrid . eq . 2 ) stop 

c See if this run is a restart irestrt = I ). If so, skip 
c the cos t I y "rna t r ix" and "g a us s I " r 0 uti n e san d me reI y 
c read in their products from the restart file, for003.dat. 

10 if ( irestrt . eq . 0 ) go to 100 
call rsread 
go to 1003 

c Call subroutine' 'matrix" to set up each matrix problem 
c G q =H u (same for problems 2 and 3) and rearrange 
c to get A x = C be, different now for each problem. 
c We form matrices AI, CI, A2 and C2. 

1 00 c a I I rna t r i x ( non 0 d s 1 , coo r d s 1 , key I 0 c1 , aI, c 1 , key b c1 , key 0 del ) 
call matrix(nonods2,coords2,keyloc2,a2,c2,keybc2,keyode2) 
if ( ixport . ne . I ) 
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ucal I matrix(nonods2,.coords2,keyloc2,a3,c3,keybc3,keyode3) 

c Send off both (all three) A matrices to be forward reduced 
c in subroutine' 'Gauss1." The reduced matrices are retained 
c in their original storage locations along with a record of 
c row manipulations. Vectors "ipivot" and "jpivot" are 
c formed for each problem, as a record of row and column 
c exchanges carried out. 

c a I I 
c a I I 
if( 

uca II 

gaussl(nonods1 ,al ,ipivot1,jpivot1. iflag1) 
1( d C) C) •• C)" C)'fI C») gauss nono s.,a.,lplvot.,JPlvot.,1 ag. 

ixport . ne . 1 ) 
gauss1(nonods2,a3,ipivot3,jpivot3,iflag3) 

c If any matrix is singular, stop everything. 
if (iflagl eq 1) stop 
if (iflag2 eq 1) stop 
if (iflag3 eq 1) stop 

c If requested, write the contents of pivot vectors and a and 
c c rrmtrices into a restart file, for008.dat. 

1003 if (ikeep eq. 0 ) go to 1005 
c a I 1 r swr i t e 
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c Calculate' 'phiefar", the value of phi just off the electrode 
c surface, far from the bubble. This is the same potential 
c that would be calculated for a one-dimensional problem 
c wit h nob u b b I e pre sen t . Th e r 0 uti n e. "0 ned i m" rna k e s 
c this calculation. 

1005 cal I onedim 

c \Ve now have forward-reduced forms of both (all three) system 
c rrmtrices and we're ready start into the iteration cycle. 

c Initialize surf, either phi or its derivative at the electrode 
c surface, according to the value of ifast. 

c Case of fast kinetics: 
if ( ifast . eq . 0 ) go to 118 
do 117 i = I, nonelec 

surf(i) = bCI{i) 
117 continue 

go to 120 

c Case of slow kinetics: 
118 do 119 i = 1, nonelec 

surf{i) = epsilon / scale 
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119 continue 

c Initialize 
divergence 
nctr 
nctrnr 
ndiv 
ndivmax 
tmaxdiv 
frac 

parameters 
tests. 

for iteration, convergence, 
c 
120 

tmax 
tolnr 
iterkey 

o 
o 
o 
50 
1000. 
param 
100. 
to I * " 
1 

c **************** Start of Iteration ******************* 

c 
121 

See if we're at the point ot 
if (nctr.eq.nctrmax and 
i f ( tmax. Ie. to I n r . and . 
go to 124 

changeover to N.R. 
nctrnr.eq.O ) go to 122 
nctrnr.eq.O ) go to 122 

c At the point of changeover to N.R. reset some parameters. 
122 iterkey = 2 

ndivmax = 2 
ndiv 0 
frac = paramnr 

c Branch to appropriate type of iteration. 
124 if (iterkey eq. 2 ) go to 126 

c ********* Substitution Iteration ********* 
c "iterkey" equals 1. 

nctr = nctr + 1 
keepoff = 0 
i f ( ifast eq 0 ca II gslow(surf,su~fnew,keepoff) 

i f ( if as t eq 1 c a I I gfast(surf,surfnew) 
go to 130 

c ********* Newton Raphson Iteration ******* 
c "iterkey" equals 2. 

126 nctrnr = nctrnr + 1 
frae = paramnr 
i f ( nma x n r e q . 0 go to 172 

c Ca I I sub r 0 uti n e "n r" too per ate 0 nth eve e tor "e u r ' , 
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c returning a vector of corrections' 'delcur." 
call nr 

do 128 i = 1, nonelec 
surfnew(i) = surf(i) + delsurf(i) 

128 continue 

c ************* Convergence Test, Update" surf" *********** 

c For the convergence criterion, find the biggest change in 
c surf on the electrode. Also, here is where you make the 
c relaxed substitution to form new guess surf for the next 
c 
130 

c 

c 
c 
c 

iteration. 
tmaxold = tmax 
tmax = o. 
Find the largest absolute change 
do 138 i = 1, nonelec 

t = dabs( surfnew(i) - surf(i) 
i f ( t . g t . tmax ) tmax = t 
surf(i) frac * surfnew(i) 

In surf. 

+ ( 1. 0 
Impose some walls: 
if ( ifast.eq.l and 
if ( ifast.eq.O . and 

surf ( i ) . It. wa I I 
surf(i).lt.O. 

frac ) * surf( i) 

surf(i) =wall 
) surf( i) = o. 

138 continue 

c 
147 

c 
c 
c 
c140 
c 
c 
c142 

c 

146 

148 

No rma liz e tma x .. 
if ifast eq 
if ifast. eq 

1 
o 

tmax - dabs( tmax 
tmax dabs( tmax * scale j epsilon 

As an diagnostic, print out tmax for each iteration. 
if ( nctr . eq . 1 ) then 

write (2,140) 
format(j2x, 'nctr' ,3x, 'nctrnr' ,3x, 'tmax') 

endif 
write (2,142) nctr, nctrnr, tmax 

forma t ( 2 x , i 4 , 4 x , i 4 , 4 x , g 1 0 . -1 ) 

If you have converged, cal I the output subroutine. 
if(tmax.gt.tol) go to 149 
write (2,146) 
forma t ( j , 0 f c 0 u r s e i t con v erg e d ! ' j ) 
write (4,148) 
forma t ( , 0 f co u r s e i t con v erg e d! ' j ) 
go to 180 

c If you've exceeded the max allowed iterations, say so 
c and quit. 
149 if ( nctrnr . ge . nmaxnr ) go to 172 

241 

Appendix A-2 program bebub main program 



c 

c 

150 

c 
c 
c 
152 

154 

Test for divergence two different ways: 

1) If tmax exceeds tmaxdiv then bailout. 
if ( tmax . It tmaxdiv) go to 152 
write (2,150) 
wr i t e (4, 150 ) 
format( / 'divergence. tmax exceeds tmaxdiv.' / ) 
go to 180 

2) Keep a running tally of the pattern of convergence. 
If tmax goes UP ndivmax times more than it goes IX:MN 
over any interval, then announce this and quit. 
if (tmax ge tmaxold) ndiv ndiv + 1 
if (tmax It tmaxold) ndiv = ndiv - 1 
i f ( nd i v leO ) nd i v = 0 
if (ndiv Ie ndivmax) go to 156 
write (2,154) 
write (4,154) 
forma t ( /' d i v erg e nee . n d i vex c e e d s n d i vma x. ' / ) 
go to 180 

c If you have neither converged nor shown signs of 
c divergence, do another iteration. 
156 go to 121 

1 _'> , -
173 

write (2,173) 
wr i t e (4, 173 ) 
format ('You exceeded nmaxnr iterations.') 

180 cal I output 

stop 
end 

c .-._.----_ ••••••••• SuBROl~I~~ I~PlT ••••• ***.**.****** •• *** 

subroutine input 

implicit double precision (a-h,o-z) 

c This subroutine reads in all the input data and, if desired, 
c prints it all back out again as a check. 

conmon/setO/nonelec 
c onmo n / set 1 / non 0 d s 1 ,n 0 nod s 2 
c onmo n / set 2 / coo r d s 1 ( 1 50 , 2) , coo r d s 2 ( 1 50 , 2 ) 
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common/set2a/keylocl(150) ,keyloc2(150) 
common/set3/iaxism,rinner 
common/set71/bcl(150) 
common/set72/bc2(150) 
common/set73/bc3(150) 
c ommo n / set 81 / key bel ( 1 50) , key 0 de 1( 150 ) 
c ommo n ,I set 82 j key b c 2 ( 150 ) , key 0 de 2 ( 1 50 ) 
common/set83/keybc3{ 150) ,keyode3{ 150) 
c ommo n / set 10/ to I ,p a ram, par amn r , net rmax , nmax n r , net r , net r n r 
common/setl1/nogauss,wfgauss(12) ,abgauss(12) 
conmonjsetl2/scale 
common/setI3/iflag 
common/setI6jnctrsp,ispotpr, intspot 
common/setI7/tmax 
c omno n j set 18/ e psi lon, the t a , orne g a . en 0 v r z 2 
common/setI9/speed,beta 
c ommo n / set 20/ s 1 , s g , e 1 , e g 
common/set21jixport,ifast 
c ommo n / set 22/ ire s t r t , ike e p 
common/set23/phiefar,phiede,blt,edt 
common/set24/igrid,xmin,xmax,ymin,ymax 

c Read in all the input. 

read (1,301) 
301 format(////) 

c Read iprint (print all data unless iprint'equals zero), 
c ispotpr (values are spot-printed every 'intspot' iterations 
c if ispotpr = 1), and intspot. 
c Also read igrid, key for plotting grid. 
c igriG=O run, no plot 
c igri~1 run and plot 
c igri~ plot, no run 

read (1,302) iprint,· ispotpr, intspot, igrid 
302 forma t ( / / / ii, 9 x , ii, 9 x , i 3 , lOx, i 1 ) 

c Read iaxism. If this reads zero, the problem is not 
c axisymmetric. A value of one or anything else indicates 
c axisymmetry. 

read (1,303) iaxism 
303 format(///il) 

eRe ad non 0 d s 1, the n umb e r 0 f nod e s J nth e nod:l 1st rue t u ref 0 r 
c the large domain ( over which phi is solved). 

read (1,304) nonodsl 
30-1 f 0 rrna t (j j j i 3 ) 

c Read nonods2, the number of nodes in the nodal structure for 
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c the difffusion boundary layer (the small domain over which 
c c and cg are solved ). 

read (1,305) nonods2 
305 format(llli3) 

c Read nonelec, the number of nodes on the electrode surface. 
read (1,306) nonelec 

30G format(llli3) 

c Read in the scale factor for the model rep-resentation 
c of the domaim. SCALE is the number of model length unit.s 
c per dimensionless length unit. Since we have 
c nondimensionalized the problem with respect to 
c the bubble radius, SCALE is the bubble radius expressed 
c in model units. Generally, we take scale> 1 to get 
c the coordinates in round numbers. 

read (1,30i) scale 
307 format(lllfi.l) 

c Read bit, the Bound a ry - Layer Thickness, 
read (1,308) bIt 

308 forma t ( I I I f 7 . 3 ) 

c Read edt, the Extended-Domain Thickness, 
read (1,3085) edt 

3085 forma t (/ I I f 7 . 3 ) 

In bubble rad i i . 

In bubble rad i i . 

c Read vertices of smallest rectangle that encloses the domain 
c (for .graphics use.) 

read (1,309) xmin, xmax 
309 format(llllf7.1,lx,f7.1) 

read (1,310) ymin, ymax 
3 1 0 forma t ( I I f 7 . 1 ,Ix , f i . 1 ) 

c Read in the value of rinner. This is the distance (in the 
c distance units of the model) from the innermost point of 
c the nodal structure to the centerline. If the problem is 
c not axisymnetric, we don't need rinner, but we must read 
c a value anyhow. 

read (1,311) rinner 
311 format(ll/f9.1} 

c Read the stoichiometric coefficients of the reacting 
c species, sl and sg. These are' 'Ne"manclature". p 31. 

read (1,312) sl, sg 
312 format(///f4.2,6x,f4.2} 

c Rea den 0 v r z 2. rat i 0 0 f n umb e r 0 f e lee t ron sin the rea c t ion 
c to the valence on the inert ion of the binary electrolyte. 
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read (1,3125) enovrz2 
3125 format(///f5.2) 

c Read ixport, a key signifying the transport model to be used 
c In this problem: 
c 
c 

313 

ixport 
1 

read (1,313) ixport 
forma t (j / / i 1 ) 

transport model 
binary, uniform conductivity 

c Read epsilon, the value gradient of phi far away. 
read (1,315) epsilon 

315 format(///el0.3) 

c Read theta, the proportionality between normal gradients of 
c phi and cg at the electrode. 

read (1,316) theta 
316 format(///el0.3) 

c Read omega, the proportionality between normal gradients of 
c phi and cg at the electrode. 

read (1,3165) omega 
3165 format(///el0.3) 

c 
c 
c 
c 

31i 

Is this run a restart of an earl ier one? 
( yes: irestrt = 1; no: irestrt = 0 
Do we want to save matrix values and pivot keys 
in a restart file? (yes: ikeep = 1; no: ikeep 
read (1,31i) irestrt, ikeep 
forma t ( / / / i 1 . 29 x , i 1 ) 

o ) 

c Read' 'speed" the ratio of exchange current density, 
c taken at the bulk concentrations of ion and gas, 
c to the magnitude of the current density far from the bubble. 
c and the value of ifast ( 1 for fast kinetics, 0 for slow, 
c calling for the inverted loop.) 

read (1,318) speed, ifast 
318 forma t (j / / e 1 0 . 3 , 5x , i 1 ) 

c Read the kinetic synmetry factor beta. 
read (1,319) beta 

319 format(///f4.2) 

c 
c 

Ca I cu I ate 
according 
i f ( sl 
i f ( s 1 
i f ( sg 
if ( sg 

exponents 
to Newman, 
gt zero 
I t zero 
gt zero 
I t zero 

ql and qg fo r the 
p 1 i 4-

) ql O. 
) ql - s 1 
) qg O. 
) qg - sg 

kinetic expreSSion, 

2-1.5 
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c 

3~0 

c 
c 
c 
c 

321 

c 
c 
c 

3~4 

c 
c 
c 
c 
c 

c 

3~5 

$ 
3~6 

c 

3255 

$ 
3265 

c 
c 
c 
c 
c 
c 

3~69 

e1 - q1 + beta * s1 
eg qg + beta * sg 

Read the value of the relative convergence tolerance 
read (1,320) tol 
format(jjje10.3) 

Read in the convergence parameters: "param", the 
fraction of the new value used in the relaxed 
substitution, and "paramnr" the fraction of the l\R 
correction term used. 
read (1,3~1) param, paramnr 
forma t (j j j flO . 8 , 4 x , f 7 . 5 ) 

Read in the maximum number of iterations allowed: 
"nctrmax" for relaxed substitution, and "nmaxnr" 
for newton raphson. 
read (1,3~4) nctrmax, nmaxnr 
forma t (j.l j i 4 , 7 x , i 4 ) 

Read the coordinates of each node in global order. 
As a convention, we number counter clockwise beginning 
with the electrode. Also read in the keys for the boundary 
condition type ("keybc") and the boundary-segment type 
( , 'keyode ' , ) . 

First the coordinates of the extended domain: 
read (1,325) 
forma t (j j j) 
read (1,326) (coords1(i,1),coords1(i,~),keybel{i), 

keyode l{ i ) ,key I oel ( i ) , i=l , nonods 1) 
forma t ( 8 x , f 9 . 1 ,Ix , f 9 . 1 , 4 x , i 2 , 2 x , i 2 , 2 x , i 2 , 4 x ) 

Then the coordinates of the boundary layer: 
read (1,3255) 
format{jjj) 
read (1,3265) (coords2{i,1),coords2{i,2),keybc2{i), 

keyode2{ i) ,keyloc2{ i) ,keybc3( i) ,keyode3{ i), i=l ,nonods:?) 
forma t ( 8 x , f 9 . 1 ,lx, f 9 . 1 , 4 x , i 2 , 2 x', i 2 , 2 x , i 2 , -1 x , i 2 , ~ x , i:2 ) 

Sin c e t his pro gram i s g e n era Ito two d i' ff ere n tit era t ion 
schemes, we set the values of keybcl here according to the 
val u e 0 f i f a st. We i mp I y pot e n t i a I b c (k e y b cl = 1) for 
fast kinetic scheme (ifast = 1), and flux bc (keybcl = 0) 
for slow kinetic scheme (ifast = 0). Thus it doesn't matter 
what is read in for keybc1 on the electrode above. 
do 3269 i=l, nonelec 

keybel{i) = ifast 
continue 
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c Initialize the boundary-condition vectors to zero. 
do 330 i = 1, nonodsl 

bcl(i)=O. 
330 continue 

do 3305 i = 1, nonods2 
bc2(i)=0. 
bc3(i)=0. 

3305 continue 

c Fix the the phi derivative at the top of the extended donmin 
c at a value equal to minus epsilon ( minus because this is 
c an inward-pointing-surface-normal derivative. ) 

do 331 i=1,nonods1 
if ( keyode1{i) . ne . 2 ) go to 331 
bc1{i) = - epsilon / scale 

331 continue 

c Initialize the phi boundary condition on the ~lectrode 
c (keyode1=1). If ifast=l, we initialize phi to zero; if 
c ifast=O, we initialize the derivative to epsilon/scale. 
c AI so set keybcl=l for i fast=l; keybc 1==0 for i fas t==O on 
c the electrode. 

do 333 i=l,nonelec 
bcl(i) =0. 
keybcl ( i) = 1 
if ( ifast . e~ . 1 ) go to 333 
bc1{i) = epsi Ion / scale 
keybcl(i)=O 

333 continue 

c Set c and cg to un i ty at the appropriate 

3355 

3 ')
v;) 

do 335 i=1,nonods2 
i f ( keyode2{i) 
bc2(i) = 1.0 
i f ( keyode3(i) 
bc3(i)=1.0 
continue 

ne 2 go to 3355 

ne 2 go to 335 

nodes. 

24i 

c 
c 

At the electrode surface, 
derivatives to the values 

i nit i a liz e the norma I con c e n t rat ion 
they wil I have far from bubble. 

3·1·15 

3·11 

c 
c 

do 344 i=l,nonods2 
if ( keyode2(i) ne . 1 ) go to 3445 

* epsilon / scale b c 2 ( i) = orne g a 
if ( keyode3(i) 
bc3(i) = theta * 
continue 

ne . 1 ) go to 344 
eps i Ion / seal e 

Set the values of the gaussian quadrature abscissas and 
weighting factors. 
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c Twelve-point gaussIan quadrature coefficients: 

nogauss = 12 

abgauss(l) 
abgauss(2) 
abgauss(3) 
abgauss(4) 
abgauss(5) 
abgauss(6) 
abgauss(7) 
abgauss(8) 
abgauss(9) 
abgauss(10) 
abgauss(ll) 
abgauss(12) 

wfgauss(l) 
wfgauss(2) 
wfgauss(3) 
wfgauss(4) 
wfgauss(5) 
wfgauss(6) 
wfgauss(7) 
wfgauss(8) 
wfgauss(9) 
wfgauss(10) 
wfgauss(ll) 
wfgauss(12) 

return 
end 

- 0.981560634246719 
0.904117256370475 
0.769902674194305 
0.587317954286617 
0.367831498908180 
0.125233408511469 
0.125233408511469 
0.367831498998180 
0.587317954286617 
0.769902674194305 
0.904117256370475 
0.981560634246719 

0.047175336386512 
0.106939325995318 
0.160078328543346 
0.203167426723066 
0.233492536538355 
0.249147045813403 
0.249147045813403 
0.233492536538355 
0.203167426723066 
0.160078328543346 
0.106939325995318 
0.047175336386512 

c ***************** SUBROUTIl\'E 0."\EDP.vl ***********.* •• * 
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c This routine solves the one dimensional problem which appl ies 
c radially far from the bubble. We calculate electrode-surface 
c values of c, cg, etac, etas and phie ( namely cefar. cgef3r. 
c eta c far, eta s far and phi e far ). \Ve p r i n t the s e 0 uta n d r t' t urn 
c the value of phiefar to the main routine. We go on to 
c calculat.e the value of potential at the edge of the ext.ended 
c domain, "phiede." One other odd job that gets done in this 
c routine is to set the potential at the edge of the ext.ended 
c domain (bcl(i)) to the value' 'phiede" for transport cases 
c ixport = lor 3. 
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subroutine onedim 

implicit double precision (a-h,o-z) 

common/set1/nonods1,nonods2 
common/set18/epsilon,theta,omega,enovrz2 
common/set19/speed,beta 
common/set20/s1,sg,el,eg 
common/set21/ixport,ifast 
common/set23/phiefar,phiede,blt,edt 
common/set71/bc1(150) 
c ommo n / set 81 / key b c 1 ( 1 50) , key 0 d e1 ( 150 ) 

c Concentrations at the electrode, far from the bubble: 
cfar 1.0 epsi Ion / theta 
if ( ixport . eq . 1 ) cfar = 1.0 
cgfar = 1.0 - bit * epsilon / omega 

c Concentration overpotential: 
etacfar - sl * dlog ( cfar sg * dlog ( cgfar ) 

c Activation overpotential: 
etas far O. 
cur far - epsilon 
xchcurO speed * dabs(curfar) 
xchcur xchcurO * ( cfar ** e1 ) * ( cgfar ** eg ) 
ratio curfar / xchcur 
cal I bvkin(ratio,etasfar,beta) 

c Total overpotential: 
etatfar etacfar + etasfar 

c Value of potential just outside the diffuse double layer 
c refered to the potential of the electrode metal 

phiefar - etatfar 

c Calculate the potential at the extended donmin edge (e.d.e.) 
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c This is only done for and only relevant to the two concentr3trd 
c transport cases ( ixport = 1 or 3 ). 

phiede - phiefar + epsilon * edt 
if ( ixport . eq . 2 ) phiede = O. 

c Set bcl(i) at the edge of the extended domain to phiede. 
c iff a dirichlet b.c. IS called for there. 

do 100 i=1,nonods1 
key = keyodel (i) 
kbc = keybcl ( i) 
if (key ne 2 go to 100 
if ( kbc . ne . 1 go to 100 
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bel ( i) = ph i ede 
100 continue 

c Print out some key values to help debug. 
write (2,110) cgfar, phiefar, phiede,etacfar,etasfar 

110 format(//'cgfar'/gI0.4//'phiefar'/gI5.9//'phiede'/gI5.9// 
u 'etacfar'/gI0.4//'etasfar'/gI0.4/) 

return 
end 

c ***************** Sl~Ol~I~~ ~ ******************** 
c This routine does multivariable Newton-Raphson on the 
c function evaluated in either one of the g subroutines 
c ( , , g f a s t " 0 r "g s I ow' , ) . 

c The scheme is "xnew = g(xold)" which we solve by 
c defining the function' 'f(x) = g(x) - x", and then 
c sol vi n g the s y stem "FPR Th1E * del x - f" for the 
c vector of corrections "delx." 

subroutine nr 

implicit double precision (a-h,o-z) 

common/nrl/ x(150), delx(150) 
c ommo n / p i vi! i p i v 0 t 1 ( 1 50 ), j p i v 0 t 1 ( 1 50 ) 
c onmo n / p i v 2/ i p i v 0 t 2 ( 1 50), j p i v 0 t 2 ( 1 50 ) 
conmonjsetO/nonelec 
conmon/setl/nonodsl,nonods2 
common/set41/al(150,150) 
common/set42/a2(150,150) 
c ommo n / set 5 1 / el ( 150 , 1 50 ) 
common/set.52/c2(150,150) 
common/set61/xl(150) 
common/set62/x2(150) 
common/setil/bcl(150) 
common/seti2/bc2(150) 
c ommo n / set 8 1 / key b c 1 ( 1 50) ,k e y 0 del ( 1 50 ) 
common/setI2/scale 
c ommo n / set 1 6 / n c t r s p , i s pot p r , i n t. s pot 
common/set18/epsilon,theta,omega,enovrz2 
common/set19/speed,beta 
c ommo n / set 20,1 s 1 . s g , e 1 , e g 
c onnlO n / set 2 1 / i x po r t , i f as t 

dimension xp(150), xpnew(150) 

2.'50 
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dimension bl(150), b2(150) 
dime n s ion f p rime ( 1 50 , 1 50), f ( 150 ) 
dimension ipivot4(150), jpivot4(150) 

c Set' 'pert" the value of the perturbation In x used 
c to evaluate the numerical derivative. 

pert = 0.0001 

c Create the jacobian matrix' 'fprime' I in three steps: 

c 0) Evaluate function of unperturbed set. 
c This may seem strange but we do this again in step 2 
c for keeps; the only reason we do it here first is to 
c fix the value of the offset voltage in the gslow routine 
c (if applicable). If this offset voltage is not held 
c fixed while we perturb the xp's, then the jacobian will 
c turn out singular. "keepoff" is an argument of "glsow" 
c that instructs the gslow routine whether to KEEP the 
c OFFset voltage calculated during the last time 
c through the routine, or to calculate a new offset value 
c for the present call. 

5 

do 5 i =1, nonelec 
xp(i)=x(i) 
continue 

keepoff = 0 
if ( ifast 
if ( ifast 

eq 
eq 

o 
1 

call gslow(xp,xpnew,keepoff) 
call gfast(xp,xpnew) 

c 1) fill matrix with functional evaluations of perturbed x's. 
do 30 j = 1, non e I e c 

do 10 i = 1, none I e c 
xp(i)=x(i) 
if ( i . eq . j ) xp(i) xp(i) + pert 

10 continue 
keepoff = 1 
if (ifast eq. 0) cal I gslow(xp,xpnew,keepoIT) 
if (ifast eq. 1) call gfast(xp,xpnew) 
do 20 i = 1, nonelec 

fprime( i ,j) = xpnew( i) 
20 continue 
30 continue 

c 2) Evaluate function of unperturbed set. 
do 40 i = 1, nonelec 

xp(i)=x(i) 
·10 continue 

keepoff = 0 
if ( ifast . eq . 0) cal I gslow(xp,xpnew,keepoff) 
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if ( ifast . eq . 1) call gfast(xp,xpnew) 

c 3) Subtract vector' 'xpnew" from each column of the matrix. 
c Then divide each difference by pert. 
c Lastly, subtract unity from each diagonal element. 

do 70 j = 1, nonelec 
do 60 i = 1, none 1 ec 

fprime(i ,j) (fprime(i ,j) xpnew(i)) / pert 
if (i eq. j ) fprime(i,j) = fprime(i,j) - 1.0 

60 continue 
70 continue 

c Evaluate the vector "f," (f(x) = g(x) - x ). 
c (Recall that the last evaluation of g was for the 
c unperturbed vector x.) 
c Actually fil I vector f wi th MIl\oUS the value it should haYe 
c so that we can consider delx an additive correction. 

do 80 i = 1, nonelec 
f(i) = - ( xpnew(i) - xli) 

80 continue 

c Solve the system' 'FPRThtE * delx = f" using the solvers 
c "gaussl" and' 'gauss2" also used for the field problem. 

cal I g au s s 1 ( non e lee , f p rime, i p i v 0 t 4 , j p i v 0 t 4 , j a c sin g ) 
c a I I g au s s 2 ( non e lee , f p rime, del x , f , i p i v 0 t 4 , j pi v 0 t 4 , 0 ) 

return 
end 

c ****************** SuBROUTINE GFAST ********************* 
c This routine operates on a set of potential values at the 
c electrode' 'phi" and returns a new set' 'phinew," which 
c is generated by cycling through the coupled boundary-value 
c problem once. 

subroutine gfast(phi ,phinew) 
implicit double precision (a-h,o-z) 

comnon/pivl/ ipivotl(150), jpivotl(150) 
c omno n / p i v 2 / i p i v 0 t 2 ( 1 50), j P i v 0 t 2 ( 1 50 ) 
comnon/setO/nonelec 
comnon/setl/nonodsl,nonods2 
comnon/set41/al(150,150) 
c orrrno n / set 42/ a 2 ( 1 50 , 1 50 ) 
comnon/set51/cl(150,150) 
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corrmon/set52/c2(150,150) 
conmon/set61/x1(150) 
corrmon/set62/x2(150) 
corrmon/set71/bc1(150) 
corrmon/set72/bc2(150) 
c orrmo n / set 81 / key b eI ( 150 ) , key 0 de 1( 150 ) 
corrmon/set12/scale 
corrmon/set16/nctrsp,ispotpr,intspot 
corrmon/set18/epsilon,theta,omega,enovrz2 
corrmon/set19/speed,beta 
C orrmo n / set 20/ s 1 , s g , e 1 , e g 
corrmon/set21/ixport,ifast 
corrmon/set23/phiefar,phiede,blt,edt,phie(150) 

dimension bl(150), b2(150) 
dimension phi(150), phinew(150) 

C Set bCl(i). 
do 115 i=l,nonelec 

bcl(i) phi(i) 
115 continue 

c Apply the BCs; make vector bl. 
call makeb(nonodsl,eI ,bcl ,bI) 

c Call subroutine "gauss2" to back-substitute and get 
c nodal derivatives. 

neumann = 0 
call gauss2(nonodsl ,al ,xl ,bI, ipivotl, jpivotl ,neumann) 

c Relate concentration derivatives to phi derivatives 
c at electrode. 

do 120 i = 1, nonelec 
bc2(i) xl(i) / 
if ( ixport . ne 

u bc3(i) xl(i) / 
120 continue 

omega 
1 ) 
theta 

c Apply the Bes; make vectors b2 and b3. 
cal I makeb(nonods2,c2,bc2,b2) 
if ( ixport . ne . 1 ) 

ucall makeb(nonods2,c3,bc3,b3) 

c Call subroutine "gauss2" to back-substitute and get 
c nodal concentrations. 

neumann = 0 
II ~( d ~ ~ ~ b~ .. ~.. ~ ) ca gauss. nona s.,a.,x., .,lplvot.,JPlvot.,neumann 

if ( ixport . ne . 1 ) 
u c a I I g au s s 2 ( non 0 d s 2 , a 3 , x 3 , b 3 , i p i v 0 t 3 , j p i YO t 3 , n e uma n n ) 
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c 

c 

c 

c 

C 

c 

do 130 i = 1, nonelec 

Concentration overpotential: 

cg=x2(i) 
Se t a wa II : 
if ( cg . It .1.0) cg 

c 1 .0 

1.0 

i f ixport ne . 1 c=x3(i) 

etac sl* dlog ( c ) s<T * dlo<T ( C<T ) 000 

Activation overpotenital: 

Local exchange current density depends on concentration: 
curfar - epsi Ion 
xchcurO speed * dabs( curfar ) 
xchcur - xchcurO * ( c ** el ) * ( cg ** eg ) 

cur -
ratio 

- xI(i) * scale 
cur / xchcur 

etas O. 
c a I I bv kin ( rat i 0 , eta s , bet a) 

Total overpotential: 
etat etac + etas 

Calculate new surface values of phi' 'phinew". 
phinew( i) etat 

130 continue 

return 
end 

c ***************** SUBROUTI~~ GSLaV ******************** 
subroutine gslow(grad,gradnew,keepoff) 

c Th i s r 0 uti neb e gin s wit han est i rna t e for phi de r i vat i ve a t 
c the electrode surface, and produces a new set of derivatives 
c by first solving for both phi and concentration at the 
c electrode and then using an inverted kinetic expression to 
c give current densities. 

254 

Appendix A-2 program be bub subroutine gfast 



implicit double precision (a-h,o-z) 

common/piv1/ ipivot1(150), jpivot1(150) 
c ommo n / p i v 2 / i p i v 0 t 2 ( 1 50), j P i v 0 t 2 ( 150 ) 
common/setO/nonelec 
common/set1/nonods1,nonods2 
common/set41/a1(150,150) 
common/set42/a2(150,150) 
common/set51/c1(150,150) 
common/set52/c2(150,150) 
common/set61/x1(150) 
common/set62/x2(150) 
common/set71/bc1(150) 
common/set72/bc2(150) 
c ommo n / set 81 / key b c1 ( 1 50) , key 0 del ( 150 ) 
common/set12/scale 
c ommo n / set 16/ net r s p , i s pot p r , i n t s pot 
common/set18/epsilon,theta,omega,enovrz2 
common/set19/speed,beta 
common/set20/s1,sg,e1,eg 
common/set21/ixport,ifast 
common/set23/phiefar,phiede,blt,edt,phie(150) 

dimension b1(150), b2(150) 
dimension grad(150), gradnew(150), phisurf{150) 
dimension ghold(150), phold(150) 

c Set bc1(i), bc2(i), and bc3(i). 
do 115 i=l,nonelec 

bc1(i) grad( i) 
bc2(i) grad(i) / omega 
if ( ixport . ne . 1 ) 

$ bc3(i) grad(i) / theta 
115 continue 

c Apply the BCs of each problem. 'Make vectors bi and b2, 
call makeb(nonods1,cI,bc1,b1) 
call makeb(nonods2,c2,bc2,b2) 

c Determine if field problem 1 is a Neumann problem and 
c set 'neumann' accordingly. ('neumann = l' means we ha\'e 
c a Neumann probl em.) 

do 116 i = 1, nonods1 
neumann = 1 
key = keybcl( i) 
if (key. eq. 1) neumann =0 

lUi continue 

c Call subroutine "gauss2" to back-substitute and get 
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c node 
ca II 
ca II 
i f ( 

$ c a II 

values "x" for each field variable. 
gauss2(nonodsl,al,xl,bl,ipivotl,jpivotl,neurnann) 

q( d 2 q 9 b 9 .. 9" 9 0) gauss~ nono s ,a~,x~, ~,IPlvot .. ,JPlvot .. , 
ixport . ne . 1 ) 
gauss2(nonods2,a3,x3,b3,ipivot3,jpivot3,0) 

c , Ve mu s t cor r e c t the pot e n t i a I s c a I cuI ate din "g a u s s 2 ' 
c by adding a constant' 'offset", because the reference 
c for these potentials is arbitrary in a neumann problem. 
c Another important consideration in a Neumann problem is 
c that the specified currents along the domain boundary 
c must satisfy an overall balance. If they don't, there's 
c no way they can correspond to a solution to Laplace's 
c equation. \\bat we do is this: begin with a uniform 
c current distribution on the electrode which satisfies the 

2.55 

c overal I balance. Proceed through gauss2 and the overpotential 
c conditions to generate a new current distribution H-\\'I~ 
c GUESSED a value for "offset." \Ve iterate at this point: 
c trying values of offset until finally a current profile is 
c obtained which satisfies the overall balance. (It is 
c rea son a b let 0 ass urne t hat 0 n I yon e val u e 0 f 0 ff set wi I I do 
c the trick) 

c 
c 
c 
c 

For 
i f 
i f 
if 

now we're 
ixport 
ixport 
neWllann 

treating 
eq 2 
eq 3 
ne 1 

a Neumann prob I em, ixport 
) go to 119 
) go to 119 
) go to 119 

c Only necessarily true for transport case #1: 
cw 1.0 

c Do a I I t his tog eta fi r s t est i rna teo f "0 ff set ' , . 

c "cgw", dissolved gas concentration at the wall: 
cgw x2(nonelec) 
i f ( c gw . I t 1 . 0 ) c gw = 1 . 0 

1 . 

c Calculate "etasw", activation overpotential at the wall: 
etasw O. 
curw - bcl(nonelec) * scale 
xchcurO speed * dabs(epsilon) 
xchcur xchcurO * ( cw ** el ) * ( cgw ** eg ) 
ratio curw / xchcur 
call bvkin(ratio,etasw,beta) 

c Calculate' 'etacw", concentration overpotential at the wall 
etacw - sl * dlog ( cw ) sg • dlog ( cgw 
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c 
c 

Calculate phiw, potential just outside the diffuse 
layer off of point w on the electrode surface: 
ph ime to. 
phiw phimet 

< 
etacw etasw 

double 

if (keepoff. eq. 0 offset phiw xl(nonelec) 

c Set up for Newton-Raphson 
pert 1.0e-5 
nnr = 0 
nn rmax 
tolnr 

1000 
1.0e-l0 

do 42 i = I, nonelec 
phisurf(i) = xl(i) 

42 continue 

44 nnr = nnr + 1 

offsetp = offset + pert 

fp extra(offsetp,gradnew,phisurf) 
f extra(offset, gradnew,phisurf) 

fprime = ( fp - f ) / pert 

del 0 ff = - f / f p rime 

call flag(pi) 

if 
i f 

deloff 
deloff 

factor 1.0 

gt 
I t 

0.01 
-0.01 

deloff = 0.01 
deloff = -0.01 

offset offset + factor * deloff 

i f dabs(deloff) Ie . tolnr ) go to 84 

if ( nnr . ge . nnrmax ) then 
wr i t e (2, 74 ) 

74 format('exceeded nnrmax iterations In offset nr') 
stop 

else 
go to 44 

end if 

84 do 86 1, nonods 1 
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xl ( i ) 
86 continue 

return 
end 

xl(i) + offset 

c ******************** FU~CTIO~ EAl1t~ ***************** 
function extra(offset,gradnew,phisurf) 

implicit double precision (a-h,o-z) 

corrrnon/setO/nonelec 
corrrnon/setl/nonodsl,nonods2 
corrrnon/set2/coordsl(150,2) ,coords2(150,2) 
c omno n / set 2 a / key 10 c 1 ( 150 ) , key I 0 c 2 ( 1 50 ) 
corrrnon/set3/iaxism,rinner 
corrrnon/set61/xl(150) 
corrrnon/set62/x2(150) 
corrrnon/set63/x3(150) 
corrrnon/set71/bcl(150) 
corrrnon/set72/bc2(150) 
corrrnon/set73/bc3(150) 
common/set81/keybcl(150) ,keyodel(150) 
corrrnon/set82/keybc2(150),keyode2(150) 
c orrrno n / set 83/ key b c 3 ( 150) ,k e y 0 de 3 ( 150 ) 
c orrmo n / set 11 / no g au s s ,w f g a us s ( 12 ) , a b g a us s ( 1 2 ) 
conmon/setI2/scale 
corrrnon/setI8/epsilon,theta,omega,enovrz2 
corrrnon/setI9/speed,beta 
c orrmo n / set 20/ s 1 , s g , e 1 , e g 
c omno n / set 21/ i x p 0 r t , i fa s t " 
c orrmo n / set 23/ phi e far , ph i e de, bit, edt , ph i e ( 150 ) 

dimension gradnew(150), grad(150), phisurf(150), phinew(150) 

c Adjust al I the electrode potentials. 
do 118 i = I, nonelec 

if ( keybcl( i) . ne . 0 ) go to 118 
phinew(i) phisurf(i) + offset 

118 continue 

c The next section of the program deals with the potential 
c matching condition at the electrode. 

c If we are in a dilute, binary electrolyte (ixport='2), 
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c 
c 
c 
c 
119 

c 
c 

I f)-_0 

c 

c 

c 

c 

c 

c 

evaluate the potential at each electrode surface node, 
using subroutines' 'phieval" and' 'phistep" along with 
functions "gquad" and "eline" to do the necessary 
I ine integral. 
if ( ixport . eq . 2 ) call phieval 

Use the overpotential condition to return a revised value 
of current density at each electrode node. 

do 130 i = 1, nonelec 

Total overpotential: 
etatot 0.0 phinew(i) 

Concentration overpotential: 
cg=x2(i) 
Se t a wa II : 
if cg. It . 1.0 cg = 1.0 
c 1 .0 
if ixport. ne . 1 ) c = x3(i) 
etac - sl * dlog ( c sg * dlog ( cg ) 

Activation overpotenital by difference: 
etas etatot 

Local exchange current 
curfar - epsilon 
xchcurO speed * 
xchcur xchcurO * 

etac 

density depends 

dabs( curfar) 
( c ** el ) * ( 

Butler-Volmer kinetics: 

on concentration: 

cg ** eg ) 
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ratio dexp ( (1.0 - beta) * etas) dexp (-beta * etas) 
cur xchcur * ratio 

c 
c 

Express these 
back into the 
gradnew(i) 

130 continue 

currents as normal derivatives and pass them 
calling routine as "gradnew(i)." 

- cur / scale 

c Evaluate' 'extra", the imbalance In current between 
c the electrodes. 

c We assume that the electrode is flat (z constant) 
c and we require rinner to be zero in these extended-
c domain problems. 
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c There are this many quadratic elements on the electrode: 
noels = ( nonelec - 1 ) / 2 

c Integrate. 

c 
c 

c 

l) -_u 

pl 3.14159265 
sumsum O. 
rmax = o. 
do 30 k = 1, noels 

ni 1 + 2 * k 2 
n2 1 + 2 * k 
n3 I + 2 * k 1 

rl coo r d s 1 ( n I , 1 ) 
r2 coordsl(n2,I) 
r3 coordsI(n3,I) 

gi gradnew(nI} 
g2 gradnew(n2) 
g3 gradnew(n3) 

Find rwall, the radius of the cyl indrical insulating 
boundary in model units. 
rwal 1= coordsI(nonelec,l) 

The actual integration by gaussian quadrature: 
sum = o. 
do 25 = 1, nogauss 

s = abgauss( j) 

pI 0.5 * s * ( s - I ) 
p2 0.5 * s * ( s + I ) 
p3 (1 .0 - s ) * ( 1. 0 + s 

rJaco =( rl + r2 - 2 * r3 ) * s + 0.5 * ( r 2 
rJaco = dabs rJaco 
r pI * rl + p2 * r2 + p3 * r3 
g pI * gi + p2 * g2 + p3 * g3 

- r 1 ) 

sum = sum + 2.0 * pi * wfgauss(j) * g * r * rJaco 

continue 

sumsum sumsum + sum 

30 continue 
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top - ( epsilon / scale) *Pl * rwall ** 2 
bottom= swnswn 

extra· 

return 
end 

top + bottom 

c ******************* Su~OUTI~E PHIE\~~ ******************** 
subroutine phieval 

implicit double precision (a-h,o-z) 

common/setO/nonelec 
common/set61/x1(150) 
common/set62/x2(150) 
common/set18/epsilon,theta,omega,enovrz2 
common/set23/phiefar,phiede,blt,edt,phie(150) 

c This routine evaluates the value of phi at each electrode 
c node by doing a line integral beginning with the surface 
c point farthest from the bubble. This routine calls the 
c routine' 'phistep" for each element on the electrode. 

noels - ( nonelec - 1 ) / 2 
phie(noels) = phiefar 

do 80 i = 1, no e I s 

c Work backwards through electrode elements. 
k = no e I s + 1 - i 

c 

c 
c 

c 

Local node numbering wi th in e I emen t k: 
n1 2 * k 1 
n2 2 * k + 1 
n3 2 * k 

Calculate the potential changes from n2 to n3 (stepl) 
and from n3 to nl ( step2 ) respectively: 
call phistep(k,step1,step2) 

Step along and calculate 
phie(n3) phie(n2) + 
phie(nl) phie(n3} + 

the next two potentials. 
stepl 
step2 
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80 continue 

return 
end 

c ******************* Su~ROL~I~~ PHISTEP ******************** 
subroutine phistep(k,stepl,step2) 

c 
c 
c 

c 

c 

c 

c 

implicit double precision (a-h,o-z) 

comnon/setO/nonelec 
comnon/set61/xl(150) 
comnon/set62/x2(150) 
comnon/set18/epsilon,theta,omega,enovrz2 

external eli n e 

This routine calculates the step change In phi 
gIven electrode-surf~ce element from the nodal 
concentration and ph i . 

nl 2 * k 1 
n2 2 • k + 1 
n3 2 * k 

Coefficients of ' , d phi / d e - Aphi • e + 
Aph i. xl(nl) + xl(n2) 2.0 • xl(n3) 
Bphi 0.5 • ( x1(n2) - xl(nl) ) 

Coefficients of ' , d con / d e Acon * e + -
Acon x2(nl) + x2(n2) 2.0 * x2(n3) 
Bcon 0.5 * ( x2(n2) - x2(nl) ) 

across a 
values of 

Bphi ' ~ 

Bcon ) , . 

Coefficients of ' , con a + b * e + c * e * e .. 

a x2(n3) 
b 0.5 * ( x2(n2) x2(nl) 
c 0.5 • ( x2(nl) + x2(n2) 2.0 * x2(n3) 

g - Aphi theta + enovrz2 * Aeon 
h Bphi theta + enovrz2 * Beon 

Calculate the potential change from n2 to n3 (stepl): 
sign = 1.0 
s t e p 1 g quad ( eli n e , no g a us s ,w f g au s s , a b g a u s s , i durn, i dum. 

u d uml , dum!? , s i g n , a , b , c , g , h ) 
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c Calculate the potential change from n3 to nl (step2): 
sign = -1 .0 
s t e p 2 g qua d ( eli n e , no g au s s , w f g au s s , a b g au s s , i d uml , i durn::! , 

u dumI,drun2,sign,a,b,c,g,h) 

return 
end 

c ******************* FL~CTION ELI~~ ************************* 
fun c t ion eli n e ( i d umi , i d um2 , dum 1 , d um2 , s i g n , a , b , c , g , h , e ) 

implicit double precision (a-h,o-z) 

s sign * ( e + 1.0 ) / 2.0 
eli n e - ( g* s + h ) / ( a + b * s + c * s * s ) 

c We halve eline since the gquad routine stretches it 
c from -1 to 1. 

eline O.S * eline 

return 
end 

c ************** Sl~TlNE Ol~lT ****************** 
subroutine output 

implicit double precision (a-h,o-z) 

c This routine prints out the answer. 
common/setO/nonelec 
common/setl/nonodsl,nonods2 
common/set2/coordsl(ISO,2) ,coords2(150.2) 
conmon/ s e t3/ i ax ism, r i nne r 
common/set61/xl{ISO) 
common/set62/x2(ISO) 
conmon/set63/x3(150) 
common/setil/bcl(150) 
common/seti2/bc2(150) 
common/seti3/bc3(150) 
c ommo n / set 81 / key b cl ( 1 SO) , key 0 del ( IS 0 ) 
conmon/set82/keybc2(IS0),keyode2(150) 
common/set83/keybc3(150),keyode3{150) 
common / set 10/ to I , pa r am, pa r amn r , n c t rmax , nmax n r , n c t r , net r n r 
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c orrmo n / set 11 / n 0 g au s s , w f g au s s ( 12 ) , a b g au s s (12 ) 
corrmonfsetl2/scale 
corrmon/setI8/epsilon,theta,omega,enovrz2 
corrmon/setI9/speed,bet.a 
corrmon/set20/s1,sg,el,eg 
corrmon/set21/ixport,ifast 
corrmon/set23/phiefar,phiede,blt,edt 

c Print out answers for phi. 

write (2,910) 
910format(j 'heres the vector full of answers') 

write (2,920) 
9 2 0 forma t ( / ' nod e ' ,Ix , 'k 1 ' ,2 x , 'i phi', 3 x, 'p hi' ,4 x , 

u 'r or y',2x,'x or z') 

c Rearrange contents of vectors. / 
do 930 i = 1, nonodsl 

c 
c 

Pu t a I I phi's i n vee tor "b c 1 ' " a I I g r ad i en t sin y e c tor 
, 'x 1 . ' , 

if (keybcl{i).eq.l) go to 925 
hold xl{ i) 
xl{i) - bCl{i) 
bCl{i) hold 

c Convert all gradients to current densities normalized to 
c background current density. 
925 xI{ i) = - xl{i) * scale / epsilon 

write (2,940) i, keybcl{ i), xl{i), bcl{i), 
u coordsl{i,I), coordsl{i,2) 

930 cont.inue 

940 forma t ( i 3 , i 2 ,Ix, g 14 .8 ,Ix, g 14 .8, :2 x, 
u f8.1,lx,f8.1) 

c Print out the beef on the concentrations. 

write (2,9201) 
9201 format(/'node',lx,'kl',2x,'i c',3x,'c',4x, 

u 'i cg',4x,'cg',4x,'r or y',2x,'x or z') 

c Rearrange contents of vectors. 
do 9301 i = I, nonods2 

c Put all c's in vector' 'bc2", all gradients In 
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-

c vector "x2." 

c 
9251 

c 
c 
9261 

if (keybc2(i).eq.l) go to 9251 
hold x2(i) 
x2(i) bc2(i) 
bc2(i) hold 

Put all cg's in "bc3" and all gradients In "x3." 
if (keybc3(i).eq.1) go to 9261 
hold x3(i) 
x3(i) bc3(i) 
bc3( i) hold 

Convert al I gradients to current densities normal ized 
to background current density. 
x2(i) x2(i) • scale • omega / epsilon 
x3(i) = - x3(i) • scale • theta / epsilon 

write (2,9401) i, keybc2(i), x2(i), bc2(i), x3(i), bc3( i), 
u coords2(i,I), coords2(i,2) 

9301 continue 

9401 format(i3,i2,1x,gI4.8,1x,gI4.8,2x,glO.4,lx,gI0.4, 
u lx,f8.1,lx,f8.1) 

write (2,950) nctr, nctrnr 
950 format(/'this many iterations on the relaxed 

$ substitution'/i5/ 'and this many on the 
$ newton-raphson'/i5/) 

c Calculate the dimensionless increment in resistance 
c due to the presence of the attached bubble. 

c a I Ide I v 0 I t ( del v , del r , spa c i n g , del r n rm) 

write (2,954) delv 
954 format(/'dimensionless voltage increment'/gI2.6) 

write (2,955) delr 
955 format(/'dimensionless resistance increment'!g12.6) 

write (2,956) spacing 
956 format(/'interbubble spacing In diameters'/f9.5) 

write (2,957) delrnrm 
957 format(/'delrnrm= delr • spacing • spacing'/g12.6) 
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c Create a special file with essential data for plotting idist. 

write (4,961) 
961 format( 'titlel: descriptive informa~ion'/) 

write (4,962) 
96::! 

963 

96·1 

965 

966 

967 

968 

forma t ( I ' tit I e 2 : ' I ) 
write (4,963) 
forma t ( I ' tit I e 3 : ' I ) 
write (4,964) 
forma t ( I ' tit I e 4 : ' I ) 
write (4,965) 
forma t ( I ' tit I e 5 : ' / ) 
write (4,966) 
forma t ( I ' tit I e 6 : ' I ) 
write (4,967) 
forma t ( I ' tit I e 7 : ' I ) 
write (4,968) 
forma t ( / ' tit I e 8 : ' / ) 

c Pass these default values if only to mark where the 
c number goes. 

radmax = 2.0 
i log = 0 
curmax = 3.0 
curmi n = 0.0 
write (4,969) radmax, ilog, curmax, curmln 

969 format(/'radmax',2x,'ilog',5x,'curmax',8x,'curmin'l 
$ 2x,f5.2,7x,il,5x,e8.2,5x,e8.2) 

noaxes = 0 
ifont = 1 
write (4,970) nonelec, scale, noaxes, bit, edt, ifont 

970 forma t ( I ' non e I e c ' , 7 x , , s c a Ie' , 7 x , 'n 0 a xes' , 
$ - 'bl ' 7 'd' 6 "f '/0 '4 - f8 0 7 '1-IX, t, X, e t , X, lont _X,I ,IX, ._, X,I ,IX, 

$ f7.3,7x,f7.3,5x,i2) 

write (4,980) 
980 forma t ( I ' nod e ' , lOx , , r ad ius ' , lOx , , cur ' ) 

write (4,990) (i, coordsl(i,l), xl(i), i-l,nonelec) 
990 format(i4,10x,f8.1,IOx,flO.4) 

c 

c 

write (4,954) delv 
write (4,955) delr 
write (4,956) spacing 
wr it e (4,957) delrnrm 

Calculate the \Vagner number of this run, 
concentration effects. 

. . 
Ignoring 
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ratio - epsilon / ( dabs(epsilon) * speed) 
cal I bvkin(ratio,etasave,beta) 
an = ( 1.0 - beta) * dexp( (l.O-beta) * etasave 
ct = beta * dexp( -beta * etasave 
wagner dabs ( 1.0 / ( speed * epsilon * ( an + ct ) ) ) 

write (4,995) wagner 
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995 format(/'wagner number'/glO.4) 

write (4,996) epsilon, speed, beta 
gOG format(/'epsilon or -delta'/glO.4//'speed or abs 

c 
c 
c 
c 

c 
c 
c 
c 
c 

c 
c 
c 
c 
c 

c 
c 
c 

$ J/delta'/glO.4//'beta or alphac/sum'/glO.4) 

return 
end 

***************** SUBROUTI~'E DELVOLT ***************** 
This routine calculates the dimensionless increment in 
voltage' 'delv" due to the presence of the bubble at 
the surface. 

We also calculate the dimensionless resistance increment 
"delr." To get the actual resistance increment due to 
a regular, hexagonal array of such attached bubbles, simply 
multiply by the bubble diameter and divide by the electrolyte 
conductivity. 

~~ also return a value' 'delrnrm": 
delrnrm== delr * s * s 

where s is the interbubble spacing of the hexagonal array III 

bubble diameters. This value will not depend as strongly as 
"delr" does upon the interbubble spacing. 

Notice that' 'delr" wil I be positive if the bubbles 
increase the overall resistance, and vice versa (the case of 
current enhancement by attached bubbles). 

subroutine delvolt(delv,delr,spacing,delrnrm) 

implicit double precision (a-h,o-z) 

common/setl/nonodsl,nonods2 
common/set2/coordsl(150,2) ,coords2(150,2) 
common/set3/iaxism, rinner 
c ommo n / set 61 / x 1 ( 1 50 ) 
common / set 71 / b c1 ( 150 ) 
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c onmo n / set 81 / key b cl ( 150) , key 0 del ( 150 ) 
c onmo n / set 11 / no g au s s , w f g au s s ( 12 ) , a b g au s s ( 1 2 ) 
conmon/setI2/scale 
comnon/setI8/epsilon,theta,omega,enovrz2 
comnon/set21/ixport,ifast 
comnon/set23/phiefar,phiede,blt,edt 

c \Ve assume that the extended-domain edge is flat 
c (z constant) and we require rinner to be zero in 
c these extend&d-domain problems. 

c Count the number of nodes' 'nonede" on the extended-domain 
c e d g e (e de) and k e e p t r a c k 0 f the nod e n umb e r 0 f the fi r s t 
c such node "nodel." 

nonede = 0 
do 20 i = 1, nonodsl 

key = keyodel(i) 
if ( key. ne . 2 ) go to 20 
nonede = nonede + 1 
if ( nonede . eq . 1 ) nodel 

20 continue 

c There are this many quadratic elements on the e.d.e. 
noels = ( nonede - 1 ) / 2 

c Integrate. 
sumsum = o. 
rmax = o. 
do 30 k= I, noels 

ni node 1 + 
n2 node 1 + 
n3 node 1 + 

2 * 
2 * 
2 * 

rl coordsl{nI,I) 
r2 coordsI{n2,I} 
r3 coordsl{n3,I) 

ul bcl(nI) 
u2 bcl{n2} 
u3 bcl(n3) 

k 2 
k 
k 1 
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c 

c 
Find rwal I, the radius of the cylindrical insulating boundary 
1 n mod e I un its. 
i f rIg t rwa I I rwa I I r 1 
if r3 gt rwall rwall r3 

c The actual integration by gaussian quadrature: 
sum o. 
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do ". ~;) j = I, nogauss 

s = abgauss(j) 

pI 0.5 * s * ( s - I ) 
p2 0.5 * s * ( s + 1 ) 
p3 ( 1.0 s ) * ( 1.0 + s 

rJaco - ( rl + r2 - 2 * r3 ) * s + 0.5 * ( r 2 - r I ) 
rJaco = dabs rJaco 
r pI * rl + p2 * r2 -'- p3 * r3 
u pI * ul + p2 * u2 + p3 * u3 

sum sum + wfgauss(j) * ( u phiede ) * r * rJaco 

25 continue 

sumsum 

30 continue 

delv 
de I r 

sumsum + sum 

2.0 * 
delv / 

sumsum 
epsilon 

/ ( rwa I I *rwa I I 

pi 
afactor 
spacing 

3.14159265 

de I rn rm 

return 
end 

dsqrt ( 2.0 * sqrt ( 3.0 ) / pi 
rwal I / ( scale * afactor ) 

delr * spacing * spacing 
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c ********************* SUBROl1'flNE B\KI;,\ *********************** 
subroutine bvkin(ratio,etas,beta) 

impl icit double precision (a-h,o-z) 

c This routine solves for surface overpotential in the Butler-
c Volmer kinetic expression. "ratio" is the ratio of current 
c density to the concentration-dependent exchange-current density. 
c "beta" and "en" are from ne\\man. "etas" has been made 
c dimensionless by RT/F. 

c The Newton-Raphson algorythm: 
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10 

tol = 1.0e-15 
nctrmax = 100 
nc t r = 0 

if (ratio.ge.1.0e+4) etas 
i f (r a t i 0 . Ie. - 1 . 0 e+4 ) eta s 

nctr 

anod 
cath 
f 

nctr + 1 

dexp 
dexp 

anod 

1.0 - beta) 
beta 

cath ratio 

dlog( ratio) / (I.O-beta) 
-dlog(-ratio) / beta 

* etas 
* etas 

fp rime ( 1.0 - beta) * anod + beta * cath 

deletas f / fp rime 

c Don't let etas change too much between iterations. 
dmax 1.0 
dmi n = - 1.0 
if (deletas gt dmax deletas dmax 
if (deletas It dmin deletas dmin 

etas etas + deletas 

i f 
i f 

dabs(deletas) . It . tol 
nctr . gt . nctrmax ) 

go to 10 

20 write (2,21) etas 

go to 30 
go to 20 

21 format ('too many iterations on bvkin. '/'etas='g8.2) 
stop 

30 return 
end 

2iO 
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/ 

2il 

Input-Data File 

This file contains input data for the boundary-element 
bubble problem featuring a concentration boundary layer within an 
extended domain. 
Contact angle of forty degrees. 
d i am I bIt = 2 

iprint grid plot key ( 0: run; 
I I I 
500 

1: both; 2: plot) 
1 o 

i ax ism 

1 

nonodsl, the number of nodes In the extended domain. 
I I I 
96 

nonods2, the number of nodes In the diffusion boundary layer 
iii 

74 

nonelec, the number of nodes on electrode surface (dimension of~) 
iii 
')-, 

scale ( the radius of the bubble In model units 
ddddd.d 

500.0 

bIt ("boundary-layer thickness," In bubble radii) 
ddd.ddd 

1.0 

edt (' 'extended-domain thickness," in bubble radi i) 
ddd.ddd (The e.d. is the domain for the potential problem.) 

6.0 

vertex coordinates of smallest box enclosing the extended domain 
xml n xmax 

ddddd.d ddddd.d 
0.0 1200.0 

yml n ymax 
ddddd.d ddddd.d 

0.0 3600.0 

rinner (axisyrimetric offset, nodal-structure units) 
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ddddddd.d 
0.0 

s 1 
d.dd 
1 .0 

enovrz2 
dd.dd 

1 .0 

2i 2 

sg (stoichiomeric coefficients of active Ion and gas) 
d.dd 
0.5 

Not needed In present version. 

ixport transport case ( I: binarY,uniform conductivity; 2: dilute 
binary 3: well-supported, dilute active ion) 

1 

epsi Ion 
sd.dddEsee 
2.05Ie-02 

theta 
sd.dddEsee 

1.460e+00 

omega 
sd.dddEsee 
-4.448e-05 

(the dimensionless derivative of phi normal to the 
electrode) (base case is 2.05Ie-02) 

(dless concentration gradient/ dless phi gradient) 

(dless dissolved-gas gradient/ dless phi gradient) 
(base case is -4.448e-05) 

irestrt(l: read from restart) ikeep(l: write into restart) else O. 

speed 
sd.dddEsee 

5.482E-Ol 

beta 
d.dd 
0.43 

to I 
sd.dddEsee 

I.OOOe-IO 

relaxation 
d.dddddddd 
0.01 

o 

(exchange current density/current density far from bubble) 
< ifast ( which iteration cycle? 1 gfast; 0 gslow ) 

o 

(kinetic parameter; this IS fixed at 0.5 for ikinexp=J) 

(relative hence dimensionless) 

fa c tor s for sub s tit uti 0 nan d N. R . ( par am and par anm r ) 
d.ddddd 
1 .0 

max number of iterations for subst. and N.R. ( nctrmax and nmaxnr ) 
I I 1 I 1 I 1 I 
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100 40 

Extended-domain eoords & keys. phi 
Node r or y x or z be ode loe 

ddddddd.d ddddddd.d I I II I I 

1 321.4 0.0 0 1 1 
2 336.0 0.0 0 1 0 
3 350.0 0.0 0 1 1 
4 365.0 0.0 0 1 0 
5 380.0 0.0 0 1 1 
6 395.0 0.0 0 1 0 
7 410.0 0.0 0 1 1 
8 427.0 0.0 0 1 0 
9 445.0 0.0 0 1 1 

10 465.0 0.0 0 1 0 
11 485.0 0.0 0 1 1 
12 505.0 0.0 0 1 0 
13 525.0 0.0 0 1 1 
14 550.0 0.0 0 1 0 
15 575.0 0.0 0 1 1 
16 600.0 0.0 0 1 0 
17 625.0 0.0 0 1 1 
18 650.0 0.0 0 1 0 
19 675.0 0.0 0 1 1 
20 700.0 0.0 0 1 0 
21 750.0 0.0 0 1 1 
22 800.0 0.0 0 1 0 
23 850.0 0.0 0 1 1 
24 900.0 0.0 0 1 0 
25 950.0 0.0 0 1 1 
26 1000.0 0.0 0 1 0 
')-_I 1050.1 0.0 0 1 1 
28 1050.1 0.0 0 0 1 
29 1050.1 50.0 0 0 0 
30 1050.1 100.0 0 0 1 
31 1050.1 150.0 0 0 0 
32 1050.1 200.0 0 0 1 
33 1050.1 250.0 0 0 0 
34 1050.1 300.0 0 0 1 
35 1050.1 400.0 0 0 0 
36 1050.1 500.0 0 0 1 
37 1050.1 600.0 0 0 0 
38 1050.1 700.0 0 0 1 
39 1050.1 800.0 0 0 0 
40 1050.1 1000.0 0 0 1 
41 1050.1 1250.0 0 0 0 
42 1050.1 1500.0 0 0 1 
43 1050.1 1750.0 0 0 0 
44 1050.1 2000.0 0 0 1 
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45 1050.1 2250.0 0 0 0 
46 1050.1 2500.0 0 0 1 
47 1050.1 2750.0 0 0 0 
48 1050.1 3000.0 0 0 1 
49 1050.1 3000.0 0 2 1 
50 750.0 3000.0 0 2 0 

. 51 500.0 3000.0 0 2 1 
52 250.0 3000.0 0 2 0 
53 0.0 3000.0 0 2 1 
54 0.0 883.0 0 0 1 
55 73.4 877.6 0 0 0 
56 122.3 867.8 0 0 1 
57 170.0 853.2 0 0 0 
58 216.0 833.9 0 0 1 
59 259.9 810.2 0 0 0 
60 280.9 796.7 0 0 1 
61 301 .2 782.1 0 0 0 
62 320.7 766.6 0 0 1 
63 339.5 750.1 0 0 ci 
64 357.4 732.7 0 0 1 
65 374.4 714.5 0 0 0 
66 390.4 695.4 0 0 1 
67 405.5 675.5 0 0 0 
68 419.6 654.9 0 0 1 
69 432.7 633.6 0 0 0 
10 444.6 611 .7 0 0 1 
71 455.5 589.3 0 0 0 
72 465.2 566.3 0 0 1 
73 475.7 533.2 0 0 0 
74 486.1 500.0 0 0 1 
75 491 .9 472.8 0 0 0 
76 496.1 445.7 0 0 1 
77 498.6 420.9 0 0 0 
78 499.8 395.9 0 0 1 
79 499.9 311.0 0 0 0 , 

I 

80 498.6 346.1 0 0 1 
81 496.2 321.2 0 0 0 
82 492.5 296.5 0 0 1 
83 487.5 272.1 0 0 0 
84 481 .4 247 .9 0 0 1 
85 474.1 224.0 0 0 0 
86 465.5 200.6 0 0 1 
87 455.8 177 .6 0 0 0 
88 445.0 155.1 0 0 1 
89 433.1 133.2 0 0 0 
90 420.1 111 .9 0 0 1 
91 406.0 91 .3 0 0 0 
92 391 .0 71 .4 0 0 1 
93 374.9 52.2 0 0 0 

Appendix A-2 program be bub input-data file 



94 
95 
96 

358.0 
340.1 
321.4 

33.9 
16.5 
0.0 

o 
o 
o 

o 
o 
o 

1 
o 
1 

Boundary-layer coords & keys. gas cone 
Node r or y x or z be ode loe 

ddddddd.d ddddddd.d II ii II 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
')wO 

26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 

321.4 
336.0 
350.0 
365.0 
380.0 
395.0 
410.0 
427.0 
445.0 
465.0 
485.0 
505.0 
525.0 
550.0 
575.0 
600.0 
625.0 
650.0 
675.0 
700.0 
750.0 
800.0 
850.0 
900.0 
950.0 

1000.0 
1050.1 
1050.1 
1050.1 
1050.1 
1050.1 
1050.1 
1050.1 
1050.1 
1050. 1 
1050.1 
1050.1 
1050.1 
1050.1 
1000.0 

950.0 
900.0 
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0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

50.0 
100.0 
150.0 
200.0 
250.0 
300.0 
350.0 
400.0 
450.0 
500.0 
500.0 
500.0 
500.0 
500.0 

o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
1 
1 
1 
1 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
2 
2 
2 
2 

1 
o 
1 
o 
1 
o 
1 
o 
1 
o 
1 
o 
1 
o 
1 
o 
1 
o 
1 
o 
1 
o 
1 
o 
1 
o 
1 
1 
o 
1 
o 
1 
o 
1 
o 
1 
o 
1 
1 
o 
1 
o 

program bebub 

Ion cone 
be ode 
I I I I 

o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
1 
1 
1 
1 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
2 
2 
2 
2 
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43 850.0 500.0 1 2 1 1 2 
44 800.0 500.0 1 2 0 1 2 
45 750.0 500.0 1 2 1 1 2 
46 700.0 500.0 1 2 0 1 2 
47 650.0 500.0 1 2 1 1 2 
48 600.0 500.0 1 2 0 1 :2 
49 550.0 500.0 1 2 1 1 2 
50 515.0 500.0 1 2 0 1 2 
51 486.1 500.0 1 2 1 1 2 
-() v_ 486.1 500.0 0 0 1 0 0 
53 491 .9 472.8 1 2 0 0 0 
54 496.1 445.7 1 2 1 0 0 
55 498.6 420.9 1 2 0 0 0 
56 499.8 395.9 1 2 1 0 0 
57 499.9 371.0 1 2 0 0 0 
58 498.6 346.1 1 2 1 0 0 
59 496.2 321.2 1 2 0 0 0 
60 492.5 296.5 1 2 1 0 0 
61 487.5 272.1 1 2 0 0 0 
62 481.4 247.9 1 2 1 0 0 
63 474.1 224.0 1 2 0 0 0 
64 465.5 200.6 1 2 1 0 0 
65 455.8 177.6 1 2 0 0 0 
66 445.0 155.1 1 2 1 0 0 
67 433.1 133.2 1 2 0 0 0 
68 420.1 111 .9 1 2 1 0 0 
69 406.0 91 .3 1 2 0 0 0 
70 391.0 71.4 1 2 1 0 0 
71 374.9 52.2 1 2 0 0 0 
~() , - 358.0 33.9 1 2 1 0 0 
73 340.1 16.5 1 2 0 0 0 
74 321 .4 0.0 1 2 1 0 0 
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Appendix A-3 

Boundary-Element Code for Leveling Model 

The following Fortran code was used in the calculations of Chapter 3. A sample 

input-data file is given at the end of the program listing. Important variables are 

defined in subroutine 'input' or as they appear in the code. Subroutines 'matrix.' 

'makeb,' 'gaussl,' 'gauss2,' 'rsread' and 'rswrite' as well as functions 'gquad,' 'eil,' 'ei2,' 

'ggrand' and 'hgrand' are listed in Appendix A-I. 
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program belev 

c This program is intended to solve for the current distribution 
c at an irregularly shaped electrode, and to simulate the evolution 
c of the electrode shape with time. 

c Laplace's equation is solved for two variables: 
c subscript variable 
c 1 potential, phi 
c 2 concentration of leveling agent" con. 
c ~~ solve for the concentration over the diffusion boundary 
c layer (dbl) or "domain 2," whi Ie phi is soh'ed over a larger 

c reg ion, " d oma i n 1", c omp r i sin g the db I, wit h rna t chi n g con d i t ion sat 
c the electrode. 

c The overpotential acting at the electrode surface 
c is a linearized function of both local current density 
c and local flux of a leveling agent. 

c ~~re comments to be elaborately furnished here later. 

c This program is general to axisymmetric and planar problems. 

c This is a boundary-element program using quadratic elements. 
c Be sure that, for both domains, the node numbering is done 
c counterclockwise beginning with the first electrode node. 
c Also, the node arrangement on the working electrode must be 
c ide n tic a I for the two d oma ins . 

c Vectors are always dimensionless; scalars not necessarily. 

implicit double precision (a-h,o-z) 

common/nrl/ surf, delsurf 
common/pivl/ ipivotl(150), jpivotl(150) 
common/piv2/ ipivot2(150), jpivot2(150) 
common/setO/nonelec,nonelc2 
common/setl/nonodsl,nonods2 
common/set2/coordsl(150,2) ,coords2(150,2) 
c ommo n / set 2 a / key I 0 c 1 ( 1 50) ,k e y 10 c 2 ( 1 50 ) 
common/set3/iaxism,rinner 
common/set41/al(150,150) 
common/set42/a2(150,150) 
common/set51/cl(150,150) 
common/set52/c2(150,150) 
cornmon/set61/xl(150) 
cornmon/set62/x2(150) 
common/set71/bcl(150} 
common/set72/bc2(150) 
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common/set81/keybcl(IS0) ,keyodel(IS0) 
c ommo n / set 82/ key b c 2 ( IS 0) ,k e y 0 de 2 ( IS 0 ) 
common/setl0/tol ,param,paramnr ,nctrmax ,nmaxnr ,nctr ,nctrnr 
common/setll/nogauss,wfgauss(12),abgauss(12) 
common/setI2/scale 
common/setI3/iflag 
c ommo n / set 16/ n c t r s p , i s pot p r , i n t s pot 
common/setI7/tmax 
common/setI8a/vchar,curchar,flxchar,conchar 
common/set18b/etabar,curbar,flxbar 
common/setI9/speed,beta 
c ommo n / set 20/ s 1 , s g , e 1 , e g 
common/set22/irestrt,ikeep 
common/set24/igrid,xmin,xmax,ymin,ymax 
common/set2S/tosca,nosteps,nstep 

dimension bl(ISO), b2(150) 
dimension surf(IS0), surfnew(IS0), delsurf(IS0) 
dimension space1(lS0), space2(150) 

c Begin by reading in all the data for the problem. 
c Call the input subroutine. 

call input 

c If requested, create a plot of the problem geometry. 
c Act according to the key' 'igrid": 
c igrid=O run but no plot 
c igricr=1 run and plot 
c igrid=Q plot only ( no run 

if (igrid It. 1 ) go to 10 
call grid(nonods1 ,coordsl ,keyodel ,keylocl) 
cal I grid(nonods2,coords2,keyode2,keyloc2) 
if ( igrid . eq . 2 ) stop 

c See if this run is a restart ( irestrt = 1 ). If so, 

279 

c skip the costly "matrix" and' 'gauss1" routines and merely 
c read in their products from the restart file, for003.dat. 

10 if ( irestrt . eq . 1 ) then 
call rsread 
go to 103 
endif 

c Call subroutine "matrix" to set up both matrix problems, 
c "G q =H u" and rearrange to give "G q =H u" for each. 

c Initial ize some things: 
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90 nminldl 
nmi n2dl 
nmin3dl 
nmi n4dl 
nmi nld2 
nmin2d2 
nmin3d2 
nmin4d2 

nmaxldl 
nmax2dl 
nmax3dl 
nmax4dl 
nmaxld2 
nmax2d2 
nmax3d2 
nmax4d2 

gapl - O. 
gap2 O. 

0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 

do 95 k = 1, nonods 
spacel{k) O. 
space2(k) = O. 

95 continue 

c Call the "premove" routine to set values that will be used 
c in each time step. 

call premove(coordsl,keyodel,gapl,nminldl,nmaxldl,nmin2dl, 
$ nmax2d 1, nmi n3dl , nmax3dl , nmi n4d 1 , nmax4d 1 , nonods 1, spae e 1 ) 
call premove(coords2,keyode2,gap2,nminld2,nmaxld2,nmin2d2, 

$ nmax2d2,nmin3d2,nmax3d2,nmin4d2,nmax4d2,nonods2,space2) 

nstep = 0 
call profile 

***************** START OF TIME-S1EP CYCLE ***************** 
100 nstep = nstep + 1 

call matrix{nonodsl ,coordsl ,keylocl ,al ,eI ,keybel ,keyodel) 
cal I matrix(nonods2,coords2,keyloc2,a2,c2,keybc2,keyode2) 

c Send off both A matrices to be forward reduced in subroutine 
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c "GaussI." The reduced matrices are retained in their original 
c storage locations along with a record of row manipulations. 
e Vectors' 'ipivot" and' 'jpivot" are formed for each problem. 
c as a record of row and colwmn exchanges carried out. 

call gaussl{nonodsl ,aI, ipivotl, jpivotl, iftagl) 
II 1( d " " .. " .. ,,·ft 'I) ca gauss nono s_.a_,lplvot_,JPlvot_,1 ag:" 
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c If any matrix is singular, stop everything. 
if ( iflag1 . eq . 1 . or . iflag2 . eq . 1 ) then 

write (2,102) iflag1, iflag2 
102 format( '/singular element matrix') 

stop 
endif 

c If requested, write the contents of pivot vectors and a and 
c c matrices into a restart file, for008.dat.. 
103 if ( ikeep . eq . 1 ) then 

call rswr i te 
endif 

c Set concentration of agent to zero at the electrode surface. 
do 104 k = 1, nonelc2 

bc2(k) = O. 
104 continue 
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c Set concentration of agent to unity at the boundary-layer edge. 
do 105 k = 1, nonods2 

key = keyode2(k) 
if ( key. ne . 2 )go to 105 
bc2(k) = 1.0 

105 continue 

c Solve the agent concentration problem once and for all (for 
c this time step.) 

c Apply the BCs; make vector b2. 
call makeb(nonods2,c2,bc2,b2) 

c Solve for concentration gradient, x2. 
neumann = 0 

11 ~( d ~ ~ ~ b~ .. ~.. ~ ) ca gaussw nono sw,aw,xw, w,lplYotw,JPlvotw,neumann 

c Now start into the field-problem iteration cycle. 

c Initialize surf to phi at the electrode surface. 
do 110 i = 1, nonelec 

surf(i) = bc1( i) 
110 continue 

Initialize parameters for iteration, 
divergence tests. 
nctr 0 
nctrnr 0 
ndiv 0 
ndivmax 50 
tmaxdiv 1000. 

Appendix A-3 program belev main program 



frac 
tmax 
tolnr 
iterkey 

param 
100. 
tol * 2. 
1 

c **************** Start of Iteration ********************** 

c See if we're at the point of changeover to N.R. 

120 if ( nctrnr . eq . 0 ) then 
if (nctr.eq.nctrmax. or. tmax.le.tolnr) then 

c At the point of changeover to N.R. reset 
c some parameters. 

iterkey = 2 
ndivmax = 2 
ndiv = 0 
f r a c = par amn r 
endif 

endif 

c Per form e i the r 0 f two t Y pes 0 fit era t ion, "1" 0 r "2": 

c 1) ********* Substitution Iteration ********* 
if ( iterkey . eq . 1 ) then 

nctr = nctr + 1 
call field(surf,surfnew) 
end if 

c 2) ********* Newton Raphson Iteration ******* 
if ( iterkey . eq 2) then 

nctrnr = nctrnr + 1 
frac = paranmr 
if ( nmaxnr . eq . 0 ) then 

write (2,126) 
126 format(/'You exceeded nctrmax substitution iterations;'/ 

$ 'no newton iterations called for.') 
stop 
endif 

Call subroutine "nr" to operate on the vector "surf" 
returning a vector of corrections "delsurf." 
call nr(field) 
do 128 i = 1, nonelec 

surfnew(i) = surf(i) + delsurf(i) 
128 continue 

end if 
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c ************* Convergence Test, Update' 'surf" ********* •• *. 
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c For the convergence criterion, find the biggest change in surf 
c on the electrode. Also, here is where you make the relaxed 
c substitution to form new guess surf for the next iteration. 

tmaxold = tmax 
tmax = o. 

c Find the largest absolute change In surf. 
do 130 i = 1, nonelec 

t = dabs( surfnew(i) - surf(i) 
i f ( t . g t . tmax ) tmax = t 
surf(i) frac * surfnew(i) + ( 1.0 - frac ) * surf(i) 

c Impo s e some wa I Is: 
if ( surf(i) . It . wall) surf(i) =wall 

130 continue 

c No rma liz e tmax. 
tmax = dabs( tmax 

c 
c 

the first and last time 
space) : 

Do the following only on 
steps (so as to save file 
if ( nstep . eq . 1 . or . nstep eq . nosteps ) then 

c As an diagnostic, print out tmax for each iteration. 
c Heading first: 

if (nctr.eq.I) then 
write (2,140) 

140 format(/2x, 'nctr' ,3x, 'nctrnr' ,3x, 'tmax') 
endif 

c Then the values: 
write (2,142) nctr, nctrnr, tmax 

142 forma t ( 2 x , i 4 , 4 x , i 4 , 4 x , g 1 0 . 4 ) 

endif 

c If you have converged, brag about it and then go about 
c moving the boundary and jumping to the start of the next 
c time step: 

if ( tmax . Ie . tol ) then 

if ( nstep . eq . 1 . or . nstep . eq . nosteps ) then 
write (2,148) 

14 8 forma t ( / ' 0 f c 0 u r s e i t con v erg e d ! ' / ) 
call output 
end i f 

do 148 i = 1, nonelec 
x I( i) = 200.0 

148 continue 

c Move the boundary: 
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call movel(coordsl,gapl,nminldl,nmaxldl,nmin2d1, 
$ nrnax2d1,nmin3d1,nmax3d1,nmin4d1,nmax4dl,space1) 

call move2(coords1,coords2,gap2,nmin1d2,nmax1d2,nmin2d2, 
$ nrnax2d2,nmin3d2,nmax3d2,nmin4d2,nmax4d2,space2) 

c Record the electrode-node coordinates: 
call profile 

c Stop after the last time step: 
if ( nstep . ge . nosteps ) then 

write (2,150) nosteps 
1 .s 0 forma t ( I 'F i n ish ed' ,Ix , i 5 ,Ix , ' time s t e p s ' / ) 

stop 

c 

c 

endif 

* '" '" * '" * * * * '" '" * * '" E'\D OF T ilvlE - STEP CYCLE * * * * * * * * * * * * * * * * 
go to 100 

endif 

c If you've exceeded the max allowed iterations, say so 
c and quit. 

if (nctrnr . gt . nmaxnr ) then 
write (2,160) 

160 format ('You exceeded nmaxnr iterations.') 
call output 
stop 
endif 

c Test for divergence two different ways: 

c 1) If tmax exceeds tmaxdiv then bailout: 
if ( trnax . ge . tmaxdiv ) then 

write (2,170) 
1iO format( I'Divergence: tmax exceeds tmaxdiv.'1 ) 

call output 
stop 
endif 

c 2) Keep a running tally of the pattern of convergence: 

284 

c If tmax goes UP ndivmax times more than it goes ro\~ oyer allY 
c interval, then announce this and quit. 

if (trnax ge tmaxold) ndiv ndiv + 1 
if (trnax It tmaxold) ndiv ndiv - 1 
if (ndiv Ie 0 ) ndiv 0 
i f ( n d i y g t n d i v rna x ) the n 

write (2,180) 
180 format( I'Divergence: ndiv exceeds ndivrnax.'1 ) 

Appendix A-3 program belev maIn program 



call output 
stop 
endif 

c If you have neither converged nor shown signs of 
c divergence, do another iteration (either newton-
c raphson or relaxed substitution). 

go to 120 

end 

c ******************* SuBROUTINE I~Pl~ *********************** 
sub r 0 uti ne i n put 

implicit double precision (a-h,o-z) 
double precision mark 

c This subroutine reads in all the input data. 
common/setO/nonelec,nonelc2 
common/setl/nonodsl,nonods2 
common/set2/coordsl(150,2) ,coords2(150,2) 
c ommo n / set 2a / key 10 c 1 ( 150) , key 10 c 2 ( 1 50 ) 
common/set3/iaxism,rinner 
common/set71/bcl(150} 
common/set72/bc2(150) 
c ommo n / set 81 / key b c l( 1 50) ,k e y 0 del( 150 ) 
common/set82/keybc2(150) ,keyode2(150) 
c ommo n / set 10/ to I ,p a r am, par amn r , n c t rmax , nma x n r , n c t r , n c t r n r 
common/setll/nogauss,wfgauss(12) ,abgauss(12) 
common/set12/scale 
common/set13/ifiag 
common/setI6/nctrsp,ispotpr, intspot 
common/setI7/tmax 
common/setI8a/vchar,curchar,fixchar,conchar 
common/setI8b/etabar,curbar,fixbar 
common/set18c/nofix,fixi (20) ,nocur,curj (20) ,etaij (20,20) 
common/setI9/speed,beta 
cornnon/set20/s1,sg,el,eg 
common/set22/irestrt,ikeep 
common/ set 24 / i g rid, xmi n, xmax ,ymi n, ymax 
common/set25/tosca,nosteps,nstep 

c Read in all the input data. 
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read (1,301) 
30 1 forma t (j / j j ) 

c Read iprint (print all data unless iprint equals zero), 
c isp6tpr (values are spot-printed every 'intspot' iterations if 
c ispotpr = 1), and intspot. 
c Also read igrid, key for plotting grid. 
c igrid=O run, no plot 
c igrid=l run and plot 
c igrid=2 plot, no run 

read (1,302) iprint, ispotpr, intspot, igrid 
302 forma t (j j j ii, 9x , ii, 9x , i 3 ,lOx, i 1 ) 

c Read iaxism. If this reads zero, the problem is not 
c axisyrnnetric. A value of one or anything else indicates 
c axisyrnnetry. 

read (1,303) iaxism 
303 format(jjjil) 

c Read nonodsl, the number of nodes In the nodal structure for 
c the large domain ( over which phi IS solved). 

read (1,304) nonodsl 
304 format(jjji3) 

c Read nonods2, the number of nodes in the nodal structure for 
c the difffusion boundary layer (the small domain over which 
c c and cg are solved ). 

read (1,305) nonods2 
30 5 forma t ( j j j (3 ) 

c Read nonelec, the number of nodes on the electrode surface. 
read (1,306) nonelec 

306 format(jjji3) 

c Read nonelc2, the number of nodes on the electrode surface. 
c subtended by the concentration-problem domain. This may 
c be specified as smaller than nonelec if, beyond a certain 
c point, there is no variation in agent flux expected. 

read (1,3065) nonelc2 
3065 format{jjji3) 

c Read in the scale factor for the model representation of the 
c domaim. SCALE is the characteristic length of the problem 
c expressed in model length units. Generally, we take 
c scale> 1 to get the coordinates in round numbers. 

read (1,307) scale 
307 format(jjjf7.1) 

c Read vertices of smallest rectangle that encloses the domain 
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c (for graphics use.) 
read (1,309) xmin, xmax 

309 format(////fi.l,lx,fi.1) 
read (1,310) ymin, ymax 

310 format(//f7.1,lx,f7.1) 

c Read in the value of rinner. This is the distance (in 
c the distance units of the model) from the innermost point, 
c of the nodal structure to the centerline. If the problem 
c is not' axisyrrmetric, we don't need rinner, but we must 
c read a value anyhow. 

read (1.311) rinner 
3 1 1 forma t (j / / f 9 . 1 ) 

c Read the stoichiometric coefficients of the reacting 
c species, sl and sg. These are' 'Ne"manclature", p 31, 
c (Not used in the present version) 

read (1, 312) s 1, s g 
312 format(///f4.2,6x,f4.2) 

c Read curbar, the uniform current density far from the 
c electrode, m~/cm2. 

read (1,315) curbar 
315 format(///e10.3) 

c Read fixbar, the uniform inhibitor fiux that would obtain 
c at a fiat electrode under the same hydrodynamic conditions, 
c micromoles/cm2-s. (This is not used in the present version) 

read (1,316) fixbar . 
316 format{///e10.3) 

c "etabar", the uniform overpotenital that would obtain 
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c at the surface of a flat electrode under the same hydrodynamic 
c con d i t ion s, mV. (Th i sis not use din the pre sen t ve r s ion) 

read (1,3161) etabar 
3 1 6 1 forma t, (j / / e 1 0 . 3 ) 

c ' 'n 0 fi x ' " the numb e r 0 f d i ff ere nt' 'fi x " val u e sus e d 
c to construct the polarization expression. (Number of 
c rows in matrix "curij".) 

read (1,3162) nofix 
3162 format (///i2///) 

c "fixi", the vector of "fix" values used to construct 
c the polarization expression. "fix" is level ing-agent 
c flux in micromoles/cm2-s, negative. 

do 3164 i = 1, noflx 
read (1,3163) fixi( i) 

3163 format(6x,e10.3) 
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3164 continue 

c "nocur", the number of different "cur" values used 
c t,o construct the polarization expression. (Number of 
c columns in matrix' 'etaij".) 

read (1,3165) nocur 
3165 format (///i2///) 

c "curj", the vector of "cur" values us"ed to construct 
c the polarization expression. "cur" is current density 
c in m\./cm2, negative at a cathode. 

do 3167 j = 1, nocur 
read (1,3166) curj(j) 

3166 format(6x,el0.3) 
3167 continue 

c "etaij", matrix of surface overpotentials corresponding 
c to the "cur-fix" pairs above. "eta" is surface 
c overpotential in millivolts, negative at a cathode, 

read (1,10) 
1 0 forma t (j ) 

do 50 j = 1, nocur 
read (1,20) 

20 format(//) 
do 40 i = 1, noflx 

read (1,30) etaij(i,j) 
30 format(6x,el0.3) 
40 continue 
50 continue 

c chari, characteristic length, centimeters 
read (1,3170) chari 

3170 format(///elO.3) 

c vchar, the characteristic voltage ( RT/F ), millivolts 
read (1,3171) vchar 

3171 format(///elO,3) 

c conchar, characteristic inhibitor concentration 
c ( m i c r omo I a r ) 

read (1,3172) conchar 
3172 format(///el0,3) 

c curchar, characteristic current density 
c ( vchar * kappa / chari) mA/cm2. 

read (1,3173) curchar 
3173 format(///el0.3) 

c flxchar, characteristic inhibitor flux 
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c ( conchar * diffusivity J charI ), micromolesJcm2-s 
read (1,3174) flxchar 

31i~ format(JJJel0.3) 

c Is this run a restart of an earlier one? 
c ( yes: ire s t r t = 1; no: ire s t r t = 0 ) 
c Do we want to save matrix values and pivot. keys 
c in a restart file? (yes: ikeep = 1; no: ikeep 0) 

read (1,3175) irestrt, ikeep 
3175 format(JJJil,29x,il) 

c Read the kinetic synmetry factor beta. 
read (1,319) beta 

319 format(JJJf4.2) 

c 
c 

Calculate 
according 
i f ( sl 
i f ( sl 
if ( sg 
i f ( sg 
el ql 
eg qg 

exponents 
to Nev.man, 
gt zero 
I t zero 
gt zero 
I t zero 
+ beta * 
+ beta * 

ql and qg fo r the 
p 174. 

) ql O. 
) ql = - sl 
) qg = O. 
) qg = - sg 

s 1 
sg 

kinetic expreSSIon, 

c Read the value of the relative convergence tolerance. 
read (1,320) tol 

320 format(JJJel0.3) 

c Read in the convergence parameters: "param", the 
c fraction of the new value used in the relaxed substitution, 
c and "paramnr" the fraction of the l\R correction term used. 

read (1,321) param, paramnr 
321 format(JJJfl0.8,4x,f7.5) 
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c Read in the maximum number of iterations allowed: "nctrmax" 
c for relaxed substitution, and "nmaxnr" for newton raphson. 

read (1,324) nctrmax, nmaxnr 
3 2 4 forma t (J J J i 4 , 7 x , i 4 ) 

c Read' 'tosca", the dless ratio of thickness step to 
c current density. 

read (1,3246) tosca 
32 ·1 6 forma t ( J J J e 1 0 . 3 ) 

c Rea d "n 0 s t e p s ' " the numb e r 0 f time s t e p s you wan t to use. 
read (1,3247) nosteps 

32~7 format(JJJi4) 

c Read the coordinates of each node In global order. 
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c 
c 
c 
c 

c 

30~ _0 

$ 
32G 

c 

3255 

$ 
32G5 

c 

330 

3305 

c 
c 
c 
c 

As a convention, we number counter clockwise beginning wit.h 
the electrode. Also read in the keys for the boundary 
condition type ("keybc") and the boundary-segment 
type ("keyode"). 

First the coordinates of the extended domain: 
read (1,325) 
forma t (// /) 
read (1,326) (coordsl(i,I),coordsl(i,2),keybc1(i), 

keyodel( i) ,keyloc1{ i), i l,nonodsl) 
forma t ( 8 x , f 9 . 1 ,Ix, f 9 . 1 , -1 x , i 2 , 2 x , i 2 , 2 x , i 2 , 4x ) 

Then the coordinates of the boundary layer: 
read (1,3255) 
forma t (/ / / ) 
read (1,3265) (coords2(i,I),coords2(i,2),keybc2(i), 

keyode2( i) ,keyloc2( i), i=1 ,nonods2) 
forma t ( 8 x , f 9 . 1 ,Ix, f 9 . I , 4 x , i 2 , 2 x , i 2 ,2 x , i 2 ) 

Initialize the boundary-condition vectors to zero. 
do 330 i = I, nonodsl 

bc1(i)=O. 
continue 

do 3305 i = I, nonods2 
bc2(i) = O. 
continue 

Fix the the phi derivative at the top of the extended 
domain at a value corresponding to the average current 
den sit y (a c cor din g too hm 's I aw) . (:ME\1JS cur bar, 
actually, because we're at the anode, so to speak.) 
do 331 i=l,nonodsl 

if ( keyodel(i) . eq . 2 ) then 
bcl(i) = - ( - curbar / curchar ) / scale 
end if 

331 continue 

c Initialize the phi boundary condition at the electrode. 
c ( eta = phimetal - phisolution and phimetal is zero) 

do 333 i=l,nonelec 
bCl(i) = - etabar / vchar 

333 continue 

c Set dimensionless agent concentration to unity at boundary-
c layer edge and zero at the working-electrode surface: 

do 335 i=l. nonods2 
if (keyode2(i) eq 2 bc2(i) 1.0· 
if (keyode2(i) eq 1 bc2(i) 0.0 

335 continue 
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c Six-point gaussian quadrature coefficients: 

nogauss = 6 

abgauss(l) 
abgauss(2) 
abgauss(3) 
abgauss(4) 
abgauss(5) 
abgauss(6) 

wfgauss(l) 
wfgauss(2) 
wfgauss(3) 
wfgauss(4) 
wfgauss(5) 
wfgauss(6) 

return 
end 

-0.932469514203152 
-0.661209386466265 
-0.238619186083197 
0.238619186083197 
0.661209386466265 
0.932469514203152 

0.171324492379170 
0.360761573048139 
0.467913934572691 
0.467913934572691 
0.360761573048139 
0.171324492379170 

c ••••••••••••••••• SL~~I~~ NR ••••••••••••••• ***** 
c This routine performs one iteration of the multivariable 
c Newton-Raphson method to solve the system" f(x) = 0." 
c The function' 'f(x) is equal to "g(x) - x", and 
c ' 'g ( x ) " i s e val u ate din sub r 0 uti n e "s u b r ( x , x n ew) " (a 
c dummy name for a subroutine that operates on vector 
c "x" and returns "xnew = g(x)" ). Upon convergence, 
c vectors "x" and "xnew" wi II be identical. 
c \,"e obtain corrections' 'delx" to vector' 'x" by solving 
c the ma t r i x pro b I em "FPR Th1E • del x = - f." 

subroutine nr(subr) 

implicit double precision (a-h,o-z) 

c orrmo n / n r 1/ x ( 1 50 ), del x ( 150 ) 
corrmon/setO/nonelec 

dime n s ion x p ( 150 ), x p new ( 1 50 ) 
dime n s ion f p rime ( 1 50 , 1 50 ), f ( 1 50 ) 
dimension ipivot4(150), jpivot4(150) 

c Set' 'pert" the value of the perturbation in x used 
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c toe val u ate the n ume ric a Ide r i vat i ve . 

c 
pert 
pert 

0.0000001 
0.0001 

c Create the jacobian matrix' 'fprime" in three steps: 

c 1) Evaluate function of unperturbed set. 
c This may seem strange but we do this again in step 2 for 
c keeps; the only reason we do it here first is to fix the 
c value ~f the offset voltage in the gslow routine ( if 
c applicable). If this offset voltage is not held fixed 
c while we perturb the xp's, then the jacobian will turn out 
c singular. 

do 5 i = 1, nonelec 
xp(i)=x(i) 

5 continue 
call subr(xp,xpnew) 

c 2) fill matrix with functional evaluations of perturbed x's. 
do 30 j = 1, nonelec 

do 10 i = 1, nonelec 
xp(i)=x(i) 
if ( i . eq . j ) xp(i) xp(i) + pert 

10 continue 
call subr(xp,xpnew) 
do 20 i = 1, nonelec 

f p rime ( i , j) = x p new ( i ) 
20 continue 
30 continue 

c 3) Evaluate function of unperturbed set. 
do 40 i = 1, nonelec 

xp(i)=x(i) 
40 continue 

call subr(xp,xpnew) 

c 4) Subtract vector' 'xpnew" from each colunm of the matrix. 
c Then divide each difference by pert. 
c Lastly, subtract unity from each diagonal element. 

do 70 j = 1, nonelec 
do 60 j = 1, nonelec 

f p rime ( i , j ) (f p rime ( i , j) - x p n ew ( i) ) / per t 
if ( eq . j ) fprime(i,j) = fprime(i ,j) - 1.0 

60 continue 
70 continue 

c Evaluate the vector I 'f," (f(x) = g(x) - x ). 
c (Recall that the last evaluation of g was for the 
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c unperturbed vector x.) 
c Actually fill vector f wi th MI]\;\JS the value it should haye 
c so that we can consider delx an additive correction. 

do 80 i = 1, nonelec 
f(i) = - ( xpnew(i) - x(i) 

80 continue 

c Solve the system' 'FPRTh.'E * delx = f" using the solvers 
c "gaussl" and' 'gauss2" also used for the field problem. 

c a I I g a us s 1 ( non e I e c , f p rime, i p i v 0 t 4 , j p i v 0 t 4 , j a c sin g ) 
c a I I g au s s 2 ( non e I e c , f p rime, del x , f , i p i v 0 t 4 , j p i YO t ·1 , 0 ) 

return 
end 

c ****************** SuBROl~INE FIELD ********************* 
c This routine operates on a set of potential values at the 
c electrode' 'phi" and returns a new set' 'phinew" which 
c is generated by cycling through the boundary-value problem 
c once. 

subroutine field{phi ,phinew) 

implicit double precision (a-h,o-z) 

common/pivl/ ipivotl(150), jpivotl(150) 
c ommo n / p i v 2 / i p i v-o t 2 ( 1 50 ), j p i v 0 t 2 ( 1 50 ) 
common/setO/nonelec,nonelc2 
common/setl/nonodsl,nonods2 
common/set2/coordsl(150,2) ,coords2(150,2) 
c ommo n / set 2 a / key I 0 c 1 ( 150 ) , key 10 c 2 ( 1 50 ) 
common/set3/iaxism,rinner 
common/set41/al{150,150) 
common/set42/a2(150,150) 
common/set51/cl(150,150) 
common/set52/c2(150,150) 
common/set61/xl(150) 
common/set62/x2(150) 
common/set71/bcl(150) 
common/set72/bc2(150) 
c ommo n / set 81 / key b cl ( 1 50) ,k e y 0 del ( 150 ) 
c ommo n / set 82/ key b c 2 ( 1 50 ) , key 0 de 2 ( 150 ) 
c ommo n / set 10/ to I ,p a ram, par amn r , n c t rmax , nma x n r , n c t r , net r n r 
c ommo n / set 11 / no g a u s s ,w f g a us s ( 1 2 ) , a b g a u s s ( 1 2 ) 
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conmon/setI2/scale 
conmon/setI3/iflag 
conmon/setI6/nctrsp,ispotpr,intspot 
conmon/setI7/tmax 
conmon/setI8a/vchar,curchar,flxchar,conchar 
conmon/set18b/etabar,curbar,flxbar 
comnon/setI9/speed,beta 
comnon/set20/s1,sg,el,eg 
c onmo n / set 22/ ire s t r t , ike e p 
conmon/ set 24/ i g rid. xmi n, xmax ,ymi n, ymax 
conmon/set25/tosca,nosteps,nstep 

dimension bl(150), b2(150) 
dimension phi(150), phinew(150) 

c Set bcl(i). 
do 115 i = 1, nonelec 

bCl{i) phi{i) 
115 continue 

c Apply the boundary conditions; make vector bl. 
call makeb{nonodsl,c1,bc1,bl) 

c Solve the field problem for the nodal derivatives (current 
c distribution) by calling "gauss2" to do back substitution. 

cal L gauss2{nonodsl ,al ,xl ,bI, ipivotI, jpivotl ,0) 

c Apply the overpotential condition to calculate a new 
c set of electrode potentials from the nodal derivatives. 

do 130 i = 1, nonelec 

c 
c 
c 
c 
c 

c 
c 
c 
c 

Activation overpotenital: (\Ve neglect concentration 
overpotential). vVe use the "overpot" routine to 
get surface overpotential, "eta," as a function of 
"xl" (proportional to current density) and "x2" 
(the flux of inhibitor) at each electrode node. 

cur - xl{i) * scale * curchar 

On any working-electrode node not comprised by the 
concentration domain, "extend" the concentration 
solution by simply repeating the value of flux at 
node "nonelc2". 
if ( gt. nonelc2 ) then 

i2 nonelc2 
e I s e 

.<) 
1_ 

endif 
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fix - x2(i2) * scale * fixchar 

call overpot ( cur, fix, eta) 

c Calculate new surface values of phi "phinew". 
phinew(i) eta j vchar 

130 continue 

return 
end 

c ****************** StIDROGTlNE O\~T ********************* 
c This routine calculates the local surface overpotential I 

c "eta", corresponding to given values of "cur", (current 
c density in m-\jcm2) and "fix" (the fiux of inhibitor). 

subroutine overpot(cur,fix,eta) 

implicit double precision(a-h,o-z) 
double precision mark 

c onmo n j set 18 c j no fl x , fix i ( 20) , no cur , cur j ( 20 ) , eta i j ( 20 , 20 ) 
dime n s ion eta i ( 2 0), eta j ( 2 0 ) 

c We have a rectangular grid of points' 'etaij" in 
c ' , cur - fi x " spa c e (a I I val u e sin f u I I y dime n s ion a I 
c form) among which we do bilinear interpolation in 
c two steps: 

c 1) Create vector "etaj" that represents the 'isoflux' 
c line at "fix": 

do 20 j = 1, nocur 
do 10 i = 1, nofix 

etai(i) = etaij(i,j) 
10 continue 

etaj(j) = trap(flx, nofix, flxi, etai, 1) 
20 continue 

c 2) Search along the trapezoidal fit of "etaj" for 
c "cur" and record the corresponding value of "eta". 

eta = trap(cur, nocur, curj, etaj, 2) 

return 
end 

295 

Appendix A-3 program belev subroutine field 



c ****************** FUNCTION TP~\P *********************** 
c This interpolates trapezoidally among x-y pairs to return 
c a "y" value corresponding to the desired value of "x". 

function trap(x, nopairs, xvector, yvector, idim) 

c 
c 
c 
c 
c 

c 

c 
c 
c 

implicit double precision (a-h,o-z) 
dimension xvector(20), yvector(20) 

i range = 0 
nosegs = nopalrs - 1 
do 10 i = 1, nosegs 

n1 
n2 + 1 

xl xvector(nI) 
x2 xvector(n2) 

frac ( x - xl ) I ( x2 xl) 

if ( frac . ge . 0.0 . and frac It . 1.0 ) then 
irange = 1 
y1 = yveetor(nl) 
y2 yvector(n2) 
y y1 + frae * ( y2 - yl ) 

If you are doing linear interpolation in the first 
d ire c t ion, (i d i m=1) the n t rea t "0 u t - 0 f - ran g e " poi n t s 
as follows: if either of the two/points is out of 
range (the code for this is y = 0) then encode the 
interpolate as out of range as well ( set y = 0 ). 
if (idim eq 1) then 

if (yl eq. 0.0 . or . y2 . eq 0.0 y 0.0 
end if 

If you are doing linear interpolation in the second 
dimension ( idim= 2 ) then don't allow any 
interpolation using an "out-of-range" point (the 
code for out-of-range is y = 0.0 ). 
if ( idim . eq . 2 ) then 

if ( yl . eq . 0.0 . or . y2 . eq . 0.0 ) then 
write (2,i) x, xl, x2, y1, y2 
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i 
$ 
$ 

format (/'Interpolating out of range in 2nd dimcnsion' 
I'x, xl, x2, y1, y2' 
leI0.3,2x,eI0.3,2x,eIO.3,2x,eIO.3,2x,elO.3) 
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stop 
end if 

endif 
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end if 

10 continue 

20 
$ 
$ 

if ( irange . eq . 0 ) then 
write (2,20) idim, x, xvector(I), xvector(nopairs) 
format{/'Trap argument out of range.' 

/ 'idim' 4x 'x' 5x 'xvectorl' 5x 'xvectorn' , , , , , , 
/i2,2x,el0.3,5x,el0.3,5x,el0.3) 

stop 
end if 

trap = y 

return 
end 

c ************** SUBROU'T.Il\E OL'TPu'T ****************.** 
subroutine output 

implicit double precision (a-h,o-z) 

c This routine prints out the answer. 
common/setO/nonelec,nonelc2 
common/setl/nonodsl,nonods2 
common/set2/coordsl(150,2) ,coords2(150,2) 
c ommo n / set 2 a / key I 0 c 1 ( 1 50 ) , key 10 c 2 ( 150 ) 
common/set3/iaxism,rinner 
common/set61/xl(150) 
common/set62/x2(150) 
C ommo n / 5 e t 7 1 / b c 1 ( 1 50 ) 
common/set72/bc2(150) 
c ommo n / set 81 / key b c1 ( 1 50) , key 0 del ( 1 50 ) 
c ommo n / set 82/ key b c 2 ( 1 50) ,k e y 0 de 2 ( 150 ) 
C onmon / set 10/ to I ,pa ram, pa r amn r , net rmax , nmax n r , net r , n c t. r n r 
common/setl1/nogauss,wfgauss(12) ,abgauss(12) 
common/set12/scale 
common/setI3/iftag 
C ommo n / set 16/ net r s p , i s po t p r , i n t s pot 
common/setI7/tmax 
common/set18a/vchar,curchar,ftxchar,conchar 
common/set18b/etabar,curbar,ftxbar 
conmon/setI9/speed,beta 
c omno n / set 20/ s 1 , s g , e 1 , e g 
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comnon/set22/irestrt,ikeep 
comnon/set24/igrid,xmin,xmax,ymin,ymax 
comnon/set25/tosca,nosteps,nstep 

c Print out answers for phi. 

wrjte (2,10) 
10 format(/'heres the vector full of answers') 

write (2,20) 
2 0 forma t ( / ' nod e ' ,lx, ' k 1 ' , 8 x , , cur ' , lOx , 'p hi' , 8 x , 

u 'r or y',2x,'x or z') 

c Rearrange contents of vectors. 
do 30 1 = 1, nonodsl 

c Put potentials in "pt" and all current 
c densities in "cd". Apply ohm's law, and 
c ' , red i me n s ion a liz e " the va ria b I e s . 

if (keybcl(i).eq.O) then 
pt xl(i) * vchar 
cd bcl(i) * scale * cur char 

e I s e 
pt 
cd 

end i r 

bc1(i) * vchar 
- xl(i) * scale * curchar 

write (2,40) i, keybc1(i), cd, pt, 
$ coordsl(i,I), coordsl(i,2) 

30 continue 

40 forma t ( i 3 , i 2 ,Ix , g 1 4 . 8 ,Ix , g 14 . 8 , 2 x , 
$ f8.1,lx,f8.1) 

c Print out the beef on the concentrations. 

write (2,50) 
50 forma t ( / ' nod e ' ,lx, 'k 1 ' , 8 x , 'c u r ' , lOx, 

$ 'conc',8x,'r or y',2x,'x or z') 

c Rearrange contents of vectors. 
do 60 1= 1, nonods2 
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c Pu t pot e n t i a lsi n "p t " and a I I cur r e n t den sit i e sin ,; cd' , . 
i r (keybc2( i) .eq.O) then 

pt x2(i) * conchar 
cd - bc2(i) * scale * ftxchar 

e I s e 
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--, 

pt 
cd 

end if 

bc2(i) * conchar 
x2(i) * scale * flxchar 

write (2,70) i, keybc2(i), cd, pt, 
$ coords2(i,I), coords2(i,2) 

60 continue 

i 0 forma t ( i 3 ,Ix , i 2 ,Ix , g 1 -1 . 8 ,Ix, g 1 4 . 8 , 2 x , f 8 . 1 ,Ix , f 8 . 1 ) 

write (2,80) nctr, nctrnr 
8 0 forma t (j i 5 ,Ix , , i t era t ion son the rei a xed sub s tit uti 0 nan d ' / 

$ i5,lx, 'iterations on the newton-raphson'/) 

return 
end 

c ****************** S~~ROUTINE PROFILE **************** 
c This routine writes the coordinates of the electrode 
c nodes at each time step. We put this in a file all 
c by itself so that we can make a moving-boundary plot. 

subroutine profile 

implicit double precision (a-h,o-z) 

corrmon/setO/nonelec,nonelc2 
corrmon/set2/coordsl(150,2) ,coords2(150,2) 
c orrmon / set 24 / i g rid, xmi n, xmax ,ymi n, ymax 
corrmon/set25/tosca,nosteps,nstep 

c Put a heading in the file. 
if ( nstep . eq . 0 ) then 

write (3,10) 
10 format ('This file contains coordinates of an electrode') 

write (3,11) 
11 format ('profile at different instants in time.'/ 

$ c'/'titlel'/'title2'/'title3'/ 
$ 'title4'/) 

c Wr i t eve r tic e s 0 f sma I I est r e c tan g let hat en c los e s 
c the domain (for graphics use.) 

write (3,12) 
12 format('Coords of smallest rectangle enclosing domain') 
c ' 'x s c a Ie" wi I I be ad jus ted I ate r; pas s SOn ow . 
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xscale = 50.0 
write (3,13) xmin, xmax, xscale 

13 format( 'xmin and xmax xscale' 
$ /f7.1,Ix,f7.I,IOx,f7.I) 

write (3,14) ymin, ymax 
14 format(/'ymin and ymax'/f7.I,Ix,f7.1) 

c Write the nwnber of nodes on the electrode. 
write (3,16) nonelec 

1 G forma t. ( / / ' n wnb e r 0 f e I e c t rod e nod e s ' / i 4 ) 

c Wr i t e the n wnb e r 0 f time s t e p sand the numb e r 0 f 
c time steps taken in each plotting interval: (default 
c to unity, set here). 

interval = 1 
write (3,18) nosteps, interval 

18 format(j /'nosteps' ,5x,' interval' /i4,10x, i4) 

endif 

write (3,20) nstep 
20 forma t ( / / i 4 , ' t h time s t e p , / ) 

write (3,30) 
3 0 forma t ( 'n 0 de' , 8 x , 'x coo r d ' , 8 x , 'y coo r d ' ) 

do 50 i = 1, nonelec 
write (3,40) i, coordsl(i,I), coordsl(i,2) 

40 r 0 rma t ( 1 x , i 3 , 4 x , r 8 . 1 , 6 x , f 12 . 5 ) 
50 continue 

return 
end 

c ****************** SuBROUTINE P~OvE ************** 
subroutine premove(coords,keyode,gap,nminl,nmaxl .nmin2, 

$ nmax2,nmin3,nmax3,nmin4,nmax4,nonods,spaceO) 

implicit double precision (a-h,o-z) 

dimension coords(150,2), spaceO(150), nonseg(lO), 
$ keyode(150) 

c How many different segments make up the domain 
c boundary? Figure out this number, "noseg", from 
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c "keyode." Also count the nwnber of nodes in each 
c segment and put this in a vector' 'nonseg". 

c Initialize the elements of nonseg zero. 
do5j=I,10 

nonseg(j) = o. 
5 continue 

c Calculate' 'noseg" and vector "'nonseg." 
noseg = I 
key = keyode(l) 
nonseg( 1) = I 
do 10 i = 2, nonods 

keyold = key 
key = keyode (i) 
if ( key. ne keyold) noseg = noseg 1 
nonseg(noseg) nonseg(noseg) + 1 

10 continue 

c Record the node nwnbers of the first and last node 
con e a c h b 0 u n dar y . (We ass wne a simp I e f 0 u r - b 0 u n dar y 
c arrangement.) 

nminl I 
nmaxl - nonseg(l) 
nmin2 nonseg(l) + I 
nmax2 nonseg{l) + nonseg(2) 
nmin3 - nonseg(l) + nonseg(2) + 1 
nmax3 nonseg(l) + nonseg(2) + nonseg(3) 
nmin4 nonseg( I) + nonseg(2) + nonseg(3) + 1 
nmax4 = nonseg(l) + nonseg(2) + nonseg(3) + nonseg(4) 

noeelec = ( nmaxl - I ) / 2 
narc 50 
narco2 = narc / 2 

c Calculate the relative spacing of nodes along 
c the working-electrode surface. Store this in 
c vector "spaceO". 

arcO = o. 
do 20 i = I, noeelec 

n I 2 * 
n2 + I 
n3 2 * 

rl coords(nl,l) 
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r2 coords(n2,1) 
r3 coords(n3,1) 

zl coords(nl,2) 
z2 coords(n2,2) 
z3 coords(n3,2) 

ds 2.0 / float(narc) 

c 
c 

Divide each element up into' 'narc" segments and 
take the arc length by adding up short tangent.s. 
do 15 k = 1, narc 

i f k eq 1 spaceO(nl) = arcO 

s - 1.0 + 2.0 * float( k - 1 ) / float(narc) 

dplds 
dp2ds 
dp3ds 

drds 
dzds 

dr 
dz 

darc 

arcO 

i f 
i f 

k 
k 

s 0.5 
s + 0.5 
- 2.0 * s 

rl * dplds + 
zl * dplds + 

drds * ds 
dzds * ds 

dsqrt dr ** 

arcO + darc 

eq 
eq 

narc02 
narc 

15 continue 

20 continue 

r2 >I< dp2ds 
z2 * dp2ds 

2 + dz ** 

spaceO(n3) 
spaceO(n2) 

2 

+ r3 
+ z3 

arcO 
arcO 

* dp3ds 
* dp3ds 

c Normalize the portion of vector "spaceO" that. describes 
c the working electrode so that' 'spaceO(nmaxl) = 1.0". 

do 22 i = 1. nmax 1 
spaceO(i) = spaceO(i) / arcO 

0') continue 

c Calculate the relative spacIng of the second segment; 
c we take this to be a straight, vertical line: 

segment coords(nmax2,2) - coords(nmin2,2) 
do 25 n = nmi n2, nmax2 
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25 

c 
c 

..,-- , 
c 

c 

30 

spaceO(n) 
continue 

( coords(n,2) - coords(nmin2,2) ) / segment 

Calculate the relative spacing of the third segment; 
we take this to be a straight, horizontal line: 
segment = coords(nmax3,1) - coords(nmin3,1) 
do 27 n = nmin3, nmax3 

spaceO(n) = ( coords(n,l) - coords(nmin3,1) ) / segment 
continue 

Calculate the relative spacing of the fourth segment; 
we take this to be a straight, vertical line: 
segment = coords(nmax4,2) - coords(nmin4,2) 
do 30 n = nmin4, nmax4 

spaceO(n) = ( coords(n,2) - coords(nmin4,2) ) / segment 
continue 
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c Calculate the highest point on the original electrode surface. 
highest = O. 

35 

do 35 n = 1, nmaxl 
try = coords(n,2) 
if ( try. gt . highest) highest try 
continue 

c Calculate the vertical gap between this high point and the 
c ceiling of .the domain. 

gap = coords(nmin3,2) highest 

return 
end 

c················· SUBRotJfI;'I;E ~'D\El ••••••••••••• * * * * * * * 

c This routine is the moving boundary part of the program. 
c It operates on the node coordinates' 'coords" and the local 
c current densites, "xl", and returns a new set of node 
c coordinates that have been displaced 
c according to Faraday's law for a small time step. 
c If this were as simple as it sounded, this routine wouldn't 
c be 1000 lines long. 
c GIVE ~DRE DETAILS. 

subroutine movel(coords,gap,nminl,nmaxl,nmin2, 
$ nmax2,nmin3,nmax3,nmin4,nmax4,spaceO) 

Appendix A-3 program belev subroutine premove 



implicit double precIsIon (a-h,o-z) 

cOlffil0n/setO/nonelec ,nonelc2 
c OIml0 n j set 12 j s c a I e 
c0lffi1onjset61jx1(150) 
c0lffi1onjset71jbc1(150) 
c0lffi1onjset81jkeybcl(150),keyode1(150) 
c0lffi1onjset25jtosca,nosteps,nstep 

dimension coords(150,2), spaceO(150) 
dimension w(150) I false(150,2) 
dimension iopen(150), bridge(150,2) 

noeelec = ( nonelec - 1 ) j 2 
narc 1000 
narco2 
rwalll 
rwa 112 

narc j 2 
coords(l,l) 
coords(nonelec,l) 

c There are four steps in this routine: 

c 1) Faraday's Law: 
c ~bve each node normal to the surface according Faraday's 
c law. Here we create more "false" nodes than we had 
c starting nodes because each point joining two elements 
c splits into two. Some of these pairs coincide (if slope 
c was continuous across the element boundary), some overlap 
c (less than 180 degrees subtended through the electrolyte) 
c and some diverge (more than 180 degrees). 

c Fi rst put surface derivat ives into vector' 'w". 
do 13 i = 1, nmax 1 

key = keybc1 ( i ) 
if (key eq. 0 ) then 

w(i) belli) 
e Is e . 

w(i) x1(i) 
end i f 

c Subversion: 
w( i) = w(i) j ( tosca * scale * scale) 

13 continue 

do 20 

n f 1 
nf2 
nf3 

1, noeelec 

3 * 
3 * 
3 * 

+ 
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nl 2 * 1 
n2 2 * + 1 
n3 2 * 

rl coords{nl,l) 
r2 coords{n2,1) 
r3 coords{n3,1) 

z 1 coords{nl,2) 
z2 coords(n2,2) 
z3 coords(n3,2) 

do 15 k = 1, 3 

n 2 * - 1 + k 
nf 3 * - 1 + k + 1 

dplds s 0.5 
dp2ds s + 0.5 
dp3ds 2.0 * s 

drds rl * dplds + r2 * dp2ds + r3 * dp3ds 
dzds z 1 * dplds + z2 * dp2ds + z3 * dp3ds 

drdn -dzds 
dzdn drds 

denom dsqrt ( drdn ** 2 + dzdn ** 2 
rhat drdn / denom 
zhat dzdn / denom 

c 1'\ow move the node according to Faraday's law: 
rshift tosca * scale**2 * w{n) * rhat 
zshift tosca * scale**2 *w(n) * zhat 

false(nf,l) 
false(nf,2) 

15 continue 

20 continue 

coords(n,l) 
coords(n,2) 

+ rshift 
+ zshift 

c l'\ow take care of first and last false nodes. 

c First node: 
n 1 
n f 1 
rhat = 0.0 
zhat = 1.0 
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rshift tosca * scale**2 
zshift tosca * scale**2 
false(nf,I) coords(n,l) 
false(nf,2) coords(n,2) 

c Last node: 
n nonelec 
nf noeelec * 3 + 2 
rhat = 0.0 
zhat = 1.0 
rshift tosca * scale**2 
zshift tosca * scale**2 
false(nf,l) coords(n,I) 
false{nf,2) coords(n,2) 

c 2) Fix overlaps: 

* w(n) * rhat 
* w(n) * zhat 
+ rshift 
+ zshift 

* w{n) * rhat 
* w(n) * zhat 
+ rshift 
+ zshift 

c Modify the "false" nodes by t'reating any overlapping 
c pairs. Locate a single node between them that 
c approximately satisfies the time step for both 
c elements. Also fix any overlap with 
c an insulator or a symnetry boundary. 

c Initialize vector' 'iopen". Later this will be set 
c to unity at any node where there is a break in 
c the false surface. 

do 22 i = 1, nonelec 
iopen(i)=0 

22 continue 

c a) Check each inter-element joint for overlap. 
c "nojnts" IS the number of joints, "m" is 
c the one we are on, and "ijoint" is the original 
c node number of that joint. 

nojnts = noeelec - 1 
do 30 m= 1 , nojnts 

i j 0 i n t 2 * m + 1 
n f 1 3 * m -r 1 
nf2 3 ,.. m + 2 

cal) average tangent vector at the element joint: 

c Fir s t element: 
ni 2 * m 1 
n2 2 * m -r 1 
n3 2 * m 

rl coords(nI,I) 
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r2 coords{n2,1) 
r3 coords{n3,1) 

zl coords{n1,2) 
z2 coords{n2,2) 
z3 coords{n3,2) 

s 1.0 

dp1ds s 0.5 
dp2ds s + 0.5 
dp3ds 2.0 * s 

drds r1 * dp1ds + r2 * dp2ds + r3 * dp3ds 
dzds zl * dp1ds + z2 * dp2ds + z3 * dp3ds 

denom dsqrt { drds ** 2 + dzds ** 2 
rhatOl drds / denom 
zhatOl dzds / denom 

c Second element: 
n1 2 * (m + 1 ) 1 
n2 2 * (m + 1 ) + 1 
n3 2 * (m + 1 ) 

r1 coords{n1,1) 
r2 . - coords{n2,1) - r3 - coords{n3,1) 

z 1 coords{nl,2) 
z2 coords{n2,2) 
z3 coords{n3,2) 

s -1.0 

dplds s 0.5 
dp2ds s + 0.5 
dp3ds 2.0 * s 

drds rl * dp1ds + r2 * dp2ds + r3 * dp3ds 
dzds z 1 * dp1ds + z2 * dp2ds + z3 * dp3ds 

denom dsqrt ( drds ** 2 + dzds ** 2 
rhat02 drds / denom 
zhat02 dzds / denom 

c Averaged un it tangent vector: 

rhatave rhatOl + rhat02 ) / 2.0 
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zhatave ( zhatOl + zhat02 ) / 2.0 

c Vector pointing from false node 1 to false node 2: 

c 
c 
c 

c 

c 

c 

c 

c 

c 

c 

de I r 
delz 

false(nf2,l) 
false(nf2,2) 

false(nfl,l) 
false(nfl,2) 

Finally, test for overlap. If the dot product of the 
average tangent vector and the difference vector is 
negative, we have overlap. 

dotprod delr * rhatave + delz * zhatave 
if ( dotprod . It . 0.0 ) then 

iopen(nl) = o. 

"b" is half the length of the difference vector 
between the paired false points: 
b 0.5 * dsqrt( delr ** 2 + delz ** 2 

"a" is the length of each motion vector: 
delr = false(nfl,l) - coords(nl,l) 
delz = false(nfl,2) - coords(nl,2) 
a dsqrt( delr ** 2 + delz ** 2 ) 

Two times angle" theta" subtends the two motion vectors: 
theta = asfn( b/a ) 

, , c " 1 S the len g tho f the new c OIlInO n poi n t : 
c a / cos(theta) 

Unit vector pointing 
delrl false(nfl,l) 
delzl false(nfl,2) 
delr2 false(nf2,l) 
delz2 false(nf2,2) 

to new point: 
coords(nl,l) 
coords(nl,2) 
coords(nl,l) 
coords(nl,2) 

delr3 = delrl + delr2 
delz3 = delzl + delz2 
denom= dsqrt( delr3 ** 2 
unitr = delr3 / denom 
unitz = delz3 / denom 

+ delz3 ** 2 

Point where the two false elements approximately intersect: 
shiftr = c * unitr 
shiftz = c * 
false(nfl,l) 
false(nfl.2) 
false(nf2.l) 
false(nf2,2) 

un i t z 
coords(nl,l) + shiftr 
coords(nl,2) + shiftz 
false(nfl,l) 
false(nfl,2) 
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c 
c 
c 
c 

c 

c 

elseif ( dotprod . eq . 0.0 ) then 
iopen{ijoint) = 0 

else 
iopen{ijoint) = I 

Determine the coordinates of the point halfway 
between points nfl and nf2 lying on a circular 
arc c en t ere d at the 0 rig ina I c orrmo n nod e . En t. e r 
these in matrix' 'bridge." 

Unit vector pointing 
delrl false{nfl,l) 
delzl false{nfl,2) 
delr2 false{nf2,1) 
delz2 false{nf2,2) 
delr3 delrl + delr2 
delz3 delzl + delz2 

ton ew poi n t : 
coords{nl,l) 
coords{nl,2) 
coords{nl,l) 
coords{nl,2) 

denom= dsqrt{ delr3 ** 2 + delz3 ** 2 
unitr delr3 / denom 
unitz = delz3 / denom 

New point: 
dist = dsqrt{ de I r 1 ** 2 + delzi ** 2 
deltar = dist * unitr 
deltaz = dist * un it z 
bridge{nl,I) coords{nI,I) + deltar 
bridge{nl,1) = coords{nI,2) + deltaz 

endif 

30 continue 

c \\hile you're at it., calculate bridge points if 
c nee d e d n ext tot h e wa I Is: 

c 'VallI: 
if ( false(2,1) . gt rwalll) then 

iopen{l) = 1 
delrl false{l,l) - coords{l,l) 
delzl false{1,2) - coords(l,2) 
delr2 false(2,1) - coords{l,l) 
delz2 false{2,2) - coords{l,2) 
delr3 delrl + delr2 
delz3 delzl + delz2 
denom= dsqrt{ delr3 ** 2 + delz3 ** 2 
unitr delr3 / denom 
unitz = delz3 / denom 
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dist = dsqr t( delrl ** 2 
deltar = dist * unitr 
deltaz = dist * un it z 
bridge(l,l) coords(l,l) 
bridge(l,2) coords(l,2) 
endif 

c \Va 112 : 
nr = 3 *noeelec + 2 
nm=nf - 1 

+ delzl 

+ deltar 
+ deltaz 

if (false(nm,l) It rwal12) then 
iopen(nonelec) 1 

** 

delrl false(nm,l) coords(nonelec,l) 
delzl false(nm,2) - coords(nonelec,2) 
delr2 false(nf,l} - coords(nonelec,l) 
delz2 false(nf,2) - coords(nonelec,2) 
delr3 delrl + delr2 
delz3 - delzl + delz2 

2 

denom= dsqrt( delr3 ** 2 + delz3 ** 2 
unitr - delr3 / denom 
unitz = delz3 / denom 
dist dsqrt( delrl ** 2 + delzl ** 2 
deltar = dist * unitr 
deltaz = dist * unitz 
bridge(nonelec,l) coords(nonelec.I) + deltar 
bridge{nonelec,2} = coords{nonelec.2} + deltaz 
endif 

c 3) ~le a sur e "f a I s e " sur fa c e : 
c Determine the total arclength of the false electrode 
c surface. Do this numerically by stepping along in s. 
c "hen you reach a diverged pair of points, bridge them 
c with a circular arc centered at the comnon origin point 
c for the pair. 

c 
c 

Th ere are ins u I a tor s 0 r s ymne try b 0 u n dar i e sat r 
and r = rwal12. 

c "inside" equals zero until we inch inside rwal II. 

rwa III 

c Then it takes the value of 1. After passing rwass2, 
c inside 2. 

inside = 0 

c Initialize: 
arci = O. 

do 40 i = 0, noeelec 
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c 
c 
c 
c 
c 

c 

i f ( ne 0 then 

nl 3 * 1 
n2 3 * + 1 
n3 - 3 * 

rl false(nI,I) 
r2 false(n2,1) 
r3 false(n3,1) 

z 1 false(nl,2) 
z2 false(n2.2) 
z3 false(n3,2) 

ds 2.0 / ftoat(narc) 

Divide each element up into "narc" segments and 
take the arc length by adding up short tangents. 
At each point, check and see if you have crossed 
into the allowed range of r ( rwalll < r < rwal12 ). 
If so, measure for real. 

do 35 k 

s 

pI 
p2 
p3 

r 

i f ( r 
i f ( r 
i f ( r 

dplds 
dp2ds' 
dp3ds 

drds 
dzds 

dr 
dz 

darc 

l, narc 

1.0 + 2.0 * ftoat( k - 1 ) / ftoat(narc) 

0.5 * s * ( s 
0.5 * 5 * ( 5 

( 

pI 

1.0 - s ) * 

* rl + p2 

ge rwalll 
I t rwa III 
gt rwal12 

s 0.5 
s + 0.5 
- 2.0 * s 

-
+ 
( 

* 

rl * dplds + 
zl * dplds + 

drds * ds 
dzds * ds 

1 ) 
1 ) 
1.0 + s ) 

r2 + p3 * 

and r Ie 
inside =0 
inside = 2 

r2 * dp2ds 
z2 * dp2ds 

r3 

+ 
+ 

dsqrt ( dr ** 2 + dz ** 2 ) 

rwal12 ) inside 

r3 * dp3ds 
z3 * dp3ds 

Measure only if you're within the walls (inside=l): 
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c 
c 
c 

35 

c 
c 

c 
c 
c 
c 
c 

If you are left of the left boundary, whether or not 
you have been to the right or not, set (or reset) 
arcl to zero. 
if ( inside. eq 

arc I arc! 
elseif ( inside 

arcl O. 
endif 

continue 

endif 

I ) then 
+ darc 

. eq . 0 ) then 

Now measure any circular bridge that might exist 
after this element. 

nal 3 >II + 1 
na2 3 >I< + 2 
nb 2 * + I 

i f ( iopen(nb) eq 1 ) then 

rl false(nal,l) 
r2 - false{na2,1) 
r3 - bridge{nb,l} 

zl false(nal,2) 
z2 false{na2,2) 
z3 bridge{nb,2} 

ds 2.0 / float(narc} 

Divide each bridge up into' 'narc" segments and take 
the arc length by adding up short tangents. At each 
point, check and see if you have crossed into the 
allowed range of r ( rwalll < r < rwal12 ). If so, 
measure for real. 

do 3i k I , narc 

s 1.0 + 2.0 * float( k - I ) I floaqnarc) - ! 

pI 0.5 • s * ( s - I ) 
p2 0.5 * s * ( s + I ) 
p3 ( I .0 - s ) * ( 1.0 + s ) 
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r pI * rl + p2 * r2 + p3 * r3 

i f ( r 
i f ( r 
i f ( r 

ge 
It 
gt 

rwa III 
rwaill 
rwal12 

and . r . 
inside 

Ie . rwal12 ) inside 
o 

dplds 
dp2ds 
dp3ds 

drds 
dzds 

s 0.5 
s + 0.5 
- 2.0 * s 

rl * dplds + 
zi * dplds + 

dr drds * ds 
dz dzds * ds 

inside = 2 

r2 * dp2ds + 
z2 * dp2ds + 

dare dsqrt ( dr ** 2 + dz ** 2 ) 

r3 * dp3ds 
z3 * dp3ds 

c 

c 
c 
c 

Measure only if you're within the walls (inside=I): 
If you are left of the left boundary, whether or not 
you have been to the right or not, set (or reset) 
arci to zero. 
if ( inside. eq 

arc I arci 
elseif ( inside 

arc I O. 
endif 

3i continue 

endif 

40 continue 

I ) then 
+ dare 

. eq . 0 ) then 

c At this point, "arcI" is the length along the false 
c arc (within bounds) in model units. We shorten it 
c slightly before doing step so that we're sure to 
c take care of the last point. 

arci = 0.9999999999 * arcl 

c 4) Reposition nodes: 
c Step along the false surface again (increasing 
c ' , arc 2 ' , ), t his time po sit ion i n g the "t rue ' , 
c nodes according to their original relative 
c spacing. Place these in vector "coords". 

c "inside" equals zero until we inch inside rwaili. 
c Then it takes the value of 1. After passing rwass2, 

313 

I 

Appendix A-3 program belev subroutine move! 



c inside 2. 
inside 0 

c Initialize: 
tiny = I.Oe-I3 * scale 
arc2 = tiny 
iseek = I 
arcseek = O. 

c Let" iseek" be the number of the node we are 
c try i n g t 0 I 0 cat. e . Th e dis tan c e a Ion g the f a I s e 
c surface to node k will be 
c "arcseek spaceO(iseek) * arcl" 

do 65 i = 0, noeelec 

if ( ne 0 then 

nl 3 * I 
n2 3 * + I 
n3 3 * 

r 1 false(nl,I) 
r2 false(n2,I) 
r3 false(n3,I) 

zl false(nl,2) 
z2 false(n2,2) 
z3 false(n3,2) 

ds 2.0 / float(narc) 

Divide each element up into' 'narc" segments and 
take the arc length by adding up short tangents. 
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c 
c 
c 
c 
c 

At each 'point, check and see if you have crossed into the 
allowed range of r ( rwall! < r < rwaI12). If so, 
measure for real. 

do 55 k I, na r c 

s 1.0 + 2.0 * float( k - 1 ) / fioat(narc) 

Appendix A-3 

pI 0.5 * s * ( s - I ) 
p2 0.5 * s * ( s + I ) 
p3 (1.0 - s ) * ( 1.0 + s ) 

r 
z 

pI * rl 
pI * zi 

+ p2 * r2 
+ p2 * z 2 

+p3 * r3 
+ p3 * z 3 
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c 
c 

i f ( r 
i f ( r 
i f ( r 

ge 
I t 
gt 

rwalll 
rwalll 
rwa 112 

and. r . Ie . rwal12 ) inside 
inside 0 

dplds 
dp2ds 
dp3ds 

drds 
dzds 

dr 
dz 

s 
s 
-

rl 
z 1 

drds 
dzds 

0.5 
+ 0.5 

2.0 * s 

* dplds 
* dplds 

* ds 
* ds 

inside = 2 

+ r2 * dp2ds 
+ z2 * dp2ds 

+ 
+ 

r3 * dp3ds 
z3 * dp3ds 

See if you've just crossed rwalll. If so, then 
back interpolate to lay down the first node: 
rnew r + dr 
znew z + dz 
if ( inside. eq . 0 . and. rnew . gt . rwalll ) then 

b a c k - ( r n ew - rwa I I 1 ) / d r 
dsback back * ds 
rint rnew + drds * dsback 
zint znew + dzds * dsback 
coords(iseek,l) = rint 
coords(iseek,2) = zint 
iseek = iseek + 1 
if (iseek . gt . nonelec ) go to 68 
arcseek = spaceO(iseek) * arcl 
endif 

dare dsqrt ( dr ** 2 + dz ** 2 ) 
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c 
c 
c 
c 

Measure only if you're within the walls (inside=l): 

c 
c 

Appendix A-3 

If you are left of the left boundary, whether or not 
you have been to the right or not, set (or reset) 
arc2 to zero. 
if ( inside. eq . 0 then 

arc2 O. 
elseif ( inside. eq 1) then 

arc2 arc2 + dare 

If you've just passed a node address, interpolate 
back I inearly and put a node there: 
if ( arc2 . gt . arcseek ) then 

back ( arc2 - arcseek ) / dare 
dsback back * ds 
rint r + drds * dsback 
zint z + dzds * dsback 
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c 
c 

c 
c 
c 
c 
c 

coords(iseek,1) = rint 
coords(iseek,2) = zint 
iseek = iseek + 1 
if (iseek . gt . nonelec ) go to 68 
arcseek = spaceO(iseek) * arci 
end if 

end i r 

continue 

endif 

Now measure any circular bridge that might exist 
after this element. 

nal 3 * + 1 
na2 3 * + 2 
nb 2 * + 1 

if ( iopen(nb) eq 1 J then 

r 1 false(naI,I) 
r2 false(na2,I) 
r3 bridge(nb,I) 

zl false(nal,2} 
z2 false(na2,2} 
z3 bridge(nb,2) 

ds 2.0 / ftoat(narc) 

Divide each bridge up into "narc" segments and 
take the arc length by adding up short tangents. 
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At each point, check and see if you have crossed into the 
allowed range of r ( rwaill < r < rwal12 ). If so, 
measure for real. 

do 60 k 1 , narc 

s 1.0 + 2.0 * float( k - I ) / float(narc) 

pI 0.5 * s * ( s - I ) 
p2 0.5 * s • ( s + 1 ) 
p3 1 .0 - s ) * ( 1.0 + s ) 

r pI * rl + p2 • r2 + p3 >0< r3 
z pI • z1 + p2 • z2 + p3 * z3 
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c 
c 

c 
c 
c 
c 

c 

Appendix A-3 

i f ( r ge rwa III and r Ie rwal12 ) inside 
i f ( r I t rwa III inside 0 
i f ( r gt rwa 112 inside = 2 

dplds s 0.5 
dp2ds s + 0.5 
dp3ds 2.0 * s 

drds rl * dplds + r2 * dp2ds + r3 * dp3ds 
dzds z I * dplds + z2 * dp2ds + z3 * dp3ds 

dr drds * ds 
dz dzds * ds 

See if you've just crossed rwaili. If so, then 
back interpolate to lay down the first node: 
rnew r + d r 
znew z + dz 
if ( inside. eq . 0 . and. rnew . gt . rwalll ) then 

b a c k - ( r n ew - rwa I I I ) / d r 
dsback back * ds 
rint rnew + drds * dsback 
zint znew + dzds * dsback 
coords(iseek,l) = rint 
coords(iseek,2) = zint 
iseek = iseek + I 
if (iseek . gt . nonelec ) go to 68 
arcseek = ipaceO(iseek) * arcl 
endif 

dare dsqrt ( dr ** 2 + dz ** 2 ) 

Measure only if you'·re within the walls (inside=I): 
If you are left of the left boundary, whether or not 
you have been to the right or not, set (or reset) 
arc2 to zero. 
if ( inside. eq . 0 then 

arc2 o. 
elseif ( inside. eq . 1 ) then 

arc2 arc2 + dare 

31i 

I 

If you've 
i f ( arc2 

just 
gt 

passed a node address, put a node there: 
. arcseek ) then 

back - ( arc2 - arcseek ) / dare 
dsback back * ds 
rint r + drds * dsback 
zint z + dzds * dsback 
coords(iseek,l) = rint 
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coords(iseek,2} = zint 
iseek = iseek + 1 
if (iseek . gt . nonelec ) go to 68 
arcseek = spaceO(iseek} * arcl 
end if 

end if 

cont.inue 

endif 

6.:> continue 

c To allow for any error in the arc length measurements, 
c make sure that last electrode node is positioned on 
c the rig h t - han d s ynme try 1 i n e : 
68 nlast = 3 * noeelec + 2 

coords(nonelec,1} = false(nlast,1) 

c After the move, calculate the highest point on the new 
c electrode surface. 

highest = O. 
do 70 n = 1, nmaxl 

try = coords(n,2} 
if ( try. gt . highest) highest - try 

70 continue 

c ~bve the third boundary so that the vertical gap between 
c it and the highest point on the electrode is constant. 

do 80 n = nmin3, nmax3 
coords(n,2) highest + gap 

80 continue 

c As the corners are dual nodes, make sure they all get moved. 
coords(nmax2,2) coords(nmin3,2) 
coo r d s ( nm i n.:l , 2) - coo r d s ( nma x 3 , 2 ) 
coords(nmax.:l,2) coords(nminl,2) 
coords(nmin2,2) coords(nmaxl,2) 

c Now reposition the nodes on the synmetry boundaries (2 S: 4). 

segment = coords(nmax2,2) - coords(nmin2,2) 
do 90 n = nmin2, nmax2 

coords(n,2) = coords(nmin2,2) + spaceO(n) * segment 
90 continue 
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segment = coords(nmax4,2) - coords(nmin4,2) 
do 100 n = nmin4, nmax4 

coords(n,2) = coords(nmin4,2) + spaceO(n) * segment 
100 continue 

return 
end 

c ***************** SCBROUTIl\E ~'DVE2 ******************** 
c This routine moves the nodes of the second domain, 
c vector coords2, after the first-domain nodes, coordsl, 
c have already been moved. 

c 
c 

subroutine 'move2(coordsl ,coords2,gap,nmini ,nmaxl,nmin2, 
$ nmax2,nmin3,nmax3,nmin4,nmax4,spaceO) 

implicit double precision (a-h,o-z) 

dimension coordsl(150,2), coords2(150,2), spaceO(150) 

Since the two domains share (part of) the electrode 
boundary, simply equate those node coordinates: 
do 10 i = 1, nmaxi 

coords2(i,1) coordsl(i,l) 
coords2( i ,2) = coordsl( i ,2) 

10 continue 

c Dual node at start 
coords2(nmax4,1) 
coords2(nmax4,2) 

of electrode: 
coords2(nminl,1) 
coords2(nminl,2) 

c Dual node at end of electrode: 
coords2(nmin2,1) coords2(nmaxl,l) 
coords2(nmin2,2) = coords2(nmaxl ,2) 

c R coordinate of top-right dual node: 
coords2(nmax2,1) coords2(nmin2,1) 
coords2(nmin3,1) = coords2(nmin2,1) 

c R coordinate of top·left dual node: 
coords2(nmax3,1) coords2(nminl,l) 
coords2(nmin4,1) = coords2(nminl,1) 

c Calculate the highest point on the new electrode surface: 
highest = O. 
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do iO n = 1, rumaxl 
try = coords2(n,2) 
if ( try. gt . highest) highest try 

iO continue 

c ~Iove the third (top) boundary so that the vertical 
c gap between it and the highest point on the electrode 
c is constant; Also stretch these nodes evenly in the 
c r direction: 

segment = coords2(nmax3,1) - coords2(nmin3,1) 
do 80 n = nmin3. nmax3 

coords2(n,2) highest + gap 
coords2(n,l) coords2(nmin3,1) + spaceO(n) * segment 

80 continue 

c 

c 

90 

Z coordinates of 
coords2(nmax2,2) 
coords2(nmin4,2) 

top dual nodes: 
coords2(nmin3,2) 

= coords2(nmax3,2) 

Stretch the right syrnnetry 
segment = coords2(nmax2,2) 
do 90 n = rumin2, rumax2 

boundary (boundary 2): 
- coords2(nmin2,2) 

d ~(~) d ry( . ~ ry) coor s. n,. coor s. nmln.,. + spaceO(n) * segment 
coo r d s 2 ( n , 1 ) coo r d s 2 ( nma xl, 1 ) 
continue 

c Stretch the left syrnnetry boundary (boundary 4): 
segment = coords2(nmax4,2) - coords2(nmin4,2) 

100 . 

do 100 n = rumin4, nmax4 
coords2(n,2) coords2(nmin4,2) + spaceO(n) * segment 
coords2(n,l) = coords2(nminl .1) 
continue 

return 
end 
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Input-Data File 

This file contains input data for a boundary-element 
I eve lin g pro b I em. 
Second set of kinetic data taken from Nickel-Coumarin 
polarization curves. 
Kotch problem from Kruglikoy paper. 

iprint grid plot key (0: run; 

1 1 

I ax I sm 

o 

I I I 
500 o 

1: both; 0. plot) 

nonodsl, the number of nodes In the extended domain. 
II I 
66 

nonods2, the number of nodes In the boundary layer. 
I I I 
66 

nonelec, number of nodes on 'trode surface (dimension of NR) 
I I I 
"27 

nonelc2, number of nodes the 'trode surface (dimension of NR) 
I I 1 
')
~ I 

scale (model unitsid-Iess unit) 
ddddd.d 
50000.0 

vert.ex coords of smallest box enclosing domain 
xml n xmax 

ddddd.d ddddd.d 
0.0 20000.0 

yml n ymax 
ddddd.d ddddd.d 

0.0 99999.9 

rlnner (nodal-structure units) 
ddddddd.d 

0.0 

s 1 sg (not .applicable to this version) 
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d.dd 
1.0 

d.dd 
0.5 

curbar (m-\jcm2) (important) 
sd. dA.dEs e e 
-1.0 e+01 

flxbar (mieromoles/em2-s) (Of no importance In this version) 
sd.dddEsee 
-2.69 e-03 

etabar (mill ivolts) (Only a reference In this version) 
sd.dddEsee 
-i.32 e+02 

noflx 
I I 

2 

flxi (micromoljcm2-s) 
sd.dddEsee 

1 +1.0 e+O::.! 
2 -1.0 e+02 

nocur 
I I 

2 

cur j (In'\j em2 ) 
J sd.dddEsee 
1 +1.0 e+l0 
2 -1.0 e+l0 

i\latr ix "etai j ": 

COIUllUl for j = 1 
sd.dddEsee 

1 +5.0 e+Ol 
2 +5.0 e+Ol 

cur 

column for j = 2 ( cur 
sd.dddEsee 

1 -5.0 e+Ol 
2 -5.0 e+Ol 

curj(l) ) 

curj(2) ) 

c h a r I (c e n time t e r s ) (No t rea I I y use din t his v e r s ion ) 
sd.dddEsee 
5.0 e-03 
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vchar (millivolts) (Answer doesn't really depend on this) 
sd.dddEsee 
2.61 e+01 

conchar (micromoles/liter) (Same as bulk concentration) 
sd.dddEsee 
4.3 e+O;:! 

curchar (mt1,./cm2) (This is a key input parameter) 
sd.dddEsee 
2.24 e+11 (set for geometric leveling) 

fixehar (micromol/cm2-s)) (Another key input parameter) 
sd.dddEsee (set now for geometric leveling) 

9.95 e-06 

irestrt(l: read from restart) ikeep(l: write into restart; 
e I s eO. ) 

o o 

bet a ( kin e tic s yrm1e try par ame t e r, not use din t his v e r s ion) 
d.dd 
0.5 

tol 
sd.dddEsee 
i.000e-10 

(relative hence dimensionless) 

rei a x a t ion fa c tor s for sub s tit uti 0 nan d N. R . (p a ram & par amn r ) 
d.dddddddd d.ddddd 
o .000:) 1 .0 

max number of iterations for subst. and l':.R. (nctrmax 8.: nmaxnr) 
iii i 

o 
1111 

20 

tosca (dless ratio of layer-thickness step to current density) 
sd.dddEsee was 2.418e-l before setting to 2.5e-1 

2.2GOe+09 

nosteps 
1111 

100 

number of time steps you want to take) 

Extended 
Node 

1 
2 

domai n coords and 
r or x z or y 

ddddddd.d ddddddd.d 
0.0 20000.0 

1950.9 19807.9 

keys. psi 
be ode loc 
11 11 11 

1 1 1 
1 1 0 
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3~4 

3 3826.8 19238.8 1 1 1 
4 5555.7 18314.7 1 1 0 
5 7071 . 1 17071.1 1 1 1 
6 8314.7 15555.7 1 1 0 
7 9238.8 13826.8 1 1 1 
8 9807.9 11950.9 1 1 0 
9 10000.0 10000.0 1 1 1 

10 10192.1 8050.0 1 1 0 
11 10761.2 6173.2 1 1 1 
12 11685.3 4444 .3 1 1 0 
13 12928.9 2928.9 1 1 1 
14 13656.1 2269.9 1 1 0 
15 14444.3 1685.3 1 1 1 
16 15286.0 1180.8 1 1 0 
17 16173.2 761.2 1 1 1 
18 16631.1 584.6 1 1 0 
19 17097.2 430.6 1 1 1 
20 17570.2 299.7 1 1 0 
21 18049.1 192.1 1 1 1 
22 18532.7 108.2 1 1 0 
23 19019.8 48.2 1 1 1 
24 19264.4 27 .1 1 1 0 
24 19509.3 12.0 1 1 1 
25 19754.6 3.0 1 1 0 
25 20000.0 0.0 1 1 1 
26 20000.0 0.0 0 0 1 
26 20000.0 250.0 0 0 0 
27 20000.0 500.0 0 0 1 
,,~ -, 20000.0 750.0 0 0 0 
28 20000.0 1000.0 0 0 1 
29 20000.0 1500.0 0 0 0 
30 20000.0 2000.0 0 0 1 
31 20000.0 2500.0 0 0 0 
32 20000.0 3500.0 0 0 1 
33 20000.0 4500.0 0 0 0 
34 20000.0 6000.0 0 0 1 
35 20000.0 7500.0 0 0 0 
36 20000.0 10000.0 0 0 1 
37 20000.0 15000.0 0 0 0 
38 20000.0 20000.0 0 0 1 
39 20000.0 25000.0 0 0 0 
40 20000.0 30000.0 0 0 1 
41 20000.0 40000.0 0 0 0 
42 20000.0 50000.0 0 0 1 
43 20000.0 62500.0 0 0 0 
44 !!OOOO.O 75000.0 0 0 1 
45 20000.0 87500.0 0 0 0 
46 20000.0 100000.0 0 0 1 
47 20000.0 100000.0 0 2 1 
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48 10000.0 100000.0 0 2 0 
49 0.0 100000.0 0 2 1 
50 0.0 100000.0 0 0 1 
51 0.0 87500.0 0 0 0 
52 0.0 75000.0 0 0 1 
53 0.0 62500.0 0 0 0 
54 0.0 50000.0 0 0 1 
55 0.0 40000.0 0 0 0 
56 0.0 30000.0 0 0 1 
57 0.0 25000.0 0 0 0 
58 0.0 20000.0 0 0 1 
59 0.0 17500.0 0 0 0 
60 0.0 15000.0 0 0 1 
61 0.0 12500.0 0 0 0 
62 0.0 10000.0 0 0 1 

Boundary-layer eoords and keys. agent 
:'\ode r or x z or y be ode loc 

ddddddd.d ddddddd.d 11 11 1 I 

1 0.0 20000.0 1 1 1 
2 1950.9 19807.9 1 1 0 
3 3826.8 19238.8 1 1 1 
4 5555.7 18314.7 1 1 0 
5 7071.1 17071.1 1 1 1 
6 8314.7 15555.7 1 1 0 
7 9238.8 13826.8 1 1 1 
8 9807.9 11950.9 1 1 0 
9 10000.0 10000.0 1 1 1 

10 10192.1 8050.0 1 1 0 
11 10761.2 6173.2 1 1 1 
12 11685.3 4444.3 1 1 0 
13 12928.9 2928.9 1 1 1 
14 13656.1 2269.9 1 1 0 
15 14444.3 1685.3 1 1 1 
16 15286.0 1180.8 1 1 0 
17 16173.2 761 .2 1 1 1 
18 16631.1 584.6 1 1 0 
19 17097.2 430.6 1 1 1 
20 17570.2 299.7 1 1 0 
21 18049.1 192.1 1 1 1 
22 18532.7 108.2 1 0 
23 19019.8 48.2 1 1 
24 19264.4 27 .1 1 1 0 
24 19509.3 12.0 1 1 
<}-
~~ 19754.6 3.0 1 1 0 
25 20000.0 0.0 1 1 1 
26 20000.0 0.0 0 0 1 
26 20000.0 250.0 0 0 0 
<)~ -/ 20000.0 500.0 0 0 1 
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')--, 20000.0 750.0 0 0 0 
28 20000.0 1000.0 0 0 1 
29 20000.0 1500.0 0 0 0 
30 20000.0 2000.0 0 0 1 
31 20000.0 2500.0 0 0 0 
32 20000.0 3500.0 0 0 1 
33 20000.0 4500.0 0 0 0 
34 20000.0 6000.0 0 0 1 
35 20000.0 7500.0 0 0 0 
36 20000.0 10000.0 0 0 1 
37 20000.0 15000.0 0 0 0 
38 20000.0 20000.0 0 0 
39 20000.0 25000.0 0 0 0 
40 20000.0 30000.0 0 0 1 
41 20000.0 40000.0 0 0 0 
42 20000.0 50000.0 0 0 1 
43 20000.0 62500.0 0 0 0 
44 20000.0 75000.0 0 0 1 
45 20000.0 87500.0 0 0 0 
46 20000.0 100000.0 0 0 1 
47 20000.0 100000.0 1 2 1 
48 10000.0 100000.0 1 2 0 
49 0.0 100000.0 1 2 1 
.,)0 0.0 100000.0 0 0 1 
51 0.0 87500.0 0 0 0 
52 0.0 75000.0 0 0 1 
53 0.0 62500.0 0 0 0 
54 0.0 50000.0 0 0 1 
55 0.0 40000.0 0 0 0 
56 0.0 30000.0 0 0 1 
.'>7 0.0 25000.0 0 0 0 
58 0.0 20000.0 0 0 1 
59 0.0 17500.0 0 0 0 
60 0.0 15000.0 0 0 1 
61 0.0 12500.0 0 0 0 
62 0.0 10000.0 0 0 1 
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Appendix B-1 

Comparison of Finite-Element and Boundary-Element Methods 

\Vhile all of the calculations reported in Chapters 1, 2 and 3, were done with the 

boundary-element met.hod (BE;v!), some preliminary calculations were carried out with 

the finite-element method (FE~l). The FE~! code used to predict current distribution 

in the laboratory-scale active-passive cell of Chapter 1 is given in Appendix B-::? A 

nodal structure for this problem, containing 225 linear-triangular elements and 1.54 

nodes, is shown in Figure BI-I.-\.. Analogous calculations were performed with the 

boundary-element method (BEM), using the nodal structure of Figure BI-IB; this con-

sists of 81 linear elements and 81 nodes, coinciding in location with the finite-element 

nodes that lie on the domain boundary. Figure Bl-2 compares the current distribu-

tions calculated by the two techniques. It is emphasized that this isolated example 

cannot serve as a basis for general conclusions. However the comparison does serve to 

illustrate two inherent differences between the methods. 

First, is is apparent that the FEM solution is a step profile, while BE~r gIn'S a 

continuous function, even though the two methods employ interpolation functions of 

the same order (linear). The reason for this is that in FE~l, the piecewise-linear inter-

polation of potential must be differentiated to give current density, resulting in a con-

stant value over each element. On the other hand, BE},! uses the same order of inter-

polation for both the potential and its derivative. This distinction is especially relevant 

to electrochemical problems, in which the current density is the quantity of interest. 

The second difference between the two curves is their shape: the FK'vl cur\"(' is 

shifted to the left and, in particular, features a lower current-density peak. Although 
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A B 

Figure Bl-1. Nodal structures for a. laboratory-scale active-passive cell: 
A-finite-element, and B-boundary-element 
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Figure BI-2. Comparison of current distributions calculated by: 
I-boundary-element method, and 2-finite-element method 
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the exact solution is not known, we do know that its peak should correspond to the 

peak current density from the polarization curve, 38.8 IlLI\./cm2 in this example. This is 

satisfied much better by BE}.·f than by FEM. The reason for this is the follo\\·ing. To 

obtain convergence, it is necessary to apply the electrode-overpotential relation as a 

natural boundary condition, i.e. to impose the potential gradient and calculate the sur

face pot.ential by Laplace's equation. It is a feature of the finite-element method (both 

the Galerkin and variational formulations) that natural boundary conditions are not 

st.rictly enforced, i.e. the solution represents a compromise among the vanous con

strain ts imposed (except for the essential boundary conditions, wh ich are enforced 

exactly). Figure BI-3 illustrates this feature. The converged solution, (i.e. after the 

relative change in potential on an iteration has fallen below 10-5) is shown by curve 2, 

but the potential-gradient profile that was applied on the last iteration to produce this 

solution is curve 3. (The two curves are related as follows: if one takes the value of 

surface potential corresponding to the converged solution of curve 2, and substitutes 

this into the overpotential expression, one obtains curve 3.) By contrast, essential 

boundary conditions are exactly enforced in BE~f. 

In summary, a limited companson illustrates two advantages of BEi'd over FE},! 

for the active-passive problem: higher-order interpolation of the potential gradient, 

and strict enforcement of natural boundary conditions. 

Finally, an illustration is given of the comparative simplicity and ease of construc

tion of BE}',! nodal structures. Figure BI-4 shows a portion of a finite-element nodal 

structure for the attached-bubble problem of Chapter 2. There is substantial grid 

refinement in the crevice region at the lower right, since high activit.y in the pot.ential 

field is expected here. As no algorithm was available for automatic generation of this 

grid, it was constructed by hand, requiring considerable time. For comparison, a 
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Figure BI-4. Portion of finite-element nodal structure for an attached bu bble 
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boundary-element nodal structure used for the bubble work is shown in Figure Bl-.5. 

This particular example does not show the same degree of local refinement as Figure 

Bl-4, but it is obvious that, even if it did, the boundary-element nodal structure would 

still be far less complicated. 
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Figure BI-5. Boundary-element nodal structure for an attached bubble 
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Appendix B-2 

Finite-Element Code for Active-Passive Model 

The following Fortran program was used in preliminary calculations for the 

active-passive model described in Chapter lA. A sample input-data file is given at the 

end of the program listing. Important variables are defined in subroutine 'input' or as 

they appear in the code. 



program fecur(input,output) 

c This program is for the active-passive problem, specifically 
c for the s amp leg e orne try use din the ex per i me n t . 
c This program is general to axisyrrmetric and planar problems. 

c Be sure that the local node numbering is done so that 
c 1) order is counterclockwise, and :!) nodes 1 and 2 are 011 

c the outside boundary (if there is one.) 

corrmon//nonods, mbandw 
corrmon/set1/nfixp(4) ,lpfix(4), nofixp, noels 
corrmon/set2/coords(154,2), Itopo(225,3), iaxism, rlnner 
corrmon/set3/big, diagq(154) 
corrmon/set4/nolcur, cond, scale, Icur(48), cur(48) 
c orrmo n / set 5/ n c t r , n c t rma x , to I ,p a r am 
corrmon/set6/delvapp 
c orrmo n / set 7 / n 0 I d r v, I d r v ( 48), d r v ( 48 ) 
c orrmo n / set 9 / n c t r s p , i s pot p r , i n t s pot 
c orrmo n / set 1 1 / no a p , cur a p ( 20) , eta a p ( 20 ) 
corrmon/set12/tmax 
corrmon/matrix/q(154,8) 
corrmon/vector/f(154) 

c Read in all data and do the grid generation. 
call input 

c Set up the stiffness matrix. 
call stiff 

c Forward reduce the stiffness matrix. 
call solve1 

c *********The cycle begins.******** 
nctr=O 
nctrsp = 0 

110 nctr = nctr + 1 
nctrsp = nctrsp + 1 

if (nctr.ge.50) param= 0.01 

c Impose the boundary conditions. 
call bcs 

c Back-substitute and get node potentials. 
call solve2 

c Use the overpotential .expression to evaluate current 
c densities corresponding to the surface potentials. 
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tmax = O. 
do 125 i-1,48 

lment = ldrv{i) 
node1 = Itopo(lment,l) 
node2 = Itopo(lment,2) 
pI = f(node1} 
p2 = f(node2} 
pave = 0.5 * (pI + p2) 
eta = delvapp - pave 

c Evaluate current from trapezoidal AlP curve fit. 

1445 
b 

hold = - eta * 0.001 
if (eta.le.etaap{l)) go to 12 
hold = O.D 
do 115 j =2, noap 

if (eta.le.etaap{j)) 
go to 115 
hold = - curap{j-l) 

( eta - etaap{j-1) 
go to 121 

go to 144.'5 

( curap{j) - curap{j-l) ) * 
/ ( etaap{j) - etaap(j-l) ) 

115 continue 
c If we're well into passivity, set current to zero. 

121 

1 ')-_0 

c 
c 
c 
c160 
c165 
c16G 
c 

cl665 
c16i 
c 

hold = 0.0 

t = abs( hold - curti) 
i f (t. g t . tmax) tmax=t 
cur{i)=hold 
drvnew = - curti} * scale / ( eond * 1000.0 ) 
d r v ( i) = par am * d r v n ew + ( 1 . 0 - par am) * d r v ( i ) 
continue 

As an option. print out tmax for each iteration. 
if (nctr.gt.l) go to 165 
print 160 
forma t ( /2 x, * n c t r * , 3x , * tmax * ) 
print 166, netr, tmax 
forma t ( 2 x , i 4 , 4 x , flO. 8 ) 
go to 1673 
print 167, cur{I), cur(16), cur(31), cur(·t6) 
forma t ( f 7 . 3 ,Ix. f 7 . 3 ,lx, f i . 3 ,lx, f i . 3 ) 
go to 1675 

c Spot print current values as a convergence aid. 
c16i3 if (ispotpr.ne.l) go to 168 
c if (nctrsp.ge. intspot) go to 1665 
c16i5 if (nctrsp.gt. intspot) nctrsp = 1 

c16S if(tmax.lt.tol) go to 180 
if (tmax.lt.tol) go to 180 
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c If you've exceeded the max allowed iterations, nctrmax, 
c say so and call the output routine. 

if (nctr.ge.nctrmax) go to 170 

c If you don't meet the convergence criterion, 
c do the cycle again. 

go to 110 

liO print IiI 
IiI format(*You've exceeded nctrmax iterations.*) 

c If you have converged, call the output subroutine. 
180 call output 

stop 
end 

subroutine input 

c Th iss u b r 0 uti n ere ads ina I I the i n put d a t a and, i f 
c requested, prints it all back out again as a check. 
c It also generates coords, Itopo and Idrv. 

common//nonods,mbandw 
common/setl/nfixp(4),pfix(4),nofixp,noeis 

'common/set2/coords(154,2),itopo(225,3),iaxism,rinner 
common/set4/nolcur,cond,scale,lcur(48) ,cur(48) 
c ommo n / set 5/ net r , net rma x , to I , par am 
common/set6/delvapp 
c ommo n / set 7 / no 1 d r v , i d r v ( 48 ) , d r v ( 48 ) 
common/set9/nctrsp,ispotpr,intspot 
common/setll/noap,curap(20),etaap(20) 

c Read in all the input. 

Read 310 
310 format(////) 

c Read iprint (print all data unless iprint equals 
c zero), ispotpr (values are spotprinted every 'intspot' 
c iterations if ispotpr = 1), and intspot. 

r e ad 315, i p r i nt, i s po t p r, in t s po t 
315 forma t ( / / / i 1 , 9x , ii, 9x , i 3 ) 

c 

c 

Read iaxism. This is a flag; 
problem is not axisymmetric. 

if it reads zero, the 
A value of one or 
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c anything else indicates axisymmetry. 
read 316, iaxism 

316 format(///il) 

c Read nonods, the number of nodes In the grid. 
read 317, nonods 

317 forma t (j / / i 3 ) 

c Read noels, the number of elements. 
read 318, noels 

318 format(///i3) 

c Read nofixp, the number of nodes at which the 
c potential is to be fixed. 

read 319, nofixp 
319 format(///i3) 

c Read noldrv, the number of elements at which 
c derivative is fixed. 

read 3195, noldrv 
3195 format(///i3) 

c Read nolcur, number of elements at which current 
c is calculated. 

read 3196, nolcur 
3196 format(///i3) 

c Read mbandw, a good guess for an upper limit on 
c the half-bandwidth of the stiffness matrix. 

read 320, mbandw 
320 format(///i3) 

c Read the conductivity of the electrolyte In mho/em:!. 
read 321, cond 

3 2 1 forma t (j / / f 6 . 4 ) 

c Read the value of the applied anode potential with 
c respect to the rest potential, "delvapp." 

read 3215, delvapp 
3215 format(///f5.3) 

c Read the AlP current/voltage characteristic data 
read 3216. noap 

3216 format(///i3) 
read 3217 

32 1 7 forma t (j j) 
read 3218, (curap(i),etaap(i),i=l,noap) 

3218 format(5x,f7.3,2x,f7.4) 
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c 
c 
c 
c 
c 

322 

c 
c 
c 
c 

c 

323 

c 

324 

c 

c 

Read in the scale factor for the model representation 
of the domain. One centimeter of distance in the 
electrochemical cell equals (SCALE) * (one unit of 
distance in the model.) For the test geometry, 
scale = 0.3175 em/model unit. 
read 322, seal e 
forma t (j / / flO. 4 ) 

Read in the value of rlnner. ~his is the distance 
(in the distance units of the model) from the innermost 
point of the nodal structure to the centerline. If the 
problem is not axisymmetric, we don't 
need rinner, but we must read a value anyhow. 
read 323, rinner 
format{///////////f9.1) 

Read the value of the convergence tolerance, tol. 
read 324, tol 
format{///fI2.10) 

Read in the relaxation parameter. 
read 325, param 
forma t ( / / / f 7 . 5 ) 

Read in values and iteration counts of param adjustments. 
rea d 3255, net r 2, par am2, net r 3, par am3, n c t r 4, par am4 
forma t (j / / lOx, i 4 , lOx, f 7 . 5/ lOx , i 4 , lOx , f 7 . 5 / lOx 

b,i4,10x,f7.5) 

c Read in the maximum number of iterations allowed. 
read 326, nctrmax 

326 format(///i4) 

c Read in the first guess for uniform current density at 
c the electrode in m\/cm2. 

read 327, curinit 
327 format(///f7.3) 

c The following lines generate a FE grid for the rotating 
c cyl inder test geometry. There is a regular repeating 
c pattern detailed in the 10/12 writup "New AP Grid." 

c G en era t e " Co 0 r d s ' " the lis t 0 f nod a I coo r din ate s 
c in z and r. Let' 'rm2" be the length of a unit grid 
c c e I lin mo del un its. For the ex per i me n t a Ice I I, the 
c scale is 0.3175 em/model unit. 

do 360 m=1,25 
rm2 = fi 0 a t ( 2 * ( m- 1) ) 
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m6 = 6 * {m-1} 

k = 1 
node = mG + k 
coords{node,l} = r~ 
coords{node,2} = o. 

k = 2 
node = mG + k 
coords{node,l} rm2 
coords{node,2} 1.0 

k = 3 
node = mG + k 
coords(node,l} 
coords{node,2} 

k = 4 

rm2 + 1.0 
1.0 

node = m6 + k 
coords{node,l} = r~ 
coords{node,2} = 2.25 

k = 5 
node = m6 + k 
coords{node,l} r~ 
coords{node,2} 4.0 

k = 6 
node =m6 + k 
coords{node,l} = rm2 + 1.0 
coords{node,2) = 0.0 

360 continue 
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c The following coordinates don't fit In the automatic scheme: 

coords{151,1) = 50.0 
coords{151,2) = 0.0 
coords{152,1) = 50.0 
coords{152,2) 1.0 
coords{153,1) = 50.0 
coords{153,2) 2.25 
coords{154,1) = 50.0 
coords{154,2) = 4.0 

c Generate the element topology matrix, "ltopo." 

do 361 m= 1, 25 
m9 = 9 * (m-1) 
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m6 = 6 * (m-l) 

k = 1 
Imen t = mg + k 
Itopo(lment,l) = m6 + 1 
Itopo(lment,2) = m6 + 6 
Itopo(lment,3) = mG + 2 

k = 2 
Imen t = mg + k 
Itopo(lment,l) = mG + G 
Itopo(lment,2) =mG + 3 
Itopo(lment,3) = mG + 2 

k = 3 
Imen t = mg + k 
Itopo(lment,l) = mG + G 
Itopo(lment,2) = mG + 7 
itopo(lment,3) = mG + 3 

k = 4 
lment = mg + k 
Ito p 0 ( I me nt, 1) = m6 + 7 
Ito p 0 ( I me nt, 2) = m6 + 8 
Itopo(lment,3) =m6 + 3 

k = 5 
Iment =mg + k 
Itopo(lment,l) =m6 + 2 
Itopo(lment,2) =mG + 3 
Itopo(lment,3) =m6 + 4 

k = 6 
Imen t = mg + k 
Itopo(lment,l) = m6 + 3 
Itopo(lment,2) = m6 + 10 
Itopo(lment,3) = m6 + 4 

k = 7 
Imen t = mg + k 
Itopo( Iment,l) =m6 + 3 
ltopo( Iment,2) = m6 + 8 
Itopo(lment,3) = mG + 10 

k = 8 
Imen t = mg + k 
Itopo( Iment,l) = m6 + 4 
Itopo(lment,2) = m6 + 10 
Itopo(lment,3) = m6 + 5 
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k = 9 
I me n t -:- m9 + k 
Ito p 0 ( I me nt, 1 ) = m6 + 10 
Ito p 0 ( I me nt, 2 ) =m6 + 11 
Ito p 0 ( I me nt, 3 ) = m6 + 5 

361 continue 
c Now make the following revIsions for the end of the nodal 
c structure. 

Itopo(222,2) 
Itopo{224,2) 
Itopo(223,3) 
Itopo{225,1) 
Itopo(225,2) 

153 
153 
153 
153 
154 

c Generate "Idrv," the list of elements at which the normal 
c deriviative will be specified. 

do 362 m = 2, 25 
m9 = 9 * (m-I) 
m2 = 2 * (m-I) 
I d r v ( m2 - I) = m9 + 1 
Idrv(m2) =m9 + 3 

362 continue 

c For the present, leur IS identical to Idrv. 
do 363 i=l,noldrv 

lcur(i) = ldrv(i) 
363 continue 

c Read the coordinates of each node In global order. 
c read 364 
c364 format(///) 
c read 365,{coords(i,I),coords{i,2),i=l,nonods) 
c 365 forma t ( ix, f i . 1 ,Ix, f i . 1 ) 

c Read in the element topology. This is a list of the 
c elements in order and, for each one, the global node 
c numbers of local nodes 1,2 and 3 in that order. 
c (numbered counterclockwise.) 
c read 366 
c366 format{///) 
c read 36i, (I topo{ i ,1), I topo( i ,2), I topo{ i ,3), i=l, noe Is) 
c 3 6 i forma t ( 8 x , i 3 , 5 x , i 3 ,5 x , i 3 ) 

c Read in nfixp and pfix side by side. This wil I be an 
c ordered list of nodes at which potential is to be fixed, 
c and the corresponding values of potential in volts. 

343 

Appendix B-2 program fecur subroutine input 



read 368 
36 8 forma t (/ / /) 

read 3685, (nfixp( i) ,pfix( i), i 1,nofixp) 
3685 format(8x,i3,5x,f6.4) 

c Read in leur, alist of elements, in spacial order, at 
c which current density is to be calculated and printed out. 
c read 3693 
c3693 format(///) 
c read 3694,(lcur(i),i=1,nolcur) 
c 3 6 9 cl forma t ( 8 x , i 3 ) 

c Initialize the electrode gradients and currents. 
do 3695 i=l,nolcur 

drv(i) = - curinit * scale / (cond * 1000.0) 
cur(i) = curinit 

3695 continue 

c Print out all the input data (if iprint IS not 
c equal to zero.) 

if (iprint.eq.O) go to 398 

print 3696, iaxism 
3696 format(*iaxism.ne.O for axisymnetric problem.*/i2) 

print 370, nonods, noels, nofixp, mbandw 
370 format(/*nonods*/i3//*noels*/i4//*nofixp*/i4//*mbandw*/i4) 

print 371, cond 
371 format(/*conductivity In mho/cm*/f7.4) 

373 

3731 

3732 

3733 

print 372, scale 
forma t ( / * sea Ie, c en time t e r s per mo del un i t * / f 1 1 . 4 ) 

print 373, rinner 
format(/*rinner, distance off the centerline, 

$ model units*/flO.l) 

print 3731, tol 
format(/*tol*/fI2.10) 

print 3732, param 
format(/*param*Jf7.4) 

print 3733, nctrmax 
format(/*nctrmax*/i4) 

print 3734, curinit 
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3734 format(/*curinit*/f8.3) 

print 3735, delvapp 
3735 format(/*delvapp*/f6.4) 

print 375 
375 format(/*node coordinates*/*node*,4x,*x or z*, 

$ 2x,*y or r*) 
print 376,(i,coords(i,I),coords(i,2),i-I,nonods) 

376 forma t ( i 3 , 5 x , f 8 . 1 ,lx, f 8 . 1 ) 

print 380 
380 format(/*element topology*/*element*,2x,*node 1*, 

$ 2x,*node 2*,2x,*node 3*) 
print 381,( i ,ltopo(i ,1), ltopo(i ,2), ltopo(i ,3) ,i I,noels) 

381 forma t ( i 3 , 5 x , i 3 . 5 x , i 3 , 5 x , i 3 ) 

print 385 
385 format(/*node numbers and values of fixed potentials*) 

print 386 
386 format(*count*,5x,*node*,2x,*potential*) 

print 387, (i ,nfixp( i) ,pfix( i), i-I ,nofixp) 
387 forma t ( 2 x , i 3 , 6x , i 3 , 2x , f 7 .4) 

print 390 
390 format(/*elements at which current density IS to 

$ be calculated*) 
print 391 

391 forrrmt(*count*,4x,*element*) 
print 392, (i,lcur(i),i=I,nolcur) 

392 forma t ( 2 x , i 3 , 6 x , i 3 ) 

398 return 
end 

subroutine stiff 

c I nth iss u b r 0 uti n e, we f 0 rmu I ate the big "s tiff n e s s ' , 
c matrix, q, in the element equations. 

c We also set aside some diagonal elements of q in the 
c vector' 'diagq." We use these later on in subroutine bcs. 

real x(3) ,y(3) ,b(3) ,c(3) ,d(3,3) 

3--15 

Appendix B-2 program fecur subroutine input 



common//nonods,mbandw 
common/seti/nfixp(4) ,dummie(4) ,nofixp,noels 
common/set2/coords(I54,2),ltopo(225,3),iaxism,rinner 
common/set3/big,diagq(I54) 
common/matrix/q(I54,8) 

c Start by filling half-banded matrix q with zeros. 

do 402 i = 1, nonods 
do 401 j = 1, mbandw 

q(i,j)=O 
401 continue 
402 continue 

c Set up the stiffness matrix. For each. element, k, make 
c a contribution from the local element equations to the 
c global set of equations. 

do 480 I me n t = I, no e I s 

do 410 nlocal = 1, 3 
nodeno = ltopo{lment,nlocal) 
x{nlocal) = coords{nodeno,I) 
y{nlocal) = coords{nodeno,2) 

410 continue 

b{I) = y(2) ~ y(3) 
b(2) = y(3) - y(l) 
b(3) = y(l) - y(2) 

c(I) = x(3) - x(2) 
c(2) = x(l) - x(3) 
c(3) = x(2) - xli) 

d(I,I) = b(I)*b(I) + c(I)*c(l) 
d(2,2) = b(2)*b(2) + c(2)*c(2) 
d(3,3) = b(3)*b(3) + c(3)*c(3) 
d(I,2) = b(1)*b(2} + c(I)*~(2} 
d(2,1} = d(1,2} 
d(l ,3) = b(I)*b(3) + c(1)*c(3} 
d(3,I) = d(I,3} 
d(2,3) = b(2)*b(3) + c(2}*c(3) 
d(3,2) = d(2,3) 

c Delx2 is delta (the area of the triangular element) 
c times two. 

delx2 = b(I)*c(2} - b(2}*c(1} 
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c If the problem is not axisymmetric, set the centroid 
c equal to one and finish calculating the local stiffness 
c matrix d(3,3). 

c 
c 
c 
c 

415 

420 
425 

c 
c 

cen=l.O 
i f( i ax i sm. e q . 0) got 0 415 

1ft h e pro b I em is ax i s ymme t ric, c a I cui ate the 
centroid of the element. This can be thought of 
as an average distance between the element and 
the axis of symmetry. 

cen = rinner + ( y(l) + y(2) + y(3) )/3 

do 425 i = 1, 3 
do 420 j= 1, 3 

d(i,j) =d(i,j) * cen / delx2 
continue 

continue 

Now we add the stiffness matrix for this element 
into the global stiffness matrix. 

do 440 ilocal = 1, 3 
iglobl = Itopo(lment, ilocal) 
do 435 jlocal = 1, 3 

jglobl = Itopo(lment,jlocal) 

if (iglobl.gt.jglobl) go to 435 

iband = iglobl 
jband = jglobl - (iglobl - 1) 

q(iband,jband) q(iband,jband) + d(ilocal,jlocal) 

435 continue 
440 continue 
480 continue 

c Save, for later use in formulating vector f in 
c successive solutions, those diagonal elements of 
c q which correspond to nodes at which potential 
c IS to be fixed. Stick 'em in vector diagq. 

do 450 i = 1, nofixp 
ifixp = nfixp( i) 
diagq(i) = q(ifixp,l) 

450 continue 
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return 
end 

subroutine bcs 

c This subroutine formulates the forcing vector f, the 

348 

c vector which embodies the boundary conditions of the problem. 
c BC's of both types (essential and natural) are treated. 

conmon//nonods 
comnon/setl/nfixp(4) ,pfix(4) ,nofixp 
c onmo n / set 2/ coo r d s ( 1 54 , 2 ) , Ito p 0 ( 225 , 3 ) , i a xis ym, r inn e r 
conmon/set3/big,diagq(154) 
conmon/set7/noldrv,ldrv(48),drv(48) 
conmon/vector/f(154) 

c Fill vector f with zeros. 

do 505 i =1, non ods 
f(i)=O 

505 continue 

c The value of big, an artifice for the solving-
c bookkeeping scheme, was set in subroutine solvel. 
c ( Be sur e t hat you c a I Iso I vel be for e c a I lin g be s . ) 

c Assign values to those elements of f corresponding 
c to fixed potentials. 

do 510 i =1, nofixp 
ifixp = nfixp(i) 
f( ifixp) = pfix( i) * diagq( i) * big 

510 continue 

c Here we make contributions to the forcing vector, 
c f, which come from the natural boundary condition. 
c (fixed gradients.) 

do 520 i=l, noldrv 
idrv = Idrv( i) 
node! Itopo(idrv,l) 
node2 = Itopo( idrv,2) 
node3 = Itopo(idrv,3) 
yl coords(nodel,2) 
y2 = coords(node2,2) 
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y3 coords(node3,2) 
xl coords(node1,1) 
x2 coords(node2,1) 
disp = sqrt ( (x1-x2)*(x1-x2) + (y1-y2)*(y1-y2) ) 
cen = 1. 
if (iaxism.ne.O) cen = (y1 + y2 + y3)/3.0 + rinner 
f(node1) f(node1) + drv(i) * disp * cen 
f(node2) = f(node2) + drv(i) * disp * cen 

520 continue 

return 
end 

subroutine solve1 

c This subroutine basically does forward reduction on 
c the stiffness matrix. 

c The matrix a comes in as symmetric, banded, 
c positive-definite matrix of length' 'nonods" 
c and half-bandwidth' 'mbandw." This matrix is 
c decomposed into three factors I, d and I-transpose. 
c d and I-transpose are stored (overlapped) in the 
c matrix a when it is returned to the main program. 

c This subroutine is always followed by subroutine solve2. 

common/ /nonods ,mbandw 
common/set1/nfixp(4) ,dummie(4) ,nofixp 
common/set3/big 
common/matrix/a(154,8) 

c In keeping with the scheme for imposing the essential 
c boundary conditions, multiply by a large number, "big,)' 
c those diagonal elements of matrix' 'a" that correspond 
c to nodes at which the potential is to be fixed. 

big = 1.e15 

do 605 i = 1, nofixp 
ifixp = nfixp(i) 
a(ifixp,l) = big * a(ifixp,l) 

605 continue 

c Forward reduce matrix a. 
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480 
485 
620 
625 

c 
c 
c 

ipjmax nonods + 1 
kmax = nonods -1 
do 625 k = 1, kmax 

do 620 ip = 2, mbandw 
i = k + ip - 1 
do 480 j = 1, mbandw 

ipj = i + j 
if (ipj.gt.ipjmax) go to 485 
ipjmk = i + j - k 
if (ipjmk.gt.mbandw) go to 485 
a ( i , j) = a ( i , j) - a ( k , i - k+l ) * a ( k , j + i - k ) / a (k , 1 ) 
continue 

dumny = 1 
continue 

continue 

Transform the reduced matrix into an overlapping 
storage 'of diagonal matrix d and upper-unit-triangular 
matrix I-transpose. 

do 635 i = 1, nonods 
do 630 j = 2, mbandw 

a(i,j) = a(i,j) / a(i,l) 
630 continue 
635 continue 

return 
end 

subroutine solve2 

c This subroutine operates on the forcing vector 
c and returns a vector ~f answer potentials (in the 
c same storage location.) It uses the components of 
c the stiffness matrix (determined in solvel) and 
c performs back substitution. 

comnon//nonods,mbandw 
comnon/matrix/a{154,8) 
comnon/vector/v(l54} 

c Throughout this subroutine, matrix a contains the 
c matrix components I-transpose and d. The contents 
c of vector v change as noted. 
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-- / 

c Th iss u b r 0 uti n e rna y i nme d i ate I y f 0 I I ow sol v e 1 0 r rna y 
c be called on to perform successive solutions involving 
c a given stiffness matrix. 

c Start by determining the intermediate vector fprime 
c form the forcing vector f by solving the equation 
c I * f p rime = f . 

do 660 i = 1, nonods 
sum = 0 
do 650 j ---2, mbandw 

if (j.gt.i) go to 655 
s urn = s um + a ( i - j + 1 , j) * v ( i - j + 1 ) 

650 continue 
655 v(i) =v(i) - sum 
660 continue 

c Multiply the intermediate vector, fprime, by the Inverse 
c of the diagonal matrix, d. 

do 665 i = 1, nonods 
v(i) = v(i) / a(i ,1) 

665 continue 

c Back substitute the last time to obtain node potentials. 
c vector v goes from holding intermediate vector fprime to 
c holding the answer potentials. 

6iO 

jmax =mbandw - 1 
do 680 if = 1, nonods 

i = nonods + 1 - if 
sum = 0 
do 670 j = 1, jmax 

ipj = i + j 
if (ipj.gt.nonods) go to 675 
s urn = s urn + a ( i , j + 1) * v ( i p j ) 
continue 

675 v(i) =v(i) - sum 
680 continue 

return 
end 

subroutine output 
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c This subroutine prints out the node potentials in 
c order. It also calculates current density at the 
c outside surface of any element specified in LCUR 
c (a list of elements at which current density is 
c to be calculated, in spacial order.) It prints 
c out these values of current density (vector CUR) 

comnon//nonods 
comnon/set2/coords(I54,2),ltopo(225,3) 
c omno n / set. 4 / n 0 I cur, con d , s c a Ie, I cur ( 48 ) , cur eta ( 48 ) 
comnon/set5/nctr 
comnon/setI2/tmax 
comnon/vector/f(I54) 

dimension curgrd(48) 

print 710 
71 0 forma t (j / / / / * her ear e the nod e pot e n t i a Is. * /) 

print 711 
ill format(*node*,2x,*potential*) 

print iI2,(i, f( i), i = 1, nonods) 
7 1 2 forma t ( i 3 , 3 x , f 7 . 4 ) 

c Print heading for printout of current densities. 
print 715 

715 format(//*here are the current densities and 
$ their locations.*) 
print 716 

716 format(/*count*,3x,*element*,3x,*i field*,2x,*i 
$ eta*,,6x,*xl*,6x, 
$ ·yl*,8x,*x2*,6x,*y2*) 

c Calculate the current densities. 

do 730 i=l, nol cur 

Imen t Icur(i) 
nodel I topo( Iment, 1) 
node2 Ito po ( I me nt, 2 ) 
node3 Ito p 0 ( I me nt, 3 ) 

xl coords(nodel,l) 
yl coords(nodel,2) 

x2 coords(node2,1) 
y2 coords(node2,2) 

x3 coords(node3,1) 
y3 coords(node3,2) 
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pI f(nodel} 
p2 f(node2} 
p3 f(node3} 

c Find the coordinates of the point (x4,y4), the 
c perpendicular projection on point 3 onto the line 
c containing points 1 and 2. 

d12 = sqrt( (y2-yl}*(y2-yl) + (x2-xl}*(x2-xl) } 

x4 = (y3-yl}*(x2-x1}*(y2-y1) 
x4 = x4 + x3*(x2-x1)*(x2-xl} 
x4 = x4 + x1*(y2-y1}*(y2-y1} 
x4 = x4/(d12*d12} 

y4 = (x3-x1}*(y2-Yl}*(x2-x1) 
y4 = y4 + y3*(y2-y1}*(y2-y1} 
y4 = y4 + y1*(x2-x1}*(x2-x1} 
y4 = y4/(dI2*d12} 

c Interpolate (or extrapolate) to find the value of 
c potential at the shadow point, (x4,y4) according to 
c the planar interpolation among pI, p2, and p3. 

d24 = sqrt( (x4-x2}*(x4-x2) + (y4-y2}*(Y4-y2) 

c If point 4 lies beyond point 1, we must allow for this. 

if (d24.gt.d12) go to 720 

d14 = sqrt( (x4-x1)*(x4-xl) + (y4-y1)*(y4-y1) ) 
p4 = pI + (p2-p1)*d14/d12 
go to 725 

720 p4 = p2 + (p1-p2}*d24/d12 
725 d34 = sqrt( (y3-y4)*(y3-y4) + (x3-x4)*(x3-x4) 

c Calculate the potential gradient. 
c Think of SQ\LE as centimeters per model unit. 

grad = (p4 - p3) / (d34 * scale) 

c Calculate the current density from ohm's law. 

curgrd(i} = - cond * grad * 1000. 

c Print out the current density for this element, m~/cm2. 
p r in t 729, i, I me nt, cur g r d ( i ) , cur eta ( i ) , xl, Y 1 , x 2 , y 2 

7 2 9 forma t ( i 3 , 6 x , i 3 , 8 x , f 9 . 3 , 2 x , f 9 . 3 , 2 x , 
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$ f7.1,lx,f7.1,lx,f7.1,lx,f7.1) 

730 continue 

print 740, nctr 
740 format(/i4,* iterations*) 

p r in t 750, tmax 
750 format(/*tmax equals *,f10.7) 

return 
end 

Appendix B-2 program fecur 
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Input-Data File 

This file contains input data for a 154-node AlP problem. 
Th e g rid i s g e n era ted wit h i nth e pro gram (i n put r 0 uti n e ) . 
The solution scheme involves imposing the natural bc at 
the electrode. 
comnen t s 

i p r i n tis po t p r 

1 0 

i ax ism 

1 

nonods 
111 

154 

noels 
1 1 1 
<)<)~ 
--;) 

nofixp 
iii 

4 

noldrv 
III 

48 

nolcur 
iii 

48 

mbandw 
111 

8 

cond (mhol em) 
d.dddd 
0.276 

nctrsp 
III 

20 

delvapp (applied cell potential wrt. rest potential, volts) 
d.ddd 
1.200 

noap (number of I-V pairs used to describe the AlP BC) 
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1 1 1 

18 

curap 
skip 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

and etaap (A/P b.c. pairs, mA../ cm2 
ddd.ddd dd.dddd 

0.0 0.0 
0.197 0.0304 
0.393 0.0609 
0.590 0.0913 
0.787 0.122 
0.983 0.152 
1.967 0.183 
6.883 0.213 

12.29 0.243 
19.67 0.274 
29.50 0.304 
35.40 0.335 
38.35 0.365 
34.41 0.396 
24.58 0.426 
16.22 0.456 
0.98 0.487 
0.0 0.517 

scale (centimeters per model unit) 
ddddd.dddd 

0.3175 

and Volts) 

vertex coords of smallest box enclosing domain 
xmln xmax 

ddddd.d ddddd.d 
0.0 4.0 

ymln ymax 
ddddd.d ddddd.d 

0.0 25.0 

rlnner 
ddddddd.d 

4.0 

tol 
d.dddddddddd 
0.0001 

param (fraction of new value used In relaxed substitution) 
d.ddddd 
0.15 

iteration counts and param values for adjusting the 
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nctr2 
nctr3 
nctr4 

nctrmax 
1111 

4000 

iii i 
25 
75 

200 

curinit (m\/cm2) 
ddd.ddd 

-5.0 

param2 
param3 
param4 

Node Numbers and Values 
Count Node Potential 
skip iii d.dddd 
1 1 O. 
2 2 O. 
3 4 O. 
4 5 O. 

Appendix B-2 
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d.ddddd convergence parameter 
0.1 
0.1 
0.1 

of Fixed Potentials 
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