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INJECTION AND FALLOFF TEST ANALYSIS 
TO ESTIMATE PROPERTIES OF UNSATURATED FRACTURES 

S. Mishra, G. S. Bodvarsson, and M. P. Attanayake 

Earth Sciences Division, Lawrence Berkeley Laboratory 
University of California, Berkeley, California 94720 

Abstract. A new technique for calculating hydraulic pro­
perties of unsaturated fractured formations is proposed as an 
alternative to the common approach involving steady-state 
analysis of multi-rate gas injection tests. This method is 
based on graphical analysis of transient pressure data from 
an injection-falloff test sequence. Flow in a fracture of lim­
ited lateral extent, bounded above and below by an 
impermeable matrix, and intersected by a cylindrical 
borehole is described by two analytical ·models. The first 
model corresponds to early-time infinite acting radial flow, , 
and the second to late-time linear flow. Interpretive equar 
tions are derived for computing fracture conductivity and 
volumetric aperture from early-time data, and fracture width 
from late-time data. Effects of fracture inclination and grav­
ity are studied numerically, and found to be practically 
negligible for gas as well as water injection. Analysis of 
simulated injection-falloff tests using the suggested procedure 
yields results that agree well with simulator input values. 

Introduction 

Hydraulic properties of fractures such as conductivity 
and aperture are usually measured in an indirect manner; A 
common approach involves injecting gas into a packed-off 
section of a borehole which intersects the fractures(s) of 
interest. Gas is injected at a series of flow rates, and the 
stabilized pressure corresponding to each rate is measured. 
Permeability (or equivalently, hydraulic conductivity) is cal­
culated from the appropriate steady-state solution of the 
pressure diffusion equation (Montazer, 1982; Trautz, 1984). 
Such a solution typically relates mass rate qm to the pressure 
drop ~p2 between the injection borehole and some observa­
tion point through a constant of proportionality which 
includes cond uctivity. 

Montazer (1982) conducted an extensive experimental 
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study of in-situ permeability measurements using such tech­
niques, and identified three major effects which affect injec­
tion test response. These are (a) the Klinkenberg effect 
(Klinkenberg, 1941), (b) interference effects, and (c) the unsa­
turated nature of the rock. The Klinkenberg effect refers to 
slippage between gas molecules and pore walls at low pres­
sures, which results in an apparent increase in permeability. 
This pressure dependence can be accounted for by measurjDg 
permeability ata range of pressures, and then extr:apolating 
the linear pressure-permeability trend to infinite pressure so 
as to obtain the absolute (liquid) permeability. Montazer 
(1982) also observed that the pressure-permeability relation­
ship may exhibit non-linearities because pressure gradients 
from one rate may interfere with new gradients which are 
created when rates are changed. These may be compounded 
by capillary and slip effects, which arise due to unsaturated 
conditions in the fracture. 

Trautz (1984) used steady-state gas injection tests to 
measure gas conductivities of fractures in an unsaturated 
igneous rock. He developed equations for computing per­
meability from flow tests in elliptical flow situations, which 
are created when planar inclined fractures intersect vertical 
cylindrical boreholes. He observed that non-linear effects 
may arise under unsaturated conditions because of water 
blockage. 

In this study, we explore the alternative approach of 
using transient pressure data from injection and falloff tests. 
This method involves injecting a fluid into the formation for 
a period of time, and then shutting the borehole to allow 
pressure to falloff. Graphical analysis of pressure-time data 
yields formation permeability, distance to linear barriers 
(e.g., lateral fracture boundaries) and formation pressure at 
initial conditions. Such techniques have been used for 
estimating hydraulic properties of saturated groundwater 
aquifers (Witherspoon et aI., 1967), oil and gas reservoirs 
(Earlougher, 1977) and geothermal systems (Grant et aI., 
1982). 

There are several advantages of using transient testing 
methods when compared to steady-state techniques. A 
steady-state test has to be conducted at several rates, and 
care has to be taken so that non-linear effects do not dom­
inate the test when rates are changed. The onset of stabili­
zation (i.e., steady-state conditions) can only be estimated 
crudely. Moreover, geometrical parameters such as 
volumetric (tracer) aperture and fracture width cannot be 
estimated from steady-state testing alone. 

It is important to distinguish between the hydraulic 
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aperture h and the volumetric aperture hyo1 ' The former is 
estimated from a relationship between permeability or 
permeability-thickness and aperture, (see Appendix C). 

(1) 

whereas the volumetric aperture is obtained from material 
balance 

(2) 

If the fracture is visualized as a system containing 
several sections of varying apertures, the hydraulic aperture 
can be thought of as a parameter representing the effective 
conductance, whereas the volumetric aperture represents the 
average pore space for fluid flow. 

This paper deals with the development of analytical 
models which describe pressure behavior in unsaturated frac­
tures during injection-falloff testing. Interpretive equations 
are derived for computing fracture properties from analysis 
of pressure-time data. Effects of fracture inclination and 
gravity are investigated. Example analysis of a simulated 
injection-falloff test is shown .. 

Mathematical Model 

In this section we describe the physical system of 
interest, and state the assumptions made in formulating the 
mathematical model. Based on the solution to this model, 
we then derive equations for analyzing injection and falloff 
pressure data. The basic premises of this discussion are as 
follows. 

(a) Flow takes place in a plane horizontal fracture inter­
sected by a cylindrical borehole (Fig. 1). 

(b) , The fracture has constant width and aperture, and is 
bounded above and below by an impermeable matrix. 

(c) Initially, the fracture is unsaturated, i.e., it contains a 
two-phase mixture of air and water. Following Perrine 
(1956), we assume that single-phase flow equations can 
be used to describe two-phase flow if total mobility 
(sum of individual phase mobilities) is substituted for 
single-phase mobility, where mobility A = kj p. . 
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(d) During injection, the injected fluid displaces the forma­
tion fluids in a piston-like manner and a sharp moving 
front develops in the system, the presence of which 
creates a mobility contrast between the inner (invaded) 
and outer (uninvaded.) zones. 

(e) The front moves at a constant areal velocity during 
injection, and is stationary during pressure falloff. 

(f) Well bore storage and skin effects are neglected. 

It is useful to conceptualize the temporal development 
of flow in the fracture during injection. At early times, 
before either the pressure or the saturation front has reached 
the lateral boundaries of the fracture, flow will be radial. 
Once the effects of the lateral boundaries have been felt, the 
flow regime will change from radial to linear. At late times, 
the borehole will behave like a plane source and both pres­
sure and saturation fronts will move in a linear fashion (see 
Fig. l(b)). This suggests that early-time radial flow and 
later-time linear flow solutions may be superimposed to 
describe the flow behavior approximately. Derivations are 
given for the case of ideal gas injection,' and can easily be 
extended to liquid systems. An average pressure 'P is used 
for converting derivatives of p to derivatives of p2 so that 
the flow equations are linearized. It should be pointed out 
that the p2 formulation limits the applicability of this model 
to small pressure changes, so that the equations are linear­
ized. This point is discussed in greater detail in Mishra et 
al. (1987). 

Appendices A and B outline the mathematical formula­
tion of the moving front problem during the radial and 
linear flow periods respectively, as well as analytical solu­
tions. In this section, we present the interpretive equations 
for analyzing transient injection-falloff test data. 

Interpretive equations 

During the early part of injection, when flow IS still 
radial, the injection pressure response is given by 

2 2 _ 1.151q'P [I t + 1 + 8+.405 ] (3) 
Pwf - Pi - 1rAlh og r; og Til 1.151 

Eq. (3) suggests that a graph of injection pressure squared 
P;f against the logarithm of injection time t should yield a 
straight line with slope inversely proportional to the 
mobility-thickness of the invaded zone Alh. The early falloff 
pressure response is given by 

J 

a 
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P P -- log + 2 2 1.151q-p ( ~p+.6.t s] 
WII - i -- 1r),.lh .6.t 1.151 (4) 

Eq. (4) indicates that a graph of the early falloff pressure 
squared P';s against the logarithm of the time ratio 
(tp+.6.t/.6.t) should also produce a straight line with slope 
inversely proportional to ),.lh . The hydraulic aperture can 
be obtained from the cubic law, Eq. (1). The pressure 
response during the middle falloff period is giv~n by 

(5) 

which implies that a graph of P';s against log (tp+.6.t)/.6.t 
should now produce a straight line with slope inversely pro­
portiona.l to the mobility-thickness of the uninvaded (in-situ) 
zone ),.2h. The la.te time injection pressure response is given 
by 

2 2 __ 1.128qp r::r 
Pwr - Pi -- ),.2bh V 112 (6a) 

from which, by superposition, the late time fall. off response 
is given by 

(6b) 

which suggests that a cartesian graph of P';s against the time 
group (Jtp+.6.t - v' .6.t) should produce a straight line with 
slope inversely proportional to the fracture width b. 

As indicated above, Eq. (3) through (6) present a simple 
method for estimating the conductivities of the invaded and 
uninvaded zones, the hydraulic aperture and the fracture 
width. Under ideal conditions, it might be possible to esti­
mat~ the volumetric (tracer) aperture, a scheme for which is 
given below . 

Let P';r I· be the injection pressure squared when 
t/r'; = 1, and let P';s I • the falloff pressure squared when 
(tp+.6.t)/.6.t=l. Then from Eq. (3) and (4), one obtains after 
some manipulations 

(P';r I • - P';s I • - 0.352 m) 
log 1/1 = --.,;.-------.;.. 

m 
(7) 
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where m is the slope of the early-time injection (or falloff) 
pressure-time data 

m= (8) 

Then the volumetric aperture is given· by 

(9) 

based on the definition of the dimensionless front velocity 
group a, as given in Appendix A. By considering the vali­
dity of the log-approximation to the Ei-integral during the 
early falloff period, it can be shown that (Mishra et al., 1987) 
the dimensionless group a is approximately represented by 

(10) 

with the denominator being the time group at which the 
semi-log straight lin~ on the early-time falloff graph ends. 

Effects of Fracture Inclination 

When flow in an inclined fracture is modelled, two 
additional factors need to be considered. Because of the 
altered flow geometry (cylindrical borehole and inclined frac­
ture), early-time flow may no longer be radial. Moreover, 
the influence of gravity forces vis-a-vis viscous forces has to 
be taken into account. These effects are discussed below. 

Modifications in flow geometry 

When an inclined fracture is intersected by a cylindrical 
borehole, the resulting conic section is an ellipse, and the 
flow geometry is elliptical rather than radial. Trautz (1984) 
derived steady-state elliptical flow solutions to compute gas 
conductivity in natural inclined fractures and used these to 
interpret data from field tests. In his extensive study on 
transient flow in elliptical systems, Kucuk (1978) showed 
that any elliptical flow system can be converted to an 
equivalent radial system beyond a certain dimensionless time 
tDr, which is graphed in Fig. 2 as a function of a/b. The 
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(11) 

(12) 

(13) 

where a and b are the semi-major and semi-minor axes of 
the borehole ellipse, Q is the fracture inclination from hor­
izontal and rw is the actual wellbore radius. For most prac­
tical cases, the onset of radial flow occurs at very early 
times. As an example, for the case of air. injection, if k = 5 
D, P = 1 atm, 4> = 0.50, rw = 10 cm,and Q = 60 0

, we have 

~ =2; tDr = 20 (Fig. 2), 

r~ = 15 cm (Eq. 12), 

t ~ 8 s (Eq. 13). 

Thus, after about eight seconds of injection, the system will 
behave like a radial system for all practical purposes. Hence, 
it is reasonable to assume that elliptical flow effects can be 
modeled by radial flow equations at all times of interest . 

. Gravitational effects 

. In highly unsaturated inclined fractures, the initial 
(static) pressure distribution will be nearly uniform because 
of negligible gravitational potential of gas. Once injection 
begins, the fluid distribution can be approximated by 

h (8P pgr w sin Q ) 

q = - )..1 8(ln r) ± -1-.0-13-3-x-I-0-=-6 (14) 

where the positive and negative signs refer to the injected 
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fluid flux in up- and down-dip directions, respectively. For 
the case of gas injection, the gravitational component will 
usually be much smaller than the flow rate induced pressure 
gradient, since the density of gas is very small. This will 
result in almost equal amounts being injected updip and 
downdip, and consequently the effects of gravity on the pres­
sure transient response will be negligible. For the case of 
water injection, the dynamic distribution of fluids in updip 
and downdip directions will depend on the relative magni­
tudes of the pressure gradient and the gravitational terms. 
Since the pressure gradient is affected by the injection rate, 
one would expect gravity effects to be dominant primarily at 
low rates (small pressure gradients). However, simulation 
results indicate that for thin fractures the flow rate induced 
pressure gradients are orders of magnitude higher than the 
gravitational term even at small injection rates (these are 
tabulated in Table 1). A practical implication of this obser­
vation is that errors in analyzing transient pressure data 
from inclined fractures using equations derived for horizontal 
fractures will usually be small. 

Model Verification 

Two simulated injection-falloff test sequences were 
analyzed using the methods developed in this study as a 
verification exercise. Pressure-time data for an air-injection 
and water-injection test were simulated using TOUGH 
(Pruess, 1985), a computer program for calculating two­
phase flow of water and air. Results of the air-injection test 
analysis are briefly described here. Details of the simulation 
study and interpretation of the simulated water injection 
test may be found in Mishra et a1. (1987). 

Table 2 lists pertinent test data, rock and fluid proper­
ties used. The injection test data, early-time falloff data and 
late-time falloff data are graphed in Figure 3 through 5. The 
mobility-thickness of the inner (invaded) zone is obtained 
from the slope of linear portions of Fig. 3 or 4,and using Eq. 
(8) it is calculated to be 200 D-cm/cp. This compares well 
with the simulator input value of 210 D-cm/cp. From Eq. 
(7), the inner zone diffusivity 1/1 is estimated to be 805 
cm2/s, as opposed to the actual value of 820 cm2/s. The 
time ratio ((tp + At)/ At)", at which the early-time semi-log 
straight line ends during falloff, from Figure 4 is ~1O.5, from 
which the volumetric aperture hvo) can be estimated to be 
0.9 cm using Eq. (9). The actual value used is 1 cm. 
Finally, from the slope of the linear portion on the late-time 

.. , 
I .. 
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falloff graph (Fig. 5), the fracture width b can be computed 
if the mobility-thickness and diffusivity corresponding to the 
outer zone are known. Since saturation changes are small 
(because of near-unity mobility ratio), these parameters can 
be assumed to be roughly equal to the inner zone values. 
The fracture width b can then be calculated from Eq. (6) as 
9.6 m, which compares well with the input value of 10 m. 

Discussion 

It has been shown that the simple model proposed here 
for air injection test gives reasonable values for many param­
eters of interest in fractured unsaturated rocks. Results for 
water injection test although not shown here, were quite 
similar (Mishra, et a1., 1987). In general, the case of water 
injection into an unsaturated fracture leads to a greater 
mobility contrast between the injected and in-situ fluids, and 
hence to a sharper moving front. Both inner and outer zone 
mobility-thicknesses are readily calculated from the two 
falloff semi-log straight lines. However, a knowledge of the 
outer zone diffussivity is required in order to estimate the 
fracture width. Another problem with water injection is 
that it might disturb the formation, which may be an impor­
tant consideration if the ultimate objective is to use the for­
mation as a nuclear waste repository. 

A problem with gas (or air) injection is that the system 
response may be non-linear if pressure changes are not small. 
This requires a proper selection of the injection rate, so that 
pressure levels do not exceed 2-3 atmospheres. Another com­
plication in test interpretation is the need to know the 
saturation changes in the invaded zone in order to estimate 
the volumetric aperture. Such information will usually not 
be available. 

For thin fractures (which is commonly the case), even 
small injection rates will cause pressure gradients which are 
large compared to the gravitational terms. This is an impor­
tant observation since it facilitates the use of horizontal frac­
ture system equations to interpret pressure data from 
inclined fracture system. Another significant finding is that 
the duration of elliptical flow in inclined fracture-borehole 
geometry is very short, and hence early-time How may be 
assumed to be purely radial. 

Conclusions 
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(1) Analytical models for analyzing gas and water 
injection-falloff tests in unsaturated fractured forma­
tions have been developed. Interpretive equations to 
estimate fracture permeability, width and aperture 
form graphical analysis of transient pressure data have 
been derived. 

(2) Effects of fracture inclination and ·gravity have been 
investigated numerically, and found to be negligible. 

(3) The proposed method is an alternative to conventional 
multi-rate gas injection testing, and has the potential of 
providing information regarding geometrical charac­
teristics such as fracture width and aperture. 
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Nomenclature 

a front velocity ratio 

b fracture width (em) 

D diffusivity ratio 

h hydraulic fracture aperture (em) . \., 

hvol volumetric fracture aperture (em) 

k permeability (Darcy) 

semi-log straight line slope (atm/~) 
J 

m 

M mobility ratio 

Pi initial fracture pressure (atm) 

Pwr injection well flowing presSure (atm) 

PWB injection well shut-in pressure (atm) 

q volumetric injection rate (cc/s) 

qm mass injection rate (kg/s) 

r radial distance (em) 

rw wellbore radius (em) 

rc distance to front (radial flow) (em) 

.6.s saturation change in invaded zone 
'. 

Swi initial water saturation j' 

Sgi initial gas saturation 
I 
V 

tp injection time (sec) 

.6.t shut-in time (sec) 

x linear distance (em) 

Xc distance front (linear flow) (em) 

Greek Symbols 

a fracture inclination (degrees) 

p density (kg/ cc) 

¢> porosity 

p. viscosity (cp) 

1J diffusivity (cm2/s) ! 
\J 

~ mobility (darcy-cm/ cp ) 

"I constant, 1.780072 

Other Expressions 

00 

Ei(-x)exponential integral, Ei(-x)=-J e-udu 
x u 
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Figures 

Fig. 1. Schematic of physical system: (a) cross­
sectional view, of borehole intersecting an 
inclined fracture, (b) plan view illustrating a 
front moving away from the well in the frac­
ture. 

Fig. 2. Dimensionless times for the onset of radial flow 
in elliptical flow systems (after Kucuk, 1978). 

Fig. 3. Semi-log graph of air injection test pressure 
response. 

Fig. 4. Horner graph of early-time pressure falloff data 
- air injection. 

Fig. 5. Square-root of time graph for late-time falloff 
pressure data - air injection. 
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Appendix A 

Transient Pressure Response during Radial Flow 

In this section, we present an analytical model describ­
ing the pressure response during the movement of a radial 
saturation front. Flow in the inner (invaded) and outer 
(uninvaded) zones is governed by the diffusivity equation 

(A.la) 

(A.lb) 

Here, subscripts 1 and 2 refer to the inner and outer zones 
respectively. Diffusivity'1 is defined as 

PA1,2 
'11,2 = -t/J-

Initially, the system is in pressure equilibrium 

(A.2) 

(A.3) 

A line source well is injecting at a constant rate at the inner 
boundary 

1I"~h [r OP1
2

] = q 
P or r-<l 

(AA) 

The outer boundary is undisturbed at all times 

(A.S) 

At the moving front, both pressure and flux are continuous 

(A.6) 

(A.7) 

The movement of the front is assumed to be piston-like, i.e., 
the front is modeled as a plane of constant saturation 
separating the injected fluid from the in-situ fluid. From 
material balance considerations 

J. 
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(A.8) 

This implies that the movement of .the front is such that 
rr2 It is a constant. 

Solution of this set of equations is obtained by the method 
of Boltzman transformation, details of which are presented 
elsewhere (Mishra et al., 1987). Similar solutions, for liquid 
flow in composite media, have been given by Ramey (1970) 
and Woodward and Thambynayagam (1983). 

The general expressions for pressure response In the mner 
and outer zones are given by 

(A.9) 

Where Ei (-x) is the exponential integral defined as 

00 -u Ei(-x) = - f ~ du 
u u 

{A. 11) 

The wellbore being the observation point of interest, one 
obtains 

{Ei[-~) -Ei[-~)} 4'11t 4'11 t 

[[ 4~') -[4:') ]}-Fdh:,) (A.12) 

Define 
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and 

D =.!!.. . 
'12 

Eq. (A.12) can now be rewritten as 

2 2 qp {I E. [ r;) M Pw( - p. = -- - 1 - -- + - . exp 
1 1r).lh 2 4'ht 2 

(A.13) 

For small arguments of the exponential integral, the log­
approximation Ei(-x) = I n(")'X) has been shown to be valid 
even for small times at the wellbore (Earlougher, 1977). 
Using this identity for the first Ei-term, and defining a 
dimensionless skin factor due to the moving front 

s = ~ . exp { a(l~D) .Ei(- ~ }- ! Ei[- : ) (A.14) 

one obtains from Eq. (A.13) 

P;r- Pi
2 = 1r<f:h { ! In [ r~ ) + ! In('11) + S + 0.405} (A.lS) 

Eq. (3) of the text is now obtained directly by changing from 
I n to log. If injection is stopped after a time f-p, the falloff 
pressure response may be generated using the principle of 
superposition. The falloff pressure response may be defined 
as 

(A.16) 

Substituting from (A.12), and considering the early-falloff 
response, when tp»at, one can obtain Eq. (4) of the text 
after some manipulations. Similarly, Eq. (5), defining the 
pressure response during the middle-falloff period, can be 
derived. These derivations are described in detail in Mishra 
et al. (1987). 

\' 
(:j 
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Appendix B 

Pressure Transient Behavior for the Linear Flow Period 

In this appendix, we present an analytical model 
describing the pressure response during the. movement of a 
linear front. As in the radial flow case, the diffusivity equa­
tion governs flow in both the inner (invaded) and outer 
(uninvaded) zones: 

O~j2 1 Opj2 
- j = 1,2 ax2 - '1j at (B.l) 

Initially, the system is in pressure equilibrium: 

(B.2) 

A plane source is injecting at a constant rate at the mner 
boundary: '-

).lbh OP12 

----2p ox 
=_S 

2 

The outer boundary is undisturbed at all times: 

pi (co,t) = Pi2 

(B.3) 

(BA) 

At the moving boundary, both fluid flux and pressure are 
continuous: 

(B.5) 

(B.6) 
, 

The front moves as a plane, which is expressed by the 
material balance condition 

qt = bxr hyoi <P ..:ls (B.7) 

These equations are converted into dimensionless form 
through the use of the following dimensionless variables. 

(B.8) 
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Xro=-

b 

X 
XO=-

b 
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(B.9) 

(B.I0) 

{B.11} 

(B.12) 

{B.13} 

The time-dependence from the dimensionless equations is 
eliminated through the use of the Laplace transformation 

&0 
P~ (xO,/) = f e-T PD (XO,T) dr 

o 

where 1 is the Laplace space parameter. 

(B.14) 

The dimensionless pressure P;1 and P~ describing the pres­
sure response in the inner and outer ·zones, in Laplace 
domain, 

_* {I + ~~~ . exp (2xov'T) . exp (-2xrov'T)} 

POI = 

13
/
2 exp(xov'T { 1 - ~~~ exp(-2Xrov'T)} 

(B.15) 

-* PD2= 

2Mexp(xro v'i15) 

13
/
2exp(xov'i15){ (M+v'D)exp(xfOv'T ) - (M-JD)exp(-xrov'T ) } 

{B.16} 

See Mishra et al. {1987} for details. At the borehole {which 
is the primary observation point}, Eq. {B.15} reduce to 

{B.17} 

J 

,I 
~ 
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Since linear flow takes place only at late-times, it is useful to 
derive a long-time approximation from Eq. (B.17) This is 
given by 

(B.18) 

Equation (B.38) is easily in inverted to yield 

e (e) M 2 /-; 
PwD to = Tn . ?; . V to (B.19) 

Substituting for the dimensionless variables, one obtains Eq. 
(6) of the text. 
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Appendix C 

Relation between Fracture Permeability and Aperture 

A relation between effective fracture permeability and 
aperture can be derived from hydrodynamical considerations 
(Muskat, 1982). A fracture of width h may be considered 
equivalent to an open linear channel of equal width for 
viscous flow conditions, the carrying capacity of such a linear 
channel, per unit pressure gradient, is given by 

(C.l) 

where Q is the thruput and J.l the viscosity. By equating this 
expression with Darcy's law, the equivalent permeability of 
the fracture, in cm2, is given as 

k =!:. (C.2) 
12 

where h is in cm. Converting permeability to darcies, and 
multiplying both sides by h, one obtains . 

Kh = 8.3 X 108 h3 (C.3) 

which is the same as Eq. (1) of the main text . 

I' .. 
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