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Abstract 

A model is presented which describes the effects of phonon-exciton 

scattering on the coherent migration of Frenkel excitons. The development 

is such that it provides for experimental verification through the use 

of electron spin resonance techniques. Both qualitative and quantitative 

information on the mode of exciton migration, the rate of phonon-exciton 

scattering, and the temperature dependence of phonon-exciton scattering 

at low temperatures are obtainable from the model. . One-dimensional 

triplet excitons are cons~dered specifically although the treatment is 

applicable to other phenomena such as impuriton migration. Three cases 

are treated. In the first, the exciton dispersion is taken to be much 

smaller than the acoustic phonon dispersion. In the second, the exciton 

and phonon dispersions are taken to be approximately equal, and in the 

third case, the exciton dispersion is taken to be much larger than the 

acoustic phonon dispersion. In each case, the possibility of long range 

energy migration 'is considered and is related to experimental observables. 

In addition, the effects of selective spin-orbit coupling, external magnetic 

fields, multi-dimensional exciton interactions in the spin-orbit coupled 

singlet states, and multi-dimensional exciton interactions in the triplet 

state are discussed. 
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I. Introduction 

In order to describe the dynamics of exciton migration in the 

Frenkel limit, 1 it is not sufficient to consider only the ·time independent 

delocalized stationary states of a crystal. Because of the explicit 

localization introduced into the stationary states by phonon-exciton 

scattering., the electronic states, the phonon states, and phonon-exc iton 

. coupling must all be explicitly considered ill terms of the crystal states. 2,3 

Basically, the phonons introduce modulation of the intermolecular inter-

action which mixes the delocalized k states of the crystal and results 

in a state that can be described as a linear combination of thedelocalized 

4 
states. In the Frenkel limit, this results ina partial localization 

of the electronic excitation but still allows for the excitation to 

propagate coherently as a wave packet prov~ded the explicit linear com-

bination of k states remains unchanged for times exceeding the ·time associated 

with the intermolecular exchange interaction. Indeed, it is the average 

frequency at which the linear combination of k states changes relative 

to the intermolecular interaction time that determines the primary ~echanism 

responsible for electronic energy transfer in solids at both high and low 

temperatures. At low temperature the density of populated phonon states 

becomes sufficiently small that modulation of/or scattering between the 

exciton wave vector states k by the phonons is expected to be much less 

frequent than the effective intermolecular exchange time. It is important 

to note that in this limit the problem is not describable by the stationary 

Bloch solutions of the Schrodinger equations, 5 
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·but rather by a superposition of Bloch states with a minimum spread 6p 

restricted by the wave packets uncertainty in position. 

(1.2) 

For the coherent limit to be meaning:f'u1 the mean free path, R., associated 

with excitons formed from a given superposition of Bloch states must be 

longer than 'the uncertainty of position, 6r, and hence longer than the 

... 
lattice separation, a. In such cases, a coherent Frenkel exciton can be 

viewed as a quasilocalized excitation propagating coherently as a 

wave J;l&cket at a velocity characteristic of both it,s energy and the linear 

combination of stationary crystal k states which describe the packet. 

This velocity is termed the group velocity and is given by 

v,,. (p) = (ae:/ap) 
l,:) 

(1.3) 

or 

(1.4) 

For a on~dimensional crystal, in the nearest neighbor approximation the 

energy dispersion of the band,6 e:(k), is given by 

(1.5 ) 

and is taken to be associated with translational equivalent interactions 

:. 
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along a direction~. EO is the electronic energy of the molecular excited 

state and /3 is the effective intermolecular interactio~ in the nearest 

neighbor approximation. V g (:t) is then given by 

V (1:) = 2!a sin ka. 
g , 

(1.6) 

The distance, R.(k), which an exciton propagates in a coherent fashion 

without changing its velocity is given by the lifetime of the c,oherent 
, ' 

state, T{k), times the group velocity of the wavepacket; i.e'., 

(1.7 ) 

R.(k) is thus equivalent to a mean-free path, and T(k) in the stochastic 

approximation7 corresponds to a lifetime or ,correlation time for the 

scattering of the wavepacket centered at k. From a dynamical point of 

'view,the important feature of coherent migration is that excitons can 

propagate in the crystal a variety of distances and at a variety of 

velocities depending upon the particular population distributions over the 

exciton and phonon bands and the exact n,ature of phonon-exciton coupling. 

In the one-dimensional limit, the grou:p velocity is zero at the top 

and bottom of the band (k = 0 and ±rr/a)but 2/3a/-u at the center of the 

band (k = ±rr/2a). Appreciable energy migration in one-dimensional crystals 

in the coherent li~it requires a distribution over the non k = 0 and ±rr/a 

states, preferably in the center of the band. The extent to which these 

and other ,k states contribute to the propagation of electronic energy 

is determined by the temperature, the exciton bandWidth, and the form of 
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the distribution fuilction. It is important to recognize that, in 

principle, non-Boltzmann distributions in the band can be established 

'When the decay time of the electronic excited state to the ground state 

is shorter than the coherence tiine, T (k). If ,for example, only the k :::. 0 t! 

. state is prepared, .say via optical absorption from the ground state at low 

temperatures, and the excited state lifetime is shorter than phonon-exciton 

scattering to other k states, little exciton migration would be realized 

due to the stationary nature of the top and bottom of the band. When 

a thermal distribution characterizes the band, however, the number of 

excitons, N{k), propagating with a velocity, V (k), is given by the 
. g 

Boltzmann factor for the k state divided by the partitio~ functionB for 

the exciton band. 

N(k) 
= D(k) e-E{k)/KT 

L: e -E(k)/KT 
k 

(l.B) 

One notes that very mobile states can be populated at reasonably low 

temperature provided the band dispersion is not too great. 

The importance of coherent exciton migration .is perhaps best 

illustrated by comparing it to the high temperature diffusion limited 
. .". 

random walk process which is characterized by a density of populated 

phonon or localized vibrational states sufficient to limit the coherence 

lifetime of an exciton k state by inelastically scattering it to other 

states in the band. When this causes a change of kat a rate comparable 

to intermolecular energy exchange,wavepackets formed from the delocalized 
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Bloch functions of.the crystal are no longer appropriate bases states 

for times. exceeding (B )-1 and the proper description of the exciton states 

is a unitary transformation of the k states to a set of orthogonal~ k 

independent, localized Wannier functions. 9 

(1.9) 

In this limit, the exciton migrates in a random walk manner through a 

resonant interaction between Wannier functions centered on adjacent lattice 

sites. The velocity of migration of the exciton is its RMS deviation per 

unit time from its starting position and is usually many orders of magnitude 

slower than coherent migration. For a molecular crystal with nearest 

-1 neighbor molecules having an effective intermolecular interaction of 1 cm 

and a 1attice spacing, :, of 4 K, the random walk exciton velocity is 10-2 

cm/sec while coherent states have a group velocity at the center of the 
. 4 

band of 10 cm/sec. The mean-free path for random walk diffusion is 4 K 
while states migrating coherently at the center of the band, for example, 

have a mean free path dependent upon T(k) via 

1(k = ±n/2a) = 2:a • T(k = ±TI/2a). (1.10) 

It is self-evident that the coherence length of the states in the center 

of the band can approach macroscopic dimensions if phonon-exciton scattering 

is weak (i.e., T{k) is long) and the excited states are long-lived compared 

to T (k). In principle, T (k) .could approach the lifetime of the excited 
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electronic state at very low temperatures where the distribution of phonon 

states approaches the T ~ 0 limit. At intermediate temperatures where 

T(k) is limited by phonon-exciton scattering an exciton initially at an 

energy e:(k) scatters to other k' states at energies e:(k') via phonon inter- ~ 

actions in a time short compared to the excited electronic state lifetime 

but in a time long compared to intermolecular exchange. The net result 

is that the coherence time is shortened, the mean-free path or coherence 

length is attenuated, and the k states acquire an energy width r(k), 

given by the reciprocal of the coherence lifetime of the individual k 

state.s, i.e., 

(l.ll) 

In effect, inelastic scattering of the excitons by the phonons introduces 

a time and temperature dependent damping of the wave packet states. For 

completeness, damping or localization of the stationary zeroth order 

states by other processes· such as impurity or isotopic scattering can be 

incorporated into this description by expanding the delocalized unper­

turbed Bloch functions given by Equation 1.1 such that the coefficients 

in the expansion forming the perturbed wavefunctions satisfy difference 

equations associated with the perturbed periodic potential problem.l Q-12 

In such cases, the delocalized Bloch functions describing the pure crystal 

state are partially localized by impurity scattering and the impurity 

states themselves become significantly delocalized. Wave packet states 

can then be formed from a superposition of perturbed states resulting from 

• 
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these scattering processes. 

It is clear that in addition to the stationary states of the crystal 

a proper description of the dynamics of exciton migration must include 

(a) the group velocities of exdtons, (b) the population distribution 

over the k states of'the band, and (c). the coherence times for the 

individual k states and hence an explicit model for exciton scattering 
. . 

processes. This description views an exciton initially in a state 

characterized by an energy £(k) as scattering to a state at £(k') in a 

time on the order of the coherence lifetime but it allows for long range 

propagation via coherent migration in between scattering event s. 

. . 8 
In.the first paper in this series we described the importance of 

low temperature coherent exciton migration in providing a mechanism where 

by localized impurity states can be maintained in Boltzmann equilibria 

with the delocalized band states. The dynamics in this description were 

based on an ensemble average over the coherent wave packet group velocities 

at a fixed temperature and hence information about scattering in the 

individual wave packets was lost. In the following we present an experi-

mental method and its associated theory based on electron spin resonance 

which allows one to investigate properties of the individual exciton 

wave packet states and their interactions with phonon states in the 

coherent limit. Although the development is made for triplet excitons 

in molecular solids application of the method and theory to other problems 

such as low temperature impuriton migration13 is straightforward. 
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II. Electron Spin Resonance Absorption in Coherent Triplet Exciton states 

From an experimental point of view, the above considerations require 

that careful attention be given to the relationship between the time 

associated with exciton migration and the correlation time of the particular 

experimental approach being employed. If, for example, the experimental 

correlation time is much shorter than T(k) (as is the case for optical 

absorption), only manifestations of the coherent model are apparent from 

the data. Similarly, when the experimental correlation time is longer 

than T(k) for all k, only .the random walk processes are displayed. A 

measure of phenomena such as phonon-exciton scattering, V (k), and 1(k) 
g . 

which are related to both coherent migration and diffusion limited migration 

can oniy be determined when the experimental correlation time is on the 

order of T(k). It is on this basis that electron spin resonancel4 ,15 

provides a direct probe into the dynamics of tripiet excitons. 

In the following electron spin resonance theory, the model adopted 

is a "one-dimensional" crystal in which only translationally equivalent 

intermolecular interactions along a single crystallographic direction 

have finite magnitudes. The excited triplet band is derived from inter-

molecular exchange coupling between the ground singlet and excited triplet 

states a~d is restricted to nearest neighbor interactions. In zero 

magnetic field the triplet band is split by electron spin dipolar repulsions 

into three parallel spin sublevel bands which will be designated as 

T
X

' Ty ' ~nd Tz • These correspond to states where the electron spins are 

correlated along the x, "1, and z molecular' axes, respectively. This is 

." 

. l 
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illustrated in Figure la. 'Where the effective intermolecular exchange 

intera.ction is designated by B, and the energy of the molecular triplet 

state in the absence of intermolecular. exchange by EO. EO is on the 

. -1 
order of 30,000 cm for aromatic molecules in their first excite.d triplet 

states. Zero~field splittings are typically tenths ofwavenumbers16 .whi~e 

triplet band dispersions, 4B, are on the order of tens of wavenumbers.17 

In the limit that no anisotropy of the zero-field splitting is introduced 

by intrainolecular spin orbital coupling of the individual triplet spin 

sublevels to the singlet manifold, the band-to-band electron spin trans i-

tion induced by a radiofrequency or microwave ~field (Cf. Figure la -

~) would be a homogeneously narrowed wrentz line centered at the frequency 

characterized only by the spin dipolar parameters D and E. The line width 

is taken to be that associated with a "perfect crystal" spin-spin relaxa­

tion time T p at OOK. 
2 

A. The Effects of Group Velocity Dependent Relaxation Processes 

Even when T(k) is long compared to B-1 additional contributions to 

T2 might be expected in the coherent limit when the temperature becomes 

finite. This could be particularly true for phenomena such as strong 

impurity scattering or other interactions capable of dephasing the rotating 

frame magnetization that depend upon spacial characteristics of the crystal. 

These might cause the spin ensemble to dephase at different rates depending 

upon which wave vector states were populated at any particular temperature. 

Crystal inhomogeneities or other phenomena that change the energy of the 
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zero-field splitting will be sampled faster by excitons in k states near , 

the center of the.band (k = ±IT/2a) than those at the top and bottom (k = 

0; ±IT/a) because of the crystal volume. sampled by the wave packet per unit 

time. Velocity dependence can be included in T2 by associating with each 

wave packet state at energies £(k) a relaxation time T2 (k) •. The total 

electron spin transverse relation time for a particular k state is then 

simply 

(2.1) 

where T
2

(k) is weighted by the wave packet's group velocityVg(k); i.e., 

(2.2) 

The constant C is taken to be proportional to the change, ~, in the Larmor 

frequency per unit scattering event. Restricting T2(k) < L(k), the net 

result for a Boltzmann distribution of population across the triplet band 

is to produce a temperature dependent bB.nd-to-band transition which is the 

weighted sum of the individual Lorentz lines centered at w each having 
. . 0 . 

k a velocity weighted T2 • Letting 

.~ 
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L t l ' ha f t ' 18 f k t h i be a single oren Z l.Iie s pe unC,l.on or one sate, tel ne shape 

function for a distribution over exciton states at a temperature T would 

be 

'GT (w) = :E N(k)gk(w) 
k 

(2.4 ) 

where N(k) is the number of excitons at energy t(k). For a thermal distri-

but ion , 

where Z(T) is the partition function at temperature Tand is given by 

Z(T) = e -2 131 KT + 
±IT/a 

~ 2e-28cos(ka)/KT, 
k;eO 

(2.6) 

D(k) is the degeneracy of the k state andT k is given by Equations 2.1 
2 

and 2.2. Substitution yields 

G (w) = - :E ~,=t-.-=-,.--:--__ _ T 1 ~ ~(k) e -28COS(ka)/KT)(' T2
P 

)' 

, IT k Z(T) ~a T
2

P sin(.ka)'+ 1 ' 

1 

1+ (-2s=-a-' _~-=2_P_" --+-1~ 2,' (w­
, ori T2 sJ.n (ka) .J 

, (2.7) 
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where D(k) = 1 if k = 0 and 2 otherwise. 

Several important features which could allow this model to be verified 

experimentally emerge when the line shape function given by Equation 2.7 

is examined in detail. T Figure 2 illustrates the line shape profile, G (w), 

for a band-to-band transition as a function of band width at a fixed 

temperature •. The parameters AF(k = ±1T/2a) i,llustrated in the figures refer 

to the half width at half height of the band-to-band transition associated 

with the Lorentz component of k states in the center of the band having 

the largest group velocities V g(±1T!2a'), while /),F (k = 0; ±1r/a) refers to 

the halfwidth at half height of the Lorentz component associated with the 

stationary states at k = 0 and k = ±1T/a. The latter is taken to be associ­

ated with T2
P at the T = OaK limit. The transition has been arbitrarily 

centered at 3.000 GHz. 

First, it can be seen from Figure 2 that to a large extent the exciton· 

partition function determines the overall line shape profile. For Boltzmann 

distributions the population of a given set of k states depends upon the 

temperature to band width ratio; hence, as the band width increases from 

1 to 8 cm -1 (Figure 2a-d), the contribution to the overall width of the 

transition from the very mobile k states near the center of the band 

decreases. This is reflected in the band-to-band transition as a pronounced 

narrowing with increasing band dispersion. This is also seen from the 

temperature dependence of the band-to-band transition as illustrated in 

Figures 3a .and 3b. The overall effect of lowering the temperature is 

to narrow the electron spin transition by removing population from the 
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highly mobile states in the center of the band. The extent of the 

narrowing being proportional to C (2Ba/ '11) depends implicitly upon the 

details of the incoherent events that cause the spins to dephase. This 

can be seen from a comparison of Figure 3a with3b. In the latter, the 

amount which the spins dephase per incoherent scattering event is taken 

ten times that illustrated in Figure 3a and, thus, at all temperatures 

the transition appearssignific'a.ntly broader. Furthermore, there. is a 

unique temperature dependence of the line shape profiles for any given 

dephasing rate C(2Sa/n); hence, the band dispersion in principle can be 

det ermined experimentally~ 

Second, it is interesting to note that the number of· wave vector 

states in the exciton band and consequently the number of molecules in 

a one-dimensional exciton chain also have a pronounced effect on the line 

shape. This can be particularly informative in highly 

doped mixed crystal syst ems .19 A comparison of the line shapes in cases 

where the number of molecules in a chain have been taken as 1000 (Figure 

3b) and 100 (Figure 3d) clearly demonstrates this feature. When the 

exciton band is characterized by a high density of states per unit energy 

(as is the case in Figure 3b), most of the width in the band-to-band 

transition comes from the less mobile k state near k = a or iTr/a because 

of the sharp. peak in the one-dimensional exciton density of state . function 

at the top and bottom of the band. However, when the number of k states 

is redUced by restricting the exciton chain length, the contribution of· 

these less mobile states becomes proportionately smaller relative to the 
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states near the center of the band. Hence, the line shape profile acquires 

a broad baseline character (Cf. Figure 3d) from the extremely broad mobile 

states near the center of the band. Its sharp peak character, however, is 

from states near the bottom of the band. This is true only for systems 

in which both the number of states in the band is small and the change in 

T2(k) with k large. If the number of states in the exciton band is 

increased (Le., the mixed crystal content or the impurity concentration 

is reduced) while the rest of the parameters of the system remain unchanged, 

a greater number of states with smaller group velocities contribute to 

the profile and a narrower line appears in place of the broad baseline. 

Although electron spin transitions in short exciton chains appear narrower 

in the peak porti.on of the lineshape, their overall width appears broader 

than the corresponding transition in longer exciton chains; however, the 

breadth appears near the baseline. 

In the higher temperature limit when the coherence lifetime T(k) 

becomes short and exciton migration is principally a random walk process, 

the k dependence of the velocity is lost and the exciton velocity is 

described by an RMS distance distribution per unit time. In this case, 

there should be no temperature dependence to the line width in one-

dimensional systems. The line shape function is a simple Lore~tz line 

characterized by some k independent effective T
2

,20,2l Le., 

G{W) (2.8) 
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It is important to recognize that the above description is only 

valid when spin orbit coupling is, absent or identical for the spin sub-

levels.' In such cases, there is no explicit k dependence in the Larmor 

frequencies, and thus; phonon-exciton scattering between k states does not 

brOaden the electron-spin transitions by exchange averaging of different 

Larmor frequencies. 

When the effects of selective spin-orbit coupling of singlet band, 

with one or more of the individual spin sublevel bands are considered, 

however, an explicit k dependence is introduced into the triplet exciton 

zero-t'ield splitting in the first Brillouin zone~4,22 Basically, three 

different singlet states (or the magnetic sublevels of different triplet 

states) each loTi th different band dispersions and energies couple in 

varying degrees selectively to the three triplet spin sublevel bands. 23 

The net effect is to produce a shift in energy of the zero-field eigen-

state via spin-orbit interactions. The shift is different, however, for 

each of the three spin sublevels. Moreover, since the triplet band 

dispersion is usually much less than that associated with the singlet 

band which is mixed into the triplet sublevel via spin-orbit interactions, 

there is a greater spin-orbit perturbation in the zero-field splitting at 

k = 0 or k = ±:rr/a depending upon the relative signs of the intermolecular 

interaction responsible for the band dispersions of the singlet and triplet, 

respectively. The importance of spin-orbit coupling cannot be under-
" 

estimated, for it is precisely this which gives rise to a k dependence 

of the Larmor frequencies for the band-to-band electron spin transitions. 
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This is diagrammatically illustrated in Figure lb. As has been shown by 

Francis and Harris14 the resulting k dependence of the Larmor frequency, 

w k, reflect the band dispersion on a reduced scale and is given by 
. 0 

where the reduction factor f is related to the details in the difference 

of spin-orbit coupling in the spin sublevel. bands14 and Wo is the transi­

tion frequency in the center of the band. In such cases different Larmor 

frequencies can be associated with different k states, and the proper 

representation for electron spin resonance absorption in terms of the 

Bloch formalism24 is a set of magnetic Bloch equations, one for each k 

k state in the band, whose frequency components, Wo ' are coupled by phonon-

exciton scattering. 

B. Effects of Phonon-Exciton Scattering on Electron Spin Relaxation 

In the rotating frame, the presence of a weak oscillating rf field 

of the form 

~(t) = -r~ . Sz cos wt (2.10) 

connecting, for example, T with T spin sublevels via the electron spin x . y 
... 

operator S results in an in-phase, u, and out-of-phase, v, component of z 

a oomplex moment, Gk,given by25 

(2.11) 
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k Representing w as the applied microwave frequency and w as the resonant o 

microwave frequency associated with the spin sublevels of the kth state 

. in the band, the complex moments obey the following Bloch equations (one 

equation for each k state in the exciton band). 

(2.12) 

MOk should be related to the exciton density of states function and the 

particular form of distribution function characterizing the population in 

the exciton band. For a Boltzmann distribution 

(2.13) 

where P and P are the populations of the mth and nth spin sublevels m n 

which are being coupled by the microwave field and Z{T) is the partition 

function for the triplet exciton bands. Since selective spin orbit 

coupling results in only very small differences in the dispersions of the 

individual sublevel bands, the exponential factors in Equation 2.13 are 

effectively equal. Thus, to a high degree of accuracy Equation 2.13 can 

be rewritten as . 

C D(k)e-E:(k)/KT 
k ron M =...;...;;-"--~~:--------:. 

o Z(T) (2.14) 
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where C is the difference ip populations of the mth and nth spin sub-
mn 

levels. £(k) and Z(T) are given by Equations 1.5 and 2.6, respectively. 

It is important to note that spin alignment 26 in the laboratory frame 

is equivalent to magnetizationln the rotating frame,27 and thus, Equation 

2.12 is valid in zero-field even though no magnetization exists in the 

laboratory frame. It will be assumed that T2{k)'s are homogeneous. The 

weak field modified Bloch equat~ons are 

(2.15) 

There are N linear equations corresponding to the N molecules making up 

a single linear exciton chain. 

The effects of phonon-exciton scattering in the chain can be incor-

porated into these equations through a scattering matrix which completely 

-1 spans the basis states of the Frenkel excitons. Let (Tkk ,) represent 

the probability per unit time for scattering of an exciton initially in 

a state having energy E(k) to a final state having an energy E(k'), each 

t t h . . t d . th . t L f . k d k' t' 1 s a e av~ng assoc~a e ~ ~ a armor requency w an w , respec ~ve y. o 0 

Furthermore, assume that spin-phonon coupling is negligible, which implies 

that phonon-exciton scattering is spin independent. Under these conditions 

theN modified Bloch equations are 'Written as 

+L (2.16) . 
k' 
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The form of Equation 2.16, however, places several restrictions on the 

effect of phonon-exciton scattering. It assumes that the averaging of 

the Larmor components w k via phonon-exciton scattering is a stochastic o . 

Markoffian7,28 process and thus (a) the time for the actual scattering 

process from k to It' is much shorter than the lifetime of a. particular 

k state; (b) the difference in energy between the initial arid final exciton 

k states in. a scattering event is larger than the energy associated with the 

uncertainty width of the individual k states; and finally, (c) there is 

k k' no spin memory between the Larmor components wo and Wo corresponding 

to scattering from the exciton states k to k'via phonon interactions •. 

With these restrictions in mind we display (l'kk' )-1 or the probability 

per unit time for an exciton being ,scattered by a phonon fromk to k' as 

. . 29 
a "golden rule" rate 

= Pe:Ck') I: p (q')( 1 ) . 
A,q,q' P exp(;(q)/KT) - 1 

P (k') and p (q') are the exciton (subscript e) and phonon (subscript p) e p 

density of states functions evaluated at the energy of the wave vector k' 

and q' , respectively. A is the index which runs over the phonon branches 

and EA(q) is the energy of the q!h wave vector of theA phonon branch. 

The sum over phonon states q and q' is restricted to scattering events that 

conserve both the ~otal energy and momentum of the initial and final exciton­

phonon states <kql and <k'q'l and ~ is the exciton-phonon coupling ep 
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Hamiltonian. In weak oscillating rf fields and. steady state 

(2.18 ) 

and the electron spin resonance line shape fUnction, G(w), is given by 

the sum over k of the imaginary components of the complex moment, Gk , 

i.e., 

(2.19 ) 

The importance·of Equations 2.16 through 2.19 cannot be underestimated 

for they provide in principle a direct means of obtaining from experiment 

both qualitative and quantitative information on the mechanism of triplet 

exciton migration in the coherent limit, the random walk limit and, in 

fact, in the region intermediate between the two. Although the latter 

requires the unwieldy solution of many simultaneous equations,the two 

extreme limits can be readily solved. 30 

The first will be termed the strong scattering case and occurs when 

k k' (wo ~ Wo h kk ,« 1 and corresponds to the random walk limit. In effect, 

phonon-exciton scattering results in a rate of change of the exciton states 

(k ~ k') fast compared to the differences in the corresponding Larmor 
. k k' . 

frequencies (Wo - Wo ); thus, the effective electron spin transition 

k k' frequency becomes the average of wand w • 
o 0 

k If for all k, (w -. o 
k' 

Wo h kk ,« 1, the band-to-band transition will appear as a homogeneously 

narrowed line centered .at some weighted average of all the frequencies. 

This is expected at high temperatures and is essentially the same as 
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derived and expanded upon by McConnell and co-workers3l from a different 

approach. 

k k' . The second or weak scattering case results when (w
o 

- Wo hkk I » 1-

This corresponds to the limit in which phonon-exciton scattering causes 

the linear combination of triplet exciton states to change on a time (-rkk I) slow 

compared to the differences in the Larmor frequencies(w k _ w k ' ). In 
o 0 

such cases the coherent nature of the individual k states of the triplet 

band can be sampled by the rf field, and the spin resonance line shape 

becomes the·sum of the individual transitions at w k each having a width . 0 

corresponding to an effective T2 (k) given i~ Equation 2.15 and each weighted 

by the population distribution, N(k), evaluated at an energy £(k). It 

should be noted, however, that in this limit, the width of each Lorentz line 

centered at w k includes a lifetime broadening term introduced by inelastic o 

phonon-exciton scattering through Equation 2.16. Hence, T2 (k) is given by 

(2.20) 

where T2
P represents the homogeneous relaxation time at zero degrees Kelvin. 

The relationship between phonon-exciton scattering and the lifetime of a 

k state is given simply by the sum over all decay channels or 

the individual scattering rates L
kk

,; i .e~, 

L (k) ... l ~ ( )-1 = L..J Lkkl • 
k' 

(2.21) 

Consequently, specific features of phonon-exciton scattering can be 

discerned from the electron spin band-to-band transitions line shape 



function since the Lorentz 

'[ (k)-l when phonon-exciton 

-2~-

line width at each W k is given essentially by 
o 

p -1 scattering rates exceed (T2 ) • This point 

can be better illustrated by considering models for phonon-exciton scatter-

ing in various limits. We will restrict the discussion, however, to cases 

where the population Qf the band states is characterized by a Boltzmann 

distribution function. In these cases the intensity of the band-to-band 

transitions evaluated at Wok are weighted by Mok given by Equation 2.14. 

1. Phonon-Exciton Scattering in the Narrow Band Coherent Limit 

The first case in the weak scattering limit we will consider is when 

the exciton dispersion is narrow compared with the dispersion of the phonon 

branches populated at any particular temperature. Restricting the dis-

cussion to very low temperatures (l-IOOK) where the primary limitation 

on the coherence time will be exciton scattering with the acoustic phonons32 

(the population of higher energy phonons being very small), the individual 
, -1 

scattering rates'[kk' can be displayed in an extremely simple form when 

the scattering events are limited to events in which a phonon with wave 

vector q and an exciton with wave vector k interact to produce final 
" 

states which are single phonon and single exciton states having wave 

vectors q I and k'" respectively. Naturally, such scattering events must 

simultaneously conserve both the total momentum and energy of the initial 

and final states. That is, 

11k + nq = ?lk' + nq' (2.22) 
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and 

E(k) + E(q) = E(k') + E(q') (2.23) . 

must be satisfied. Consider first the region of the acoustic phonon 

. dispersion that is near ~inear inenergy33 as illustrated in Figure 4a. 

When the dispersion of this portion of the acoustic ,band is large relative 

to the exciton band, the phonon group velocities are many times those of 

even the most mobile exciton states. In order to conserve both momentum 

and energy in the scattering process, the:derivative of dk) with respect 

to initial state kmust be the same as the derivative of E{q) with respect 

to the phonon wavevector q for all energies e:(k) at which scattering occurs, 

i.e., 

;;:..;(h:=-,:(=k~) = 
ak 

aE(q) 
dq 

(2.24 ) 

The left and right sides of Equation 2.24 are simply the exciton and· 

phonon group velocities multiplied by 11, respectively. When there are 

large differences in the phonon and exciton dispersions, this condition 

cannot be easily satisfied, and it is only in the limit of Llk and Llq -+ 0 

that scattering can conserve both momentum and energy between initial 

and final states. Such is the case for acoustic phonons in the linear 

region of their dispersion. However, '''hen the phonon dispersion becomes 

non-linear, the group velocities of some phonon states can match the group 

velocities of the exciton states, and both the total energy and momentum 



-24-

Gan be conserved between init:i,al states <kq I and final states <k 'q' I. 
Adopting the hypothesis that phonon-exciton scattering shortens the 

coherence lifetime of an exciton k state only when the group velocities 

of the excitons and phonons are approximately equal, Equation 2.17 is 

greatly simplified. 
-1 

In such cases, the scattering rates, (Tkk') ,are 

simply proportional to the number of phonons populating the qkth phonon 

state, whose group velocity matches the group velocity of the exciton 

state k, times the density of final exciton and phonon states. The number 

of phonons, however ,is given by the Planck distribution; hence, 

p(q')p(k') A ~ 
exp(E"(q )/KT) 

(2.25) 

It should be noted that the rate of scattering excitons by phonons in 

the non-linear region is enhanced by the fact that it occurs between phonon 

states q and q' whose density of states functions, p(q) and p(q'), are 

large. When the exciton band dispersion becomes much less than the acoustic 

band dispersion, the variation in the range of states capable of scattering 

with k states becomes progressively more restricted to fewer q and q' states, 

and therefore the difference between p(q') and p(q) becomes smaller. 

Furthermore, since P(k') approaches a k independent constant in the zero 

. -1 
exciton band dispersion limit, the scattering rates (L

kk
,) must become 

uniform in the narrow exciton band limits, at which poi.nt the exciton k 

state coherence lifetimes T(k)'s would become equal for all k. The temper­

ature dependence of T(k) becomes simply the Planck distribution function34 
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evaluated at the energy of the acoustic phonon state that has the lowest 

group velocity. Denoting the energy of this state as ~(qk), the exciton's 

coherence time is given by 

(2.26) 

where (-r*)-l is an effective scattering time given by the temperature 

independent term 

The summation over k' is restricted to the interval, around the initial 

k value, in which the phonon and exciton group velocities match. This 

interval is narrow in the narrow exciton band limit, and therefore an 

exciton can only scatter to states whose k values and group velocities 

do not differ greatly from that of the initial state. Thus, scattering 

may not greatly impede the long range migration of excitons. When 

T « EA(qk), as is usually the case at temperatures below the Debye 

temperature,35 -r(k) is given by 

(2.28) 

and hence the excitons coherence time vs. temperature appears as·a k 

independent exponentially decreasing function with increasing temperature: 

(2.29) 
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The principal ma~ifestation of the el~ctron spin band-to-band transi-

tipn in this narrow band limit at a given temperature is to give a11 

k frequency components~ Wo ' the same effective widths. Thus, the line 

shape function represents the sum over N independent Lorentzian absorp­

tion curves, each centered at w k with a line width related to T(k) at o 

a temperature T. In zero magnetic field the area under each transition 

is proportional to the probability at a given temperature that the exciton 

k ·state is populated. For a Boltzmann distribution across the exciton 

band, the lineshapefunction is given by 

T ._ D(k)e-2Scos ka/KT 
G (w) - ~ . Z(T) . (2.30) 

where 

and Wk
o , given above, is different for each k state. Since GT(w) is 

normalized by the one-dimensional exciton partition function Z(T), line 

shapes at various temperatures may be compared. Provided that either T2
P 

is known or 1/T2
P < l/T(T), the functional dependence of T2 (T) with temper­

ature provides an experimental test of this limit. GT(w) is similar to 

the line shape function arrived at by Francis and Harris14 fromphenomeno-

logical point of v,iew valid at a single temperature in the limit that the 

number of k states in the exciton band is large. 

; . , 
! 
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The general features of the line shape theory in the coherent narrow 

band limit are illustrated in }i'igures 5 and 6. In all cases ,we have 

.. chosen 20 cm-l for ;(qk), the energy of the acoustic phonons having the 

slowest group velocity; whichlsa reasonable value for molecular crystals. 36 

Additional parameters in Equations 2.28 and 2.31 were set as follows 

T P :::;; io-6 se.c 
2 

-10 
~* = 8.g x 10 sec. 

Finally, the difference in the Larmor frequencies between W k (k = 0) and . o. 

Wok (k =±rr/a) due, to selective spin orbit coupling has been taken as 

20 MHz, a value near that experimentally found22 in 1,2,4,5-tetrachloro~ 

benzene for theD - lEI band-to-band transition. In Figure 5 the band-to-

band transitions have been calculated using Equation 2.30 for a series 

of band widths, 413. All transitions are calculated for T= 4.1 OK. Several 

features are important. First, the ratios of the peak heights near 

(k = ,0) and (k == ±TrJa) are related to a Boltzmann distribution weighted 

density of states maxima37 at k = 0 and k = ±rr/a. Hence, if T2 (T) is 

measured or known, the band dispersion immediately follows from the ratio 

of the transition intensity at k = 0 ~. k = ±rr/a. Second, the width of 

any packet of k states which can be prepared by the microwave field is 

proportional to (T2(T) )-\hence, selective k dependent population changes 

between the magnetic spin sublevels can be produced by microwave pulses' 

at the appropriate frequency. This allows,other k-dependent phenomena 
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such as bimolecular exciton anihilation,38 exciton-trapping,39 etc., to be 

experimentally investigated in the coherent limit. Third, when T2
P « T(k), 

T2 (T) is the coherence lifetirile of the wave vector states having velocities, 

V (k); hence, the k dependence of the mean-free-path, t(k), follows from g . 

(2.32) 

In Figure 6 the exciton band-to-band transition has been calculated using 

Equation 2.30 for several bandwidths 4S and for various temperatures 

given the above values for the parameters ~(qk), T2
P, and T*. The lowest 

temperature used in the calculation, 3.1oK, was chosen such that the 

contribution to T2 (T) from T2
P and from phonon exciton scattering T(T) 

are equal. At this temperature, broadening of the transition due to 

exciton-phonon scattering is beginning to become significant .At 4.1 oK, 

the population of phonons having energy ~(qk) is greatly increased and 

T (T) becomes the major contribution to T2 ('I'). This results in further 

broadening of the transition and a shift in frequency of the band-to-band 

transition maxima. As the transition becomes increasingly broad, the use 

of the ratio of the intensities of the maxima to determine the exciton 

band width without explicitly considering T2(T) becomes an increasingly 

less valid approximation. By 5.1oK the contribution to T2 (T) from exciton­

phonon scattering has broadened the individual k state transitioris to the 

extent that the exciton band-to-band transition has lost its two peak 

structure, and the system is becoming progressively farther removed from 

the weak scattering limit, (wok - Wok')Tkk , < 1. 
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It is important to note, however, that ,the effects of elastic 

scattering or damping which can result in a significant reduction in 1(k) 

are not manifest in the above theory. This .is because physical phenomena 

that localize the band by simply mixing + with - k 'states are not detectable 

by the broadening of the band-'to-band electron spin transition because 

of the equality of the Lat'mor' frequencies Wok and Wo-k, 1(k) given above 

can only be regarded as the mean distance between inelastic scattering' events. 

Other experiments, such as the dynamics of exciton trapping,8 are necessary 

to establish R.(k) in the presence of phenomena. such as isotopic or impurity 

localization. lO- 13 

Finally, the effects of an oriented magnetic field on the line shape 

in the narrow band coherent limit can be anticipated from behavior of the 

spin Hamiltonian with a magnetic field. At each value of the wave vector 

k, the zero-field spin Hamilto~lian consists of a kindependent spin-spin 

term and a k dependent spin~orbit term, and consequently, the zero-field 

eigenvalues are different for different values ofk. A Zeeman perturbation 

k k' 
will result in a shift of W relative to W that under certain circum-o . 0 

stances gives rise to a field-dependent (w k - w k') difference for the o 0 

three electron spin band-to-band transitions. A difference (w k(k=O) -
o 

k' w . (k' =rrr/a) )for two or more of the zero-field band-to-band transitions 
o . 

., (k k') is sufficient to ensure that the w - w 's are field~dependentfor o 0 

all k and k'. Selective spin-orbit ,coupling of the spin sublevelS with 

excited singlet states provides the necessary differences in the Brilloin 

zone boundary electron spin band-to-band transition frequencies. The 
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effect of a magnetic field is simply to change the overall spin orbit 

induced width of the zero-field band-to-band transitions and shift the 

center frequency Wok(k=±~/2a)to a new value determined by both the zero­

field and Zeeman Hamiltonians. In the weak phonon-exciton scattering 

limit, the line shape should remain essentially unchanged with field 

except for a different overall width~ In the intermediate scattering 

region, . however, the (Wok _. Wok' h
kk

, 's are on the order of unity. Since 

k k' (Wo .- Wo ) is field-dependent, it is expected that at certain fixed 

temperatures the band-to-band electron spin transitions can be obtained 

both in the weak and strong scattering cases by varying the magnitude 

of the applied field and thereby effecting a change in (Wok - Wok') without 

affecting the phonon-exciton scattering probabilities (Tkk , }-l. Thus, 

in principle, one can experimentally sample the phonon-exciton correlation 

time without changing phonon-exciton scattering per~. It is expected, 

given enough experimental data, that only one set of scattering parameters, 

Tkk " and hence a single model for phonon-exciton scattering would be 

capable of fitting all the data at a fixed temperature. 

2. Effects of Phonon-Exciton Scattering in the Intermediate Band Width 
Region 

The second region of interest is where the acoustic phonon dispersion 

is approximately the same in its linear region as the exciton dispersion. 

The salient difference between this region and the narrow band region is 

that there are always acoustic phonons .in the linear region which can 
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scatter with certain exciton states andsim:U.taneously conserve the total 

momentum and energy in the overall process. If, for example, the group 

velocity of the exciton states in the center of the band match the group 

velocity of the compression wave associated with acoustic phonons in the 

linear region, T (k) would be severely attenuated for exciton states in the 

center of the band (-k = ±n/2a), while in the top and bottom of the band 

would show characteristics similar to the narrow band case. It is important 

to note that the most. mobile exciton states in this case suffer the greatest 

phonon scattering and consequently have the shortest T (k). From the point 

. of view of energy migration approaching macroscopic dimensions, at first 

sight this case may seem unfavorable. Such is not the case, however, 

because the slopes of the exciton and phonon dispersions will only match 

over a small region of k space; hence, an exciton initially having quantum 

number k can only scatter to a.final" state k' which is in the small region 

around k where the slopes of the' dispersions match. An exciton traveling 

with some initial velocity V (k) will scatter to a new state with almost 
g 

~ 

the same velocity, V (k'). Thus, phonon scattering of coherent excitons g 

at reasonably low temperatures will not greatly impede the exciton's 

migration although it will average the Larmor frequencies of the k states 

involved in the scattering. (The conservation of k does not apply to 

impurity scattering of the excitons since k will no longer be a good 

quantum number due tb the rapid variation of potential near the impurity.) 

The band-to~band electron spin 'resonance transitions could appear 

very unusual depending upon the strength of the resonant scattering in 
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the center of the band. If it is sufficient to result in the strong 

k k' ' 
scattering limit, (w

o 
- Wo h kk , < 1 for kand k' states near ±n /2a, 

then those spin transitions would appear exchang~ narrowed while the 

transitions at the top \ and bottom of the band would remain in the weak 

, . 1· ·t (k k') 1 scatter~ng non-exchange ~m~ , Wo - Wo ~kk' > • The net effect is 

for the band-to-band transition to have an exchange narrowed T2 near ' 

Wo (k -±rr/2a) and a non-exchange narrowed longer T2 at Wo (k - O;±rr/a) 

with intermediate distributions of T2 's at values between the k = 0 and 

k == ±rr/a 'Wavevector states. As the temperature is raised two features 

would be apparent. First; the outsides of the band-to-band transitions 

would broaden and diminish in intensity relative to the transitions at 

Wo (k - ±rr/2a). Further increasing the temperature would cause the center 

Wo (k - ±rr/2a) region to broaden slightly via increased phonon-exciton 

scattering with increased temperature. When phonon-exciton scattering 

became sufficiently strong, the central region would narrow and the W o 

(k - O;nja) transition would completely disappear by virtue of the strong 

scattering limitation, 

(2.33) 

being achieved for all k states. The important qualitative point about 

this region is that the exciton states should show a pronounced k dependence 

in the scattering which can result in the strong scattering limit at the 

center of the band at much lower temperatures than would be required to ' 

have k states at the top and bottom of the band in the strong scattering limit. 

.' 
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3. Effect of Phonon-Exciton Scattering in the Broad-Band Coherent Limit 

A third case of interest is when the triplet exciton dispersion 

becomes greater than the acoustic phonon dispersion. In such cases, in 

a one-dimensio~al model, there will always be a region of exciton wave 

vectors which will have the same group velocity as the acoustic phonons 

in their linear region. Accordingly, strong resonant scattering is expected. 

However, as illustrated in Figure 4c, the wavevector states of the exciton 

band that are scattered in this limit are in the proximity of k ~ 0 and 

±7r/a, and consequently, only the relatively iIlIDlobile excitons, say k', 

suffer a short coherence time T (It' ). In this limit ~ the highly mobile 

exciton states in the center of the band should only be weakly scattered. 

Furthermore, because only slower phonon states become populated in the 

nonlinear region, increasing temperature should not result in an appreciable 

increase in phonon-exciton scattering in the center of the band. States 

near the top and bottom of the band, however, will be progressively more 

. strongly scattered with increasing temperature. Extension of our scatter-

ing model to these states is straightforward. T (k') for exciton states 

which have group velocities equal to the group velocities of the scattered 

phonons is simply proportional to the totai number of these phonons avail­

able at a given temperature. Using the Planck distribution function34 for 

the number of acoustic phonons, q, at energies E(q) for which V (q) = 
g 

V (k'), T(k'), is given by 
g 

T (k') ... 2: ( 1- ) 
q exp(E(q)lkT) - 1 
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It is important to streSs that the k dependence in Equation 2.34 is 

restricted to only those few exciton states whose group velocities match 

the phonon group velocity over some energy span given by the sum over q. 

Fi~e 7 illustrates the dependence of the coherence time of these states 

as a function of temperature. The values for curves labeled 1.25, 2.5, 

-1 5, 10 and 15 cm correspond to the scattering events that span the indi-

cated energy increment of the. phonon Qispersion. For example, the curve 

labeled 5 cm-l is T(k')'s for phonon-exciton scattering in which the· exciton 

group velocity V (k) equals phonon group velocities from phonon energies g 
-1 zero to 5 cm along linear region of the phonon dispersion. One notes 

that the functionality of T (k') is given principally by the Boltzmann 

factor and is moderately insensitive to the extent to which the group 

velocities match. Moreover, T (k), to a first approximation, is almost 

linear with temperature, particularly when kT > E(q). 

The important qualitative point is that when the exciton dispersion 

is greater than the acoustic dispersion T(k) should be constant in the 

center of the band at all temperatures. Hence, long range energy migration 

in the coherent limit is greatly favored providing the temperature is 

sufficient to populate states near k = ±rr/2a to a significant extent but 

low enough to allow coherent migration. Obviously, one wants a crystal where 

the phonon dispersion is extremely small and where the triplet band is narrow. 

Ideally one would like the acoustic phonon dispersion, ~p, to be on the 

order of kT but less than the exciton band width. Whether or not this 

can be realized for low lying triplet bands is highly speculative. 

: - " 
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The manifestations of this limit on the electron spin band-to-band 

transition are clearly indicative of the model. Strong resonant scatter-

ing with k states near the top and bottom of the exciton band could result 

in the strong-scattering condition. 

k k' (w - w· h i < I' o 0 kk 

to be satisfied while most k states in the center of the band could be 

in the weak scattering limit. Consequently, the effective T2 at k - ±7T/2a 

would be long while T2 would be short' at the values of k near k = 0 and 

in/a. As the temperature -is raised, exchange narrowing of the k state 

microwave transitions near 0 and ±n/a would be expected; consequently, 

the wings of the exciton ear line would become progressively sharper while 

the region at the center of the band would remain broad. 

In summary, one notes that the effects of phonon-exciton scattering 
. , ' 

on the ,electron spin band-to-band transition in the coherent limit show 

distinct qualitative and quantitative differences in the line shape 

functions in both the narrow band and broad band limit and in the region 

intermediate between the two. Next, we consider additional interactions 

which are static in nature but which also affect the appearance of the 

electron spin band-to~band electron spin resonance transition. 

c. K Dependent Broadening via Two-Dimensional Translational Equivalent 
and Non-Equivalent Interactions 

Up to now we have only considered explicitly the spin resonance of 

excitons associated with nearest neighbor one-dimensional translational 
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equivalent interactions. When two-dimensional bands are considered we 

must clearly delineate precisely which features we wish to treat. 

1. ~ffects of Two-Dimensional Dispersion in the Singlet Band 

To begin with, we consider the case where the triplet band extends 

over two dimensions both being associated with translational equivalent 

interactions. Furthermore, let there be a nearest neighbor intermolecular 

exchange interaction, a, principally along ~ of the two directi,ons, 

say a. In the absence of spin orbit coupling the triplet band dispersion, 

in such cases, appears as three parallel "ribbons" each ribbon being split 

from the other by spin dipolar repulsions. The coordinates are taken to 

be associated with wave vectors along the two translationally equivalent 

directions. If the singlet band that is mixed with a specific triplet 

spin sublevel band via spin orbit interactions has dispersion in both 

directions a and b, then the energy separation between the singlet and 

triplet bands is dependent upon the singlet wave vectors, ka and~. The 

net result of two-dimensional dispersion in the singlet band is to 

introduce a ka and .~ dependence into the zero-field splitting of the 

triplet spin sublevel bands via intramolecular spin orbit coupling. Hence, 

a single microwave frequency w will generally connect spin sublevels at 
, 0 

two points on the triplet band surface, one at ka~ and the other at 

ka,kb,o The only exception in this twofold k dependence is for Larmor 

frequencies corresponding to the maximum and minimum energy separation 

between the two triplet bands. These points have associated with them 
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Naturally this approach can be extended to three dimensions 

with the corresponding increased functional convolution of w on the k 
o 

states. As far as the microwave transitions are concerned, there are 

several complexities which arise but as we shall see, they are fairly 

easy'to deal with under most circ.umstances. 

The principle effect of two-dimensional band dispersion in the singlet 

states and one-dimensional band dispersion in the triplet state is to, have 

associated with the w 's two contributions to the Lorentz line widths, one o 

from T(ka~) and the other from T(ka"~'). It is expected, however, that 

these coherence times will be virtually identical because the small energy 

-+-
shift from spin-orbit coupling along b is hardly enough to provide a change 

-+­
in the phonon-exciton scattering rates along a. In other words, Tka~ 

of ~. A further are the same for a given k regardless of the value , a 

complication arises, however, from two-dimensional singlet 'dispersion 

that directly affects the w dependence of states possessing a given group 
o .' 

,velocity, VG(k). This can be illustrated by the following cases. Consider 

first, the effects of spin orbit coupling contributions to the zero-field 

, -+-
splitting when the singlet dispersion along b is much greater than along 

~ (~inglet > ~=inglet); further suppose for the point of illustration 

that the singlet and triplet band widths are identical. Under these 

circumstances there would be no anisotropy in the zero-field splitting 

-+- -+- -+-. along a but only along b. Since the trlLplet band dispersion along b ~s 

taken to be zero, the group velocitiesVg{k) alongb would all be the 

same (excluding the extremely small perturbation due to S.O. coupling); 
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..... 
hence, P(k) a~ong b is a constant. The line-shape function under these 

circumstances would essentially be k independent, and is given by 

b lew) =z; ! p(e: ) exp(-e:(k )/KT)de: w a a a (2.36) 
a -

where z;~ is the ~ dependent S.O. coupling perturbation to the zero-field 

..... 
- splitting along b. We see that depending upon the magnitude of contri-

butions to the line shape from examples approaching the above limit, the 

observed band-to-band. transition can be broadened by an entirely static 

effect which is independent of phonon-exciton scattering. 

Next consider the case where ~singlet > ASinglet. In this case, the 
. a 0 

principal k dependence of w is retained and as before there are points' a 0 

ka~ and ka'~' of equal zero-field splitting and a single Wo having 

associated with it two T(k)'s, T(ka~) and T(ka'~')' However, the points 

ka~ and ka ,~, can correspond to quite different regions in the triplet 

band. In particular, they can have consid,erably different group velocities. 

Therefore, T(ka~) and T(ka'~') might be significantly different in this 

case. The effective width associated with w (k) is related to 
o 

- -

and consequently the transition at Wo(k) appears to be homogeneously 

broadened by phonon-exciton scattering at two points in the Brillouln zone. 

This is not a serious limitation on the interpretation of the observed 

line width, since it cannot average Larmor components in a significantly. 

different manner than what has already been described.. The pra:nciple 

qualitative features of the transitions are maintained. Only the quanti-

tative evaluation of T(k) will be in error. T(k) could appear experimentally 
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shorter than it is in reality. From the interpretation of the electron 

spin resonance lineshape function, one errors on the side of less coherence, 

not more. 

2. Effects of Two-Dimensional Dispersion in the Triplet Band 

When an additional intermolecular exchange interaction associated 

. + 
with the translationally equivalent direction b in the triplet band 

acquires a signif~cant value, (the largest being along t) the separations 

between any two of the three triplet spin sublevel bands in zeroth order 

are equal at all values of ka~ and ka'~" The electronic energy of 

+ + 
spin sublevel surfaces, however, varies in both directions a and b. As 

I . d th h th b d d' . I + 4Qa . an examp e, cons~ er e case were e an ~spers~on a ong a, ~ 18 

larger than along +b, 4ab , aa > ab .• I ... ~ ~ ~ n such a case, when a Boltzmann 

distribution describes the populations the largest population is to be 

found at ka'~= (0,0) for a negative dispersion along both directions. 

The smallest populations are to be found at the four points on the first 

Brillouin zone boundary ka'~ = (±TI/a,±rr/b). The general form of the 

Boltzmann pop~latibn distribution for all ka'~ is given in the nearest 

neighbor approximation by the two-dimensional function N(ka'~) where 
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and 

(2.40) 

Selective spin orbit coupling between singlet and triplet spin levels 

will not change the energies of spin sublevel e:(ka'~) sufficiently to 

effect a change in the population E(k ,k );however, the populations a -0 

perturbed by a given microwave frequency, Wo(ka'~)' is more complex than 

in the simple one-dimensiQnal case. Indeed in order to fully describe 

the effects, again knowledge of the two-dimensional spin-orbit interaction 

is required. Several limiting cases, however, are relatively easy to 

deal with. 

First, when spin-orbit coupling along ~can be neglected, the 

separation between triplet spin sublevel bands along ~ for anyone value 

of k is constant, and hence w (k ,k ) is constant for a given k. In the weak a. 0 a-1:>. a 

scattering limit the population perturbed by a microwave field of frequency 

Wo(ka,kb ) is simply the sum over the states ~ evaluated at ka • 

N(W) = L N(k ,k ) 
b a -1:> 

(2.41) 

Thus, the intensity of a microwave transition at a frequency Wo(ka,kb ) is given 

simply by the total population along one wave vector direction ~ from 

the bottom of the band to ~ = in/b. 

Second, when spin-orbit coupling results in an anisotropy in the 
... ... 

zero-field splitting along both directions a and b, the intensity of the 
\ 

_ .. 
\ 
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microwave frequency becomes the convolution of populations at many points 

on the ka~ surface. Generally speaking, w will be constant between spin 

, sublevels along some curved contour which is a complex function of both 

the two-dimensional spin orbit and intermolecular interactions. If the 

"+. . . "+ 
spin orbit iilteraction along b ~s small compared to along a, the contour 

of equal W(ka~)' s across the surface ka~ is relatively constant in the 

~ density of states function, and the line shape function reflects prin­

cipally the functionality in the density of states function along k
a

. 

"+ "+ 
Obviously when the spin orbit coupling along a and b becomes comparable 

and4~ ~ 4Sa , the line shape function can no longer give easily inter­

pretable results. It is important to note that in all the above cases 

no additional width T(k) is introduced explicitly py the two-dimensional 

interactions via averaging of the microwave freq,uencies since the elect~on 

spin orientation is conserved
40 

for all translational equi~alent exchange 

interactions. 

III. Sununary 

(1) We have attempted to explain the effects of phonon-exciton scattering 

on the migration of coherent Frenkel excitons and have related these effects 

to experimentally observable phenomena. Specifically, we have derived 

expressions for the zero-field electron spin resonance line shape functions 

for triplet exciton band-to-band transitions. In one-dimensional'crystals 

these depend intimately upon the details of phonon-exciton scattering. 

~he problem has been considered iil three regions which are determined by 
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the relative magnitudes of the phonon and exciton dispersions. In the 

narrow band limit the exciton dispersion is taken to be smaller than the 

phonon dispersion and at low temperatures where only the acoustic phonon 

branch is populated, it was found that ,the exciton bands suffer uniform 

scattering in so far as the scattering has no dependence on the exciton wave 

vector. Furthermore, the magnitude of the scattering was found to be 

dominated by the population of the phonon states which have the slowest 

group velocities and whose group velocities match the exciton velocities. 

Although the scattering reduces the coherence length of the excitons 

uniformly for all k states, long range energy migration might not be 

greatly impaired since scattering was found to occur only to nearby k 

states. The temperature'dependence of the scattering in this limit is' 

given by the Planck distribution function for the slowest phonon states. 

Uniform scattering of the exciton k states results in a uniform contri­

bution to the electron spin T2 of the individual wave vector states 

comprising the band-to-band transition. As the temperature is increased, 

the increased scattering results in broadening of the entire exciton band­

to-band transition in a manner that depends on the exciton band width, the 

energy of the slowest group velocity phonon states, and on the exciton 

and phonon density of states functions. 

(2) In the intermediate region ,the exciton and acoustic phonon dispersions 

were taken to be approximately equal. In this case, the group velocity of 

the phonons in the linear section of the phonon dispersion will match the 

group velocity of excitons around the center of the exciton band, resulting 
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in a large scattering rate for the excitons around k = ±n/2a. States 

near k = 0 and ±n/a were found to behave in a manner similar to those 

in the narrow band limit. In.terms of long range energy migration this 

. may prove most unfavorable since the fastest states are scattered the most 

frequently. However, in this case-as above, scattering can only occur 

to nearby k states ,and therefore long range transport of energy may still 

occur although the coherence length is significantly reduced. In terms 

of the electron spin exciton band-to-band transition, at temperatures in 

which the linear part of the phonon band 1s highly populated, the center 

of the band-to-band transition can be exchange narrowed while the wings 

can remain broad. 

(3) In the broad band limit, the dispersion of the exciton band was taken 

to be greater than the dispersion of the acoustic phonon branch. In this 

case, no phonons with group velocities equal to the exciton group velocities 

near the center of the band are available; hence, the fastest excitons 

suffer the l.east scattering although exciton states near k = 0 and ±n /a 

are rapidly scattered. From the point of view of long range energy migra-

tion, this case is the most favorable. The ekciton band-to-band transition 

will have very sharp wings due to exchange narrovTing caused by rapid 

scattering near k = 0 and in/a. 

(4) Finally, aiditional factors which affect the exciton band-to-band, 

transition have been considered. These include the effects of intramolecular 

spin-orbit coupling, an external magnetic field, multi-dimensional exciton . . 

interactions in the spin-orbit coupled singlet states and multi-dimensional 

exciton interactions in the triplet state. 
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Figure Capt ions 

(a) Energy dispersion of the three magnetic sublevels 

T ,T and T in the triplet exciton band Tl in the x y z 

absence of spin-orbit coupling. 

(b) Energy dispersion of the triplet magnetic sublevel bands 

including selective spin-orbit coupling of T to higher 
x 

singlet states. 

The energy scale is purely schematic and is used for illus-

trative purposes only. 

Calculated electron spin resonance band-to-band transitions 

in the absence of selective spin-orbit coupling for various 

triplet band widths 4~. Each curve represents the sum of 

contributions from a Boltzmann distribution over the individual 

k states. Each value ofk in the band-to-band transition 

has associated with it an intrinsic line width I::,FP and a group 

velocity dependent line width, !1~. !1Fk is listed for the 

states at the center of the band (k =±~/2a) for the various 

band widths illustrated. The intensities of the spectra are 

adjusted to have the same maximum height and are not normalized 

relative to one another. 

Calculated electron spin resonance triplet exciton band-to-band 

transitions in the absence of selective spin-orbit coupling 



Figure 4 

Figure 5 
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for several temperatures. In addition to the temperature 

dependence these curves illustrate the effect of different 

group velocity dependent line widths and the dependence on 

the number of k states in the exciton bands. Each spectrum 

is adjusted to have the same maximum height. 

The relative magnitudes of the exciton and acoustic phonon 

dispersions. 

(a) The narrow exciton band limit where the phonon group 

velocity matches the exciton group velocity in the 

non-linear region of the phonon dispersion. 

(b) The intermediate region where the phonon group velocity 

in the linear region of the phonon dispersion matches 

the exciton velocities arourid the center of the exciton 

band. 

(c) The broad band limit where the phonon group velocities 

match the exciton velocities near the top and bottom of 

the exciton band. 

Calculated electron spin resonance triplet exciton band-to-band 

transitions for several exciton band widths with selective 

spin-orbit coupling. The exciton and phonon dispersions are 

in.the narrow band limit and a .Boltzmann distribution charac­

terizes the population. The shape of each of the curves 
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Figure 7 
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reflects the exciton band width, exciton density of states 

function, and the rate of phonon-exciton scattering. The 

total area under each of the spectra has been normalized. 

Calculated electron spin resonance triplet exciton band-to-

. band transitions with selective spin-orbit coupling to the 

individual triplet spin sublevels in the narrow exciton 

band limit. The curves are for several exciton band widths 

and several temperatures. M' is the half width at half 

. height of the individual wave vector states comprising the 

exciton band. The'spectra show the broadening effect due 

to increased phonon-exciton scattering with increasing 

temperature. The total area under each of the spectra has 

been normalized. 

Exciton coherence time, T{k'), as a function of temperature 

in the broad exciton band limit for the exciton state k' 

which has its group velocity Vg{k f ) equal to the group 

velocity of phonons in the linear region of the phonon 

dispersion.; 
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