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A NEW APPROACH TO CHARACTERIZING FLOW IN SINGLE FRACTURES 

K. Muralidhar and J. C. S. Long 

Earth Sciences Division, Lawrence Berkeley Laboratory 

University of California, Berkeley, California 94720 

Abstract. A numerical method which determines fluid 
movement in a single fracture is described in the present 
study. This method allows for variaqle fracture aperture 
and the presence of contact areas which impose tortuosity on 
the flow. The objective behind developing such a technique 
is to investigate the way in which geometry controls fluid 
motion. Given the change in fracture geometry due to 
changes in stress, this technique can be used to determine 
the hydrologic properties of a fracture. The fluid behavior is 
described by the Navier-Stokes' equations. Hence, the vali
dity of constitutive relationships between flux and gradient, 
such as cubic law can be examined. 

In trod uction 

Current practice in modeling fluid flow in single rock 
fractures is to assume that each fracture can be treated as a 
channel. whose walls are parallel planar plates. Recent 
laboratory and field experience has clearly demonstrated that 
flow in fractures that are subject to stress and infilling may 
occur in channels within the fracture. The present work 
describes a numerical method which can be used to investi
gate how fluid motion is determined by void geometry. The 
problem of characterizing flow in fractures has two parts. 
The first part concerns identification of the geometry of the 
conduits. The second part involves solving the flow problem 
in a prescribed geometry. 

Determination of void geometry is not easy. Some 
approaches include taking profiles on each of the bounding 
surfaces and using variograms of these profiles to simulate 
the topography on a grid. The void geometry is given by 
the distances between the two surfaces and the change in the 
geometry in response to externally applied stress can be cal
culated [Hopkins et aI., 19871. Pyrak-Nolte et al. [19871 
describe an alternative approach which involves filling frac
tures with low melting-point metal allowing the metal to 
cool, separating the fract,ure and photographing each side, 
thus revealing a pattern or the distribution of contact areas. 
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In the present work, we concentrate on the calculation of 
flow in a complex geometry, once the geometry is specified. 

Conventional analyses assume that Darcy's law is valid 
for flow in a fracture, as it is for a homogeneous porous 
medium that is, flux is proportional to pressure gradient. 
The equivalent permeability of the fracture is usually 
derived from the "cubic law", which governs fully developed 
laminar flow through parallel plates. As an alternative, 
Tsang [19841 proposed a method using the analogy of an 
electrical resistance network. In the presen t study, none of 
these simplifications is employed and the governing flow 

.equations are derived from Newton's second law of motion. 
These are the Navier-Stokes' equations [Schlichting, 19791. 
which determine flow for a prescribed pressure drop and 
hence the permeability of the rock fracture. Since these 
equations are non-linear, it can be expected that the amount 
of flow will not necessarily be linearly related to the pressure 
drop. Thus a fracture may not have a unique permeability. 
In this work, the flow is taken as steady, laminar and 
incompressible. The numerical scheme is general enough to 
be applicable to both two and three dimensional problems. 
Specific examples of flow calculation are discussed in th.is 
paper. 

There are two principal difficulties in solving the Navier
Stokes equations for flow in a fracture. The first of these is 
the determination of pressure from the constraint of 
incompressibility. To allow for second order approximation 
of the pressure field, a Poisson equation of pressure has been 
used in the present study. The second difficulty arises from 
the complex flow geometry, on which the boundary condi
tions have to be specified. This has been dealt with llsing a 
grid transformation technique which maps the complex flow 
domain into a simple one. This procedure builds the details 
of the flow boundaries into the governing equations, and 
allows exact specification of boundary conditions. The 
mathematics of this f0rmulation is quite lengthy and 
involved and due to space limitations, only an outline is 
presented below. This paper summarizes these formulations. 
Future papers will cover application of this model to void 
geometry determined from real fractures. 

Formulation 

The Navier-Stokes' equations expressed III a coordinate
free form are given as follows: 

• 
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u • 'Q'~ = - 'Q'p/p + v 'V2~ (l) 

Here, ~ and p are the velocity vector and pressure respec
tively. p and v are the fluid density and kinematic viscosity 
respectively. In three dimensions, there are three equations 
arising from Equation (l), one for each velocity component. 
Pressure is taken to be determined from the incompressibil
ity constraint, 

(2) 

Equations (1) and (2) are solved subject to boundary condi
tions which include, 

(a) no slip of fluid particles on solid·surfaces, 

(b) specified pressure at inlet and exit locations of flow 
and 

(c) pressure gradient at fraCture walls determined from 
the momentum equations (Equations 1). 

When pressure is specified across a fracture, the amount of 
flow in it must be obtained as a solution of Equations (l) 
and (2). The flow boundary conditions can be prescribed as 
either periodic or a profile with an adjustable mean value. 
Results employing periodic boundary conditions are reported 
here, and this has the implication that the segment of· 
geometry considered as a flow domain repeats indefinitely on 
both sides of the fracture where pressure is known. 

The system of Equations (1) and (2) gives rise' to one 
dimensionless parameter, the Reynolds number, Re = liL/v. 
U is the velocity scale = J ~p/ p and L is the length scale, 
typically the size of a contact area or the fracture aperture. 
With the scales properly defined, Reynolds number can be 
in terpreted as the ratio of inertial to viscous forces. The 
magnitude of Re determines the choice of the numerical 
scheme which would be applicable to Equations (1) and (2). 
Fracture flows fall in the category of low Reynolds number 
flows, with viscous effects being present over the entire flow 
domain. This renders the classification of the mathematical 
problem as elliptic [Peyret and Taylor, 1983)' and accord
ingly the computational procedure described below is an 
"elliptic flow solver". This restricts the scope of this work 
to physical problems which do not exhibit boundary-layers, 
unsteadiness and turbulence. However, in all calculations, 
the inertial terms are fully retained, so that the variation of 
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fracture permeability on flow rate itself can be studied. A 
typical value of an upper limit for low Reynolds flow is sug
gested from fluid mechanics literature to be Re ~ 100. For 
regional pressure gradients experienced in groundwater flow 
in a porous medium, one obtains Re < 1. Since fractures 
have larger apertures and also local pressure gradients could 
be larger than regional values, it is appropriate to suggest 
that the range 1 < Re < 25 be used in fracture hydrology 
studies. 

The incompressibility condition given by Equation (2) is 
expected to determine pressure, but does not contain pres
sure explicitly. This can cause singularity in an iterative 
procedure of matrix inversion arising from a zero diagonal 
term. In the present work, Equation (2) has been replaced 
by the Poisson equation of pressure derivable from the 
momentum equations, and is given below. 

(3) 

where D, the dilatation is )l . ~. The system of Equations· 
(1) and (3) now solve for the flow and pressure field. 

Since Equation (2) is not being solved, D = )l . ~ will 
not be zero in the intermediate calculations, until close to 
convergence. Hence D and terms containing D in Equation 
(3) must be determined and included in the iterative compu
tations of the flow field .. 

Treatmen t of Geometry 

In using a numerical method, it is most convenient when 
boundary conditions are imposed on constant coordinate sur
faces. In this respect, a complex fracture geometry poses a 
problem. 

The present work uses the idea of a natural coordinate 
system, which is illustrated in Figure 1. It is assumed that 
for every geometry which appears as irregular in the Carte
sian (x-y-z) space, there exist coordinates (u-v-w), called as 
'natural coordinates', which make .it appear rectangular. A 
detailed discussion on coordinate systems which conform to 
the boundaries of the flow domain, and techniques of their 
generation are available elsewhere [Thompson, ed., 19821. 
The flow calculation is performed in the regularized space 
using modified forms of Equations (1) and (3), which account 
for a change in the measure of distance, between the two 
coordinate systems. This step introduces severe complexity 
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to the numerical procedure, since the Navier-Stokes' equa
tions in generalized coordinates include a large number of 
mixed derivatives. For example, the Laplace operator, which 
has three' terms in a three dimensional Cartesian space, 
requires 27 such terms to be fully expressible in a npn
orthogonal coordinate system. This expanded form has to 
be applied to each of the three components of the velocity 
vector and pressure. This results in a computationally inten
sive computer code. However, the advantages of pursuing 
this direction are the simplification of geometry to one on 
which boundary-conditions can be exactly specified, and a 
uniform grid on which finite-difference rules can be easily 
applied. 

The idea of transformation of coordinates has a major 
advantage in that finite difference methods based on Taylor's 
series expansion can be extended to cover problems involving 
complex geometries. There are other techniques such as the 
finite element method, which can incorporate variable 
geometry in the formulation and not require special treat
ment. There is no clear reason at this time to prefer one 
approach over the other. The finite element method, in par
ticular, can generate large amounts of algebraic complexity, 
especially while solving three dimensional Navier-Stokes 
equations. The application of a pressure boundary condition 
on a no-slip wall is also known.to be quite cumbersome, 
within the framework of finite elements. To this extent, the 
tech nique presen ted in this work retains the ad van tages of 
finite differences such as simplicity and easy application of 
pressure boundary conditions, while allowing the geometry 
to deviate from an orthogonal coordinate system. 

The natural coordinates used for computation are derived 
in this work from a variational principle, which requires the 
distribution of the coordinate lines to be smooth and regular, 
with the constraint that their intersection with other coordi
nate lines be nearly orthogonal. 

Numerical Solution 

Equations governing grid generation and the flow respec
tively are coupled, non-linear, second order partial 
differential equations. They have been solved by finite
differences [Anderson et aI., 1984]. This reduces the problem 
to one of matrix inversion which is performed by Gauss
Seidel iteration. For example, the equation, 

\7/ = Sp 



- 6 -

on a Cartesian grid can be approximated as, 

{Pi+l + Pi-l - 2PJjk + (Pj+l + Pj-l - 2p)ik 

(~X)2 (~y)2 
(4) 

and subsequently solved for Pijk' This continues until conver
gence is observed. The unknown quantities in the grid gen
eration equations are the locations of nodal points in the 
fracture, corresponding to a predetermined choice of grid in 
the natural coordinate system. For the flow problem, this is 
the velocity and pressure field. Each set of unknowns is 
simultaneously calculated at every grid point, before a new 
cycle of iteration begins. This continues until a prescribed 
convergence criterion (typically, 0.01 percent) is met. Com
plete solu tion of the grid equations is. necessary before the 
Bow field can be obtained. 

The sequence of calculation of flow in. a complex 
geometry can be summarized as follows. 

(1) Choose appropriate computational space (CS) 
defined by the natural coordinates. 

(2) Determine the equivalence between CS and the 
fracture by solving the coordinate generation equa
tions. 

(3) Solve flow equations in CS. 

(-t) Combine results of steps :2 and 3 to extract the 
flow solution in the fracture. 

The non-linear inertial terms appearing in Equation (1) 
are approximated by a hybrid-upwind procedure, to ensure 
diagonal dominance for the convergence of the iteration 
scheme. This requires switching between a first and a 
second order finite-difference formula, based on the magni
tude of the local Peclet number, Pe, [Patankar, 1980]. The 
scheme can be described as follows. 

( .5) 

where 

v 
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ue = (Uj+l + uj)/2 

u ... = (Ui-I + ud/2 

¢Je = (<Pi+1 + ¢Ji)/2 if I Pe I <2, 

= ¢Ji if Pe > 2 , 

= ¢Ji+l if Pe < -2 , 

¢J ... = (<Pi-I + ¢Ji)/2, if I Pw I < 2 

=<i>! ifPw> <) -, 

= ¢Ji-l if Pw < -2 , 

a.nd 

Pe = Ue AX/II 
Pw == UW AX/II . 

While dealing with a. complex geometry, the Peclet number 
is defined in terms of f.-he contravariant component of velo
city. The use of the hybrid scheme reduces the accuracy of 
the overall numerical scheme formally to first order. 

Results 

Results given here are simple c~es we na.ve studied in 
the development of the model. Future papers will give the 
applica.tion of this model to the void geometry of rea.l frac
tures. All ca.lculations reported in this study employ a grid, 
whose discretiza.tion level is about 10 percent. ~Iass bala.nce 
is estimated to be within 5 percent. and is Seen to improve 
with grid refinement. The discrepancy in m:l.SS balance 
between inlet and outlet is exactly zero. For this rea.son 
error in mea.n velocity through a fra.cture is expected to be 
~maller than the maximum error in m:l.SS bala.nce. The com
puter programs ha.ve been tested by reproducing exa.ctly the 
tlow pattern in a channel with parallel walls. 

Figure:! shows two views of J. three dimensional duct 
with a. square contact area located J.t its center. The side, 
lOp :lnd bottom boundaries :lre closed and tiow enters the 
Il"ft side and leaves on the right. in response to J. pressure 
drop. Figure J shows :l velocity vector plot at the mid-lane 
of the channl'l ... \ roll patlt>rn is de:l.rly seem on the re:l.r 
Side of the obstruction. Structures of this type can be 
t'xpt'cted to impart non-lineanty to the response of the How 
~ystem. Further. these can be simula.ted only if the complete 
How t'quations J.re t'mployed. Tht' deta.i1ed calculation of the 
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flow in the interior of the flow domain is expected to be the 
primary application of this technique. Figure 4 shows a plot 
of mean velocity as a function of Reynolds number for this 
duct with a contact area (marked 2), compared with a paral
lel channel (marked 1). The slope of the mean velocity curve 
is a measure of permeability of the fracture. On account of 
greater resistance to flow due to the contact area, curve 2 
has a smaller slope than 1, everywhere. Curve 2 also exhi
bits mild non-linearity. This shows that at higher flow rates, 
the permeability is reduced further, because additional pres
sure drop is required to support the recirculation pattern 
visible in Figure 3. 

Figure 5 shows a square region with a circular contact 
area. Since this flow domain is not describable in entirely 
Cartesian coordinates, the idea of natural coordinates is 
required. In the computational space, the obstacle is a 
square. Figure 5 also shows the equivalent coordinate lines 
in the two systems. Figure 6 shows a velocity vector plot of 
flow past the circular contact area at a Reynolds number of 
5. The periodicity condition along with the smoother profile 
of a circle compared to a square eliminates the formation of 
a roll structure beyond the obstacle. Figure 7 shows a plot 
of mean velocity as a function of Re, for this case and can be 
seen to be linear. the comparable case of no obstacle is 
given by the equation 

1 
urn = 2 Re ( 6) 

for the dimensions assumed for the problem. The reduction 
in permeability (me~ured as a slope of the curve) is larger 
for this problem, since the contact area is itself larger, as 
compared to the case in Figure 2. 

Figure 8 shows a channel with constrictions, along with 
its transformation into a parallel channel in terms of a gen
erated coordinate system. Figure 9 shows the plot of mean 
velocity as a function of Re, for both a parallel channel and 
one with a constriction. Based on the cubic law, the slope of 
each line is proportional to the square of mean aperture. It 
is of interest to note that the equivalent aperture of the con
stricted channel is approximately 0.62, which is smaller t.han 
the smallest opening (0.7) in the wavy channel. This sug
gests that equivalent aperture calculations cannot be based 
on geometry alone and instead depend on Row dynamics 
contained within them. 
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Nomenclature 

Dilatation of flow, = )Z • ~. 

Column and row index on a finite difference 
grid. 

Characteristic length, e.g., fracture opening. 

Prtssure. 

Pressure drop across the fracture. 

Peclet number. 

Reynolds number, = UL/II. 

Velocity vector. 

Natural coordinate system. 

Characteristic velocity, V ~p . 
Mean velocity through the fracture 

Cartesian coordinate system. 

Grid spacing in Cartesian space. 

Fluid density. 

Kinematic viscosity. 
. a a a 

Gradlent operator (-a '-a ,-). . x y az 

Generic variable 

v 
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Figures 

Figure 1. Example of transformation of an irregular sur
face to a rectangle using the idea of natural 
coordinate systems. 

Figure 2. Sections of a three-dimension duct with a square 
contact area. Length = Width = 6, Height = 
2, obstacle cross-section = 1.2 x 1.2. (a) plan 
(b) elevation. 

Figure 3. Velocity vector plot at the mid-plane of a 
three-dimensional duct with an obstacle. Re = 

25 . 

. Figure 4. Plot of mean velocity in a three-dimensional 
channel as a function of Reynolds number. l. 
Parallel duct. 2. Duct with an obstacle. 

Figure 5. Geometry of square region with circular contact 
area. (a) physical space (b) transformed space 
using natural coordinates. Edge of flow region 
= 6, diameter of obstacle = 2. 

Figure 6. Velocity vector plot of flow past a circular obs
tacle. Re = 5. 

Figure 7. Plot of mean velocity as a function of Reynolds 
number for flow past a circular obstacle. YVith 
no contact area, UM = Re/2. 

Figure 8. Geometry of a channel with constriction. 
Wavelength = 4, Maximum aperture = 1.0; 
Miminum aperture = .7. (a) physical region, 
(b) transformed region using natural coord i-

~ nates. 

\ I 
'I::'" 

Figure 9. Plot of mean velocity as a function of Reynolds 
Number for flow in a channel with constriction. 
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