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,~BSTRACT 
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'A general method is given for constructing the "point-obstacle" 

representation of the interaction between a dislocation and a physical 

obstacle. The equations of equilibrium are derived. The elastic inter-

action of a simple dislocation with a row of equispaced solute atoms 

which behave as repulsive barriers is treated as an illustration. 
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A dislocation in glide through a real crystal will generally encounter 

microstructural features such as forest dislocations, impurity atoms, or 

small precipitates which act as localized barriers to its motion. The 

theoretical analysis of the effect of these localized barriers on disloca-

tion motion is considerably simplified if the barriers are regarded as 

point obstacles which exert point forces on the dislocation line. This 

"point obstacle" approximation has been widely used (e.g., ref. l-4) in 

theoretical research on problems in which the dislocation-obstacle inter-

action plays a role. 

Despite the fre~uent use of the point obstacle approach, to our 

knowledge the approximation itself has not been studie~ in detail. ·We 

have, therefore, begun research to define the limits of the approximation 

and to determine dislocation-obstacle interaction curves for physically 

relevant cases. In this communication we present a formal basis for the 

point obstacle approximation to the interaction between a dislocation and 

a circularly symmetric barrier. The results are illustrated with a . 

~imple example. 

Consider a physical obstacle whose interaction with a gliding dislo-

cation is circularly symmetric in the glide plane and has an effective 

range (d') which is small compared to the average separation of obstacles 

(1 ). Assume the dislocation i"s acted on by a resolved shear stress l' s 

and consider that portion of the dislocation which is pressed against a 

particular obstacle. The local e~uilibrium configuration of the disloca-

tion line will appear roughly as shown in figure 1. The total energy of 

this configuration maybe written 



" . -' 

-2-

E == f rd.l + ,b~ + W 

L 

where r is the line energy of the dislocation and the integra,l i::> taken 

over the portion (L) of the dislocation line included in the figure; ~ 

is the area'behind L and ,b~ measures the potential energy of Lunder 

applied stress l; and W is the total energy of the interaction of L with 

the obstacle. 

Using a two dimensional form of Gibbs(5) construction (illustrated 

in figure 1) the obstacle may be formally reduced to a point and the 
, 

, energy W localized. Given th~t d' is small we enclosed the obstacle in 

an imaginary circle (D) of small radius d appreciably greater than d'. 

Only the portion ofL within D is perturbed by the obstacle~ We then 

extrapolate the ar,ms of L into D until they meet at a point (x). Let 

,the extrapolated lines represent the dislocation within D and let the 

point of intersection represent the obstacle. The totat energy of this 

hypothetical configuration (L') is 

E' = f rdl' + ,b~, +W', 

L' 

which is identical to E if 

W' = W + Ar(cU-cU'l + Tb (d.\-d1\, l/ 
D 

If the dislocation is in mechanical equilibrium, there must be no 

possible variation of L (or, equivalently, of L') which causes the energy 

to decrease. As may be easily seen by considering variations which 
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leave the position of the point (x) in L' unchanged, it is necessary for 

equilib~ium that W' have its minimum value, W'(x), consistent with the 

position (x) and the configuration of L outside of D, and L' be symmetric 

about a line (1) through x and the physical center of the obstacle. If 

L' satisfies these conditions and if it is in equilibrium with respect 

to all variations which carry x along 1 and constrain W' to W' (x), then 

it is in equilibrium with respect to any variation whatever. Hence from 

equation (2), L' is in mechanic~l equilibrium only:: if· 

(4) 

In this equation R is the radius or curvature of the element .dl' of L 

and ox is the normal displacement of this element. The angle ~ is the 
n 

angle formed by L' at the intersection point x and the term involving ~ 

accounts for the net change in line length L' due to the displacement 
'-

oXl of x along 1. 

Since the variations ox and oX
I 

are independent and may have either 
·n 

sign, the inequality (4) yields two necessary conditions for equilibrium: 

. . r . 
. (1) Tb = IR (5) 

everywhere on L' and 
. dW' ,1. 

(2):F = Idxl = 2rcos 0//2 (6) 

at the intersection point x. These conditions are the central equations 

of the pOint obstacle approximation(l). 

Eq~ation (6) may be used to generate a mechanical force-displacement 

relation for the dislocation-obstacle interaction in the point obstacle 

representation. Thus function [F(XI )] is obtained by displacing or 

, .... :.: .. 
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or de~orming the unperturbed segments ·of the dislocation (for example, 

by increasing the applied stress) so that the dislocation passes through 

the obstacle while maintaining an equilibrium con~iguration. The. result-

ing function [F(xll:] will be insensitive to the precise con~iguration o~ 

obstacles when R»d, and will be insensitive to the obstacles separation, 

1 , when 1 >d. When these two conditions are satis~ied the ~orce-dis-s s 

placement relationship is a ~ixed property of the representative poin~ 

obstacle. In the limi~ 1 »d the finite displacement o~ the dislocation s 

in sweeping through the obstacle may be ignored. The obstacle may. then 

be treated as a mathematical point which influences the dislocation only 

when in physical contact with it. We have used this latter approach in 

theoretical studies of dislocation glide through ~ields of randomly dis­

persedobstacles(l}. 

To illustrate the point obstacle representation we present the 

following simple example (computational details are given in reference 

(6». Consider a dislocation which is assumed to have a constant line 

tension, r = ~ Gb2 , where G is the elastic shear modulus. Let the dis­

location encounter a line of equispaced'solute atoms which behave as re-

pulsive barriers. Let the solute atoms have a size mismatch (€) with 

the matrix atoms. Let the dislocation-solute atom interaction be given 

by the linear elastic size effect(7), incorporating the Dorn-StefanSky(8) 

adaptation'of the'Cottrell(9} ~or~ modifica~ion to remove th~ singularity 

in the linear elastic solution •. Given these assumptions the equilibrium 

configurations o~ the dislocation may be found numerically;' as a function 

of the resolved shear stress (T). 

ir­• 
.... 
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A sequence of computed(lO) equilibrium dislocation configurations 

is illustrated in figure 2, where we have set e = 0.06 and 1 = lOb. The 
s 

scale of the figure has been distorted to allow clear distinction between 

the· different configurations. The three lower dislocation lines are 

stable equilibriumconfigur.ations assumed with increasing applied stress; . 

the two upper dislocation lines are unstable equilibrium configurations 

for a dislocation which has passed the peak of the repulsive force. We 

have also shown the point obstacle representation of each configuration, 

constructed according to the method outlined above. The discrepancy 

between the true and reference dislocation configurations is significant 

only in the immediate vicinity of the obstacle ("'lb). Moreover, the 

extrapolated dislocation segments are nearly straight lines. 

The point obstacle force-displacement relation computed by applying 

equation (6) ,to this case is illustrated in figure 3. Further computations 

indicate that, as anticipated, this relation is reasonably insensitive 

'" to the spacinp; or configuraticn of obstacles for I > 4b. s 

In previous work (e.g., ref. 4) the force-displacement relation for 

rigid motion of a straight d~slocation through the solute atoms was used 

as an approximation to the dislocation-point obstacle interaction. The 

force-displacement relation for rigid motion was computed ~der the 

assumptions of this example and is compared to the dislocation-point 
j- ... ' 

obstacle interaction in figure 3.' The agreement between the two curves 

is good. Use of' the complete point-obstacle representatinn results in a 

slight increase in the maximum repulsive force and a small shift in the 

position of the maximum with respect to the physical center of the solute 

atom. 
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FIGURE CAPTIONS 

1. An illustration of the geometric construction used to define the 

point properties of an obstacle having a circularly symmetric 

interaction with a dislocation. 

2. Sequence of equilibrium configurations of a dislocation (in solid 

lines) arid their "point obstacle" representations (in dotted lines). 

The physical center of the repulsive solute atom is placed at the 

origin of t~e cartesian coordinat.es. 

3. The force-displacement relation for the interaction between a dislo-

cation and a repulsive elastic barrier of size mismatch E = O.06.F 

is the force exerted by the dislocation on the obstacle at equili-

brium as a function of distance from the physical center of the 

obstacle. The solid curve is computed from the point obstacle 

approximation using equation (6). The dotted comparison curve 

assumes a rigid dislocation. 
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