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ABSTRACT
‘A general method is given for constructing the "point-obstacle”
répresentation of the interaction between a dislocation and a physical
obstacle. The equations of equilibrium are derived. The elastic inter-

action of a simple dislocation with a row of équispaced solute atoms

which behave as repulsive barriers is treated as an illustration.
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A dislocation in glide through a real crystal will generally encounter
microstructural features such as forest dislocations, impurity atoms, or
small preéipitates,whiéh act as localized barriers to its motion. The
theoretiéal anélysis of the effect of these localized barriers 6n disloca-
tion motion is considerably simplified if the barriers are fegarded as
point obstacles which exert-point forces on the dislocation line.‘_This
"point obstacle" approximation has been widely used (e.g., ref. 1-4) in\
theoretical research on problems in which the dislocation-obsfacle intér;
action plays a role. | |

".Despite the frequent use of the point obstacle approach; to our

knowledge the approximation itself has not been studied in detail. -We

-have, therefore, bégun research to define the limits of the aﬁproximation

apd:to.determine dislocation-obstacle interaction curves for physically
relevant casés. In this communicétion we present a formglkbésis for the
point obstaclé approximation to the interaction between a dislocation and
a2 circularly symmetric barrier. Thé results are illustrafed with a .
simple exémple. ¢
Con;ider a physical obstacle whose interaction with.a gliding dislo-

cation is circularly symmetric in the glide plane and has an effective

range (d') which is small compared to the average separation of obstacles

-(ls)' Assume the dislocation is acted on by a resolved shear stress T
”Qﬁd consider that portion of the‘dislocation which is pressed against a

.particuldr obstacle. The local equilibrium cbnfiguration.of the disloca-

tion line will appear roughly as shown in figufe 1. The total energy of

this configuration may be written
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E= fI‘dl+'rbAL+W )

L

where TI' is the line eneréy of the dislocation and the integral is taken i
over the poftion (L) of the dislocation line included in the figure; A, im
is the area behind L and TbAL measures the potent1al energy of L under
applied stress r, and W is the total energy of the 1nteract10n of L w1th
the obstacle.

Using a two dimehsional form of Gibbs(S) construction (iiiustrated
in figure 1) the obstacie may be fermally reduced to a point and the
-energy W localized. Given that d' is small we ‘enclosed the obstacle in
'an imaginary c1rcle (D) of small radius d appreciably greater than 4'.
Only the portion of L within D is perturbed by the obstacle: We then
extrapolate the arms of L into D until they meet at a point (x). Let v %
.the extrapolated lines represent the dlslocatlon w1th1n D and let the .
point of intersection represent thevobstacle. The total energy of this
hypothetical configuration (L') is |

E'=frd1'+rbAL, +w, - (2)

which is identical to E if
W' =W+ AI‘(dl—dl') + b (dAL-dAL',)}' (3) ,
D . | 8
If the dislocation is in mechanical equilibrium, there must be no
possible variation of L (or, equivalently, of L') which causes the enefgy

to decrease. As may be easily seen by considering variations which
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leave the pésition of the point (x) in L' unchanged, it is necessary for
equilibfium that_W' haﬁe its minimum value; wr(x), consistegt with the
position (x) and.the configuration of L outside of D, and L' be symmetric
about a line (15 through x and the physical center»of the ob;tacle.' If
L' satisfies these conditions and if it is in equilibrium with resﬁect

to all variations which carry x along 1 and constrain W' to W'(x), then

‘it is in equilibrium with respect to any variation whatever. Hence from

equation_(é), L' is in mechanicél equilibrium only: if’

§E! = f(F/R - tb)éx_ dl' + (dw /ax, - 2Teos "’/2) 6x,20 (1)
. S PR
In this equation R is the radius or curvature of the element.dl' of L

and Gxn is the normal displacement of this element. The angle ¢ is the

o

angle formed by L' at the intersection point x and the term involving ¢ - R
accounts for the net change in line length.L' due to the displacement e,
le of x along 1.

Since the variations Gxn and §x, are independent and may have either

1

sign, the inequality (L) yields two necessary conditions for equilibrium:

(1) w ="/ - | C(5)

~ everywhere on L' and

. . [} . - '
- (2)F = aw /ax, = 2lcos V/2 , ‘ (6)
at the intersection point x. These conditions are the central equations
(1)

of the point obstacle approximation ™.

Equation (6) may be used to generate a mechanical force-displacement

" relation for the dislocation-obstacle interaction in the point obstacle

répresentation. Thus function [F(xl)] is obtained by displacing or
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or deforming the unperturbed segments -of the dlslocation (for eiample,
by increasing the épplied stress) so that the dislocation paeses ;hrough._
the obstacle while maintaining an equilibrium cenfigufation. The.result-
ing function [F(xl)J will be insensitive to the precise conflgmration of
obstacles when R>>d, end’will be insensitive to the obstacles separation,
ls,bwhen ls>d. ‘When.these two conditiené are eatisfied the force-dis-
placement relationship is a fixed property of the representative point,
ebstacle...In_the limit ls>>d the:fimite displacement of the dieloeation
in sweeping through the obstacle may be ignored. ‘The obstacle mayithen:
be freated as a-mathematical point which influences the dislocation only
when in physical contact with it. We_have used this latter approach in-
theoretical studies of dislocation glide through fields of randomly dis-
Pe;sed'obstacles(l).'

. TO’illuetrate the point obstacle representation we present the
following eimple example (computational details are given in reference A
.(6)). Consider a dislocation which is assumed to have a constant line
tension, T ='E sz; where G is the elastic shear modulus. Let the'dis—
location encounter e line'of equispeced'solute atoms which behave as re- |

pulsive barriers. Let the solute atoms have a size mismateh (€) with

the matrix atoms. Let the dislocation-solﬁte atom interaction be'given

by thé'linear elastic size effect(7); incorporating the Dorn-Stefansky
adaptation of the'Cottrell(g) Gore modificatién to remove the singularity

" in the linear elastic solution. - Given these assumptioﬁs the equilibrium
configurat{ons of the dislocation may be found nﬁmericallyf as a function

of the resolved shear stress (t).

OR
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(10)

A sequence of computed equilibrium dislocation configurations

% ' is illustfateq in figure 2, where we hafe set € = 0.06 and 1, = 10b. .The

‘scale of the figure has.been distorted to allow clear distinction between
the. different éohfigurations. The_thrée lower dislocatiqﬁ lines are
stable equilibrium.configunafions assumed with increésing éppiiéd stress; .
the two uﬁper dislocation lines are unstable equilibrium configurationé

) ' for a dislocation which has passed the‘peak of the repulsive force. We
have also sﬂown the point obstacle representation of each configuratioﬁ, v
éonstrucfed according to the method outlined above. The discrepancy
between the true gnd reference dislocation configurations is sigﬁificant

. only in the immediate vicinity éf fhe obstacle (&1b). Moreover, fhe
extrapolated dislocétion segments are nearly straight lines.

The point obstacle force-displacement relation computed by épplying

equation (6) to this case is illustrated‘invfiguré 3. Further computations -
é‘ _ indigate that, as anticipated, this relation is reasonably insensitive
to the spaciné or configuraticn of ébstacles for ls § v,

In previoué work (e.g., ref. 4) the force-displacement relation for
rigid motion of a straight dislocation through the solute étoms was useq
as an approximation to the dislocation-point obstacie interaction. The
force—displacemeﬁt relation for rigid motion was computed under the
assumptions of'th;s example énd is compared to the dislocation-point
uéﬁstaélé interactioﬁ in figufe 3. The agreement between the two curves
is good. Use of the complete pdint-obstacle.representatiﬂn results in a
slight increaée inlfhe makimum repulsive force and a sméll shift in the
position of the maximum ﬁith fespect to the physical cenfér of the solute

j atom.

s s
R
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To simplify the computatibns, a small éf’fect due to the dislocation
self-interaction was neglected(6)
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FIGURE CAPTIONS
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1. An illustration of the geometric construction used to define ﬁhe
point properties of an obstacle having a circularly symmetrié

interaction with a dislocation.

2. Sequénce'of equilibrium configurations of a dislocation (in solid
lines) and their "point obstacle" representations (in dotted lines).
The physical center of the répﬁlsivé solute atom is placed at the

origin of the cartesian coordinates.

3. The force-displacement relation for the interaction betwéen‘a dislo-

cation and a repulsive elastic barrier of size mismatch e = 0.06.F

is the force exerted by the dislocation on the obstacle at equili- -

- brium as a function of distance from the physical center of the
- obstacle. The solid curve is computed from the pdint obstacle
approximation using equation (6). The dotted comparison curve

assumes a rigid dislocation.
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