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Abstract 
We address the problem of optimizing the energy resolution of 

Deep Level Transient Spectroscopy (DL TS), emphasizing techniques which 
are applicable for signals from defect levels which are either 
alloy-broadened or stress-broadened and which therefore produce 
non-exponential or multiexponential transients. We discuss the 
possibi I ity of using a numerical inverse Laplace transform for which 
there is, in principle, no limit to the resolution. The sensitivity of the 
inversion algorithm to noise and to round-off error, however, practically 
limits the energy resolution to several percent of the deep level defect 
binding energy. This resolution is an improvement by about a factor of 
two over the best resolution possible from the standard rate window 
techniques for which there is a finite lower bound to the temperature 
resolution which depends on the capture cross-section of the defect and 
the effective time constant of the rate window, but which is independent 
of the defect energy . 



L Introduction 

Defects in semiconductors are the origin of the electrical activity 

which provides the basis for integrated circuit technology. However only 

a few of the large variety of possible crystal defects are advantageous 

and can be introduced into the crystals in a controlled manner. The vast 

ma jority of defects are detrimental to device performance. Controll ing 

or eliminating defects is difficult to achieve when the identities and 

structures of the defects are unknown. Because of this. considerable 

research i~ carried out Characterizing the properties and origins of 

defects. The most important distinguishing property of a defect is the 

energy position of the defect in the band gap of the semiconductor. The 

ionization energies of shallow levels, with energies near the band 

extrema, can be characterized by optical excitation with high precision. 

Defects which have energy levels deep in the band gap, on the other hand, 

are not as easily characterized by optical techniques. For these defects 

deep level transient spectroscopy (DLTS)I,2 provides a technique which 

has high sensitivity and can provide activation energies with good 

accuracy. 
, 
Deep level transient spectroscopy is a thermal ionization 

spectroscopy. 'The ionization signal is obtained by perturbing the 

occupation of defects in a reverse-biased diode, then allowing the 

occupation to relax to thermal equilibrium. For a single, isolated defect, 

the relaxation signal follows a single exponential decay in time. The 

time constant of the decay depends on both the bulk characteristics of 

the material and on the specific properties of the defect. The time 

constant also depends exponentially on temperature. The temperature of 
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the sample is used as the variable in this exponential spectroscopy, and 

a DL TS spectrum is obtained by ramping the temperature of the sample. 

Many varieties of transient spectroscopies have been developed which 

measure capacitive2, current3, or charge4 transients in the 

semiconductor diode and these systems have been optimized with respect 

to noises, spatial resolution6, and accuracy of the energy determination7. 

Despite the fact that DL TS is a thermal spectroscopy which rei ies on 

probabilistic thermal averages rather than the absolute energy 

differences observed in optical transitions, the energy determinations 

can be quite accurate when temperature and electric field effects are 

taken into account. However the broad response I inew idth of standard 

DL TS as a function of temperature severely restricts the energy 1· 

resolution of the technique when defect levels are closely spaced in 

energy. Often defects are not well isolated in their energy positions in 

the bandgap, rather many defects may be present which have only 

slightly different energies. Defect levels can be split by homogeneous 

perturbations, such as stress, resulting in closely spaced energy levels, 

or they can be perturbed inhomogeneously, resulting in continuous 

distributions of energies. In these cases the DLTS signal is composed of 

mUltiple exponentials. The problem of DL TS resolution therefore is to 

separate the individual components as accurately as possible. 

The problem of decomposing a multiple exponential into its 

constituent parts is one of the oldest and yet most persistent problems 

of functional analysis. In 1795 Prony8 devised an algebraic scheme 

which could separate a small number of exponentials with similar 

amplitudes but substantially different time constants. The method does 

not differentiate well between exponentials with'similar time constants 
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or with widely different amplitudes. Prony recognized this limitation as 

fundamental, and this view has been echoed by many modern 

authors9,10,ll. Currently, roughly four classes of approach to the 

problem of deconvoluting a multiple exponential can be identified 12; 

curve pee I ing methods 13, which graphically subtract long I ived decays 

from short I ived components; least squar:es, both I inear and 

non-linear 14,lS,16; algebraic methods, also known as Prony methods8,17,18; 

and transform methods, which are deconvolution methods 19,20:2L22. 

Many of these techniques have been reviewed and compared by Thomasson 

et. a1.23 . Recently a powerful analytic technique has been developed 

called Pade-Laplace analysis24 which combines the transform and 

algebraic methods into the most promising technique yet for 

decomposing a sum of discrete exponentials. Interestingly, Pade-Laplace 

analysis reproduces the two-century old Prony method as a limiting 

case. However Pade-Laplace analysis is severely I imited when the 

distribution of exponentials is continuous because the method actually 

locates and counts the number of poles in the complex plane resulting 

from a Laplace transform of the signal. The counting method 

accumu lates larger errors as the number of poles increases, mak ing the 

technique tedious and inaccurate for ·continuous distributions. It m~y be 

possible to optimize the Pade-Laplace -method to be workable with 

continuous distributions, however we do not undertake such an analysis 

in this paper. 

An important distinction can be made between those methods 

which make many or strong assumptions about the form of the signal, 

and those which make no or few assumptions about the form of the 

signal. The former are essentially fitting routines, in which the form ·of 
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the solution is assumed, and free parameters are altered to yield 

agreement between the signal and the assumed form. The latter are 

more general and spectroscopic in nature. The transform methods fall 

into this latter class. 

The fitting methods can be quite accurate when the constituent 

signals are true exponentials, and when the number of constituents is 

known. However these methods lack the generality of a true spectroscopic 

approach, such as Fourier transform spectroscopy, which makes no 

assumptions about the signal other than that it is composed of a 

superposition of sinusoids. Often the number of components in a signal is 

the very information which is being investigated. In the case of uniaxial 

stress DLTS25.26,27 the number of peaks and intensity ratios that result 

after the application of uniaxial stress gives an indication of the defect 

symmetry. The interpretation of the data would be more straightforward 

if these parameters were the result of a standard set of general 

operations rather than from assumptions in a fitting routine. In addition, 

situations can occur for which the fitting methods will not apply. One of 

these situations arises in the routine DL TS of ternary 111- V compounds. 

The DL TS transients are found to be non-exponential, stemming from alloy 

broadening of the DL TS peaks28. A similar situation arises in uniaxial 

stress DL TS; the induced strains in the DL TS stress sample may be 

inhomogeneous, leading to non-exponential transients of complicated form 

which cannot be fit. 

The transform methods, on the other hand, are general and provide 

the basis for a true spectroscopy of continuous distributions of 

exponential transients. The rate window technique of Lang2 as well as the 

inverse Laplace transform belong to this class of transform techniques. 

We begin with the inverse Laplace transform in section II to point out the 
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strengths and drawbacks of the inverse Lap lace transform 'as -app I ied to 

exponentials. In section III we discuss, in depth, the fundamental lower 

limit to the resolution of the rate window technique. 

II. Inverse Laplace Transform 

The goal of DL TS signal processing is to convert the raw deep level 

capacitive or current transient into a system response whose variation-as 

a function of temperature gives the thermal emission rate, the emission 

cross section, and the concentration of each deep level in the band gap. 

The activation energy and capture cross section comprise the signature of 

the deep level. The problem of DL TS resolution therefore is to optimally 

separate signatures of two or 'more levels which have .comparable 

emission rates. Assuming the the raw DL TS signal consists -of a sum of 

exponential decays, 
n 

SCt) = 2: Cje-tlLj ( 1 ) 

the problem is solved in principle by taking the inverse Laplace transform 

of the raw signal. Because exponentials a.nd delta functions are Laplace 

transform pairs, the result of the inverse Laplace transform would be a 

sum of delta functions, 
n 

R(s) = 2: Cjb(S-l fLj(T)) ( 2 ), 

where the 1:i are the emission time constants as a function of 

temperature. 

This procedure appears to be analogous to the use of Fourier 

transforms in Fourier Transform Spectroscopy (FTS), which is based on 
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sinusoids and delta functions as Fourier transform pairs. FTS relies on the 

orthogonality of sinusoids to project the contribution from each frequency 

out of the signal. In practice the transform integration cannot be taken to 

infinity, but must be terminated at some limit, L. This finite integration 

contributes a line width to the response function which varies as 1 fL. 

Because the signal in FTS is composed of periodic functions whose 

amplitudes remain constant, the integration can be carried over many 

periods, thereby increasing the signal to noise and decreasing the line 

width. This allows for excellent frequency and therefore energy 

resolution in Fourier Transform Spectroscopy. 

Unlike sinusoids, however, exponentials are not orthogonal along the 

real axis. The contribution of each exponential to the signal cannot be 

projected out, as in FTS, by taking an inner product defined as an integral 

along the real axis. This is reflected by the fact that the inverse Laplace 

transform requires a ~ontour integration in the complex plane. Performing 

the integration numerically in this case would require either a knowledge 

of the signal function S(t) throughout the the complex plane, or a 

knowledge of its poles in the complex plane. Yet from experimental 

observation only the values of the signal function along the positive real 

axis are known. One possible approach might be to analytically continue 

the signal function into the complex plane and find the complex poles. 

However this is a cumbersome, computationally intensive process which 

would be difficult to implement in real time data acquisition. 

Barring knowledge of the analytic structure of the signal in the 

complex plane, statistical arguments can be invoked to develop efficient 

algorithms that can numerically invert Laplace transforms. No single 

well-behaved algorithm for numerical inversion of the Laplace transform 

can be defined, however, because the inverse Laplace operator is an 
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unbounded 'operator; inverse functions 'are unstable with respect to small 

changes in the direct function, that is, arbitrarily small changes in the 

direct function can cause arbitrarily large changes in the inverse function. 

Nonetheless, an accurate algorithm has been developed by Stehfest29 based 

on a statistical expectation function defined by Gaver3D. Given a real 

function 5(t), the algorithm calculates an approximation of the inverse 

R(s) at s 

where 

In2 N 

R(s) = -- 2: Vi 5(iln2/s) 
S 1=1 

Min(i.NI2) 

Vi = (_1)N/(2+0 l: 
kN/(2+j) (2k)! 

k=[i+1/2] (N/2-k)!k!(k-l )!(2k-l)! 

( 3 ) 

( 4 ) 

This algorithm gives highly accurate results for situations in which 

both the transform and its inverse are smooth functions, but its 

convergence properties worsen dramatically as the functions vary rapidly 

or contain discontinuities. While a decaying exponential is quite smooth, 

its inverse transform, the delta function, is not. -This fact from the outset 

indicates that there will be severe problems with convergence for this 

case. ,Convergence is improved by choosing a large N, but because of the 

numerous factorials in Vi' N can only be as large as the number of 

significant figures used in the computation, otherwise round-off errors 

destroy the convergence. The result of this algorithm applied to e-t and to 

e-2t with double precision arithmetic ( N=24 ) on a VAX 780 is given in 
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Fig. 1. The peaks occur at s = 1 and s = 2, and have a bandwidth (in the 

transform space) of 50%. The height of the response peak scales linearly 

with the exponential prefactor, but diminishes as 1 lSi' The response of 

the algorithm to two exponentials is linear, which is essential for signal 

analysis. The highest resolution of this algorithm for N=24 is achieved for 

a ratio of the time constants equal to 1.5. To couch this result in physical 

terms we will consider the EL6 defect in GaAs, the dominant bulk defect in 

that material, to be a "typical" deep level. EL6 has an energy level at Ec -

.350 meV with a capture cross section C1 = 1.5 x 10- 13 cm2. The DL T5 

transient from EL6 has a time constant of 3 ms at 200 K. For this 

"typical" deep level a resolved ratio of time constants equal to 1.5 

corresponds to an energy resolution of 2% of the defect binding energy. 

This value is to be compared to the typical resolution of standard DL TS 

of between 9% and 15% (C.f. sect.III). Therefore in the absence of noise, 

the Gaver-5tehfest algorithm can provide a substantial improvement in 

deep level energy resolution. 

When a random gaussian distribution of errors is added to the 

signal, the maximum allowable value of N decreases. For large values of N 

the algorithm amplifies the noise over the signal, while for small values 

of N the peak becomes broader. The optimum value of N depends on the 

noise variance of the signal. For a noise variance of 0.3% of the peak 

signal added to each data point in eq.(3), N = 6 is the largest value of N 

which will give acceptable results. Fig. 2 displays the responses of the 

algorithm to the exponential e-t for two sets of errors as well as the 

response for no errors. For the "typical" deep level, this corresponds to an 

energy resolution of about 4%, which is still an improvement by about a 

factor of two over the best possible resolution from standard DL T5. 
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· The Gaver-5tehfest algorithm is ideally suited "for implementation 

on any system which can integrate and digitize the transient signal. The 

algorithm is especially convenient for real-time analysis because the 

vector Vi of eqns. (3) and (4) only needs to be calculated once at the start 

of the experiment. A DL T5 system using the Gaver-5tehfest algorithm can 

.be run in two modes: a scanning mode, and.a high resolut ion mode. In the 

scanning mode, a response as a function of temperature can be defined by 

.se lect ing a single value of s in eqn. (3) and then ramping the temperature 

of the DL T5 diode. In this case the real-time analysis would require signal 

integration, data smoothing, and a single summation in eqn. (3). The data 

smoothing is necessary because of the sensitivity of the Gaver-5tehfest 

algorithm to noise. Data smoothing routines can be fast and simple and 

should not significantly interrupt the data acquisition. The data 

integration is necessary·to reduce the noise and is the limiting factor on 

the speed of the temperature scan. In the high resolution mode the 

temperature of the DrTS diode can be stabilized so that significant 

integration time is available. After data smoothing, the full response R(s) 

of eqn. (3) is calculated and filtered. Because the response function is 

linear, the presence of multiple transients can be detected by analyzing 

the response 1 ineshape in the transform space. 

The implementation of the Gaver-Stehfest -algorithm for DLT5 

systems does have drawbacks, the primary drawback being its extreme 

sensitivity to noise. In addition, the implementation requires 

analog-to-digital conversion and a computer controller. Analog systems, 

on the other hand, have the advantage of simplicity and good stability with 

respect to noise. Therefore the standard rate window technique remains a 

vital analysis technique for DLTS. We consider the limit of resolution for 

the rate window technique next. 
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II L Rate Window Technique 

The basic ideas of the rate window technique as applied to DLTS 

have been discussed elsewhere2,5,31 , but the details of the response 

lineshape have not. Therefore we shall investigate the effects of the 

various operations on the lineshape and describe some general trends and 

conclusions which are valid for the many types of weighting functions 

that are used in the rate window techniques. We find that a finite lower 

bound exists for the resolution which is independent of the energy of the 

deep level. This bound does depend on properties of the bulk material as 

well as on the capture cross section of the defect. 

After a deep level defect in the depletion region of a diode is filled 

by a bias reduction or a forward bias filling pulse, it will thermally 

emit the captured carriers into the valence or conduction band with the 

rate 

e = 0 N v e-~H/kT nOv th ( 5 ) 

derived through detailed balance, where 00 is the capture cross-section 

(including an entropy term), Nv is the effective density of states at the 

band edge, Vth is the thermal velocity of carriers in the band, and ~H is 

the emission activation enthalpy of the defect. 

The rate window technique quite simply gives a response that peaks 

when the emission rate is equal to a specified value. The response is 

formed by applying three linear operations to the raw, measured signal. 
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First,abaseline~time to is'defined'''arrd the value 'of the-s!gnal"at~this 

time is subtracted from the raw signal. Second, the baseline restored 

signal is multipl ied by a weighting function with a characteristic time 

constant related to to. Third, the resultant function is integrated over 

time. Because the DL T5 signal is composed of decaying exponentials, the 

second and third operations together are equivalent to performing a 

Laplace transform of the weighting function. The high temperature side 

of the response lineshape can therefore be understood by looking at the 

trends of the Laplace transforms as the weighting functions are varied. 

The baseline restoration, however, modifies the Laplace transform for 

slow emission rates at the lower temperatures. The low temperature 

side of the response lineshape is therefore dominated by the effect of 

base line restorat ion. 

A general, analytic expression can be derived in a straightforward 

manner for the full width half max (FWHM) linewidth of the response as 

a function of temperature. If e" T 1 and e2, T 2 are the emission rates 

and temperatures at which the response is half of the maximum, and eo. 

To are the emission rate and temperature at which the response is a 

maximum, then the temperature resolution is given by 

~T r 
= In(OoNovo/eo) I 

T L In(OoN ,v,/e ,) 

where N" N2, and N3 are the band density of states at T" T 2, and T 3 

respect i ve I y. 

To faci I itate the comparison between the various weighting 

funet ions and baseline restorat ion times, this equation can be rewritten 

as 
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~T r 
- = In(OoNovot'*to) I -------
T· L In(OoN ,v,'t'*to)+ln(x,) 

( 7 ) 
1 

I 
In(OoN,v,t'*tO)+ In(xz) J 

where t'* is the effective time constant defined as 1/eoto, and x 1 and x2 

are the ratios of the half max time constants over t'*to. 

This equation is quite general, yet several observations can be made 

regarding its qualitative behavior. First, the linewidth does not depend 

expl icitly on the binding energy of the deep level. Second, the- I inew idth 

depends only weak lyon the temperature through the temperature 

dependence of the density of states and the thermal velocities. Third, 

the exact value of the linewidth depends sensitively on the cancellation 

between the two terms in parentheses. Typical values for In(ONvt'*to) 

are of the order of 20, while In(x,) and In(x2) are typically of the order 

of 1. Therefore the linewidth is determined predominantly through the 

def ect capture cross sect i on and the base line restorat ion time to (both 

of which can vary by many orders of magnitude) and depends rather 

weakly on the the specific choice of weighting function ( which defines 

't'* ). 

As mentioned earlier, the details of the high temperature side of 

the response I ineshape are de term ined from the properties of the 

Laplace transform of the weighting functions. Neglecting baseline 

restoration, the response for a weighting function w(s,t) is 

r 
R(s,t') = sle-tlt' w(s,t) dt 

J 
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wheres is the the weighting'function-rate,·and 7: is the "emission rate 'of 

the deep level as a function of temperature. This response is just the 

Lap lace transform of the weighting function. The transforms of three 

common weight ing funct ions are given in Table I. The high temperature 

lineshape is determined by the numerators in Table I because the product 

S7: vanishes as the temperature incr;eases above .the temperature when 

s-r:~= 1. Clearly, the response for the sine function vanishes faster at 

high temperatures than the responses for the cosine -and· decreasing 

exponential functions. 

The functional form of the high temperature response of these and 

all other Laplace transforms is simply the Laplace transform of the 

leading term in the Taylor's expansion of the weighting function. 

Therefore if the leading term in the weighting function goes as tn, then 

the high temperature dependence of the response goes as (s-r:)n+ 1. To 

increase the steepness of the slope, which decreases the high 

temperature half-width at half-max of the final response, the leading 

term in the Taylor's expansion of the weighting function should be of as 

high an order as possible. This is nothing more than weighting to later 

times which reflects the fact two decaying exponentials separate 

hyperbolically with increasing time. The price, of course, for the 

decrease in linewidth is the corresponding-decrease in signal to·noise. 

Baseline subtraction is necessary both to remove any DC drifts in 

the signal and to make measurements feasible in a reasonable length of 

time. Baseline restoration does not affect the high temperature 

response of the Laplace transform, so the remarks about weighting to 

later times is still valid. However the baseline subtraction does cut off 

the low temperature response of the Laplace transform, providing the 
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characteristic DL TS 1 ineshape. 

The time constant of the weighting function. (1 Is). and the basel ine 

restoration time. to. both provide characteristic measurement times. 

They are not equal in general. though they usually are Doth of the same 

order of magnitude. As s or to or the functional form of the weighting 

functions are changed. the emission rate eo for which the response 

function is a maximum changes. To compare the various response 

functions. the dimensionless effective time constant 't'* = 1/eoto is used 

which is related to s implicitly. As a rule of thumb 't'* ~ 2/sto• Le. eo~ 

s/2. but this is not true in general. especially when 1 Is > to. For a 

given weighting function. as s decreases the weighting function weights 

to later times with respect to to. decreasing the linewidth. This causes 

't'* to increase towards unity. 

Changing either s or to. or both, changes the temperature at which 

the DLTS response peaks. This artificially affects the calculated 

linewidth through the temperature dependence of the density of states. 

Therefore to compare the results for various weighting functions with 

different s's, and to's. it is necessary to "normalize" the responses such 

that the peak always occurs at the same temperature. This is done in 

principle by choosing a set function and a set ratio 1/sto. and then 

changing s and to simultaneously until the peak occurs at the same 

temperature To. Since the ratio 1/sto implicitly determines the 

effective time constant 't'* for the function, the results to be compared 

can a II be plotted vs. 't'*. 

The full width half max linewidths for nine functions covering a 

range of 1/sto are plotted in Fig. 3 vs. r*. The magnitude of the 

I inewidths depend on ONv't'. which is taken equal to 109 in this example. 
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'Several features 'can be noted, First, "the linewi"dth for a set function 

decreases as r* increases; this is nothing more than the effect of 

decreasing the linewidth by weighting to later times. Also, the 

I inewidth from several different functions which have the same" r* 

decreases as the order of the leading term in the Taylor's expansion of 

the function increases. A deviation from this last observation occur.s 

for the sine function with low 't'*. This is due to the osci Ilatory nature 

of the sine function leading to an additional effective baseline 

subtraction when sto > 2. Furthermore, the weighting functions which 

are mononom ials have only one r*, regardless of the choice of s, and 

they occur at the limits of the relevant weighting functions as s goes to 

zero such that only the first term in the Taylor's series of the weighting 

function remains. In the Appendix the values of 't'* are given for the 

nine weighting functions of Fig. 3. 

The most important result from Fig. 3 is that there is an absolute 

lower bound to the linewidth. This limit is approached as 't'* approaches 

unity. Of course the linewidth limit, which is always finite, is 

approached with vanishing signal to noise. The Taylor's expansion of 

OCt-to) around t = 0 has the highest order leading term of any function 

defined on the interval [O,tol. Therefore the delta function produces the 

minimum linewidthof all,weighting functions. 

The resolution limit as a function of oNvto is plotted in Fig. 4 . 

The linewidth decreases for increasing CJ and to. The capture cross 

section, 0,. can vary in value from 10- 12 cm2 for defects with 

coulombic excited states, to 10-22 cm2 for deep repulsive centers. 

Therefore semi-shallow, effective-mass-like states typically have quite 

narrow I inewidths. Although 0 is a non-variable property of the deep 
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level defect, to is set by the experimenter, and depending on the 

apparatus can be increased from microseconds to seconds. The va lues in 

Fig. 4 are only the low bound on the possible linewidth. The actual 

linewidth will be larger than this value, the amount depending on the 

choice of weighting function. 

As stated previously the minimum I inewidth is approached only at a 

cost of the signal-to-noise ratio. For a single shot, the signal is 

rto 
5 = I w(t) S(t) dt 

J o 

where S(t) = s(t) - s(to), s(t) being the raw signal. 

The noise is 

r rto 2 
N = ~ I I w(t) I 

L J 0 

,1/2 
dt ~ 

J 

For repetitive signal averaging the signal to noise ratio becomes 

SIN I rep = j rep rate * SIN lone shot 

where j rep rate :: 1 I v"to. 

( 9 ) 

( 10 ) 

( 11 ) 

The signal-to-noise ratios for eight of the weighting functions in 

Fig. 3 are plotted in Fig. 5. The signal-to-noise ratio decreases roughly 

exponentially with increasing t'*. This reflects the fact that weighting 

to later times decreases the signal-to-noise ratio by weighting the tails 

of exponentially decreasing signals. At small effective time constants 

the signal-to-noise ratio also falls off because the time constant of the 
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weighting function is considerably smaller than the measurement "time, 

to, creating considerable "dead" time before the next repetition. As 

pointed out by Miller et. al.5, the largest signal-to-noise ratio Is 

obtained for the decaying exponential weighting function. The largest 

signal-to-noise ratio occurs when the time constant of the exponential 

is roughly half of to. 

IV. Conclusion 

We have investigated the efficiency of inverse Laplace transform 

and rate window techniques in decomposing a signal consisting of a sum 

of decaying exponentials into its constituent parts. These techniques 

are all spectroscopic transform techniques that give general results 

without making strong assumptions about the original form of the signal. 

The rate window technique is the more stable teChnique with 

respect to noise, but has the lower resolution. An absolute lower bound 

on the temperature I inewidth is found which is independent of the defect 

act ivat ion energy. This lower bound does depend on the capture cross 

section and on the baseline restore time, both of which can vary by many 

orders of magnitude. The smallest linewidths are given by using a 

weighting function that has -a high order first term in its Taylor's 

'expansion. This explains the empirical result that the best practical 

resolution is obtained with the double boxcar using narrow windows and 

a long delay after the pulse? With these constraints the smallest 

achievable energy linewidth is limited to around 7%, though the most 

usual situations give I inewidths that vary from 9% to 15%. 

The Gaver-Stehfest algorithm for the inverse Laplace transform can 

provide a substantial improvement in resolution over the standard rate 
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window technique. Whi Ie the algorithm is unstable with respect to 

noise, simple data integration and smoothing are sufficient to bring the 

algorithm into an efficient range. For a common signal-to-noise ratio of 

333: 1 an energy resolution of about 4% may be possible for "typical" 

deep levels. The algorithm is also well suited for real-time data 

analysis and should be easily implemented on computer-controlled DLTS 

systems. 
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Appendix 

The effective time constants for the various weighting functions 

must be determined numerically as the signal time .constant which 

max i m izes" the -response 

to 

R = s f w(s,t) [ Set) - S(to) ] dt 
o 

where s is the rate of the weighting function, and Set) is the signal. The 

effective time constant is determined by both s and to through the 

dimensionless parameter n = 1/sto. The values for the effective time 

constants are: 

S(t-l/s): 

n I . 1 I .2 I .3 I .4 I .5 I .6 I .7 I .8 I .9 I 

(;'ft 1.35 1.501.591.661 .721.79 1·841·901·93 I 

n 1 .1 I .2 1 .5 11.0 12.0 15.0 1 

(;* 1.361.421 ,491·52 1 .541·55 1 

n 1 . 1 I .2 I .5 11.0 12.0 15.0 I 

(;* 1.89 1.78 1.651.60 1.58 1·571 
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sin(st): 
n I . 1 I .2 I .5 11.0 I 

r* 1.341.52 1.571.59 1 

n I .2 I .5 I 1.0 12.0 I 

7:* 1.80 I .731 .71 1.70 I 

(1): 7:* = .56 

(st): r* = .59 

(st)2: 7:*= .76 

(st)3: t'* = .80 

~. 
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Table L 

Laplace; 

Sine; 

Cosine; 

rOO 
R(s,'r:) = s I e-tl't' w(S,t) dt 

J o 

.w(s, t).= e-st 

s't' 
R(s,'t') = 

1 + S1: 

w(s,t) = sin st 

(S't')2 

R(s;'t') = .--------
1+ (s't')2 

w(s, t) = cos st 

s't' 

R(s,'t') = ----
1 + (s't')2 
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Figure Capt ions: 

Fig. 1: Result of the Gaver-5tehfest algorithm for the inverse Laplace 

transform performed on 5(t) = e-t and 5(t) = e-2t using N = 24. 

Fig. 2 : Result of Gaver-5tehfest inverse Laplace tranform algorithm for 

N = 6 and a noise variance of 0.003 per point in the signal 

funct ion. The data points are the results for two data sets with 

pseudo-random noise added to 5(t) = e -to The full curve is the 

result of the algorithm for no noise. 

Fig. 3 : The full-width-half-max of the DL T5 response as a function of 

the effective time constant 1;'* for nine different weighting 

functions. The values are computed assuming oNvto = 109• 

The functions I, (st), (st)2, and (st)3 have a uniquely defined 

effective time constant Independent of s which are the limit 

pOints of the Taylor's expansions of the other weighting 

functions. All the other functions have effective time 

constants that change as s is changed. The values of t'* for 

different s are given in the Appendix. 

Fig. 4; The absolute lower bound on DL TS resolution as a function of 

ONvto. These values were extrapolated from the t'*=1 limit of 

the values plotted in Fig. 3 for varying ONvto. 

Fig.5: Signal to noise ratio for eight weighting functions as a 

function of effective time constant. The monomials are again" 

the limit points for the other weighting functions as s -> o. 
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