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SUMMARY 
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These lectures discuss some recent developments in pulsed NMR, emphasiz-

ing fundamental principles with selected illustrative applications. Major 

topics covered include multiple-quantum spectroscopy, spin decoupling, the 

interaction of spins with a quantized field, adiabatic rapid passage, spin 

temperature and statistics of cross-polarization, coherent averaging, and zero 

field NMR. 
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LECTURES ON PULSED NMR 

A. Pines 

University of California, Berkeley 

(Presented at the 100th Fermi School on Physics, Varenna, Italy, July 1986) 

1. Introduction 

What has made NMR such a prominent and exciting modern spectroscopic 

technique? One fundamental reason of course is that NMR illustrates some 

beautiful phenomena in physics, p~oviding "textbook" examples of the 

coherent interaction of radiation with matter. But there are other reasons 

as well, related to the practical applications of NMR, which we may assemble 

into four categories according to·the types of information that can be 

obtained: 

1. Site identification. Sites on a molecule (or, for that matter, in 

a crystal or even on a surface) often can be identified by the different 

chemical shifts, quadrupolar couplings and other NMR parameters that affect 

the spectrum. Quantitative measurements of intensities then can provide 

information on the occupancy of sites, obviously an important question in 

structure determination. 

2. Correlations between sites. Beyond the question of site occupancy 

(e.g., how many carbons are there of this type or that type), it is pos~ible 

to investigate relationships between sites by NMR. Such relationships may 

arise both through structure and through dynamics. On the one hand, we may 

seek static information, such as bond distances, borrd angles, and the sizes 

of spin clusters; on the other hand, we may wish to study correlated motions 
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at different sites. 

3. Dynamics. NMR is sensitive to motion both through the effects on 

spectra and through the regulation of relaxation. The range of dynamical 

phenomena covered by NMR is enormous, from molecular reorientation times of 

picoseconds to crystal impurity hopping times of hours. 

4. Imaging. With NMR it is now possible to observe, non-invasively, 

cross sections through objects, and thus obtain information about density, 

flow, and spatially localized chemical composition. 

Clearly these four categories of information are invaluable in 

applications to many areas of science, including biology and medicine. 

Needed to enjoy these benefits, however, is the ability to record signals 

with sufficient sensitivity, resolution and selectivity, and then to be able 

to interpret and analyze the spectra. A number of factors frequently 

conspire to make this an awkward task. Accordingly, in these lectures I 

shall discuss some developments that have helped to surmount many of these 

problems. For instance, when it became practical to introduce large numbers 

of rf quanta into spin systems, an exciting range of possibilities was 

opened, many of which are still being actively investigated by several 

groups. These new techniques are relevant to all four areas mentioned above. 

For example, sites of quadrupolar nuclei can be identified by high 

resolution double-quantum NMR; connectivities, correlations, and structures 

can be established by magnetic couplings in multiple-quantum proton spectra; 

correlated fluctuations can be studied by multiple-quantum relaxation; and 

NMR imaging in solids can be facilitated by multiple-quantum methods. 

The focus of these lectures is on the fundamental physics, with a few 

examples of illustrative applications. The topics covered are largely from 
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areas of research in which our own group has engaged, and they are intended 

to contribute to the school's framework of fundamental principles of modern 

pulsed NMR. The subjects treated rely on many concepts and principles (such 

as density matrix, two-dimensional spectroscopy, quadrupolar operators, 

coherence, spin temperature, etc.) covered by other lecturers. 

Some of the subjects I have been requested to address are: multiple

quantum spectroscopy, two-dimensional NMR in liquid crystals, interaction of 

spins with a quantized field, adiabatic rapid passage, spin temperature and 

cross-polarization, coherent averaging, and zero field NMR. I apologize for 

being unable to do all of them the justice they deserve.I also apologize for 

any inconsistencies in notation and convention between the different 

subjects. I have done my best to help my colleagues teaching at this school 

in providing a consistent and uniform presentation for students who are 

entering, or working in, the field of NMR applications in biology and 

medicine, and who wish to acquire some appreciation of the underlying 

physical principles. 
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2. Dipolar Couplings and Molecular Structure 

In high magnetic field, the dipolar coupling djk between two spins j 

and k on a molecule depends on the distance r jk between the spins and on the 

angle Gjk of the j-k vector relative to the field: 

2 
3 (3cos Gjk - 1) 

r jk 

Measurements of time-averaged dipolar couplings from the NMR spectrum 

therefore can provide information about molecular structure and dynamics. 

Figure 1 illustrates the sensitivity of NMR spectra to structure by showing 

an experimental spectrum of benzene oriented in a liquid crystal, as well as 

simulated spectra for different possible structures of symmetrical six-

carbon frameworks. This figure, provided by Z. Luz, demonstrates clearly 

how precise the determination of the authentic hexagonal structure is in 

this simple pedagogical case. 

3. Onset or Spectral Complexity 

The case of benzene, with six proton spins, exemplifies a resolved 

tractable spectrum of dipolar couplings. The situation rapidly becomes more 

complex, however, as the number of spins is increased. This effect is 

illustrated in Figure 2, also courtesy of Z. Luz. Beyond eight or so spins, 

depending on symmetry, an exponential increase in the number of NMR 

transitions renders the spectrum intractably complex. The case of eight 

spins is illustrated in Figure 3, which shows the spectrum of n-hexane-d6 

(methyls deuterated) in isotropic solution, where the dipolar couplings are 

averaged to zero and where at this resolution the chemical shifts are 

essentially the same; and in Figure 4, which shows the spectrum of the same 



5. 

molecule oriented in a liquid crystal, displaying an enormously complex 

spectrum of dipolar couplings. 

A rough estimate of the complexity can be made by looking at Figure 5, 

which shows the energy level diagram for a group of N coupled spins-1/2 in 

high field. The conventional one-quantum NMR transitions, shown as solid 

vertical lines, are subject to the selection rule 

(2) 

The number of energy levels with magnetic quantum number M is (N/2N+M)' 

and if one is restricted to transitions between neighboring M's, then 

is an upper bound to the number of one-quantum transitions. For N = 4 this 

number is 56, for N = 8 it is 11,440, and for N = 12 it is 2,496,144. 

4. Simplification by Multiple-Quantum Transitions 

Having encountered the problem of spectral complexity, we may also 

discern in Figure 5 a possible solution. The dashed arrows indicate 

multiple-quantum transitions, in which several spins flip together subject 

to the general rule 

(4) 

As n, the number of quanta, increases, the number of transitions decreases 

and the spectra therefore should become simpler. The generalization of (3) 

to n-quantum transitions is 

z (2N) 
n = N+n (5) 

and for zero quantum transitions is 
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6. 

Examining these expressions, we can see that the dependence of the number 

of transitions on N for high n ( n = N, N-1, N-2) is roughly 

Z - 1 
N 

Thus the number of (N-2) quantum transitions is quadratic in the number of 

spins, and since the maximum number of couplings is 

Z = N(N-1) 
d 2 

(8) 

the (N-2) and (N-1)-quantum spectra should contain sufficient information to 

determine the djk • 

5. Analogy to Chemical Isotopic Labeling 

There are other ways to simplify spectra. One conceptually simple but 

synthetically demanding method is to isotopically label spins at selected 

positions in the molecule. For example, deuteration of all but two 

positions on a molecule dramatically reduces the number of lines in the 

proton spectrum and thus facilitates the direct determination of the djk's. 

We may then ask about the relationship of this simplification to the 

simplification realized in multiple-quantum spectra. Note that the number 

of isotopically substituted species with single labels is at most N and that 

the number of isotopically doubly labeled species is at most N(N-1)/2 - the 

same order as the number of (N-1) and (N-2)-quantum transitions, 

respectively. In effect, when we flip N-1 .out of N spins, the remaining 



7. 

spin (or, equivalently, the one labeled spin) can be in anyone of N 

positions. When we flip N-2, the remaining two can be in N(N-1)/2 

configurations. Hence the N-p quantum spectrum is a superposition of 

spectra from· all possible arrangements of p isotopic labels. 

As an example, consider oriented benzene, whose one-quantum spectrum 

was shown in Figure 1. The 6-quantum spectrum should contain one line, 

since there is only one way to absorb six quanta and thereby flip all six 

spins. The 5-quantum spectrum arises from, roughly speaking, flips of five 

spins in the field of a sixth. Since this last spin may be up or down, and 

since all positions on the molecule are equivalent, the 5-quantum spectrum 

should contain just one doublet. In general there will be a doublet for 

each inequivalent position or each different singly labeled species. Next we 

have the 4-quantum spectrum, which involves the flip of four spins in the 

field of the remaining two. These two can be ORTHO, META or PARA (the three 

doubly labeled isomers), so we expect three triplets (seven lines). Figure 

6 clearly shows these predictions realized in the multiple-quantum NMR 

spectra of oriented benzene. 

6. Obtaining Hultiple-Quantum Spectra 

Since multiple-quantum transitions are not directly observable with an 

NMR coil, they must be detected indirectly by two-dimensional spectroscopic 

methods, as described in the lectures by Ernst. The general scheme of such 

an experiment is 

Preparation(T)-Evolution(t1)-Mixing(T')-Detection (t2) • (9) 
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During the time period t 2 , direct detection of allowed one-quantum 

frequencies provides information about the multiple-quantum frequencies in 

the earlier time period t,. The two-dimensional Fourier transform spectrum 

then displays the directly detected one-quantum spectrum parallel to the 

frequency axis w2 and the multiple-quantum spectrum parallel to the 

frequency axis w,. An example is shown in Figure 7. The multiple-quantum 

spectrum of Figure 6 is the projection of such a two-dimensional spectrum, 

in absolute value mode, onto the w, axis. Figure 7b clearly shows the seven 

four-quantum lines of benzene and their connections to the one-quantum 

transitions. To obtain uniform multiple-quantum intensities, multiple

quantum spectra are typically averaged over a range of values of the 

excitation time. (= .'). 

7. Theory of Multiple-Quantum NMR: Preliminaries 

Since we will be interested only in the multiple-quantum spectrum, that 

is, the projection onto the w, axis, we need detect just the integrated w2 

signal, which is given by the value of the magnetization at the first point 

(t 2 = 0). Furthermore, since the system usually begins in equilibrium at 

high temperature and in high field, where its density operator is 

proportional to I z , we shall find it convenient to monitor I z at t2 0 

following the mixing. This formulation, outlined in Figure 8, frames the 

problem in its most symmetric form with no loss of generality. U is the 

preparation propagator, L(t,) the evolution propagator, and V the mixing 

propagator. The value of <Iz> is detected at t2 = 0 as a function of t,. 

For simplicity, I suppress the subscript in t, and write t, since only this 

one dimension will be relevant for the remaining discussion. 
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In general, the initial quantum statistical state of a system is 

characterized by a density operator p(O), which we depict as a ket \p(O» 

(and its dual bra <p(O)\) in Liouville space. Under the influence of a 

propagator L(t) the system develops into a state \p(t»; i.e., 

\p(t» = L(t)\p(O» • (10) 

Diagrammatically, this transformation looks as follows: 

I L(t) 
p(o» vr-_ ___ ---~ /p(t» ( 11) 

XBl B68-9472 

L(t) is a superoperator, or super propagator , which I will continue to term 

propagator for short. (This usage should be distinguished from the 

propagator L(t) that acts on quantum mechanical kets in Hilbert space; 

context will normally render this distinction evident, but for clarity, 

superoperators will be denoted in bold type.) L(t) derives from the 

Hamiltonian superoperator or Liouvillian H by 

L(t) 
t 

T exp«-i/~ f H(t')dt') 

o 
( 12) 

where T is a time ordering operator. 

I remind you that the density operator 

p = n;><-~r ( 1 3) 

is the ensemble average of the projectors of the states W for the 

constituent members of the ensemble, and furthermore that the ensemble 



10. 

average expectation value of any observable Q (what we measure or observe) 

is given by 

(Q> Tr (pQ) (14a) 

where 
(14b) 

is the scalar product in Liouville space. 

8. Hultiple-Quantum Signal 

We shall be concerned with the detection of the normalized signal <I z> 

as a function of evolution time t - the multiple-quantum free induction 

decay F(t). Of course t and " will be parameters in F(t) as well. In the 

superoperator notation, the state of the system Ip(t» at the end of the 

mixing in the scheme of Figure 8 is given by 

Ip(t» = V(")L(t)U(,)lp(O». ( 15) 

If we now assume a high temperature, high field equilibriUm initial 

condition, 

( 16) 

and detect <Iz >, then (15) yields the multiple-quantum free induction decay 

F(t) <I IV(,')L(t)U(,)II > z z ( 17) 
<I rr--> ---

z z 

Henceforth, I take the signal to be normalized, «IzI1z> 1), so that 

( 18) 

So now you see the general rule with superoperators: begin on the right 

with a ket for the original state, propagate from right to left, and end on 

>.l 
f· 



11. 

the left with a bra for the detected state. From (18), given the 

Hamiltonians for the three periods (T, t, T'), F(t) can be evaluated, and 

from the Fourier transform of this signal the multiple-quantum spectrum can 

be obtained. Let us examine some examples. 

9. Special case: One-Quantum FlO Point-by-Point 

First we consider a "normal" one-quantum free induction decay (FID) 

within the framework of Figure 8 and (18). In such a normal FID, the 

transverse magnetization, say <Ix>' is detected directly. Permit me to 

assume, however, that we perform the experiment in a silly way - indirectly 

and pOint-by-point - by making U(T) a (w/2)y pulse, V(T') a (w/2)i pulse, 

and then detecting <I z>. This procedure is equivalent to detecting <Ix> 

versus t. 
~ ) 

The scheme of Figure 8 then becomes 

P - t - pt - detect <Iz > (19) 

where P, pt are the w/2 pulse superoperators. We now insert these 

expressions into (18~ and expand in a basis set of kets in Liouville space. 

Here several basis sets can be considered - fictitious spin operators, 

product operators, spherical tensors or multipole operators, and 

eigenoperators. The non-Hermitian eigenoperators of L(t), Ij><kl, are in 

fact particularly well suited to these problems. For j ~ k these correspond 

to coherences and for j = k they correspond to populations. We represent 

the eigenoperators of L(t) as kets written Ij-k>, so that 

L(t) Ij-k> (20) 

where Wjk is the frequency of the transition between eigenstates j and k of 

the (time-independent) evolution Hamiltonian. Hence we have 
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F(t) =<1 Ipt L(t) p II > z z 

= ,Lk <I Iptlj-k><j-kIL(t)lj-k><j-klpII > J, Z z. 
• (21) 

We now use (20) and evaluate the other matrix elements in (21), for 

example, 

<J-klpIIZ> = Tr{lk><jlpIzP t } 

= <jIPI ptlk> = (PI pt)'k 
z Z J 

(22) 

where I xjk is the (j,k)th matrix element of the operator Ix. In this way, 

(21) yields finally the well known result 

F(t) (23) 

with its Fourier transform, 
() 

(24) 

giving the spectrum of <IxIIx(t» - the time autocorrelation function of Ix. 

The spectrum yields the one-quantum frequencies since I Xjk r 0 only for one

quantum transitions; consequently, we term Ix a one-quantum operator. An 

important point to note is that we obtain all lines in phase because of the 

appearance of squares of the absolute magnitudes of (PIzpt)jk = I xjk • 

10. General case: Multiple-Quantum FlO 

We now expand (18) in the Ij-k> basis set for general U, V to obtain 

F(t) = <I IVCr' )L(t)U(-r) I I > z z 

<I IVCr') Ij-k><j-k IL(t) Ij-k><j-k IU(-r) I I > z z 
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(25) 

where 

I z (') U(')IzU t (.) 

and (26) 

I (-.') Vt(")I V(.') z z 

are the effective preparation and mixing operators. These operators, 

however, are multiple-quantum, unlike Ix. As a consequence, the phases 

vary from line to line since -(Iz(-"»kj(Iz('»jk are, in general, complex 

numbers. 

As an example, consider the simplest and most widely used multiple-

quantum sequence, the three pulse sequence 

~ ~ - (-)_ - t - (-) 
2 Y 2 Y 

detect <I > 
x 

In the present framework, if the detection is to be matched to the 

(27) 

preparation so that. = .', then an additional (~/2)y pulse must be inserted 

a time • after the third (~/2)y to create 

(28) 

Here both U and V derive from the Hamiltonian Hxx ' transformed by the y 

pulses from the normal bilinear (e.g. dipolar) Hamiltonian Hzz . 

Inserting (28) into (25) yields 

F(t) (29) 
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Note that we have ( )2 not \ \2 for the matrix element in (29). For 

closely spaced multiple-quantum lines, the arbitrary phases will cause a 

cancellation of intensity, a crucial problem in complex molecules and solids 

that is illustrated schematically in Figure 9a. 

11. Time-Reversal Detection 

One solution to the phase problem mentioned above follows from the 

realization that the integrated intensity of the multiple-quantum frequency 

spectrum is given by the first point, F(t = 0), of the free induction decay; 

i.e., 

F(O) (30) 

Clearly, if we ensure that 

(31) 

then we recover the full intensity, with all the lines necessarily in phase. 

This phasing happened naturally in the one-quantum case of (23), and for the 

multiple-quantum case the same effect can be achieved if the Hamiltonian for 

the preparation period L is the negative of that for the mixing period L', 

namely 

(32) 

Given (32), we can evaluate (25) as 

(33) 

to yield "in-phase" lines with maximum integrated intensity, as depicted 

schematically in Figure 9b. (We shall see later that a more general 

condition, allowing all lines within a multiple-quantum order to be in 

,; 

• 
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phase, is also possible.) 

12. Effect of Phase Shifts 

Consider the effect of a phase shift of ~, i.e., a rotation by ~ around 

the z axis. For example, if U(T) derives from a secular (high field) 

Hamiltonian plus rf pulses, then such a phase shift is induced by changing 

the phases of all rf pulses by~. We define 

where Rz(~) is a z rotation superoperator 

R (~) = exp(-i~I ) z z (35) 

and we see that its effect on the eigenoperators is obviously 

R (~) Ij -k> z (36) 

where 

is the number of quanta, or order, of the coherence or transition j-k. 

Thus, as we might expect, a phase shift of ~ in any radiation inducing 

multiple-quantum transitions will be "seen" by a n-quantum transition as n~. 

Suppose we now perform a multiple-quantum experiment with time-

reversal detection as in section 11 but modify (32) to obtain 

(38) 

so that the phase of the/preparation sequence is shifted by~. Inserting 

this propagator into (25) and using (36), we find that (32) now becomes 
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F (t) L I I () 12 e-iwJ'kt e-i</>nJ'k 
~ = 'k L 'k 
't' J Z J 

(39) 

Thus each complete n-quantum spectrum is phase shifted by n</>. For t 0, we 

have 

F (0) L II (or) 'k l2 e-i</>nJ'k </> = jk z L J (40) 

so the integrated intensities of the multiple-quantum spectra for each L may 

be determined by Fourier transformation with respect to </>. This 

determination may be made more efficiently by varying </> proportionately to L 

to yield the full L dependence of the n-quantum intensities in one 

experiment. 

13. Time Proportional Phase Incrementation (TPPI) 

The phase behavior above provides a convenient way to separate 

multiple-quantum coherences from each other (as shown for example in the 

benzene spectrum of Figure 6.) In (39), if we set 

</> =~wt (41a) 

then we have 

F(t) = ~klI (L)'k 12 e-it(Wjk + ~wnjk) 
J Z J 

(41b) 

so each n-quantum line is shifted by n~w, thereby allowing a clear 

separation of orders in one experiment. 

1 4. Double-Quantum NMR in Solids 

An area where double-quantum NMR has played a useful role is in spin I 

systems, e.g., deuterium. The appropriate energy level diagram is 
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depicted in Figure 10. Owing to electric quadrupolar coupling the non-

spherical deuterium nucleus experiences an orientation dependent splitting 

of its resonance lines leading to broad powder signals (-100 kHz) in solids, 

as described in the lectures by Bloom. This inhomogeneous broadening 

obscures the small chemical shifts. It is pleasant to realize, however, 

that this problem can be overcome by detecting the double-quantum spectrum 

(transitions between M = ±1), which is unencumbered by electric quadrupole 

broadening. This approach allowed the first measurement of the chemical 

shielding anisotropy (--6ppm) of hydrogen in benzene. An example of these 

effects is provided in Figures 11 and 12, which show the double-quantum free 

induction decay and spectrum of solid benzene-d1• The double-quantum 

coherence was prepared by irradiating the center of the spectrum with a weak 

pulse, for which the rf amplitude w1 is much less than the quadrupole 

coupling wQ' resonant only with the double-quantum transition at wOo The 

effective n/2 pulse is then characterized by the condition 

n 
'2 (42) 

where L is the pulse length. I shall expand on this idea later when we get 

to double-quantum decoupling in section 23 and double-quantum excitation in 

section 32. 

The double-quantum transition of a single spin I = 1 is analogous to 

the full N-quantum spectrum of N coupled spins-1/2. We recall that an N-

quantum spectrum arises from just one transition, unaffected by any spin-

spin couplings. 
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15. Double-Quantum Spin Locking 

Spin locking is a widely used technique for extending the lifetimes of 

coherences in the rotating frame, and is essential in various relaxation and 

cross-polarization experiments. It can be performed by applying a (n/2)y rf 

pulse to the z magnetization, and then shifting the rf phase by n/2 to x 

while irradiating continuously. The magnetization is thus aligned along the 

rf field, hence the term locking. The decay of the magnetization order now 

depends on spin-lattice processes in the rotating frame. An appealing 

question is whether one can lock double-quantum coherence in a similar 

fashion, even though the one-quantum spectrum may be extremely broad. In 

other words, can we create double-quantum coherence and then apply radiation 

. to lock it? Suppose the double-quantum coherence is prepared with a weak 

pulse applied at the ceriter of the resonance. From the disc~ssion in 

section 11 we know a n/4 phase shift in the radiation is needed to deliver 

an effective phase shift of n/2 to the double-quantum transition. A 

pictorial representation of this behavior appears in Figure 13. The dipolar 

one-quantum coherences of Figure 13(a) act like vectors (i.e., first rank 

tensors), which are shown in the diagram as Px and Py orbitals that are 

created from a Pz orbital representing the equilibrium magnetization. In 

these circumstances, a n/2 phase shift takes Px into Py' The quadrupolar 

double-quantum coherences of Figure 13(b), however, act like second rank 

tensors - dx2_y2 and dxy orbitals. A n/4 phase shift interchanges these 

orbitals, whereas a w/2 phase shift changes their signs. (Here recall our 

earlier discussion of time reversal.) 

The extension of a double-quantum free induction decay time from a few 

hundred microseconds to a few milliseconds by a spin locking experiment of 
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this sort is shown in Figure 14. The technique has been used in double-

quantum cross-polarization of broad deuterium and nitrogen-14 resonances in 
.. 

solids. 

Of course these types of coherence do not occur exclusively in spin 

systems, but rather they are a general manifestation of the superposition of 

stationary states, which results in real or fictitious multipolar 

oscillations. For example, as shown in Figure 15, a coherent superposition 

between the ~O and ~1 states of a one-dimensional harmonic oscillator 

exhibits "dipolar-like" oscillations, and a coherent superposition between 

the ~O and ~2 states exhibits "quadrupolar-like" oscillations as the 

superpositions evolve between the ± combinations. 

16. Molecular Structure by Hultiple-Quantum NMR 

In our previous discussions of multiple-quantum NMR, oriented benzene 

served as a convenient pedagogical prototype. Another example, perhaps 

closer to "real life", is given in Figure 16, which shows the normal one-

quantum spectrum of a cyanobiphenyl liquid crystal molecule containing 8 

protons. The result is to be contrasted with the six-quantum spectrum in 

Figure 17, where an analysis of the spectrum in terms of dipole couplings 

may be made to study the structure and dynamics of this flexible molecule. 

Using the structure, 

H H H H 
III 8~1-'l1? 

with jumps between the four equivalent conformations, the five-quantum 
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spectrum can also be simulated, and this spectrum is compared with 

experiment in Figure 18. 

A further application of multiple-quantum methods combines multiple-

quantum filtering with two-dimensional correlation spectroscopy to 

investigate randomly deuterated molecules in liquid crystals. This method 

allows a separation of the different proton-containing isotopomers in 

situations where the normal proton spectra might be too complex (recall, for 

example, hexane-d6 in Figure 4). An example of such simplified spectra, 

obtained for 80% randomly deuterated hexane is shown in Figure 19. Spectrum 

19(a) was obtained with the pulse sequence 

- 1T 
X 

'1 
2 

1T '2 - (-) --
2 x 2 

- 1T 
X 

'2 
2 - sample (43a) 

where $ is incremented in 900 steps while alternating the detector phase 

between 00 and 1800 and increasing '1 after every fourth shot to reduce 

contributions from three-spin systems. Spectrum 19(b) was obtained with the 

sequence 

'1 
- - - 1T -

2 $ 

'1 
2 

- 1T 
X 

'2 - --
2 

sample, (43b) 

where $ and the detector are again cycled. In this way, all 16 dipolar 

couplings of oriented hexane have been determined and partly assigned to 

pOSitions on the molecules. Note that hexane is a formidable spin system, 

with 14 strongly coupled protons, and that its conventional spectrum is 

considerably more complex than that shown in Figure 4. This technique 

should help determine conformational dynamics of flexible molecules of this 

kind, and may be extended to molecules of biological interest. 

-.;. 
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17. Selective n-Quantum Excitation 

High n-quantum transitions, though desirable, generally are of 

annoyingly low intensity. This problem can be partly overcome, however, by 

selective n-quantum excitation~ under which a phase shifted string of 

sequences wl~h propagators U~ 

(44a) 

X B L ·866·6351 

The total propagator UT is given by 

(44b) 

with each U~ obtained from a basic Uo by transformation (34). If ~ = 2~/n, 

then only n-quantum operators survive in the overall propagator, thereby 

making the propagator n-quantum selective. But in order for this 

selectivity to be achieved U must contain n-quantum operators. One approach 

is to construct a "sandwich" 

(44c) 

where U describes a brief excitation and Q and Qt describe a pair of lengthy 

sequences, related by time reversal, which induce multiple-quantum operators 

in U. An example of selective excitation of the 4-quantum spectrum of 

oriented benzene is shown in Figure 20. 

Selective excitation can be viewed in the frequency domain as shown in 

Figures 21 and 22. Two-quantum excitation involves phase shifts of 2~/2 

1T, i.e. 0, 1T, 0, 1T, 0, 1T ••• This operation is symmetric in time and yields 
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a symmetric nearest sideband structure about the resonance at Wo in Figure 

21. The first resonant process is a 2-quantum transition involving one 

photon from each sideband. The phase shifts of 2n/3 for 3-quantum 

excitation yield the sequence 0, 2n/3, 4n/3, 0, 2n/3, 4n/3, with the 

unsymmetrical nearest sideband disposition shown in Figure 22. The first 

resonant process must now involve two photons from one sideband and one from 

the other. Bear in mind that this is a'linear Fourier argument for the 

obviously nonlinear process of multiple-quantum excitation, so it is wrong 

in general. Nevertheless, it prescribes the correct symmetry and is useful 

if carefully applied. 

18. Hultiple-Quantum NMR in Solids 

Time reversal detection as described in section 11 is necessary in 

solids because the transiti6n frequencies are distribute almost 

continuously. Consequently, there is an essentially complete cancellation 

of intensity if the phases of the lines are random, as in Figur~ 9(a). An 

alternative view of the same problem is depicted in Figure 23. Suppose we 

use the normal three pulse sequence (27) to excite and observe multiple

quantum transitions in a solid. The integrated intensity of the multiple

quantum spectrum is given by the initial amplitude of the magnetization 

sampled in t2 when t1 = O. But in a solid, after long T the magnetization 

will have decayed to zero and hence little or no multiple-quantum intensity 

will be observed. 

Using the appropriate time reversal detection, however, we can indeed 

obtain solid-state spectra with high n - in excess of 100 quanta. An 

example of a suitable time reversal excitation experiment is shown in Figure 
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24. The two pulses of the simple excitation sequence are replaced by a 

train of pulses who~e average Hamiltonian (see section 39) is given by 

where DQ denotes a pure double quantum operator. The nonsecular Hamiltonian 

Hxx was mentioned in section 10. 

If the phases of the x and x rf pulses in the lower sequence of Figure 

24 are all shifted by ~/2 to y and y pulses, then we simply exchange the x 

and y indices in (45) and obtain 

(46) 

Hence, from (12), the unitary propagator U is shifted to its adjoint 

U->~ (47) 

as required for detection by (32) or by (38) for use with TPPI. 

Figure 25 shows multiple-quantum spectra obtained in solid 

hexamethylbenzene for different preparation and mixing times T with the 

lower sequence of Figure 24. Solid hexamethylbenzene is an essentially 

infinite network of coupled spins, so we expect the multiple-quantum 

absorption to increase continuously with T. If at any given T we consider 

that a finite cluster of spins, say N, has become involved, then, from (5), 

the integrated intensity of the n-quantum transitions should go 

approximately as 

Z 
n 

(48) 

according to Stirling's approximation for large Nand n «N. So we expect 

a roughly Gaussian distribution of intensities, a prediction borne out well 
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in Figure 26, where even-order multiple-quantum spectra from a finite 

cluster of 21 spins are shown. The time dependence of the Gaussian width, 

also shown in Figure 26, can provide information on the distribution of 

atoms in materials, as depicted schematically in Figure 27. This method 

should be particularly useful for the study of clusters and, indeed, 

preliminary results have been realized in a number of cases, including 

liquid crystals, organic and inorganic solids, molecules in zeolite 

cavities, hydrogen in amorphous semiconductors, and molecules adsorbed on 

metal surfaces. 

19. Selection Rules in Multiple-Quantum Dynamics 

If the pure double-quantum Hamiltonian (45) is used for preparation and 

detection, then for p(O) = I z only even quantum transitions are excited. 

If we characterize the dynamical evolution of the system by the number of 

spins N and the number of quanta, or coherence order, n then the dynamical 

selection rules 

and (49) 

(50) 

have the surprising consequence that it should not be possible to observe 4-

quantum coherence in a 4 spin system, etc. A detailed study of such 

multiple-quantum dynamics has been made by Mehring and Munowitz and will be 
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published shortly. 

20. Heteronuclear Double-Quantum Coherence 

Techniques related to multiple-quantum NMR frequently are useful for 

heteronuclear spectroscopy in isotropic liquids. Bilinear rotation 

decoupling (BIRD), a method for the homonuclear decoupling of protons in 

weakly coupled liquid spin systems, can be thought of as follows. Suppose a 

hard ~ pulse is applied to all protons and a heteronuclear double-quantum ~ 

pulse is then applied to directly coupled carbon-13 proton pairs., This 

selective pulse restores to +z all proton spins coupled directly to carbon-

13. The net effect is to invert all other spins, thus enabling them to be 

decoupled. 

A pulse sequence that induces the double-quantum or bilinear rotation 

is 

(!) _ ~ _ ~ '- (!) 
2 2 2 2 (51a) 

~ 

If the Hamiltonian for the coupled I-S system is HIS = JIzSz then (51a) 

produces a propagator of the form U(,) = exp(-i2~'IySz). For, = 1/J this 

propagator is a ~ pulse only for the directly bonded (satellite) protons. 

A further use of heteronuclear multiple-quantum coherence is to obtain 

sharp NMR spectra in the presence of inhomogeneous magnetic fields or 

susceptibility brQadening. One technique, termed SHARP, uses echoes during 

the evolution of carbon-13 or nitrogen-15 coherence in the presence of 

coupled protons. This procedure should be useful in spatially selective NMR 

of heteronuclear systems with two rf COils, in particular where the relevant 

spatial region is in an inhomogeneous field or broadened by magnetic 
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susceptibility effects. An example, shown in Figure 28, demonstrates a 

simple version of spatial selectivity and high resolution with a surface 

coil on tubes containing ethanol and alanine. -The pulse sequence used for 

this experiment was 

( 1 H) 1f T T 4tl T' 
I (-) - - - 1f 

2 
x(---) 

2 
1f 

2 x 2 5 
T' 

2 
-,. sample(±) 

S ( 13C) 2! (±) 1f 
1f 

2 
1f 

2 
1f 

where x(4t 1/5) implies continuous irradiation and the ± indicate that 

signals from experiments differing by 1800 in phase are subtracted to 

further suppress non-satellite peaks. 

(51b) 

21. Comment on Relationship or Spatially Selective Pulses to Zero Field NMR 

I'd like to make a brief comment on the connection between spatial 

selectivity with a surface coil (mentioned also in the lectures of Styles) 

and a seemingly unrelated area - Zero Field NMR. In normal high field NMR 

we are accustomed to exciting and detecting the NMR of different spins (e.g. 

1 13 ) . H, C, ..• separately and selectively according to their different 

frequencies. If we wish to work with protons we may use 400 MHz, for 

example, and for carbon-13 we would then use 100 MHz. In zero field, 

however, all basic resonance frequencies are zero. So how do we 

differentiate between different species? The answer is that we use the 

magnetogyric ratio, which is analogous to the rf amplitude 001 in high field 

NMR. If we apply DC pulses the spins respond differently according to their 

magnetogyric ratios. But is this notion not identical to the idea of 

spatial selectivity using a surface coil with composite pulses in high field 

.• ' 
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NMR? The two tubes in Figure 28 experience different w1 fields and this 

distinction is what is often used to label such regions. So some of this 

work in spatial selectivity has been useful in Zero Field NMR, a topic about 

which I shall say a few words at the end. 

22. Spin Decoupling 

To prepare for the case of double-quantum decoupling let us first 

consider the decoupling of a spin I = 1/2 from an observed spin S = 1/2. 

The I spin is irradiated near resonance with an rf field of amplitude w1. 

In the rotating frame the Hamiltonian is 

H = H 0 + HIS 

where 

HO -b.wI - w I z 1 x 

describes the I fields in the rotating frame in frequency units and 

dI S z z 

(52) 

(53) 

(54) 

is the I - S coupling. We now transform to a tilted frame with z along the 

effective I field. The tilt operator is given by 

where 

In this frame 

T = exp(-ieI ) 
y 

cose 

(55) 

(56) 



H -w I + dS (I cose - I sine) 
e z z z x 

We now go into a frame defined by -weIz and take the average 

Hamiltonian (see section 39) of the I-S coupling term, obtaining 

-(0) 
HIS 

and, at resonance (~w 

dcoses I z z 

0, e 1f/2) , 

28. 

(57) 

(58) 

(59) 

(60) 

- (1) S For a spin S = 1/2 the term HIS in (59) commutes with the spin vector 

so only Hrs(O) and Hrs (2) are relevant. 

Away from resonance, where ~w r 0, the effective coupling between rand 

S is dominated by HIS(O), and the decoupling efficiency Os (roughly the 

relative S linewidth) goes as 

( 61) 

Thus for small ~w, more precisely d « ~w « w1' the S linewidth should 

depend linearly on ~w. 

At resonance (~w 
- (2) 0) the dominant term is HIS and we expect 

(62) 

i.e., the decoupling efficiency should increase (the S linewidth should 
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decrease) inverse quadratically with w1(os-1/wf) for large w1' 

I note here that the cos6 factor is a scaling of an I z term analogous 

to scaling of chemical shifts or resonance offsets due to strong irradiation 

off resonance. We have recognized that this scaling originates from the 

same source as the "mysterious" geometrical phase factor in certain closed 

circuit adiabatic processes. 

23. Double-Quantum Decoupling 

Imagine that we are required to decouple a spin I = 1, say a deuterium 

spin, from a spin S = 1/2, say a proton. Such would be the case, for 

example, in experiments on large biological molecules where isotopic 

substitution has been performed in order to simplify the spin system. If the 

deuterium quadrupole splitting is large (recall Figure 10), it may be 

impossible to cover the full I spectrum with a sufficiently large w1 field. 

However, if we irradiate at the unperturbed Zeeman resonance w = wo' then 

the double-quantum transitions M = 1 <--> M = -1 should make decoupling 

possible, since the M = 0 state exerts no z field at the S spin. A rough 

estimate of the condition can be made as follows. If the quadrupole 

coupling wQ is much larger than the I-S coupling (e.g. wQ - 100 KHz for 

deuterium) then for normal one-quantum decoupling we would require 

a challenging technical demand under current NMR technology. This 

requirement is to be contrasted with the much less demanding condition 

for the S 1/2 I 1/2 pair with dipolar coupling d, as in (54). 

(63) 

(64) 
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If we excite the double-quantum transition, however, then according to 

second order perturbation theory (matrix element squared divided by energy 

difference) the transitions between M = 1 and M = -1 occur with an amplitude 

(65) 

The effective double-quantum amplitude is to be compared with the coupling 

d; hence we now require 

2 w1 »d (66a) -w
Q 

i. e. , w1 » Idw
Q 

(66b) 

which is much more easily implemented than (63) for the usual case where d 

To appreciat~!-_h~s~nsi ti vity of the dou~le-quantum decoupling to 

resonance offset ~W and rf amplitude w1 we adopt (61) and (62), substituting 

wf/wQ for w1 and 2~w for ~w. For double-quantum decoupling, the S linewidth 

is given by 

15 - cosS s 
(67) 

thus making the resonance condition for decoupling much more sensitive than 

in one-quantum decoupling, since ~W is multiplied by wQ. 

At resonance 
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IS s (68) 

d I . b· I h ( dw
Q

) 1 / 2• so ecoup lng eglns on y w en w1 - The subsequent dependence on 

W1 is much more rapid, going as the inverse fourth power. All this 

behavior has been quantitatively verified, and examples are shown in Figure 

29. Double-quantum decoupling has been used in our laboratory to obtain 

high resolution spectra of diluted protons displaying, for example, proton 

chemical shift anisotropy for the hydrogen bonds in solid heavy ice, and to 

observe the effects of the tetrahedral motion of the protons on the NMR 

lineshapes as ice is heated towards its melting pOint. Typical proton 

spectra of 99% deuterated ice with deuterium double-quantum decoupling are 

shown in Figure 30. As the ice is heated the effects of motional narrowing 

are observed. A few degrees below the melting temperature the line is that 

of an isotropic sample. The intermediate spectra indicate that the protons 

are jumping between the tetrahedrally disposed hydrogen bonds around the 

oxygens. 

24. cOmment on the Relationship between Spin Decoupling and Multiple-

Quantum Excitation 

Consider a system of N I spins (e.g. protons) coupled to an S spin 

(e.g. carbon-13). Several schemes involving composite pulses and iterative 

sequences have been devised to effect spin decoupling in such systems. 

These sequences, employing phase shifts and permutations, are reminiscent of 

some of the selective n-quantum schemes described in section 17. There must 

be some relationship between the two areas. Indeed, suppose we could 
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engineer a pure (N+1)-quantum selective scheme to excite the I spins. Since 

N spins cannot absorb or emit more than N quanta, such an excitation would 

be tantamount to implementing the unit propagator, i.e. decoupling. In this 

sense decoupling schemes employing ~ pulses and ~ phase shifts are two

quantum selective (good for decoupling one spin) and multiple pulse schemes 

involving ~/2 pulses and ~/2 phase shifts are four-quantum (not pure) 

selective and decouple groups of spins. Details on these ideas will be 

published shortly. 

25. Two Level System in a Quantized Field 

I have often been asked where are the quanta, the photons, in a 

multiple quantum experiment? When we say &M = 2, are two quanta really 

involved or just one off-resonance quantum at double the frequency? What's 

the relationship to optical multiphoton excitation? To investigate these 

questions clearly, I'd like to study the very simplest case where photons 

actually appear. In order to do so, it is necessary to bring in the 

radiation field as a legitimate full-fledged partner into the treatment, and 

not just treat it semiclassically as a time dependent perturbation on the 

spins. That way, we can "see" the photons in the field and count them. At 

the same time this treatment will remind us of Feynman's analogi of any two 

level system to a spin-1/2. Later we shall encounter generalizations of 

this analogy, e.g., a three-level system to a spin-1, and so on. The 

treatment, which was developed together with R. Harris, also reminds us of 

the analogies, often unhappily neglected, between NMR and optical 

spectroscopy. 

Before we treat two-quantum phenomena, let us review the simplest one-
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quantum problem, a two-level system interacting with a single mode of a 

cavity, described by a time independent Hamiltonian 

H (69) 

Hmat is the matter Hamiltonian, the matter being the system (atom or spin) 

irradiated and behavior observed. We assume it consists of two states, 1 

and 2, with energies ~w1 and ~w2' such that 

(70) 

1 

2 
XBL~~324 

Assume flrther that the particles occupying these states are fermions with 

coupling A. Since at most one can occupy each state, the possible states 

are 

10,0), 10,1), 11,0), 11,1) (71) 

where 10,1) is the vacuum for particle 1 and single occupancy for particle 

2, etc. We now introduce Fermion operators c1' cT, c2' c~ such that 
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11 , k> k 0,1 

(72) 

IO,k> k 0,1 

and similarly for c2' c~ and Ij,O>, Ij,1>. All other operations yield zero. 

The Fermion operators satisfy the anticommutation rules 

° 
( 73) 

j,k 1 ,2 

The matter Hamiltonian is given in terms of these operators by 

(74) 

Hrad in (69) is the radiation Hamiltonian, which we write in terms of 

the photon creation and destruction operators for a single mode, a and at, 

with frequency wand eigenkets In> (n = number of photons). We remember 

that for a harmonic oscillator, we have 

atln> = In+1 In+1> 

aln+1> = rn+Tln> 

The commutation rules are 

[a,aJ 

[a,atJ = 1 

° 

and the Hamiltonian, ignoring the zero point energy, is 

(75) 

(76) 

'. 
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Hrad = 't1wa ta ( 77) 

For Hint of (69), the interaction between the radiation and the matter, 

we assume the coupling depicted in Figure 31. A photon ~w is absorbed, 

tr~nsforming particle' into 2, or one is emitted, transforming particle 2 

into '; i.e., 

(78) 

This coupling conserves energy for w = Wo and incorporates the semiclassical 

rotating wave approximation (note that we have neglected events in which a 

photon is absorbed and transforms particle 2 into " for example). 

Equations (74), (77) and (78) now can be collected into the total 

Hamiltonian (69) as 

(79) 

26. Fictitious Spin-1/2 Operators 

At this point we introduce the fictitious spin-'/2 operators 

, t + t I 2(c, c 2 c,c 2 x 

-i t t (80) I 2 (c,c2 - c,c2 Y , t t 
I 2 (c, c, - c2c2) z 

Given the relationships (72) and (73), it can be verified that 

and cyclic permutations ( 81) 
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With the eigenstates I±> of I z defined as 

(82) 

and (83) 

the Hamiltonian (79) can be written, aside from a commuting operator 

(remember that the number of particles is conserved), as 

H = - i'lw I + 1i.wa t a + 11. A (a t'I + ) a z 2 _ aI+ ( 84) 

This Hamiltonian is identical to that of a spin-1/2 interacting with the 

cavity mode. Now assume the cavity mode is at resonance (w = wO)' and 

transform to a picture defined by 

the analog of the rotating frame in the full quantum problem. The 

Hamiltonian in this picture is given by 

H (86) 

27. Evolution of the Two Level System 

Imagine the initial state I~(O» being the excited state 1-> for the 

fictitious spin with n photons in the cavity, as depicted in Figure 32: 

I~(O» = I-,n> (87) 

The evolution of I~> is given by 

I~(t» = exp(-itHrh)~(O) (88) 

which is easily evaluated using the Hamiltonian of (86) together with (75) 
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and (83) to yield 

11jJ(t) I -At I --- At -,n)cos/n+1 2 - +,n+1)isin/n+1 ~ (89) 

This expression describes a quantum Rabi oscillation or nutation that 

periodically exchanges a photon between the cavity and the spin. The 

analogy to the usual semiclassical problem of a spin I = 1/2 interacting 

with a resonance field of amplitude w1 is made by realizing that 

<---) w 
1 

(90) 

Note, however, that even when there are initially no photons to begin with 

in the cavity (n = 0), there is still evolution, corresponding to 

spontaneous emission from the excited spin or two level system. Note also 

that for a 2n pulse, 

2n ( 91) 

the ket 11jJ(0» does not come back to itself but instead to cosn times 

itself, i.e., 

( 92) 

This effect corresponds to the well known spinor behavior of a system with 

an even number of states or of a nonintegral fictitious spin. 

28. Evolution Off Resonance 

The expression (89), derived for resonance (w = wO)' cari be generalized 

for arbitrary frequency of the mode w in (84). This extension is best made 

by a transformation to a tilted picture in analogy to (58). The result, for 

the same initial condition (87), is 
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11jJ(t» 1-,n>[coSA t/2 - icos8sinA t/2J e e 
-1+,n+1>isin8sinAet/2 (93) 

where 

cos8 In+1 AlA e 

29. Adiabatic Rapid Passage 

(94 ) 

(95) 

The treatment above provides an elegant picture of adiabatic rapid 

passage for a two-level system or fictitious spin-1/2. Consider Figure 33, 

which depicts the energy levels of the uncoupled matter and radiation 

Hamiltonians 

as the frequency (or field) is varied through resonance. The resonance 

between matter and radiation occurs at the level crossings, W = wOo Adding 

the interaction Hamiltonian Hint causes a mixing of the states near 

resonance, which gives rise to an avoided crossing as in Figure 34. The 

repulsion between levels at resonance depends on the number of photons in 

the cavity as (n+1)1/2 A, the semiclassical field intensity w1 from (90). 

If we begin with the spin (or fictitious spin) in one state away from 

resonance, e.g. I-,n> on the left of Figure 34, and now shift the frequency 

adiabatically through resonance, then we recall from quantum mechanics that 

the system remains in an eigenstate. Thus it will go to 1+,n-1> on the 

right hand side. Therefore sweeping through a resonance line rapidly 
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compared to T1 but slowly enough so there are no frequency components at Wo 

should invert a resonance line whether we sweep from left to right or right 

to left. This effect is called population inversion by adiabatic rapid 

passage, an extremely useful way of making selective robust n pulses. The 

most efficient adiabatic sweeps are not linear (i.e., linear dependence of 

frequency on time), however, but rather are hyperbolic functions as shown by 

Baum and Tycko. 

30. Three Level System in a Quantized Field 

We adopt the notation of section 25 for three particles 

1 

XBL-866-632S 

interacting with the single mode of a cavity; we assume that only 1 and 2 or 

2 and 3 can be directly interconnected by energy conserving (rotating wave) 

absorption or emission of a single photon. Thus the interaction is depicted 

in Figure 35a, with 

(97) 

The full Hamiltonian for this system, 
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(98) 

is entirely analagous to (79). I will not discuss the general case here, 

but will instead select simple conditions under which the double quantum 

behavior will emerge. 

31. Fictitious Spin-l Operators 

First let us introduce the fictitious spin-1 operators 

I z 
t c 1c1 - c~c3 

I+ t 
c1 c2 

t 
+ c2c3 

I t 
c1 c2 

t 
+ c2c3 

(99) 

Qz t _ t - c tc 2c2c2 c3c3 1 1 

Q_ 2 

Here the raising and lowering operators are used directly without going 

through any intermediate stages involving Ix' Qx' Qxy' etc. Inserting these 



41. 

spin-1 operators in (98) and ignoring commuting unit operators (again, 

number of particles is conserved) we can rewrite H as 

H 

+ ~ [(A - A I)Q (100) 

We now specialize to the case where the two allowed one-quantum 

absorptions and emissions have the same matrix elements, 

AI ( 1 01 ) 

finding that 

H 
~ooQ t 

-11001 +-Q +tJ.wata+ 1'lA(1+a+l a). (102) o z 3 z 

This Hamiltonian is just the interaction of a quadrupolar spin-1 with. Zeeman 

frequency 000 and quadrupolar frequency ooQ. Now assume the radiation is at 

resonance (00 = 000) and that it is weak compared to the quadrupolar 

splitting, 

corresponding to the situation in Figure 35b. This condition embodies the 

weaker case where 

( 1 04) 
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32. Double-Quantum (Tvo-Photon) Hamiltonian 

In the interaction picture defined by (85). the Hamiltonian (102) can 

be written 

(105 ) 

With condition (104) we now have a situation ideal for perturbation 

theory since the second operator term H1 in (105) is much smaller than the 

first term HQ• It is appropriate to retain only the "secular" part of the 

interaction term. i.e. that part diagonal with respect to the first term. 

We carry this out as follows. First. define an infinitesimal transformation 

H' -is is e H e = H - i[S.H] + ••• 

where S is an infinitesimal Hermitian operator analogous to Vega's 

semiclassical tilt operator. Putting (106) into (105). we get 

H' 

Now we demand that the first order infinitesimal term vanish. so that 

which reduces (107) to 

H' - H + H' 
Q1 

(106 ) 

(107) 

(108 ) 

( 1 09) 
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with the modified interaction Hamiltonian 

( 11 0) 

After some algebra the S which satisfies (108) is found to be 

S ( 111) 

Evaluating the commutator in (110) with (111), we have finally for the 

effective interaction Hamiltonian 

( 112) 

According to the definitions of Q±2 and a, at given in (75) and (99), this 

form is a pure double-quantum Hamiltonian with the pleasant property of 

showing the two photons directly in the terms a 2 and a t2 . These terms 

represent the destruction and creation of only pairs of photons. 

33. Evolution of the System 

If the system begins in the upper state as shown in Figure 36 with n 

photons in the cavity, i.e., 

\1jJ(0» = \-,n> ( 11 3) 

then under the influence of the Hamiltonian (112) the system evolves as 

\-,n > cos/(n+1)(n+2Y A't 
2 

- \+,n+2>isin/(n+1)(n+2) A't 
2 

( 11 4) 



44. 

where AI is the effective two-photon amplitude 

AI (115 ) 

This result is to be compared with (89). Here two photons are being 

exchanged with the cavity; hence the process is a two-photon Rabi 

oscillation. 

The correspondence to the semiclassical case is given by 

<-) ( 116) 

When we begin with no photons in the cavity, (114) corresponds to two-

photon spontaneous emission. This process, incidentally, is how metastable 

He(1s, 2s) decays to the ground state. 

34. Double-Quantum Adiabatic Rapid Passage 

The energy levels of the three-level system and cavity photons with no 

coupling between them appear in Figure 37. There are now three relevant 

crossings indicated in the circle, two corresponding to normal one-quantum 

resonances and the one we have just described due to a double-quantum 

resonance at wOo With the interaction between matter and radiation, all 

three crossings are avoided, as shown for the case A2«n+1)(n+2))1/2 « wQ2 

in Figure 38 - roughly A(n+1)1/2 « wQ as stated in (103). The levels at 

the two one-quantum resonances repel by - A(n+1)1/2 whereas those at the 

double-quantum resonance experience the weaker repulsion 

-A 2«n+1)(n+2))1/2IwQ • Thus the adiabatic condition for the double-quantum 



resonance is considerably more stringent than that for the one-quantum 

resonances. 

45. 

Several interesting features are exposed in the diagram of Figure 38. 

The resonances of a three level system can be inverted by adiabatically 

sweeping through either all the transitions or only through the double

quantum transition. Individual one-quantum transitions may be inverted by 

selectively sweeping through them adiabatically. If we sweep adiabatically 

to the right through the left resonance and then through the double-quantum 

resonance, the left line is inverted; if we sweep to the left first through 

the double-quantum resonance and then through the left one-quantum 

resonance, the left line does not invert. The intensities of each are also 

affected. This phenomenon was first observed in experiments on spin-l 

nuclei in crystals, where lines would sometimes invert with adiabatic rapid 

passage in one direction but not in the other. It is of course possible to 

sweep so that passage through the one-quantum transitions is adiabatic, 

whereas passage through the double-quantum transition is not. If passage 

through the double-quantum transition is sudden enough compared with the 

level repulsion, then the system behaves as if the levels cross at Wo and 

there is no double-quantum inversion. Generalizations of these 

considerations to higher spin and to coupled spins is straightforward. 

I mention in closing that all these arguments concerning adiabatic 

rapid passage can of course be made using traditional semiclassical NMR 

considerations. 

35. Spin Temperature and Cross Polarization 

I was asked to say some words about sensitivity enhancement by cross-
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polarization, in particular to provide a simple statistical picture. Let me 

first review the thermodynamic picture of cross-polarization, using the spin 

temperature concepts introduced in the lectures by Goldman. 

Consider the prototypical situation in Figure 39, which shows a system 

of NS S spins with magnetogyric ratio YS in thermal spin contact with a 

system of NI I spins with magnetogyric ratio YI . The S spins experience an 

effective magnetic field BS (perhaps in their rotating frame) and the I 

spins experience an effective magnetic field BI (perhaps in their rotating 

frame). We begin with the S spins unpolarized and the I spins polarized. 

The initial I spin magnetization in the high temperature approximation is 

given by Curie's Law as 

where 

~ = kT 

is the inverse spin temperature and 

is the I spin heat capacity. The energy and entropy are given by 

and 
~(i)C B 2 
I I I 

Const - kS(i)2C B 2 
I I I 

(117) 

( 118) 

( 11 9 ) 

( 1 20) 

( 1 21 ) 

In the above expressions, the superscript (i), for "initial", indicates the 

condition before cross-polarization to S. 

We now wait a time greater than TIS for cross-polarization (by cross-

relaxation) between the I and S systems to bring them to thermal 
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equilibrium, i.e., to equal spin temperatures. Call this temperature 8(f), 

( 122) 

where superscript (f), for "final", indicates the condition after cross-

polarization. The energy is now given by 

Now we define a ratio of spin heat capacities 

2 
e: 

and a ratio of effective magnetic fields on Sand 1 

( 1 23) 

( 124) 

( 125) 

and realize that the cross-polarization takes place at constant energy since 

there are no time dependent fields. We then can equate (120) with (123) to 

obtain 

8
r
O) ( 

2 2 
1 + a e: 

and an S magnetization (recall (117)) 

(126) 

( 1 27) 

This quan~ity is a/(1+a2e: 2) times M~O), where M~O) is the normal value 

of MS at thermal equilibrium in the laboratory (i.e. when B1 = BS and 8fi) = 

8~i) ) 



36. Hartmann-Hahn Hatching 

2 2 
+ a £ 

48. 

(128) 

So far we have said nothing about the time scale TIS for cross

polarization. Equation (128) describes an enhancement of the S signal when 

I-S equilibrium is reached, but TIS depends strongly on BI and BS and 

therefore on a in (125). 

The most rapid cross-polarization occurs under the Hartmann-Hahn 

condition 

for BI and BS in the I and S rotating frames, respectively. Under these 

circumstances the mutual flip-flop of a single S spin and a single I spin 

conserves energy in the double rotating frame, as depicted in Figure 40. If 

the S spins are rare compared to I, i.e. 

£ « 1 (130) 

then, to a good approximation, equation (128) becomes 

(131) 

The ratio YI/YS gives the Hartmann-Hahn enhancement, which is -4 for protons 

and carbon-13. 

37. Other Matching Conditions 

It is possible to cross-polarize using conditions other than Hartmann-

Hahn matching, under which the enhancement is larger than (131) but the time 

required is longer. For example, if a = 2 in (125), so that 
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( 1 32) 

then a mutual flip-flop of 2 I spins and one S spin conserves energy, as 

shown in Figure 41. The value of a which yields the maximum polarization 

from (127) is 

a = e: 
(C IC )1/2 

I S 

in which case we obtain, from (128), 

This value is one half of the maximum possible S magnetization 

( 1 33) 

( 134) 

( 1 35) 

attainable by isentropic transfer of all thermal equilibrium I magnetization 

to S, as we shall see in the next section. 

This maximum can be realized by demagnetizing the I spins in their 

rotating frame at constant entropy and then remagnetizing the S spins in 

their rotating frame at constant entropy. There are a variety of 

alternative ways to effect cross-polarization, including dynamic nuclear 
<> 

polarization, thermal mixing in the laboratory frame, and coherent transfer 

by heteronuclear multiple-quantum coherence. 

38. Statistical (Microscopic) Picture 

Take a system of NI I spins with N~ "up" and Ni "down" coupled to NS S 

spins with N; "up" and N~ "down". The I and S polarizations are defined by 
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( 136) 

We begin with I polarized to pfi) and S unpolarized (p~i) 0) and now ask 

the question: What is the S polarization achievable by the most efficient 

possible cross-polarization process from I to S? 

Obviously the most efficient process is a reversible one, under which 

the entropy remains constant. The entropy depends on W, the number of 

microscopic configurations, as 

S klnW 

Let us calculate W as a function of the polarization P for N spins of 

which N+ are "up" and N- are "down". W corresponds to the number of ways to 

place N+ indistinguishable objects in N positions 

W 
N! 

+ -
N ! N ! 

+ For large N, N ,N this expression can be approximated as 

so, from (137), the entropy is given by 
(,) 

p2 
S - Const - 2N 

( 1 38) 

( 1 39) 

( 1 40) 

If the entropy remains constant and all the I polarization is transferred to . 
S, then (140) yields 
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( 141) 

where I remind you again that the superscript (i) indicates "initial" 

(before the cross-polarization) and (f) indicates "final" (after the cross-

polarization). The maximum final S polarization is 

p(max) 
S 

NS )1/2 p(O) 
(-N S 

I 
( 142) 

If NS < NI the polarization decreases in going from I to S?nd if NS > NI it 

increases. Now we recall that the thermal equilibrium polarization is 

proportional both to Y (Boltzmann factor) and to N so that 

( 143) 

where P~O)iS the normal thermal equilibrium value of the S polarization, 

corresponding to the same temperature as pii). Inserting (143) into (142) 

gives 

p(max) YI N 
(2.) 1/2 p(O) 

S YS NS S 
( 144) 

or for the magnetization, 

M(max) 
YI N 

(2.) 1/2M(O) 
S YS NS S 

( 145) 

in agreement with (135). The maximum enhancement factor (Y I /Ys)(N I /N S)1/2 
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39. Coherent Averaging Theory 

A recurring theme throughout these lectures is the requirement for the 

preparation or evolution of a system under a specified Hamiltonian or under 

a Hamiltonian with particular symmetry or transformation properties. 

For example, in decoupling we attempt to make the effective coupling 

Hamiltonian zero. In multiple-quantum spectroscopy of solids we required a 

time reversed detection with H - Hxx - Hyy • It is clearly necessary on many 

occasions to implement a specific desired Hamiltonian, perhaps different 

from the natural unperturbed Hamiltonian of the system. In other words, 

whereas the system might naturally evolve under its propagator L(t), 

Ip(t» 

Ip(o» 
(146) 

Ot) Ip(t» 
lBl 868-9471 

we apply a perturba~~on so that the system evolves under a different 

propagator ~(t), due to a"Hamiltonian ~, arriving perhaps at a different 

state at time t. The perturbation needed may be a sequence of pulses, a 

mechanical rotation, or perhaps an incoherent perturbation such as heating 

the sample to induce chemical exchange or Brownian rotation. 

The theory that best acounts for the design of specific Hamiltonians 

(and therefore propagators) under coherent perturbation is Coherent 

Averaging Theory. Suppose the Hamiltonian is time dependent (owing to, for 

example, an applied perturbation), as depicted in Figure 42. A question 

-which arises is: can we find a time independent Hamiltonian H which can 
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induce evolution of the system through L(t) to the same state as H(t) would 

induce at time t? The answer is yes - that H is the Magnus Hamiltonian, 

given by 

where 

-
H 

-(0) 
H t 

t 

f H(t')dt' 

o 

is the average Hamiltonian. The next two terms in this series are 

and 

-( 1) 
H 

-i 
2t 

t t' 

f f [H(t'),H(t"))dt"dt' 

o 0 

t t' til 

H(2) - !t f f f ([H(t'),[H(t"),H(t"'))) 

000 

+ [H(t"'),[H(t"),H(t')]]}dt"'dt"dt' 

( 1 48) 

(149) 

( 150) 

If (147) converges rapidly, so that H(k) are small for k t 0, then the 

average Hamiltonian H(O) provides a good description of the system and the 

other H(k) are correction terms. By applying a perturbation we have 

therefore taken a system which would have evolved under some Hamiltonian H 

and caused it to evolve effectively under H(O) as in (146). The trick is to 

implement the desired H(O) by appropriate perturbations that can be realized 

experimentally, .such as spin decoupling and time reversal. Note that, in 

general, Hand H(O) depend on t, but if H(t) is periodic then the same Hand 

-(0) 
H hold at all integer multiples of tc' If H(t) is not periodic, the 
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approach is still useful, since one can implement an H which produces a 

particular desired final state Ip(t» at time t. 

Expressions (148) to (150) were used to calculate the terms for spin 

decoupling in (58) to (60) and the time reversal Hamiltonian of Figure 24. 

They can also be used to derive the double-quantum terms of (65) and (112). 

This approach has been useful in a variety of problems in different areas, 

some of which are listed below: 

Truncation of couplings by high field 

Spin Locking 

Magic angle spinning, hopping, second order broadening 

Spin decoupling 

Multiple pulse line narrowing in solids 

Composite pulses 

Scalar recoupling (SHRIMP, etc.) 

Bloch-Siegert shift 

Soft pulses and double-quantum excitation 

Cross-polarization 

Time reversal, spin and photon echoes 

Selective multiple-quantum excitation 

Iterative schemes (MLEV, etc.) 

Optically detected electron spin coherence 

Self-decoupling and deceptively simple spectra 

Spin temperature in the toggling frame 

Imaging of solids by linear nutation sequences 

Geometrical phase in adiabatic quantum processes 
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Born-Oppenheimer Approximation 

A particularly useful simplification occurs when the time dependent 

Hamiltonian H(t) commutes with itself at all times, i.e. [H(t),H(t')] = O. 

In this case all H(k) = 0 for k T 0, as we can see from (149) and (150) for 

k = 1,2, and the average Hamiltonian H(O) is exact. This happens for Carr

Purcell trains and for magic angle spinning involving chemical shift 

interactions, dipolar couplings of N spins in a one-dimensional array (e.g. 

a pair of spins), heteronuclear dipolar couplings, or first order 

quadrupolar coupling of isolated spins. In this way it is possible to 

narrow the spectrum by magic angle spinning, even for the broad quadrupolar 

spectra of deuterium in solids. An example showing the resolution of 

isotropic deuterium chemical shifts in solids appears in Figure 43. More 

detailed discussions of magic angle spinning and its many applications in 

solids are presented in the lectures by Griffin. 

40. Zero Field NMR 

One of the motivations for doing multiple-quantum NMR described in my 

early lectures was to simplify complex spectra. There the complexity of the 

spectra arose from homogeneous effects, such as the large number of dipolar 

couplings. But spectra may be intractably complex and broad owing to 

inhomogeneous broadening as well, which arises from orientational 

distributions that produce superpositions of inherently simple spectra. 

This broadening occurs in disordered systems such as polycrystalline solids, 

amorphous materials, or partially ordered polymers or biological compounds. 

Because of the anisotropy of the dipolar and quadrupolar interactions, 
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molecules or small groups of spins exhibit different spectra for different 

orientations; the complete spectrum therefore reflects subspectra from all 

the different orientations, superposed to form a broad, often featureless 

"powder pattern" from which little information can be obtained. 

An example of the proton NMR spectrum of a polycrystalline organic 

solid, containing four hydrogens per molecule, 

XBL 868-9470 

is shown in Figure 44. The situation is similar to that encountered in 

crystallography by x-ray or neutron diffraction. Although oriented crystals 

provide diffraction patterns from which structural information can be 

extracted, a polycrystalline sample yields a considerably less useful powder 

pattern. The solution to this problem is to perform the NMR in zero field, 

using principles well known in other forms of magnetic resonance, for 

example Nuclear Quadrupole Resonance (NQR) or Optically Detected Electron 

Paramagnetic Resonance (EPR). In the absence of a magnetic field defining 

an axis in space, all orientations are equivalent and orientationally 

disordered materials should provide sharp "crystal-like" spectra. The only 

problem is to overcome the low sensitivity inherent in the low frequencies 

of zero field NMR. To take advantage of the high resolution of zero field 

and the high sensitivity of high field, we employ adaptations of well-known 
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field cycling methods. 

A diagram of the simplest field cycle and the corresponding apparatus 

needed is given in Figure 45. Removal of the sample to an intermediate 

field, followed by a sudden transition to zero field, causes the 

magnetization carried from the high field to oscillate at frequencies 

characteristic of the local magnetic dipolar or electric quadrupolar 

interactions. Reapplication of the high field permits sensitive detection 

as a function of the time spent in zero field. Fourier transformation of 

this time domain signal will produce a zero field frequency domain spectrum 

with high resolution and full high field sensitivity. As an example, the 

zero field NMR spectrum of a polycrystalline sample of the four-proton spin 

system of Figure 44 is shown in Figure 46. The relative positions of the 

hydrogens and the conformation of the central cyclohexane ring can be 

determined from such a spectrum. 

41. Zero Field NQR of Deuterium 

Frequency domain methods have long been used to observe quadrupolar 

nuclei (I L 1), where direct detection of the quadrupolar resonance is 

possible at high frequency. These methods are of limited applicability, 

however, when the frequencies are low « 100 kHz), as for example with 

deuterium. Moreover, direct detection requires the use of radiofrequency 

irradiation in zero field. Clearly, Fourier transform experiments of the 

type described in the previous section can avoid many of these problems. As 

an example, the high field 55.6 MHz deuterium NMR spectrum of perdeuterated 

polycrystalline diethylterephthalate is shown in Figure 47a. Only the most 

prominent singularities of the methyl, methylene and aromatic lineshapes can 



58. 

be resolved, since the deuterium signal is distributed over a wide bandwidth 

(although in favorable case~ it can be "dePaked" as explained in the 

lectures by Bloom). In contrast, the zero field deuterium spectrum in 

Figure 47b displays four distinct groups of peaks with sharply resolved fine 

structure. From such a spectrum resonances from different sites in the 

molecule can be assigned. In this case, five inequivalent sites are 

established: methyl, two inequivalent methylenes and two inequivalent 

aromatics. The high resolution of the zero field experiment permits the 

measurement of very similar quadrupolar coupling constants and small 

asymmetry parameters. Figure 48 shows a further example with perdeuterated 

solid dimethoxybenzene. The two doublets around 135 kHz arise from the 

:inequivalence of deuteron sites in the aromatic ring created by the frozen 

solid state conformation of the molecule. Many nuclei with low quadrupolar 

frequencies are directly accessible by such zero field NQR studies, and 

among those studied in our laboratory, in addition to deuterium, are 

lithium-7, nitrogen-14, and aluminum-27. 

42. Tvo-Dimensional Zero Field NMR 

Connections between zero field NMR and NQR transitions (which relate to 

connections between molecular sites) can be determined by extending the 

experiment to incorporate two time periods in zero field. The basic idea is 

to obtain the signal as a function of two independent time variables, t1 and 

t 2 , and then to Fourier transform against both to obtain a two-dimensional 

zero field frequency spectrum. An illustration of this experiment is 

provided in Figure 49a, where the field cycle shown employs a pulsed field 
, 

mixing period between t1 and t 2• Magnetization able to oscillate at two 
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possible frequencies in the two time periods, for example the v+ and v_ 

quadrupolar frequencies of a given site, will produce an off-diagonal peak, 

or "cross-peak", at the intersection of these two frequencies if the mixing 

sequence transfers coherence between the transitions. An experimental 

illustration of the connectivities in a spin I = 1 system appears in Figure 

49b, which shows the two-dimensional zero field spectrum of the methylene 

region of a sample of selectively deuterated diethylterephthalate. This 

result shows that among the four lines in the CD 2 region of the spectrum, 

lines 1 and 3 belong to one deuteron and lines 2 and 4 to the other 

inequivalent deuteron. With this kind of experiment one can hope to identify 

sites by their quadrupole couplings and then determine intersite distances 

through their dipolar couplings in a two-dimensional spectrum. 

A different class of two-dimensional experiments reserves zero field 

evolution for the period t1 and high field evolution for the period t2 in 

order to correlate high field and zero field NMR transitions. An example, 

shown in Figure 50 for two water protons in a polycrystalline hydrate, 

displays the Pake doublet powder pattern in the high field dimension and a 

three line zero field spectrum in the other dimension. In principle, one 

can contemplate obtaining high resolution chemical shifts in the high field 

dimension and sharp dipolar couplings between sites in the zero field 

dimension. 

43. Zero Field Pulses 

The discussion so far has focussed on the sudden removal of an applied 

field to induce zero field evolution as in Figure 45. This approach, 

however, suffers from two principal disadvantages. The first derives from 
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the requirement that the intermediate field be larger than the local spin 

interactions so that the Zeeman interaction dominates. For nuclei with 

small magnetogyric ratios and large quadrupolar coupling constants, this 

condition requires that a field of a few hundred to a few thousand Gauss be 

applied for some tens of milliseconds - perhaps a difficult experimental 

task. The other disadvantage comes from the lack of selectivity in the 

sudden transition that excites evolution of different isotopes and spins 

(e.g. protons, deuterium, carbon-13) in zero field. The experiment can be 

made selective and more flexible, however, by a simple modification of the 

field cycle to use pulsed dc magnetic fields to excite different nuclear 

spins in zero field, as illustrated in Figure 51. The sample is first 

removed completely to zero field through adiabatic demagnetization in the 

laboratory frame. Application of a pulsed dc field at this point then 

changes the state of the system and induces evolution in zero field for a 

time t 1 • This evolution may be terminated with a second dc pulse. The 

effect is analogous to pulsed NMR in high field, but here the resonant 

frequency, and therefore the frequency of the pulses, is zero. Finally, 

the sample is adiabatically remagnetized back to high field for normal high 

field NMR detection. Different isotopes and spins can be addressed 

separately by making the zero field pulses selective, perhaps by using 

composite pulses that produce 2n rotations for all isotopes except the one 

of interest. 

An additional advantage of pulsed field cycles of the sort shown in 

Figure 50 is that they permit level crossings between protons and 

quadrupolar spins during the adiabatic demagnetization and remagnetization. 

This possibility allows the zero field evolution of a quadrupolar spin, say 
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deuterium, to be detected by the effect on the more sensitive proton spins. 

Indirect detection has long been used in traditional field cycling NQR 

experiments, but in the usual procedure the protons are made to absorb low 

frequency zero field irradiation directly, by which is produced a low 

frequency signal that obscures the NQR lines. The time domain experiment 

alleviates such problems by using selective dc pulsed fields. An example of 

a nitrogen-14 zero field spectrum obtained by selective pulses in zero field 

and indirect detection through the protons is shown for polycrystalline 

ammonium sulfate in Figure 52. Such experiments on deuterium and nitrogen-

14 are likely to be useful in the study of biological systems, which are 

often inherently amorphous or disordered. 

44. Calculation of the Zero Field Spectrum 

It is instructive to perform a specific calculation of the zero field 

signal for a simple case. Consider a molecule or group of spins in a 

polycrystalline or otherwise disordered sample. The laboratory based 

coordinate system is denoted x,y,z as usual, with any high field 8
0 

along z, 

and molecular based axes are labeled xm, ym, zm. We denote by R(Q) the 

operator, or by R(Q) the superoperator, that effects the transformation 

between laboratory and molecular frames. The transformation angles Q are 

characterized by a probability distribution P(Q) over the sample. Q =(a,B) 

where a,B are the two Euler angles - the third Y is not required, and 

accordingly is set to zero, owing to cylindrical symmetry about z in high 

field. 

In the molecular frame the internal Hamiltonian (dipolar, quadrupolar, 

etc.) is homogeneous in the sense that it is independent of Q or position in 
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the sample. For the simple field cycle of Figure 45 the initial state of 

the spin system is given by 

and I z is detected in high field at the end of the cycle. Thus we can use 

precisely the formalism of section 8. The zero field time domain signal 

(again we write t instead of t 1) is given by 

( 152) 

The subscript 0 reminds us that this signal is for a particular orientation 

of the molecule .or spin system in the laboratory. Lo(t) is the zero field 

propagator in the laboratory frame. We then write 

( 153) 

where 

( 154) 

is the homogeneous propagator in the molecular frame. lIz> can easily be 

expressed in terms of operators in the molecular frame through the Wigner 

rotation matrices 

0(1)(0) _1 I + 0(1) 1 I 
10 ~ +m -10 ~ +m ( 1 55) 

I cos~ - I sin~cosa + I sin~sina zm xm ym 

Inserting (155) into (153) we obtain 

«I cos~ - I sin~cosa + I sin~sina)IL (t)1 zm xm ym m . 

(I cos~ - I sin~cosa + I sin~sina» zm xm ym 
• (156) 
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45. Average Over Orientational Distribution 

Expression (156) must now be averaged over the distribution P(Q) to 

give the signal for the sample 

( 157) 

For an isotropic three dimensional distribution, as in a random powder, all 

Q are equally probable, i.e. 

P(Q) = const (158) 

and only three terms in (156) survive the integration of (157). The result 

is 

F(t) -31(<I IL (t)II > + <I IL (t)1 I > xm m xm ym m y 

+ <I IL (t) I I » zm m zm 
(159 ) 

Expanding (159) in an eigenbasis of ~(t) in the manner of section 8, we 

obtain the final expression 

F(t) ( 160) 

where I xmjk is the (j,k)th matrix element of Ixm. This expression implies 

that the signal will be linearly polarized along z, and that the Fourier 

transform spectrum is symmetric around zero frequency. This behavior is 

expected, of course, because of the axial symmetry around z manifested by 

( 158) . 

46. Dipolar Coupled Spln-1/2 Pair or Quadrupolar Spin-l 

We can now evaluate (160) explicitly for the most basic cases of zero 

field NMR and NQR. Consider two spins I = 1/2 with an axially symmetric 
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dipolar coupling. With the molecular z axis along the symmetry axis 

established by the internuclear vector the molecular frame Hamiltonian in 

frequency units is 

(161) 

where the dipolar frequency wD is 

The well-known eigenstates of (161) are depicted in Figure 53a: a 

triplet 1,2,3 (with a degenerate pair 1,2) and a singlet S. The only non-

zero matrix elements in (160) are within the triplet manifold. The 

frequencies are 

o (163) 

Plugging all this into (160) and recalling that we are working with a 

normalized signal <lzllz> = 1, as in section 8, we obtain 

1 3 F(t) = 3 (1 + 2cos 2 wDt) (164) 

which predicts a spectrum of lines with equal intensities at O,±3wD/2, as 

shown in the lower part of Figure 53(a). Such a spectrum is indeed observed 

experimentally for a pair of protons, as we saw previously in Figure 50. 

Figure 53b reminds us that the situation is entirely analogous to a single 

spin I 1 (cf.the three level system of section 14) if n = O. Remember 

however, that here we are in the molecular frame for all D. The triplet 

manifold is analogous to that of the dipolar coupled pair and there is no 

singlet state. 

For both the dipolar coupled pair and the single spin 1=1, where the 
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asymmetry parameter n is non-zerQ, the zero field transitions are split as 

'. 
shown in Figure 53 c and d. The molecular frame Hamiltonian for the dipolar 

case is 

( 165) 

which splits the w12 transition, 

( 166) 

For the quadrupolar case, the Hamiltonian is 

H = A[31 2 _ 12 + n(I 2 _ 1 2)] 
Qm zm xm ym (167) 

with the quadrupole coupling constant 

2 
A 

_ e qQ 
- 4 (168) 

Thus the effects of small asymmetry are clearly visible as sharp splittings 

in the spectrum, although similar effects may be difficult to discern in 

high field powder patterns. This agreeable feature of zero field NMR was 

mentioned in section 41 and was quite clear in the experimental spectra of 

Figures 47 and 48. Consequently, zero field NMR spectra may provide a 

useful measure of small amplitude motions and subtle deviations from local 

symmetry in disordered systems. Examples of these effects, for example in 

biaxial smectic phases, have appeared in the literature and might prove 

useful for biological applications in the future. 

47. Effects of Motion 

As an example of the effect of introducing a small non-zero asymmetry 

parameter through motion, consider an axially symmetric dipolar or 
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quadrupolar coupling tensor where the symmetry axis jumps randomly through 

an angle of 26. When the jump rate K increases from zero, the zero field 

spectrum should change from the static (axially symmetric) case to the time 

averaged case, in analogy to high field NMR studies of chemical exchange and 

motion. 

Examples of spectra si~ulated for a quadrupolar spin and different 

relative jump rates (KIA) are shown in Figure 54 for 26 = 20° and in Figure 

55 for 26 = 90°. The first case, 26 = 20°, displays the onset of a small 

motionally induced asymmetry parameter (n ~ 0). In the second case 26 = 

90°, the jumps are equivalent to four-fold jumps around an axis (due to the 

symmetry of the Hamiltonian under 180° rotations) leading to a time averaged 

axially symmetric coupling. 

I, 
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Figure Captions 

1 • Experimental (EXP) one-quantum proton NMR spectrum of benzene oriented 

in a liquid crystal,.compared with simulated spectra of symmetric six

carbon structures. The isotropic spectrum, consisting of one line 

(bottom), is compatible with all these structures. (Courtesy of Z. 

Luz). 

2. Proton NMR spectra of oriented molecules with various numbers of spins. 

The spectral complexity increases exponentially with the size of the 

spin system. (Courtesy of Z. Luz). 

3. Proton NMR spectrum of n-hexane-d6 in isotropic solution. All protons 

have roughly the same chemical shift, and give one line at this level 

of resolution. The line at right is from a TMS standard. (Adapted 

from Chem. Phys., in press (1986), with permission). 

4. Proton NMR spin echo spectrum of oriented n-hexane-d6 (deuterated 

methyls) with deuterium spin decoupling, to be compared with the 

isotropic spectrum in Figure 3. Even for this system of eight protons, 

there are about three thousand transitions, and the spectrum is 

intractable. (Adapted from Chem. Phys., in press (1986), with 

permission). 

5. Energy level diagram of a system of N coupled spins-1/2 in high 

magnetic field. The groups of energy levels are characterized by the 
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magnetic Zeeman quantum number M. The splittings in each group are due 

to chemical shifts and couplings between the spins. The solid vertical 

lines indicate allowed (~M = ±1) one-quantum transitions and the dashed 

vertical lines depict some "forbidden" multiple-quantum (~M = ±n, n 

0, 1, •.• , N) transitions. (Adapted from J. Chern. Phys., 73, 2084, 

(1980), with permission). 

6. Multiple-quantum NMR spectra of oriented benzene, showing the 

progressive simplification as the number of quanta increases from 1 to 

6. The spectra were averaged over a range of preparation and mixing 

times. We c~n see one six-quantum transition, two five-quantum 

transitions, and seven four-quantum transitions, as anticipated in the 

text. (Courtesy of G. Drobny). 

7. Contour plot of the two-dimensional multiple-quantum spectrum of 

oriented benzene and expansion of the four-quantum region. These plots 

show how coherence is transferred between the multiple-quantum 

evolution period (vertical axis) and the one-quantum detection period 

(horizontal axis). The preparation and mixing times were nine 

milliseconds. (Courtesy of G. Drobny). 

8. Timing diagram for basic multiple-quantum sequence. The multiple

quantum coherences are prepared from an initial high temperature 

equilibrium state p(O) - 1z by the propagator U(.); they evolve under 

the propagator L(t 1), and after mixing by V(.') they are detected 

indirectly as z magnetization. This scheme is analagous to detecting x 
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and y components in t2 by adding or omitting pulses from V. By using 

different V's, quadrature phases can be detected in t 1• 

9. Effect of time-reversal detection. In a), the propagators U and V are 

not conjugate (for example U = V in the three pulse multiple-quantum 

experiment (x-1-x-t 1-x-t2», and the uncorrelated phases of nearby 

transitions can reduce the integrated intensity. In b), with time 

reversal detection, U = Vt and the lines are all in phase, thus 

restoring the full intensity. 

10. Deuterium energy levels in the laboratory frame showing the splitting 

of the one-quantum transitions by the electric quadrupole interaction. 

11. Double-quantum free induction decay of deuterium in solid benzene-d1 

doped (10%) into benzene at -40oC, with proton decoupling. In 

contrast, the normal one-quantum deuterium free induction signal decays 

in tens of microseconds. (Courtesy of S. Vega). 

12. Fourier transform of the signal in Figure 11, showing the chemical 

shift anisotropy of deuterium in benzene. The left edge of the 

spectrum corresponds to the benzene plane normal aligned with the 

magnetic field; the right peak corresponds to the perpendicular 

direction. (Courtesy of S. Vega). 

13. (a) Symmetry of one-quantum, dipole operators (analagous to p 

orbitals). The transform like vectors - a phase shift of TI/2 
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interchanges Px and Py' and a phase shift of n changes their signs. 

(b)Symmetry of double-quantum, quadrupole operators (analogous to Pz' 

.dxy and dx2_y 2 orbitals) involved in the ficitious spin-1/2 double

quantum transition ±1 in Figure 10. The Pz orbital corresponds to z

magnetization, and the two in plane orbitals, corresponding to double 

quantum coherence, transform like second rank tensors - a phase shift 

of n/4 interchanges dxy and dx2_y2 and a phase shift of n/2 changes 

their signs. (Courtesy of J. Murdoch). 

14. Double-quantum spin locking of deuterium in solid benzene-d1• A "soft" 

n/2 pulse was applied at the ±1 transition to create double-quantum 

coherence. The rf phase was then shifted by n/4 to spin lock the 

coherence for a prolonged period; the coherence was detected by a 

strong pulse which transformed it into observable one-quantum 

magnetization. (Courtesy of S. Vega). 

15. (a) Three lowest wavefunctions ~n(x) and probabilities l~n(x)12 for a 

one-dimensional harmonic oscillator. 

(b) Coherent superposition of Wo and W1 oscillating between 

WO+W1 and WO-W1' The probability density oscillates between left and 

right in analogy to the dipolar fictitious spin-1/2 discussed in the 

text. 

(c) Coherent superposition of Wo and W2 displaying quadrupole-like 

oscillations. 

16. One-quantum NMR spectrum of the nematic liquid crystal p-pentyl-p' 
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cyanobiphenyl-d 11 (5CB) at 26.00 C. The total frequency bandwidth is 50 

kHz. (Adapted from Mol. Phys., 53, 333, (1984) with permission). 

17. Six-quantum spectrum of 5CB, to be compared with Figure 16. This 

spectrum could be analyzed to yield the order tensor as well as the 

structure and dynamics of the biphenyl group. The lower plots are 

simulations (stick spectrum and slightly broadened spectrum) based on 

this structure. The total frequency bandwidth is 44.2 kHz. Several 

spectra with different preparation and mixing times were used to obtain 

more uniform intensities for the lines. (adapted from Mol. Phys., 53, 

333 (1984), with permission). 

18. Five-quantum spectrum of 5CB showing the onset of complexity as we 

progress (or regress) from six quanta (Figure 17) towards one quantum 

(Figure 16). The simulation in the lower plots was produced from the 

structural and dynamical parameters derived from the six-quantum 

spectrum. The total frequency bandwidth is 62.5 kHz. Here too, 

spectra from a range of preparation and mixing times were averaged 

together. (Adapted from Mol. Phys., 53, 333 (1984), with permission.) 

19. (a) Double-quantum filtered two-dimensional correlated spectrum of 81% 

randomly deuterated n-hexane, 23 mole % in EK 11650, taken with the 

pulse sequence described in the text with deuterium decoupling. (128 x 

1024)-point data sets were collected at 360 MHz, with a spectral width 

of 16,667 Hz in both dimensions. The square patterns, which reveal 

dipole couplings in individual isotopomers, are shown for four of the 
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sixteen proton pairs. 

(b) Part of a double-quantum versus single-quantum spectrum obtained 

using the pulse sequence described in the text. v1 is the double

quantum axis and v2 is the single-quantum axis. Vertical lines 

parallel to the v2 axis indicate the six possible double-quantum 

frequencies of .molecules with two protons. M, E1 and E2 correspond to 

the methyl and the two inequivalent ethylene positions in hexane. All 

the dipole couplings in oriented hexane have been determined in this 

way. (Adapted from J. Am. Chern. Soc., in press (1986), with 

permission. ) 

20. Multiple-quantum NMR spectra (ensemble averaged over a range of L 

values) of oriented benzene with normal non-selective broadband 

excitation and with four-quantum selective excitation. Selective n

quantum excitation enhances the n-quantum intensity, which, under non

selective excitation, may be low owing to the statistically low 

probability of absorbing many quanta. (Adapted from J. Chern. Phys., 74, 

2808 (1981), with permission.) 

21. Symmetry of two-quantum selectivity by ~ phase shifting. The first 

resonant process involves one-quantum each from the upper and lower 

sidebands. (Adapted from Adv. Mag. Res., ll, 111 (1983), with 

permission.) 

22. Symmetry of three-quantum selectivity by .2~/3 phase shifts. The 

sidebands are now a symmetrically disposed about the resonance, and the 
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first resonant process involves two quanta from the lower sideband and 

one from the upper sideband. (Adapted from Adv. Mag. Res., ll' 111 

(1983), with permission.) 

23. Timing diagram for the three pulse multiple-quantum scheme. If t1 = 0 

in a solid and. is longer than the solid FID time, the signal is zero; 

hence the integrated multiple-quantum intensity will be zero as well. 

This illustration presents another view of the problem outlined in 

Figure 9. (Adapted from Phys. Rev., in press (1986), with permission.) 

24. By replacing the pair of pulses with the lower pulse train and 

employing phase shifting, time reversal detection can be used to 

recover the full multiple-quantum intenSity in a solid. 

25. Multiple-quantum spectra of solid hexamethylbenzene obtained using the 

lower pulse sequence in Figure 24, with overall preparation and mixing 

times. ranging from 66 to 792 microseconds. (The lowest trace, 792 

microseconds, is expanded vertically.) As. increases, more and more 

spins are correlated and more and more quanta are involved. In excess 

of one hundred quanta have been observed in this way. (Adapted fromJ. 

Chem. Phys., 83, 2015 (1985), with permission). 

26. (a) Multiple-quantum spectra of the liquid crystal 5CB (containing 21 

protons) showing a Gaussian distribution of intensities. 

(b) Number of correlated spins N(.) (= maximum number of quanta) as a 

function of the preparation and mixing times. in 5CB. ~(.) is 
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extracted from an analysis of the Gaussian intensity distribution of 

(a) as a function of.. The plateau at 21 indicates that these 

molecules contain isolated clusters of 21 proton spins. (J. Am. Chem. 

Soc. in press (1986), with permission). 

27. Schematic of N(.), the number of correlated spins or maximum number of 

quanta asa function of preparation time. for various distributions of 

spins. This type of behavior has been observed in a variety of 

systems, including molecular crystals, molecules in zeolites, liquid 

crystals, adsorbed species on surfaces, and hydrogenated amorphous 

semiconductors. 

28. High resolution surface coil experiment on two capillary tubes A + B 

placed on axis at 2 and 4 mm from the coil. Tube A contained 3 

microliters of a carbon-13 enriched alanine solution and B contained 2 

microliters carbon-13 enriched ethanol. (a) Carbon-13 spectrum 

illustrating the inhomogeneous field. (b) High resolution SHARP 

spectrum, non-selective, implemented as described in text. (c) High 

resolution SHARP spectrum, pulse times set for selectivity at A. (d) 

SHARP spectrum, pulse times set for selectivity at B. (Adapted from J. 

Am. Chem. Soc., 107, 7193 (1985), with permission.) 

29. (a) Proton linewidth in solid DMSO-d6 at -750 C under deuterium double

quantum coupling as the deuterium spins are irradiated at various 

frequencies Av from resonance. 6160 corresponds to 6s in the text. 

Note the sensitivity of the decoupling to the I resonance condition, a 



80. 

characteristic of the double-quantum decoupling process. The solid 

lines are from theoretical calculations. 

(b) Proton linewidth in solid DMSQ-d6 at -750 C as the deuterium spins 

are irradiated at resonance with various values of w1 to induce double

quantum decoupling. The solid line shows the asymptotic 1/wi behavior 

expected from theory. The dashed line shows the expected behavior if 

double-quantum transitions did not occur. (Adapted from Phys. Rev. B. 

~, 112 (1978), with permission.) 

30. (a) NMR spectra of residual protons in heavy ice (99% deuterium) at 

-90oC with and without deuterium decoupling. The chemical shift 

anisotropy of the protons in the hydrogen bonds is -34 ppm. 

(b) As the temperature is raised, the spectra exhibit motional 

narrowing, with lineshapes characteristic of tetrahedral jumps. This 

behavior is consistent with the protons hopping between the four 

hydrogen bonds around the oxygens. (Courtesy of D. Wemmer). 

31. Two coupling events between a spin-1/2 or fictitious spin-1/2 and 

photons in the cavity. A photon is absorbed and the spin is excited, 

or a photon is emitted and the spin returns to the ground state. This 

corresponds to the rotating wave approximation. 

32. Initial state. The spin is in the excited state and there are n 

photons in the field. 

33. Energy level diagram for a spin-1/2 or fictitious spin-1/2 (two level 
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34. Coupling between the spin-1/2 and the radiation causes a level 

anticrossing at the resonance. From thi~ picture it it easy to 

visualize how adiabatic rapid passage interchanges the ± states. 

35. (a) Coupling events between a spin-1 and photons in a cavity. 

(b) Resonant-two photon process in a three-level spin-1 system. 

36. Initial state. The spin is in the excited state and there are n 

photons in the cavity. 
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37. Energy level diagram for a spin-1 or fictitious spin-1 (three-level 

system) and a quantized radiation field with photon states In>. 

38. Coupling between the spin-1 and the radiation causes level 

anticrossings. There are two one-photon anticrossings and one two

photon anticrossing. It is possible by adiabatic rapid passage to 

interchange 0 and -, 0 and + or the ± states. The latter is a two

photon (double-quantum NMR) adiabatic rapid passage. 

39. Coupling of two spin systems I and S by cross-relaxation TIS' 

40. The Hartmann-Hahn condition. If the magnetic fields BI and BS in the 

rotating frames are such that YIBI = YSBS' then an energy conserving I

S flip-flop can occur, thus inducing cross-polarization from I to S. 
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41. If the fields BI and BS are such that 2lIBI = lSBS' then two I spins 

can flip up and one S spin can flip down. This process is slower than 

the one in Figure 40, but it ultimately transfers more polarization 

from I to S. The process can be generalized to nlIBI = lSBS. 

42. For a time-dependent Hamiltonian, the evolution can be often 

characterized by an effective time-independent average Hamiltonian"H. 

In general, if H(t) is not periodic, then H depends on t. If H(t) is 

periodic, then the same H is relevant for multiples of the period. 

43. Magic-angle spinning of deuterium in a solid mixture of deuterated 

hexamethylbenzene and deuterated ferrocene, demonstrating narrowing of 

the powder line even though the spinning frequency is considerably 

lower than the -100 kHz quadrupolar broadened powder linewidth. The 

two resonances at the bottom (expansion of the centerband in the middle 

trace) correspond to the isotropic chemical shifts of the two 

deuterated species. (Adapted from Chem. Phys., 42, 423 (1979), with 

permission.) 

44. High field NMR spectrum of polycrystalline 1,2,3,4-

tetrachloronaphthalene bis(hexachlorocyclopentadiene) adduct. a four 

proton system. As in many dipolar powder patterns, little structure is 

resolved even though only a small number of spins are strongly coupled 

together. (Adapted from J. Chem. Phys., 83, 4877 (1985), with 

permission.) 
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45. Zero field NMR cycle. The applied field is decreased adiabatically by 

mechanically shuttling the sample out of the bore of a superconducting 

magnet. The magnetization, preserved in this process, is maintained by 

an intermediate field, B1, which is larger than the local internal 

fields. A second coil produces a pulsed field B2 that rapidly cancels 

all other fields and initiates evolution of the spin system in zero 

field. The local interactions now determine the axis system in zero 

field and are identical for all crystallites. Reapplication of the 

intermediate field terminates the zero field evolution, and the sample 

is returned to high field, where the magnitude of the signal is 

measured. The period t1 is increased incrementally in successive field 

cycles to produce a time domain signal which produces the zero field 

NMR spectrum upon Fourier transformation. (Adapted from Accts. Chern. 

Res., in press (1986), with permission.) 

46. Zero field NMR spectrum of the same solid sample shown in Figure 44. 

The sharp peak at zero frequency is truncated for purposes of display. 

The evolving zero field magnetization was sampled at 5~s increments to 

give an effective zero field bandwidth of 100 kHz. From the spectrum 

the configuration of the four-spin central ring could be determined. 

(Adapted from J. Chern. Phys., 83, 4877 (1985), with permission.) 

47. (a) Deuterium high field NMR spectrum of polycrystalline perdeuterated 

diethylterephthalate, CD3CD2-00C-C6D4-COO-CD2CD3' Only the 

singularities of the methylene and aromatic sites are distinguishable 
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ih this broad powder pattern. Three separate quadrupolar sites can be 

discernedfrom the overlapping powder lineshapes. 

(b) Zero field deuterium NQR spectrum of the same sample. Four 

distinct frequency regions with resolved peaks are evident 

corresponding to, in order of decreasing frequency, the aromatic, 

methylene, methyl sites and the va lines. Quadrupolar coupling 

constants and small asymmetry paramet~rs were established for five 

inequivalent sites in the molecule. (Adapted from J. Magn. Reson., in 

press (1986), with permission.) 

48. Fourier transform zero field deuterium NQR spectrum of polycrystalline 

perdeuterated 1,4-dimethoxybenzene. The upper plot shows the full 

spectrum. The lower plot shows expanded views of the three resonance 

regions assignable to aromatic deuterons, aliphatic deuterons and va 

lines. There are two pairs of lines indicating different quadrupole 

couplings and asymmetry parameters for the aromatic deuterons. The 

differences are due to the solid state molecular conformation, which 

renders pairs of the aromatic positions inequivalent. (Adapted from J. 

Chern. Phys., 80, 2232 (1984), with permission.) 

49. Two dimensional zero field cycle and spectrum of selectively deuterated 

(CD2) solid diethylterephthalate. The zero field spectrum is obtained 

as a function of two independent time variables, t1 and t 2 , which are 

separated by application of an intermediate pulsed field. This mixing 

transfers coherence between the zero field transitions. As seen in the 

experimental spectrum, off-diagonal peaks indicate connectivities 
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between the zero field quadrupolar transitions. In this case, 

transitions can be assigned to inequivalent deuterium sites in each CD 2 

group. (Adapted from Chern. Phys. Lett., in press (1986) with 

permission.) 

50. Two-dimensional zero field - high field dipolar correlation spectrum of 

,polycrystalline Ba(Cl03)2·H20. For each of 64 values of t 1, the zero 

field interval, the high field free induction decay after a solid echo 

sequence is accumulated and stored. A double real Fourier transform in 

t1 and t2 is applied to the signal S(t 1,t 2). At the left and top are 

the projections of the zero field and high field spectra, and in the 

center, the correlations between the two frequency domains. Signals 

which appear at zero frequency in w1 correlate most strongly with 

signals from orientations of the two-spin system which are near the 

edges of the high field powder pattern. Zero field signals which 

appear at - ±42 kHz correlate to orientations which appear near the 

peaks (at - ±21 kHz) of the high field powder pattern. (Adapted from 

J. Chern. Phys., 83, 4877 (1985), with permission.) 

51. Pulsed field cycling with adiabatic demagnetization and 

remagnetization. (a) Demagnetized sample (A) differs from one which 

has resided in zero field for an extended period (B). Both have no 

magnetization, but A will spontaneously polarize when returned to a 

field, while B requires a time on the order of the spin lattice 

relaxaion time, T1, to polarize. It is this zero field order of A 

which is exploited after demagnetizing to zero field by applying dc 
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pulses (for example ~/2 zero field pulses) to initiate evolution for 

the time t 1 . The evolution is terminated by a second pulse and the 

sample is returned to high field for sampling of the magnetization. 

This field cycle provides flexibility in employing large fields for 

brief periods of time, as well.as in selective excitation of different 

spins (e.g. carbon-13 versus protons), by varying the magnitude, 

direction, and duration of the pulses, and level crossings in 

heteronuclear spin systems. (Adapted from J. Chern. Phys., 83, 934 

(1985), with permission.) 

52. Pulsed zero field nitrogen-14 NQR spectrum of solid (NH4)2S04 using the 

cycle in Figure 51 with selective 2~ pulses for the protons. The 

nitrogen-14 was detected indirectly by level crossing with the protons. 

Peaks corresponding to two inequivalent nitrogen sites in the unit cell 

are labeled. A and B. Residual proton signal appears below 40 kHz, but 

has been reduced sufficiently to allow for resolution of the low 

frequency nitrogen-14 NQR lines. (Adapted from J. Chern. Phys., 83, 934 

(1985) with permission.) 

53. Energy levels and schematic spectra for two spins-1/2 and for a spin-1 

in zero field for n = 0 and for n r O. Small deviations from local 

symmetry, or subtle motional effects, lead to small values of n which 

are easily observable in zero field. 

54. Simulated zero field spectra for jumps of the symmetry axis of a 

deuterium spin with n = 0 between orientations differing by 29 200 • 
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Only the positive frequency half of the spectra are shown. KIA, the 

ratio of the exchange rate to the quadrupolar frequency,varies from the 

rigid regime (bottom) to the rapid motional limit (top). The ratio of 

the residual line broadening (1/T2 ) to the quadrupolar frequency is 

0.02. The onset of line splitting due to the motionally induced 

asymmetry (n ~ 0) can be seen at large KIA. The behavior would be 

similar fo~ the zero field NMR of two coupled spins-1/2. (Adapted from 

Chem. Phys., in press (1986), with permission.) 

55. Same as Figure 54 but 29 = 900 • This motion is equivalent to four-fold 

jumps around an axis, and therefore leads to an axially symmetric 

motionally averaged spectrum. (Adapted from Chem. Phys., in press 

(1986), with permission.) 
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