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Abstract:

Quantum statistical model (QSM) calculations of nuclear fragrﬁent
formation are presented. Various independent methods for extracting
the temperature, T. and entropy. S/A. from fragment—- and pion yields
in heavy ion collisions are anaiysed. It is emphasized that stable and
instable medium mass’ fragment; play an important role in determining T
and S/A: They alter the relaltion S/A(de) dramatically and distort via
feeding simple temperature measurements. However, these fragments
allow by their very abundance for a variety of new, alternative
methods to determine S/A from data on multifragmentation (rafios of
complex fragment yields, mass yield curves, and charged particle
multiplicities).

Entropy values deduced from 47 Plastic Ball data exhibit a strong
multiplicity dependence. For large multiplicities the entropy residing?
in nuclear fragments appears to be 1independent of the bombarding
energy and low in absolute value, S/A = 3.5.

The corresponding breakup temperatures of the fragment
conglomerate are T = 12, 16, and 20 MeV at ELa.b = 400, 650, and 1050
MeV/n., respectively. These values are much smaller (a factor 1/3) than
the temperatures extracted from pion yields. This result can be
understood only if the pions are created in the early, hot stage of
the collision, while the fragments are formed after an {isentropic
expansion of the system at small densities where the temperature is
low. This would imply that in the late stage of the reaction a large

fraction (> S80Z) of the available center of mass energy resides in

(possibly isotropic) flow.



1. Introduction

Recent exclusive 4w experiments of the GSI-LBL Plastic Ball
collaboration have exhibited a strong dependence of the fragment
formation on the multiplicity of participant _chargesl. The
experimentalisés used a quanéum statistical model2 to deduce entropy
values from asymptotic (i.e.‘extrapolated to infinite multiplicity) d-
like~ to- p—~ liké ratios for the reactions Ca + Ca and Nb + Nb at ELAB
= 400 - 1050 MeV/nucleon. They find surprisingly low values of S/A =
2.5, nearly independent of bombarding energy.

The same quantum statistical model2 had been used previously to
extract the entropy from inclusive fragment mass distributions at
lower incident energie52.4. Similary low entropy values as in ref. 1
had been obtained then 2-4.

This quantum statistical model has furthermore been applied by
oche; groups to determine the effects'of sequential feeding on the
relative population of 1—1nstable5-6 and particle instable states7 to
groundstates of L1 and Be fragments. Most of the population ratios are
affected dramatically. Hence the original 1deg5 that the ratios of
v-instable states can be useful for a temperature determination turns
out to be 1mpract1cab1e5°6.

Some relative populations of selected particle instable states
appear to be affected only moderately for temperatures T < 10 MeV 2.7
and can still be useful. For measurement of higher temperacures..T >
AE, this method is inapplicable, since the relative populations reach
the asymptotic ratio given by the statistical weights. In a recent

publication8 we have shown that higher temperatures, T > 10 MeV., can

be determined from the observed pion - to - proton ratios.



The present paper gives a detailed discussion of the quantum
statistical model used extensively in the literature (refs. 1-7). In
this model a system of A nucleons is considered in the grand canonical
ensemble. A large variety (X 600) of stable and instable fragment
species with the appropriate degeneracy, binding energy and quantum
statistical distribution fun<£tion is considered, and the thermodynamic
properties of the resulcix-lg mixture of fragments are computed. The
decay of the particle and v-instable states is taken into account in
the second stage of the calculation which then yields the final
distributions of the = 100 stable fragment species.

It is shown that ylelds of light and medium heavy fragments can
be useful to determine the enuop} and temperatures in heavy ion
collisions in a variety of ways.

Before we come to the yields of various species (p., d. t, 3He...)
calculated with the quantum statistical model as a function of entropy
and temperature, we want to discuss in some detail the entropy
creation in heavy ion collisions. In particular we study how the

entropy distributes over the various hadronic channels in the initial

hot. compressed stage of the reaction.
2. Hadronization in Nuclear Shock Waves

Entropy 1is cr‘eated in heavy ion collisions predominantly during
thev' stage of highest compression and thermal excitationg. A
-mea.surement of the asymptotic entropy value can yleld information on
this initial stage {f there is only a moderate increase of entropy
during the expansion of the system. Recent three dimensional (3-Dj

fluid dynamical and Vlasov- Uehling~ Uhlenbeck calculations. have



indicated that there is a moderate ™ 10X increase of the entropy due
to nonequilibrium effects (viscosity), and that simplified 1-D shock
wave calculations give values for the entropy per nucleon, the maximum
achievable témperature and the achievable compression which are
compatible with the results of the 3-D calcula.tions.g

In a recent paper8 we ;tudied the connection between the pion
multiplicities and the thermodynamic quantities density. temperature
and compressional energy in the energy region from 30 MeV/n to 30
GeV/n. We also analyzed the'importance of massive baryon resonances,
heavy mesons and the Bose condensation of pions, which decrease the
temperature in the system substantially. The main point of that papér
was to extract the temperatures in the moment of highest compression
from the pion data. We used a relativistic quantum statistical
approach to describe the state of the system in the moment of the pion
freezgout. Ve will employ this model here to estimate the achievable
entropy values in the collisions of heavy nuclei. The main input into

the calculation 138-11

1) The pions emerge from the high density stage of the reaction
with a multiplicity given by the chemical equilibrium value of the
pion plus A and N* abundance at the given thermal energys_ll.

i1) All the available c.m. energy resides exclusively in thermal
and compressional energy at one - namely the maximum achievable -
depsity in the moment of the pion, A, a.nd N* chemical freeze-out.

1i1) The density and temperature in this moment of highest
compression and excitation is given by a simplified one dimensional
hydrodynamical calculation using the Rankine- Hugoniot equations for

two colliding equal nucleig-u.



These assumptions are qualitatively supported by cascade and VUU

9'11f13. They are certainly not quantitatively fulfilled:

calculations
in the experiment. Nevertheless, they serve as a convenient method to
guide the search for the principle ph&sical effects of the compression
6n the bombarding energy dependence of the thermodynamic quantities.
Let us briefly recapitulate the relativistic Rankine- Hugoniot
equation which is used to connect the dynamical variables with the
8-11

thermodynamical ones . It is derived from the conservation of

baryon number, energy and momentum on the two sides of a shock front:

vV W
wz-w°2+P(-p-=— °)=0 (1)

where W_ = 939 MeV - B, B = 16 MeV and p_ = 0.15/fm°. This equation
relates the total energy per baryon, W(p.T). in the high density phase
~ equated in the one dimensional model with the incident c.m. energy
per nucleon = to the baryon density p. The pressure P is given by the
isentropic derivative of W. Then all the properties of the high
density region are given through the solution of eq.(l1) for a
prescribéd. constituitive equation, say W(p.T). The total pion
multiplicity is given as the sum of the pions which emerge from the
decay of the baryonic and mesonic resonances taken into consideration
plus the thermal gas of pions created in the reaction volume.

In ref. 8 we have included the 23 lowest-lying well established
nonstrange resonances of the nucleon, as well_as the pion and the n-
meson (mn =.549 MeV). We have shown that the inclusion of the heavy

resonances plays an important role for the achievable temperature and



the aBsol.ute pion yields even at rather moderate energies. Masses and
statistical weights of the nucleonic resonances are taken from ref.
14. The pion production rates are calculated from the branching ratios
of ref. 14. High lying resonances increase the pion - multipli-city by
% 10 X at El.ab = 1 GeV/n, even more at higher energies, and must
therefore be taken into accou.nt:. .

To solve the Rankine—Huéoniot equation (1). the energy per baryon
as a function of temperature and density. W(p.T). has to be related
selfconsistently with a particular baryon density at a given total
energy Elab' A thermal energy can always be defined by subtracting the
compression energy at zero tempe-rature from the total energy per

baryon at finite temperature:
W(p.T)= Er(p.T) + E(p) + ¥, - (2)

where E(p) = W(p.rw)-W(p;.uO) = W(p.T=0) - W_ 1is defined to be the
compressional energy. Two commonly used functional forms for Ec(p)
have been used:

Al

Ex(p) = K1(777) (3a)
18 pp

2
E(p) = Zq7 Po) (3b)
18 Py

the first being referred to as the linear - and the second as the
quadratic ECS, respectively, in accord with their different asymptotic
increase with density.

The total energy per baryon can, on the other hand, also be



written as an expression involving kinetic and potential terms and.
using relativistic Fermi- and Bose - distributions (in the fragment
calculation presented below, nonrelativistic quantum distributions are

used), we get

qz ,4wgi 1 > J(ez-m?c4)

g, o
b Py m;
¥V=U+3[ + 3 = de] +
i=1 p (2mhc)” p mic2 exp(e/T) - 1
g 4wgi 1 > J ( —m3c4)
+ 2 I de (4)

i=ab+1 (2vhc)3 P o 2 exp((e+U-p)/T]+1

1©
where the first sum runs over the Bose - degrees of freedom. the
plon, the m-meson and the photons, the second sum runs over the 24
states of the nucleon. It is assumed that all nucleonic resonances
feel the same interaction energy per particle U, which depends only on
the total baryon density p. The potential energy must be included into
the relativistic Férmi-Dirac distribution function in a selfconsistent
.manner.

The baryons are assumed to be in chemical and thermal equilibrium
and have the same chemical potential u. Both the chemical potential
and the interaction potential for the Bosons are taken to be equal to
zero. p? is the contribution of the Bose groundstate to the density of
the boson species. The connection between the baryon density and the

chemical potential reads

B R XN

p= 2
=0, +1 (27ﬁc)3 2 exp[(e+U-p)/T]+1
m, c

de (5)

The number of mesons can be calculéted via



84
2
exp(mic /T)~-1
41rg1V P e J(€2-m%c4)

(2whe)> miiz exp(e/T)-1

+

de (6)

The connection between.U and the compression energy Ec is given

for T-0 by

w-0)2 = w2t + (o) : 7

with C = 6v2(hc)>. Then

2 4 2 4
W(T=0) =X + U + 2 (X _3mec o rixex1)/me2]) (8)
ry g L2 3

with g = 4. mc> = 939 MeV, the Fermi momentum X1 = (pC/g)'”>, and the

Fermi energy X = J(m2c4 +4X12). assuming that for T = O only the
nucleonic ground state is populated, which should be true for small
densities. This point can be questioned, if the nucleon - A -
interaction {is much stronger than the nucleon - nucleon -
interactionls, By comparing (2) and (8) we get the relation between U
and Ecz

2 4

: _mec
U(p) = Eg + _-0.75X - T=— ¢

X amect

x12  x13

[ (X+X1)/mc2]}  (9)

The pressure is given by 16
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% 4
P=-~TZ ﬂgi J el(e -m c ) In(l-exp{-e/T])de
1=1 (2rhe)>

+1 (2vhc) n 2
i
“In(1+expl (u-U-e)/T])de + o° T2 (10)
16
and the entropy per baryon is
P/p + W-p pdu_
S/A = T T 3p
%
- 1/A I g In(l-exp[-m c2/T]) =-3 (11)
i i aT
i=1 u.v

»/p Ratio as a Calorimeter for Hea Ion Reactions

Let us now turn to the resulting pion yields as a function of the
bombarding energy. We found that the linear equation of state, (3a),

with K, = 1400 MeV and the quadratic one. (3b). with Kq = 800 MeV fit

1
the observed pion yields over the-bombarding energy range 400 - 2000
MeV/n. Therefdre. it 1s difficult to distinguish between the two
functional forms for Ec(p) by means of the pion multiplicity data of
ref. 17.

One wonders about the large values of K but one should keep in

mind that these compression constants are fitted for densities far

away from normal nuclear matter density. whereas the ground state
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compression constant obtained from giant monopole resonance is K = 210
+ SOMeV.

We found that the compressional energy is nearly identical for
the two distinct best fifting_ equations of state, namely about 50X of
the total available center of mass energy for all BEVALAC energies.
The calculated densities, ho;ever. are in good agreement at medium

energies, but they differ by about 30X at E 2 GeV/n. The

lab™
compression energy extracted via this method is an upper bound: A
delayed chemical freeze-out of the pion plus A and N degrees of
freedom will yield a nonzero flow energy in the moment of freeze out,

which would lower the obtained compression energys‘g'ls'lg.

However,
as pointed out above, cascade calculations imply that this i{s a rather
small effect. A

Fig. 1 shows the energy dependence of the thermal energy obtained
frorq the shock calculation which best fits the pion data, using as
input the linear and quadratic ansatz for EC. respectively. Observe
that the thermal energy is nearly identical for the two distinct forms
of EC. Also note that Er = % EG&' in accord with our previous finding
E. = % E~,: The total available energy is shared fifty - fifty into
thermal and compressional energy.

Let us now take a look from a different point of view, leaving
aside the dynamical treatment of the shock compression in the
reaction. Now, we inspect the dependence of the pion plus‘ A and N*
abundance on the thermal energy per nucleon directly using the quantum
statistical approach. This yields an extraction of the thermal energy
of the system in the moment of chemical freeze-out, in close analogy

to the temperature extraction performed in ref. 8: in Fig. 2 the total

pion yields per baryon. including those pions originating  from the
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decay of baryonic resonances, are displayed as a function of the
thermal energy for two fixed densities, p/po = 1 and 4. respectively.
The yields rise nearly linearly with thermal energy. Note that the
large difference in the densities has a negligible influence on the
pion yields. Therefore, we can relate the pion yield per baryon
directly to the thermal enex:@ of the system in the moment of the
chemical pion, 4 and N* fr-eeze out. This one - to - one correlation
gives the thermal energy as a function of the experimentally observed
pion multiplicities in the moment of the chemical freeze out of the
pions and the baryonic resonances, which is close ‘to the moment of
highest density - therefore the derived theml.energy is close to the
highest one in the shock-zone itself. Once the thermal energy is fixed
from the experimental pion data we can compute - via the available
energy Ecm = the nonthermal {compression plus flow) energy in the

moment of pion formation.

4. The Amount of Entropy Created in the Shock Wave

Let us now come back to the entropy per nucleon which is computed
from the Rankine -~ Hugoniot relation, again employing the two
equations of state which best fit the pion data. The calculated
entropy values are displayed as a function of the beam energy in Fig.
3.

Observe that the two calculations with Kq = 800 MeV and K1 = 1400
MeV result in nearly the same entropy per baryon. However, some
fraction of this entropy resides in free pions and hadronic
resonances. As we have dicussed above, the pions do freeze out early

in the reaction, when the density -is still close to it’'s highest

J
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vaiue. When the pions, including those from the decay of hadronic
resonances, héve escaped the hot, dense region, the entropy of the
remaining imcleonic gsystem will be lowered by an amount which can be
roughly estimated from the formula for a massless pion gas A(S/A) =
4(w/A). At 2 GeV/n, the experimentally observed ratio is w/A %= 0.3,
therefore the envtropy per nuc’leon residing in hadronic excitation is
of the order of A(S/A) =x 1..2 units.

We can also estimate the fraction of the entropy (S/A)n+p
residing in the remaining proton and neutron degrees of freedom by
taking the temperature and baryon density as obtained from the Rankine
- Hugoniot relation, and calculate the corresponding entropy of a pure
nucleon gas. The resulting curves are also shown in Fig. 3. The
entropy (S/A)Mp thus obtained is indeed lower by an amount AS which
agrees with the above estimate. Observe that the entropy which remains
in thg nucleonié'system first rises quickly with energy but ﬁ:
flattens out at ELAB< 1 GeV/n and remains nearly constant at S/A % 3
for ELAB > 1 GeV/n. It i{s this remaining entropy (S/A)n+P which one
can hope to determine from the experimental fragment yield data. The
determination of the total hadronic entropy in the moment of highest
compression requires the additional information on how much entropy
has been carried of by e.g. plons. Hence a simultaneous measurement of
total pion yields and spectra would be necessary before this goal can
be accomplished. We will now turn to the connection between the
entropy and the fragment yields in terms of the quantum statistical

model (QSM).
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5. Nuclear Fragmentation in the Quantum Statistical Model

The quantum statistical model of nuclear fragmentation is based
on the model presented in ref. 2. A similar, but classical model has

20., Entropy

been developed independently by Randrup, Koonin and Fai

creation and -~ detérmination .have not been considered by that group.
In these statistical models it is assﬁmed that thermal and

chemical equilibrium are established during the expansion of the

910 1 the

system. By then the (fast) pions have been emitted
expansion 1is isentropic. then the temperature gnd density have dropped
drastically from the high initial values. Therefore, the high
temperatures which reflect the pion yields should be accompanied by
much smaller temperatures which characterize the fragment yields. At a
later time also the chemical abundance and the momentum distribution

2.9.18.20  sfter this freeze

of gach species of fragment freezes out
out the fragment yields change again due to the subsequent decay of
instable states. We include X 100 stable and f-active nuclei up to
mass number 130 and ® 500 instable light nuclei with A < 20. The yield

of each species is determined from _1t°s chemical potential By its

statistical weight 8 and the temperature via nonrelativistic Bose -

(-]
372
gy 2m, T Ix—dx
N =+ 2 gV |—— XX (12)
mll./’r i h2 X=1L ,l.
] -1 e i =1
o

or Fermi-distributions
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©
3/2
i i h2 ex--u.ilT+1

(13)
o
where m, is the mass of speéies 1 and V is the available volume (see

below). The chemical potential of a cluster in equilibrium is given by

the chemical potentials of its constituents and its binding energy

2.16
Ey

Zi Mp * ﬁi My * E1 (14)

R
o
]

with
2 2 2
Ep =2y mpc + Ny myc™ = myc
Z1 = Proton number of species 1
N, = Neutron number of species {.

We consider nucleons as hard spheres of fixed volume 1in the
present context. Therefore we calculate the total volume VT as the sum

of the available and the excluded volume

V=V Vex

R VIR (15)

where
A = Total number of nucleons

which leads to the expression

A Pop ,
p =g = (16)
VT 1+ppp/po
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Here ppp = ppointparticle

the volume V., which appears in equations (12). (13)., (15). This

connection is not unambigouszo'zl. the differences between the

= A/V. The density p is connec—-ted with

distinct approaches are small at low densities ppp and rise at higher
densities. However, neither the relative fragment yields nor ' the
calculated entropy per nncle;n are modified by the inclusion of the
excluded volume -~ this rather amounts te a shift in the density-scale.

The actual calculation consists - at a given temperature - of a
search for the chemical potentials of protons and neutrons, which
yield the desired N/Z ratio and density. The entropy is then
determined by:

PV+U -muny 5 1

= f GUY -wp)d T (17)

S=f T
wher? U1 is the thermal energy of species {.

The experimental information needed for this calculation was
extracted from the tables of AJzenberg-Selove22. Here we find the
statiscical weights, the binding and excitation energy of each
fragment as well as the various sequential decay channels used after
break—-up in the evaporation calculation.

To determine which specific level of a daughter nucleus is
populated by a decay process, we derive the transition probability to
this level for each orbital angular momentum of the emitted particle.
The barrier penetrability factor is calculated |using the

WVKB-approximation.
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vE no barrier
. T - kR
Pe E= vV E exp {2[k*R-x - n(i-+ arcsin( 2)) (18)
i n“+(8+1/2)
. 2 2
—(e51/2) 10g X2 1/2)0n +(2+1/2) /xR 0
! J n2 + (e+1/2)2
with
; 1/3
R : (1.25 A" 7+1.3)fm (potential Radius)

E : transition energy

2=
n 2.2y 55 J"""zs

k : JouclEme

9 172
. {2m , (&+1/2)" _
"'[kn*’ *°R 1
The phase space factor for a transition with a fixed & - value is

givén by a sum over all possibilities to couple & and the spin of the
emitted particle to a total spin j. which is compatible with the spins
of parent and daughter nucleu323

Possible &-values are given by triangle rules involving the spins
of parent, daughter and emitted particle. Summation over all &-values
then yields the relative probability of this parficulaf level,
compared to other possible,levels in the daughter nucleus. v-instable

state always decay into the groundstate.

6. Thermodynamic Properties of the Fragment Mixture
in the Quantum Statistical Model

Fig. 4a shows the curves of constant entropy per baryon in the
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density -~ temperature plane as obtained from the present quantum
statistical model.

Note the remarkable difference to the simple T ~ ;:2/3 dependence
of an isentropic (S/A = const) Fermi gas of nucleons, which would be
recovered if the fragment formation were neglected.

Fig. 4b shows the isoth;rmals in the entropy - density plane.
Observe that the entropy varies only slightly for small temperatures,
say T = 5 MeV, over a broad range of densities; the analogous result
is observed in Fig. 4a, were for S/A = 0.5 T = 2 MeV for nearly all
densities between 0.05 and 0.9 Py ’

Fig. 'S shows curves of constant density in the entropy -
temperature plane. Observe the fast increase of the temperature with
density: eg. at S/A £ 3, T = 10 MeV for p/p, = 0.1 but T % 90 Mev for
p/po = 0.80.

For an ideal gas. the thermal energy and the temperature are
related by ET = 3/2 T, independent of density. Fig. 6 shows ET vs. T
for p/p° = 0.1, 0.33 and 0.8. A strong density dependence is
observed. However.‘Er is the thermal energy per nucleon, while the
ideal gas formula relates to the thermal energy per particle (i.e. per
fragment).A Fig. 7 shows the thermal energy per fragment vs. the
temperature - indeed, there is only a small density dependence
observable, which i{s due to the quantum statistics.

The point is that the quantum effects are still substantial in
the single channels, in particular in the neutron channel. They become
particularly strong {f the number of available fragment states is
reduced to include fewer species: then the quantum concentration will
finally reduce to that of a pure nucleon gas, and the p2/3- dependence

of ET (S/A = const) is recovered.

",
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in the mixture of fragments there are about as many fermions
present as there are bosons, so the average kinetic energy is weighted
with quantum distribution functions where the + and - signs occur
approximately equally often. Thus averaged thermodynamic quantities
look like they belong to a classical system. However, even at rather
high entropies, S/A = 4, th.e effects of the quantum statistics on

averaged observables is about 10X - for details see chapter 9.

7. Entropy Measurements via "S"= 3.95 - ln_l_!dpz

The problem of how to measure the value of the entropy per
nucleon S/A produced in heavy ion reactions was first tackled by

Siemens and Kapus ta24.

They claimed that from a measurement of the
ratio of the deuteron yield to the proton yield, de =: d/p. the

entropy can be determined via the simple formula:
S/A = 3.95 - In de (19)

Their treatment was subsequently extended25 to include tritium, 3He

and a-particles by defining the ratio d-like~ to— p-like

" e d+%(t+3}{e)+34ﬂe
R =
dp p+d+t+(3He+4'He)

(20)

It was cla.imedzs

that by inserting R instead of R into eq. 19, the
effects of the formation of clusters other than the deuteron are
readily included, and the modified eq. 19 can then be used to extract

the entropy from data.
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However, for this simple formula to be valid one must assume24-26

that protons and neutrons are much more abundand in the chemical

equilibrium stage than all the different cluster species together, an
approximation which is not supported by recent datal. Only under this
assumption is it possible to derive eq. 19. Furthermore, this approach

stops at the a~-particle, excludes instable fragments and sets
my o= (24 Ny (21)

where By is the nucleon chemical potential., i. e. the binding- and
excitation energies of the fragments are neglected. The formula does
not account for quantum statistical corret:t:ions26 and the finite

volumes of the produced fragments.

2.18

It wvas pointed out that the inclusion of heavier and instable

clusters and their binding and excitation energies change the entropy

values substantially and that the decay of particle instable complex

fragments (d*. He

2.18, decay protons (and neutrons) are abundantly produced

. L1" etc.) alters the values of R and R
dp dp
drastically
in an evaporation stage subsequent to the thermal and chemical
break-up. An entropy V_determination via the simple formula, eq. 19, has

been demons cra.tedz' 18

to yleld erroneous results. The entropy
determination rather requires the numerical evaluation of the relation
S/A(;idp)' e. g. via a quantum statistical model of fragment formation,
which includes the decay of instable Eragmentsz.

We will here demonstrate explicitely that the simple formula for
S/A(Edp)" eqs. 19, 20. can only be used with reasonable (10X) accuracy
1f the entropy exceeds S/A = 5. Such high entropy values are not

expected in the mixed gas of nuclear fragments, however (see Fig. 3).
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The experimental data indicate entropy values S/A = 2-4 (see below and
refs. 1-4). Figs. 8 and 9 show the entropy values as derived from the
calculated fragment yields via the simple formulae, egs. (19.,20), vs.
the actual entropy value obtained from the correct thermodynamical
relation, eq. 17. If we include only protons, neutrons and deuterons

into our calculation (Fig. 8), the old d/p- formu1a24

is a good
approximation. However, already the inclusion of fragments up to the a
~ particle changes the picture completely (Fig. S): the d/p formula is
totally wrong at small entropies, it even exhibits a minimum at S/A X

25.26 neglect the decay of particle instable

2.5. Also the improvements
states and the stronly enhanced fragment yields, and therefore
overestimate drastically the correct entropy value at low entropies.
They coincide with the correct result only for S/A > 5. Also. we must
point out that the entropy values extracted from eq. 20 cannot drop

below S/A = 3.5, since by the definition of de we get for S/A -0

3 'He
2 4He

Edp(sxA -0) - =1.5—S/A33.95-1n1.5 (22

This {s the origin of the contradictory results obtained by the
authors of ref. 1 from their 'asymptotic’ data, when using either the
simple analysis proposed in refs. 25, 26, which yields S/A = 4.2, or

using on the other hand the present QSM, which yields S/A = 2.5.

8. Distortion of Fragment Yields due to Feeding

from_Instable Fragments

One of the reasons for this complete failure of the simple



entropy formula 1is the distortion of the yields of the fragments
formed due to the feeding from particle instable complex fragments:
Figs. 10 ~ 14 show the ratios of proton-, deuteron—-, triton-, a-, and
7Li==yie1ds before - and after the decay of the instable states has
taken place. Observe that distorf.ions of factors 11 (for protons) and
19 (for alphas) are ree.ched’at entropie;z S/A =2 1.5 - 2. Even the
deuteron yields suffer distortions of 50X to more than a factor of
two in this entropy range. Observe also that the distortions of p and
d are modest (< 10X) at high entropies, S/A > 5, where the heavier
fragments (in particular the a's!) still show substantial distortions.

Also note that the distortions are less pronounced for smaller

break-up densities.

8. The Nonanalytic Relation of Entropy vs. Edp"-

The results presented in ‘the' previous two sections are very
.discouraging - as they stand -~ for anybody who- is interested in
measuring the entropy created in heavy ion collisions. |

However, it has been pointed out already several years atgoz“18
ti’mt the entropy can be determined from the observed d/p - ratios -
although the effects of the complex fragments and decay of particle
instable resonances destroy the simple analytical relation between S
and de (or i " for this matter). The solution to this paradoxical
statement {s that a careful investigation of all the above mentioned
effects - 1like implementation of quantum statistics of complex
fragrnex;ts, and treatment of the decay of instable resonances -~ results

in a nicely behaving functional dependence of de {(and other ratios of

particle yields, see below) on the entropy. It is important to point



out that these effects result in some (small) dependence of the

function Edp(S/A) ‘on the break-up density.

However, this dependence 1is rather moderate and allows for an
entropy determination with a systematic error - resulting from thi_s
density dependence - of less than a half a unit in entropy. This is
cleafly demonstrated in Fig: 15 which shows the ratio d-like- to-
p-like, ;idp,versus_ the thermodynamic entropy, S/A, after the instable
clusters have decayed. The solid. dashed and dotted lines are for

p/p°= 0.1, 0.33 and 0.8, respectively. This corresponds to a variation

of the point particle density by a factor of 40! Also shown is the

analytical resuit "S"/A = 3.95 - In de (fuli dots). It 1s evident
that this relation can be applied with reasonable accuracy only for
S/A > S. Observe that the quantum statistical model result approaches

~

de = 1.5 for S/A - 0, as it should because at low entropies the a’s

are the dominant light fragments and de - %—Z . Applying the

analytical formula, eqs. 13,20, would yield "S"/A(S/A = 0) = 3.5 - it
can never yleld an entropy below this value, just because of {t's
analytical form.

The importance of the decay of instablé fragments is observed by
comparing Fig. 15 to Fig. 16, which displays the same results but
before the fragments have decayed: At entropies S/A = 1-3 we observe a
= 20X higher Edp» than after the decay. At lower entropies, it is clear
that the definition of Edp ylelds the same answer and .a.t: higher
entropies there are only few unstable fragments produced. most of the
system’'s bafyon number resides in free protons and neutrons.

Another 1mportani: question for the reliability {n applying the
curves shown here to deduce the entropy from data 1s: to what extend

does this function de(S/A) depend on how many different excited and
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ground state isotopes are implemented into’ the. analysis? This is
displayed in Fig. 17: The solid line is the result with all the X 600
nuclides included, the dashed line 15 only including particles up to
a’s. Note that there is only a = 10% effect. This is in spite of the
fact that the more massive fragments, A > 4, completely dominate the
system at S/A < 2.5 (see Fig: 53). Again this is a consequence of the
analytical behaviour of de as S/A goes to zero.

Another source of uncertainty which can be studied in the present
approach is the dependence of Edp on the total charge - to maés ratio
of the system under consideration: Fig. 18 shows_ﬁdp for the symmetric
system Ca + Ca. Observe a systematic downward shift of Edp with a
rather substantial (X 20%) deviation from the previous Nb + Nb results
in particular at modest entropies, S/A ¥ 2. Therefore, in comparing to
data one always should ﬁerform a calculation for the appropriate Z/A
ratioc - again., the simple analytical fermula has been derived for
symmetric sys;ems with the assumption up: By which is not fullfilled
for asymmetric systems. Fig. 19 shows the predicition for the system
Au %+ Au which 1is presently being analyzed by the experimentalists.

We have furcthermore tested the {mportance of using quanfum
statistics rather than classical statistics. We find that for averaged
quantities like de the effects of quantum statistics are typically on
the order of 10 X at entropies > 2, e.g. at gdp = 0.5 the entropy is
about 0.4 units lower than in the corresponding classical calculation.

The final check on the sensitivity of the curve Edp(S/A) on the
physics input in the framework of the statistical model 1is the
assumption that a grandcanonical ensemble is appropriate to describe
systems which consist of, say, 50 or 100 particles only. Our rational

in using this model here 1s that the uncertainty in a typical
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observable, e.g. the energy., is given by AE/E = f-1/2. where f = 6 A

is the number of degrees of freedom and therefore AE/E is of the order
of 5% for A = 50. To quantify this statement we compare in Fig. 20
the resulting idp for the system Nb + Nb at maximum multiplicity, A =
186 in the present QSM at constant temperature, T = 70 MeV, with the
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classical microcanonical approximation of Randrup and Fai We find

an excellent agreement between our results and the microcanonical
calculations for large particle numbers A > 100. Even for A = 20,
deviations are on the order of = 10X only and for A = 10 they are oﬁly
= 20%X. .Therefore. the  effects of quantum statistics and of a
microcanonical treatment are of similar importance at low
multiplicities. Both effects go also into the same direction: they
both loﬁer the entropy values at a given de as compared to the
classical grandcanonical results. The quantum corrections become
incrpasihgly 1ﬁportant at lower temperatures; the systematics of
Edp(S/A) is shown {n Fié. 21 for various f{sotherms between T = 5 and
90 MeV, where p/p° varies for each curve between 0.05 and 0.8. Observe
that for small temperatu}es; T = § MeV, there i{s little variation in
idp' while S/A varies from = 0.8 to 2.3. This is a consequence of the
slow variation of S/A with T at 5 MeV, which is exhibited very clearly
in Figs. 4a and b. This has the verj uncomfortable consequence that
the entropy determination at S/A < 2 must rely on a different method
than the Edp - idea discussed in this chapter. These other methods
exist, however, and are discussed extensively below.

In a-serfes of recent paper328 it was claimed that the classical

microcanonical approach27 predicts a strong dependence of de (at
S/A=const) on the density, in stark contrast to the published
resultsl'2'18 obtained with the present approach. It was further
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repor;:ed that it is not possible to extraét .the entropy values from
the d/p ratios. Rather one wou1§ f 1.nd a strong correlation between i dp
and the thermal energy of the system, independent of the break-up
density. Recent t‘:lmc:ksm have revealed a coding error in the computer
programs used in ref. 28. The reyised code now reproduces our
longstanding predictionsz'lg. ‘

Fig. 22 shows the dependence of E dp on the thermal energy in the
present quantum statistical approach: Observe the very strong
dependence of E dP(Er) on the break up density. Fig. 23 shows the
dependence of § dp on the density at a given constant entropy. Observe
the above noted near constancy of idp’ A moderate uncertainty of = 0.3

units in entropy remains, however, at S = 2-3. This reflects the

unknown break-up density.

10. Multiplicity Dependence of thé Entropy from 4w Data on §dp

¥ith the apparent insensivity of our above presented curves
id;:(S/A) to the details of the method at hand we now proceed to use
Fig. 15 to determine the entropy from recent multiplicity selected
measzurement:s1 of Edp in the GSI ~- LBL Plastic Ball 4w electronic
spectrometer system. The experimentalists have observed a very rapid
increase of Edp with the multiplicity Np. going from O at Np = 0 to
o 1

de 2 0.7 at maximum observed multiplicity”, Np = 80 (see Fig. 24).

Fig. 25 shows the dependence of the entropy on the participant

1 of Fig. 24 via the calculated

multiplicity as extracted from the data
relation de (S/A). The entropy values extracted from the data are for
Nb + Nb at 400 MeV/n (solid line) and 650 MeV/n (dashed line)

bombarding energy., respectively. Observe the drop from S/A = 5 at
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small multiplicity (large impact parameter), where the grand canonicﬁl
approach overestimates the entropy by *® 10X, to S/A =~ 3.5 at
multiplicity =~ 80. Note also the systematic =~ 0.2 unit higher
multiplicity in the 650 MeV/n data. The experimenters used the present
quantum statistical model to estimate the entropy at an extrapolated
"asymﬁtotic" (1. e. 1nf1nite)'mu1t1plicicy. They then obtain (S/A)w ~
2.5, values which are in striking contrast to the values (S/A)°° X 4.2
obtained from the asymptotic de values using the method of ref. 261.
In view of the above sections, this discrepancy is not surprising -~ it
is due to the neglect of (stable and instable) fragments with A > 4 in
ref. 26.

Fig. 26 ;hows the entropies as extracted from the data via E;p

1. La + La30 (in ref. 30,

(S/A) for high multiplicity selected Nb + Nb
both groups report idp ~ 0.68 at ELAB = 0.8 GeV/n) and for the system

Ca + Ca at 400 MeV/n and 1.05 GeV/nl. Also shown are the entropy
values extracted from high multiplicity biased 1inclusive mass
distributions of intermediate mass fragments, A > 4, from Ar + Au
collisions at much lower energies, 40 -~ 140 MeV/n, which had been

analyzed befores.

11. Muleiplicity Dependence of X/p -

Extraction of the Breakup Temperature and Entropy

~

By using de to measure S/A one looses the information about the
various distinct fragment species which are emitted. They can serve as
independent observables to determine the entropy from experiment, as
pointed out earlierz. Fig. 27-32 show the dependence of‘X/p on the

entropy for the systems Ca + Ca (right handside}) and Nb + Nb (left).
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Here X stands for d, t, 3He. 7Li. 120. respectively. The dashed and
dotted curves give the ratios after decay for the respective break up
densities.

It should be pointed out that the final ratios are again nearly
independent of the break-up density chosen, and that for A(X) < 4, the
X/p(S/A) curves exhibit sha‘.rp’ maxima with X/p_ {1 at S/A =~ 2, while
the ratio X/p increases monotonically with decreasing S/A for a and
12C. That means that the present approach predicts d/p, t/p and 3He/p
.ratios are always less than 1 while the a yield should exceed the
proton yield for S/A X 2. For smaller S/A values we predict a decrease
of d/p. t/p. 3'He/p and a monotoneous increase of a/p.

‘The presently available Plastic~Ball data correspond, even at the
highest multiplicities (Nb(400 MeV/n) + Nb: Npmax % 80), still to too
high an entropy to check this prediction experimentally.

IThe data for the heavy Au + Au system at lower energies are
presently being analysed. We will have to wait for these data to see
whether the low entropy S/A < 2 necessary to check this prediction can
be reached at the highes.: possible multiplicity and the lowest
available energy (i.e. Au (150 MeV/n) + Au).

Figs. 33 and 34 show the multiplicity dependence of the various
X/p ratios for Ca + Ca and Nb + Nbb collisions. Also shown is a 3
parameter (pc.)\.SQ) least mean square fit of the quantum statistical
model results to these data, as well as the predicted yiélds of
complex fragments: Here pw and Sm are the density and entropy at

infinite multiplicity and A is the mean free path.

3
N A 1/3
veifan) = _E-p‘”z [x+ A [;t Z @ J (23)



is the available effective volume of the participants, which takes
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into account Kapusta's suggestion™ of the additional "surface volume”

due to the mean free path effects discussed in the previous section.

Np. i{.e the number of bound and unbound protons (p-like multiplicity).

is taken from experiménc, as ;ell as the Z/A of the incident system.

The fits are quite ;atisfactory. considering that only 3
parameters are adjusted te fit simultaneously the varying steepness of
the curves and the absolute as well as the relative yields of the
different fragments in one particular plot. The best xz-values have
been achieved consistently with p° = 0.8 Py Values of A = 5 = 7 fm
come out in the four fits, the asymptocic entropy values come out S =
1.57 and 1.53, resﬁectively for the Nb and Ca collisions at 400 MeV/n,
i.e. the extrapolation to infinite multiplicity converges. Sw
increases to 1.7 and 1.8 when going to the higher energies, 650 and
1050 MeV/n, respectively.

The break-up temperatures (assumed to be independent of
multiplicity), which correspond to these entropy values are T = 12, 16
and 20 MeVY for the 400, 650 and 1050 MeV/n Ca and Nb data,
respectively. These values are much smaller (a faétor 1/3) than the
temperatures extracted from pion ylelds at the same energiess. This
result can be undefstood if the pions are created in the early, hot
stage of the collision, while the fragments are formed after an
isentropic expansion of the system at small densities where the
temperature is low. This would imply that in the late Qtage of the
reaction a large fraction (= 80X) of the available center of mass
energy resides in (possibly isotropic) flow.

The multiplicity dependence of the entropy per nucleon S/A (not
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SQ) as calculated for the 400 MeV/n Nb data is shown in Fig. 35. It
coincides with the values deduced in Fig. 25 from Eap. It will be
interesting to see if the predicted rather substantial yields of
complex fragments (Z > 3) can be observed experimentally at the rather
high bombarding energies at high multiplicities. The measurement of
ratios of particle instable‘to stable complex fragments could then
provide an additional consistency check on the temperature- (and
entropy) values obtained here - the difficulties associated with such
temperature measurements are discussed extenéively in the next
section. The degree of uncertainty in the extrapolation to complex
fragments is obvious if we compare Figs. 33 and 34 with Fig. 36 and 37
which show the prediction of X/p for all species and multiplicities,
but using S(Né) from the fits to the ﬁ?p values (Fig. 25). Observe
that with this latter method 6L1 and heavier fragments are predicted
to be more abundant than with the x2-f1c with 3 free parameters.

The actual measurement of the complex fragments and their
unstable states will allow fbr additional constraints on the above
thermodynamic parameters and this can yield a further refined entropy
determination.

The presently obtained values of S/A are compared in Fig.v38 to
the entropy calculated in the fluid dynamical model with the equations
of state which fit the pion data. It i3 obvious therefore to note here
that the apparéntly completely different experiments are all
intermoven und that we will need precise measurements of all the
available observables to zoom in on the properties of excited nuclear
matter.

Ve have now extensively discussed E;p and X/p as measures of the

entropy. These quantities are useful for determining large entropies

-,
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S/A > 2.

Below we pesent other observables which offer excellent entropy
determination capabilities both at low (S/A < 2) and at high entropy
values. These novel observables have not been discussed to date. They
of fer other intriguing views of various aspects of multifragmentation.
Before we discuss these n;vel observables, ‘let us discuss the
possibilities of measuring témperatures and entropies from ratios of ~

- instable, particle instable and stable complex fragments.

12. Distortion of Temperature Measurements due to

Instable ex F nts

5.6.7 to determine

Recently, experimental efforts have been made
the break-up temperature directly from ratios of excited states to
ground states in Lithium and Beryllium nuclei at bombarding energies
around S0 MeV/nucleon. A surprising difference was found: ~v-instable
systems like 7Be“(4‘78 keV) 7/ 7Be(gs) give T = 0.5 MeV. particle
instable systems like °L1™(16.66 MeV) / °Li(gs) yleld T = 5 MeV. if
the simple Boltzmann ~ Ansatz proportional to exp(—-AE/T) is used for
the yield ratio. Fig. 39 shows that the reason for these paradoxical
results is the different amount of feeding for these channels by the
sequentialvdecayzt in the case of 7Be (lower left hand frame). drastic
feeding (mainly to the ground state) from heavier particle- instable
fragments sets in as early as at T X 2 MeV. For T > 3 MeV, a ratio of
% 0.2 i3 obtained. independent of the actual temperature. Hence these -
ratios are not useful for a temperature measurement.

On the other hand, some ratios of particle-instable states in the

weakly bound sLi- and 6L1- nucletl (upper frames) show only a moderate



32

distortion by the sequential ciecay as long as T < 10 MeV. Therefore
the Boltzmann - Ansatz might be a useful approximation here.
Temperatures of T ¥ 5 MeV can be estimated from some of the measured
ratios in Ar + Au collisions at 60 MeV/nucleon7.

These values are much lov_ver than the corresponding slopes of the
energy spectra of the particles, which yileld T = 10 - 20 MeV. These
low values fit, however, in the above discussed systematics of the
‘too small’ temperatures, T = 12 - 20 MeV, obtained from the Plastic
Ball data at Bevalac energies (see chapter 11).

However, observe the lower right hand side of Fig. 39: Even
though the ratio of two high-lying particle instable states of 8Be is
considered, we do. observe a strong distortion due to feeding from
other states which had been overlooked before7. Therefore, one must be
very careful in using this idea to measure the temperature.

Fig. 40 shows the tremendeous distortions to be expected in
ratios of ~v-instable - to groundstate yields of 6.7
fragments. Here it i{s predominantly the feeding to the groundstate
which hurts the possibuit;y of measuring the temperature. Some of
these states seem to be, however, interesting condidates for possible
future entropy measurements: the feeding has the effect of resulting

6.1 and ‘Lt

in a rather nice one - to - one relation between ratios of
lowlying states - to - groundstates and the entropy. see Fig. 41:

These states may be useful for entropy measurements for S/A > 2.

13. Mass Yield Curves and Entropy Measuremts

N
Let us now study how the composition of our system changes with

the excitation energy and entropy. Fig. 42 shows the mass yields, Y(A)

Li and B4 -



for the system Ca + Ca at a density of p/po = 0.33 and for T = 15, 5
and 2 MeV. Observe that at each mass intervall we have plotted two
bars which indicate the yields before and after the evaporation stage.
At T = 15 MeV we observe a smooth exponential fall-off ot the mass
yield Y(A). However, at T = 5 MeV the mass yield is nearly constant -
that means that in the 30 — 60 MeV/n region, where T =~ 5 MeV has
probably been observed (as-discussed in the previous section) there
are about the same amount of light fragments as there are fragments of
higher mass. In particular it shows that there are by far more
nucleons bound 1in fragments (remember, A < Y(A) would give the
contribution for each complex fragment to the total nucleon number!)
then there are free nucleons (see also Fig. 53).

At T = 2 MeV, Y(A) is actually increasing with A, and one can
very clearly observe the effects of nuclear binding - shell effects
result in peaks in Y(A) at A = 4, 8, 12, 16 and 20. However, also
within one isotope chain one can observe the effects of the excitation
energy: Fig. 43 shows the yield of carbon isotopes for T = 6.5, 13 and
47 MeV when the total entropy of the system is constraint to S/A =
2.5. Observe that the total yields drop by about an order of
magnitude, respectively, when the temperature 1is increased, but
further more the distribution is skewed towards smaller mass numbers:
this shows that the binding and symmetry energy effects loose their
importance at T 1s increased, and that the system tries to avoid large
masses.

Fig. 44 shows now a most interesting property of the mss
distributions, namely that the slope parameter of the fall-off of Y(A)
is approximatély exponential and connected with the total entropy per

baryon in the system2‘4= The entropy has been fixed at S/A = 2.5, but
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the p = T values have been varied over a large range. Fig. 45 shows a
polynomial- and an exponential fit to the ca.lcullated mass
distribution. Note that the polynomial fit does not give a ‘good
description of Y(A). while the exponential fit {s quite reasonable.
See ref. 4 for a detailed discussion of the power law fits which have
occured in the literature.

Fig. 46 shows the dependence of the slope parameter of the mass
distribution Y(A) on the entrﬁpy S/A for three different densities.
Observe the nearly linear dependence of the slope parametér on S/A.
Note also that there is an uncertainty of about AS = +0.5 in 'the
absolute value of S/A if the slope parameter is known. This reflects
the finite density dependence of Y(A) at a given entropy value, in
analogy to the above observed dependence of E dp (S/A) on the density.
However, all the other available methods of determing the entropy show
this uncertainty due to the density dependence at a given entropy.

We have used the present duantum statistical model to extract
entropy values from the measured high multiplicity yields of complex

3"4. Figs. 47 a.b.,c show our fits to the observed isotopic

fragmencs
distributions for the system Ar + Au at 42, 92 and 137 MeV/n,
respectively: the measurements extend to A = 14, a large variety of
isotopes of He, Li, Be and B has been observed. We fitted in a X2 -
fit all observed isotopes with A > 4 simultaneously, from this fit we
obtain entropy values S/A = 1.5 - 2. This entropy is close to the
entropy of the nuclear Fermi gas at the "flash point”, 1i.e. where

nuclei become unbound® (E® ~ 16 MeV, T ~ 8 MeV). These S/A - values

are shown in Fig. 26 as a function of the bombarding energy.



14. Yields of Isobaric nucleli as Measure of the Entropy

Fig. 48 a,b shows the dependence of the n/p ratio for Au + Au at
two different densities before gnd after the decay of instable
fragments. Note that the dec;y does not distort the n/p ratio much,
although the separate yields are strongly affected. Hence the n/p
ratic would be a nice independent measure of the entropy for S/A < 2.
The same holds for the c/3He ratios shown in Fig. 49. Observe the
strong increase of t/3He below S/7A = 2.

These curves are in sharp contrast to the n/p- and t/3He—ratids
obtained for the charge symmetric system Ca + Ca (see Figs. 50 and
51). Both ratios show a sharp decline to values less than one at S/A <
2. This reflects the importance of the binding energies at low
entropies: The most deeply bound nuclei have N > Z, so the neutrons in
the charge symmetric system are eaten up by heavy nuclei.

Observe that for the Ca- case, the asymptotic (S/A > 5) n/p ratio
is 1, while {t approaches n/p = (N/Z) of Au in the previous case. This

prediction could be tested experimentally.

15. The Composition of the Fragment Conclomerate -

The Average F;ggggnt_!nSS‘as a Measure of the Entropy

As we have seen 1in Chapter 13, there i{s a rather strong
correlation between the mass yield curve and the entropy. Physically
this reflects the definition of the entropy: The entropy is a measure
of the degree of disorder - i{f there are a few heavy fragments in the

system then we observe a state of higher order than if there are many
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independently moving light fragments. This leads us right away to two
promising canditates for observables useful for entropy measurements:
the mean multiplicity of charged particles in the system (divided by
the total number of charges (protons) in the system) and the average
mass of the emitted fragment. These quantities may be easier to
measure in actual experiments.than a complete isotope distribution on

)

an event-by-event basis.
: Fig. 52 a. b and ¢ show the dependence of the yields of various
fragments from neutrons to 6L1 on the total entropy of the system.
Observe that for the system Au + Au, the neutrons are the most
abundant species at any entropy. Their yield is also mostly affected
by the quantum effects, since their density is the highest. Note that
the protons, on the other hand, get eaten up by the fragments and for
S/A ¢ 2, the a, d, and t yields are higher than the proton yields!
Also note that there is not only a n/p ratio substantially différenc
from 1, but also t/°He # 1, as one would expect because of the neutron
excess in the Au + Au system.

Figs. 53 a, b show the contribution of fragments with A =1, A =
2-4, and A > 4. respectively. to the total number of bound and unbound
nucleons in the system as a function of the total entropy per nucleon.
a) shows the primordial distribution., b) is after decay. Observe that
at S/A > 2, the majority of the nucleons resides in 1light complex
fragments, A = 2-4. For S/A < 2 the {ntermediate mass fragments
dominate the system. Only for S/A > 4.5 are the free nucleons the

dominant channel. This 1s the origin of the failure of the simple

"S”/A formula proposed in refs. 24 - 26.
The relative importance of the various components in the system

to the entropy 1s most clearly displayed by a look at the different
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contributions_of nncléons. stable- and instable nuclei to the total
entropy in the system shown in Fig. 54a-d, again for the Au + Au and
Ca + Ca system and at two different densities.

The instable fragments by far dominate the entropy for S/A < 3.
Even at S/A = 4 there is only a 50 ¥ contribution of the nucleons to
the total entropy. Only at entropy values below S/A = 0.5 can the
stable nuclei be dominant.

The 1mport§nce of the massive fragments for the composition at
entroplies below S/A = 4 1is also evident from Fig. 55 a.,b, which shows
for Ca + Ca the average nucleon number <A> per fragment as a function -
of entropy for two different densities, p/po = 0.1 and 0.8, before and
after decay, respectively. Note the dovnwards shift in <A> of about 2
mass units as a consequence of the decay of instable fragments.
Observe thét a cémplete event measurement of <A> would be very worth
whi}e. because <A) allo;s for a rather accurate (better than 20 %)
entropy determination in the region S/A ¢ 2.5, where most of the

other proposed observables are rather insensitive to S/A.

16. Charge Particle Multiplicity as an Entropy Measure

An even narrower determination of S/A would be enabled, however,
by a simple measurement of the total multiplicity of charged
fragments.

Figs. S6a. b show the total charged particle multiplicity Mc as a
function of total entropy for a central collision of Au + Au, {i.e.
with a total number of participant protons Np: 158. The difference
between Mc‘and Np has been pointed out in ref. 1. Observe that Mc is

approaching Np at high entropies, but below S/A * 3 there is a nearly



linear drop of Mc with S/A, while Np = 158 stays constant. At S/A = 2,
Hc < 1/2 Np and Mc -+ 1 as S/A - 0. This again reflects the physical
meaning of the entropy: It is highest where the degree of disorder is
largest, i.e. when.the system is maximally dissociated.

We £find that the multiplicity of charges is increased by about 20
at S/A = 2 as a result of the; decay of .particle instable states. The
near independence of Mc on S/A again suggests .to use Mc/Np as a
measure of the total entropy of the system at S/A < 4 with a rather

modest uncertainty in the entropy at a given Mc/Np of + 0.3 units.

The multiplicity of charged fragments with mass A > 4 is shown in
Fig. 57 for the system Ca + Ca and for p/po= 0.1 and 0.5 before and
after_the decay of the instable resonances. We would like to point out
that in the primordial distribution there are 7 - 8 fragments with A >
4 at S/A = 2. With <A> = 6 this translates into ® 40 - 50 nucleons out
of the total of A = 80 being bound in complex fragments! This is
changed dramatically as a result of the decay of instable fragments:
The multiplicity now has dropped to 2~3. At higher S/A-values the
relative drop in Mc (A > 4) in even larger. Note also the value Mc (A
> 4) = 3.3 for S/A -+ 0. This is the result of a truncated basis of
instable fragments: The maximum mass fragment included 1into this
calculation has A = 25. Therefore the system of 80 nucleons must
settle into 3 separate fragments. This artifact does of course not
occur {f our normal input table with A™* _ 130 s used. This can

clearly been seen in Fig. 58a.,b. which show Mc (A > 4) vs. S/A for the

central Au + Au (Np = 158) collision discussed in the previous
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section.

We must emphazise here that multifragmentation events with up to
Mc (A > 4) = 35 charged complex fragments are predicted by the present
model. However, again this maximum value drops, by about a factor of
two, to Mc X 20 after the_decay of instable fragments has .occured.

'I'fxis effect should be ob;zerved experimenté.lly as a maximum in the
excitation function Mc (A > 4) vs. ELAB of the number of midrapidity
f'ragmgnt:s with A > 4 in central collisions of massive nuclei. From our
extraction of entropy values from experimental d/p ratios presented
above we conclude that this maximum should be located at ELAB = 50 -
200 MeV/nucleon: again, this prediction should be verifiable

experimentally.

18. Summary and Conclusions

We have presented the QSM of nuclear multifragmentation. It was
emphazised that stable and instable medium mass fragments play an
important role in determining T and S/A: They alter the relation
S/A(de) dramatically and distort via feeding simple temperature
measurements. However, these fragments allow by their very abundance
for a variety of new, alternative methods to determine S/A from data
on multifragmentation (ratios of complex fragment yields, mass yield
curves, and charged particle multiplicities). Entropy values deduced
from 4 Plastic Ball data exhibit a strong multiplicity dependence.
For large multiplici{ties the entropy residing in nuclear f{ragments
appears to be independent of the bombarding energy and low in absolute
value, S/A = 3.5. The absolute values arev close to the S/A values

calculated with the fluid dynamical model if nuclear equations of
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stat; are employed which correctly reproduce the observed pion
multiplicities.

The corresponding breakup temperatures of the fragment
conglomerate are T = 12, 16, and 20 MeV at Eiab = 400, 650, and 1050
MeV/n, respectively. These values are much smaller (a factor 1/3) than
the temperatures extracted Trom éion yields. This result can be
understood only if the pions are created in the early., hot stage of
the collision, while the fragments are formed after an isentropic
expansion of the system at small densities where the temperature is
low. This would imply that in the late stage of the reaction a large
fraction (= 80%) of the available center of mass energy resides in
(possibly isotropic) flow. |

It seems therefore tractable to extract the nuclear equation of
state from a simultaneous analysis of fragment- and pion data, and
flow experiments via a comparison with more detailed three- plus one-

dimensional dynamical model calculations.
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Figure Captions

Fig. 1. Thermal energy per nucleon versus available center of mass
energy in the 1 - dimensional shock calculation. The two best fitting

equations of state® are used with K, = 1400 MeV (solid line) and Kq =

1
800 MeV (dashed line). The dots and squares indicate the energies of

the pion experiments.

Fig. 2. Dependence of the pion number per nucleon, w/A, on the thermal

energy for two different densities in the shockzone, Po (solid line)

" and 4 Py (dashed line). The dots and diamonds mark the experimental

points of refs. 11,13,17.

Fig. 3. The dependence of the entropy on the bombarding energy in the
shock calculation. The two upper lines have been calculated with the
Iinea; equation of state (K1 = 1400 MeV, solid line) and the quadratic
EOS (Kq = 800 MeV. dashed line) of ref. 8, respectively. The two lower
lines labeled nucleons only have been calculated for pure nucleonic
matter (i.e. without pions or resonances) at the densities and
temperatures resulting from the shock calculation using the linear EOS
(dotted) and the quadratic EOS (dashed)., respectively. The full dots
and the open diamonds indicate the energies of the pion measurements
of ref. 17.

Fig. 4.a The path of the fragment conglomerate for isentropic (i.e. at
a constant entropy per nucleon) expansion i{in the T-p plane. N is equal
to Z here. |

Fig. 4b. Isotherms in the entropy- density plane are shown for the



46
fragment conglomerate.

Fig. § Dependehce of the temperature on the entropy per nucleon at

constant densities in the QSM.

Fig. 6 Thermal energy per nucleon versus temperature for 3 different

densities.

Fig. 7 Thermal energy per cluster versus the temperature for two

densities, p = 0.1 Po (solid line) and p = 0.8 Py (dashed line).

Fig. 8. The entropy values derived from the calculated d and p yields
via eq. 19 (solid 11ne)24. via eq. 20 (dotted-dashed line)25 and via
the formalism of Kapusta (dashed li.ne)26 against the thermodynamic
entropy for N =7 at p = 0.1 Py Only neutrons, protons and deuterons

have been included into the chemical equilibrium calculation.

Fig, 9. Same as Fig. 8. but tritons. 3He and a-particles are also

included.

Fig. 10. Ratio of protons after the decay of instable fragments versus
primordial protons for the neutron rich Au + Au system. Two break-up
densities have been used, p = 0.1 Py (solid line) and p=0.8 P, (dashed
line).

Fig. 11. Same as Fig. 10 for deuterons.

Fig. 12. Same as Fig. 10 for tritons

¥
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Fig. 13. Same as Fig. 10 for a-particles
Fig. 14. Same as Fig. 10 for 7L1 in the ground state.

Fig. 15. The relation beCweeA the entropy per nucleon and the d-like
to p-like ratio (eq. 20) is §hown for 3 different break-up densities p
= 0.1, 0.33 and 0.8 Py (the solid. dashed and dotted line),
respectively. The full dots mark the dependence obtained by using eqs.
19, 20 directly. The ratio has been calculated after the decay of

instable frégmen:s for the Nb + Nb system.

Fig. 16. Same as Fig. 15, but d-like/p—-like has been calculated before

the decay of instable clusters.

Fig. 17. The solid line shows the same results as the solid one in
Fig. 15, the dashed line has been calculated with the same parameters
T. p, N/Z but with only protons, neutrons, deuterons, tritons, 3He and

a’s present.
Fig. 18. Same as Fig. 15 for N = Z (Ca + Ca).
Fig. 19. Same as Fig. 15, but for the Au + Au system.

Fig. 20. Comparison of the present QSM (full curve) with the classical

2T (dots). The

microcanonical approximation of Randrup and Fai
calculations shown are for T = 70 MeV, but the agreement is also found

at all other temperatures T > 10 MeV. We would like to thank .
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Randrup for providing his results.

Fig. 21. Same as Fig. 15, but the curves are for constant T, not for

constant p. The density varies for each curve from 0.05 to 0.8 Py-

Fig. 22. Thermal energy per nucleon versus the d-like/p-like ratio in
the quantum—-statistical model. The solid line shows the results for p

= 0.1 po. the dashed one for 0.8 Py

Fig. 23. Connection between d-like/p-like and the break-up density for
constant entropy. The calculation has been done for the Au + Au

system.

Fig. 24. The measuredl ratio d-like to p-like as a function of. the
maltiplicity Np for Nb + Nb at 400 and 650 MeV/n bombarding energy.

The curves are from fits to the coalescence model}

Fig. 25. The multiplicity dependence of the entropy extracted from the
d-l1ike/p—-like ratios of ref. 1 (Fig 24) for Nb + Nb collisions at
400 MeV (solid line) and 650 MeV (dashed line). A break-up density of

0.1 Po has been assumed.

Fig. 26. Entropy values extracted from experiments via the quantum
statigtical model. Full dots are fits to mid-rapidity measurements3’4
of heavy clusters, A > 4 in Ar + Au collisions, see Figs. 47 a-c and
the text for details.

The other points have been fitted to d-iike/p~like ratios at the

highest measured multiplicity. Stars show the results for Nb + Nb at

bl
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400 and 650 MeV/nl. diamonds are for Ca + Ca at 400 and 1050 MeV/n1
and the open circle is for two independent new measurements of the
system La + La at 800 MeV/n3o.

Also shown are the nucleonic entropy values calculated above (see
Fig. 3) with the equations of state which reprdduce the observed pion

multiplicities.8°11'13

See also Fig. 35.

Fig. 27. Deuteron to proton ratios for an asymmetric (left Figure) and
a symmetric system versus the entropy per nucleon. The solid and
dotted- dashed line show the primordial results for p = O.1 Po and 0.5
P, respectively;: the dotted curve gives the ratio for p=0.1 Py the

dashed curve for 0.5 A both after decay.

Fig. 28. Same as Fig. 27 for tritons to protons.

Flg.'gg. Same as Fig. 27 for 3He to protons.

Fig. 30. Same as Fig. 27 for a's to protons.

Fig. 31. Same as Fig. 27 for 7Li in the groundstate to protons.
Fig., 32. Same as Fig. 27 for the 12C groundstate to proton ratio.

Fig. 33. Experimental resultsl for the d/p (full dots)., t/p (circles),
3He/p (squares with diagonals) and a/p ratios (diamonds). versus
mulciplicity. Also shown are results of a least square fit bﬁsed on
eq. 23 for the ratios (in descending order of the curves): d/p, t/p.

S

3He/p. a/p, Li/p, 6Li/p. 7Li/p. 8L1/p. The data were measured in Ca +



Ca collisions at 1050 MeV/nucleon.

Fig. 34a. Same as Fig. 33 for Nb + Nb at 400 MeV/nucleon.

Fig. 34b. Same as Fig. 33 for Nb + Nb at 650 MeV/nucleon.

Fig. 35. Multiplicity dependence of the entropy extracted from the
least square fit to the four experimentally observed ratios X/p
simultaneous for all multiplicities (see Fig. 34a). The multiplicity

dependence of the fit is based on eq. 23.

Fig., 36a. The multiplicity dependence of all X/p ratios for the system
Nb + Nb at 400 MeV/nucleon as predicted by the QSM when the fitted S/A
(Edp) of Fig. 25 are used as input. The experirpent:al da.t:a.1 are the
same as in Fig. 34a, circles stand for d/p. triangles for t/p. squares

3

for “He/p and diamonds for a‘'s. The curves show in descending order

6

the calculated d/p. t/p. SHe/p., a/p. °Li/p. 'Li/p and SLi/p ratios.

Fig. 36b. Same as 36a for 650 MeV/nucleon bombarding energy.

Fig. 37. Same as Fig. 36 but for Ca + Ca at 1050 MeV/nucl-eon.

Fig. 38 . The bombarding energy dependence of the entropy S/A. The
curves are the same as in Fig. 7, derived from the hydrodynamical
shock calculation. The full dots are fits to the d-like to p-like
ratios as extrapolated to infinite multiplicity (ref. 1):; the diamonds
are the results of the least square fits to the 4 ratios d/p. t/p.
3sze/p and a/p simultaneously for all multiplicities (see Figs. 33, 34,
26). The error bars to the eight points due to uncertainties in the

break up density are of the order of 0.75 units in entropy.
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Fig. 39. Ratios of excited states to ground states (or other excited
states in the upper right) for Ar + Au against the temperature for 3
break-up densities. Solid lines show the ratio in the case of a pure

Boltzmann distribution, shaded areas show the experimental ratios (7).
Fig. 40. Same as Fig. 39,

Fig. 41. Three ratios of particle instable states to ground states
versus the entropy/nucleon in the Ar + Au system. Three different
break-up densities are used, 0.1 Po (solid line) O.Spo (dashed line)
and 0.8 Po (dotted-dashed). Shaded areas show the experimental

ratios.7

Fig. 42. Mass distributions for N = Z. Solid lines display primordial
yielas. dashed lines yields after decay. The break—-up density is fixed

at 0.33 Por the temperature is 2, 5 and 15 MeV, respectively.

Fig. 43. Distribution of Carbon isotopes in an N=Z system. As in Fig.
42, solid bars display primordial, dashed bars yields after decay. The

entropy is held constant, S/A = 2.5.

Fig. 44. Same as Fig. 42, but S/A is constrained to 2.5 units, hence T

and p change simul taneously.

Fig. 45. Mass distribution after decay in the N = Z system for 10 MeV
temperature and p = 0.1 Py At A = 1, neutron and proton yields are

shown .separately. An exponential (solid line) and a polynomial
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(dashed) have been fitted to these yields.
Fig. 46. Slope parameters from exponential fits Y(A) ~ e"OA (see Fig.
41) to mass yields for a N=Z system. Three break-up densities p = 0.1 S
Py (solid), 0.5 Po (dotted) and 0.8 P, (dashed) have been used. N ¢
Fig. 47a~-¢. Fit to the yields of heavy fragments (A > 4) up to
nitrogen isotopes. The experimental points3'4 (circles with bar) have
been measured in Ar + Au collisions at 42 (a). 92 (b)., and 137
MeV/nucleon (c). Results of the two parameter fit are the diamonds.
Fig., 48a. Ratio of neutrons to protons after decay of instable
fragments for p = O.1 Po (solid line) and p = 0.5 Po (dotted line).
Figz. 48b. Same as Fig. 48a before the sequential decay.
Fig. 49. Same as Fig. 48a for the tritium /3He ratio.
Fig. 50. Same as Fig. 48a for the N=Z system.

Fig. 51. Same as Fig. 49 for the N=Z system.

Fig. 52a. Yield of‘lighc.'sgable fragments after decay of instable:

clusters versus entropy for the neutron-rich Au + Au system, at a -

c
break-up density of 0.5 Py -
Fig. 52b. Same as Fig. 52a for p = 0.1 Py ‘

Fig. 52c. Same as Fig. 52b for a N = Z system.

Fig, S3a. Contribution of the primordial yields of free nucleons
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(solid). light complex fragments with A = 2 - 4 (dashed) and
intermediate mass fragments with A > 4 (dotted) to the total number of
nucleons in the system Au + Au at p = 0.1 Py

Fig. 53b. Same as Fig. 53a, but after the decay of instable fragments.

Fig. 54a. The contributions ;f nucleons (solid line}, sfable clusters
with A > 1 (dotted line) and inSCable clusters (dashed line) to the
total entropy per nucleon versus the entropy itself. The calculations
have been done for the Au + Au system at a break-up density 0.1 Py
Fig. 54b. Same as Fig. 54a for p = 0.5 Po-

Fig. S4c. Same as Fig. 54b for the N = Z system.

Fig. 54d. Same as Fig. 54b, but the contributions are normalised to

one.

Fig. 55a. Average mass~-number of clusters versus entropy for N=Z at a
break—up density of 0.1 Py (solid line) and 0.8 Py (dashed line). The
average is calculated before the decay of instable fragments.

Fig. S55b. Same as Fig. S5a but after the decay of instable fragments
has taken place.

Fig. §§g. Entropy dependence of the total multiplicity for the Au + Au.
system before the decay of instable fragments. Values for two break-up
densities, O.1 Py and 0.5 Py are plottet.

Fig. 56b. Same as Fig. 56a after the decay of instable fragments.

Eig., 57. The entropy dependence of the primordial multiplicity of
heavy fragments for two break-up densities, p = O.1 Py and 0.5 Py for

the solid and dottet line, respectively. After the decay of instable
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clusters, the dashed line depicts 0.1 Py the dotted-dashed 0.5 Py N

is equal to Z.

Fig. S58a. Primordial multiplicity of heavy fragments versus entropy
for p=0.1 Py (solid line) and 0.5 Py (dashed line) in the Au + Au

system.

Fig. 58b. Same as ?1;. 58a after the decay of instablé-fragments.

-y
.
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