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ABSTRACT 

An approach to sp.in dynamics in systems with many degrees of freedom, 

based on a recognition of the constraints common to all large systems, is 

developed and used to study the excitation of multiple-quantum coherence 

under a nonsecular dipolar Hamiltonian. The exact equation of motion is 

replaced by a set of coupled rate equations whose exponential solutions 

reflect the severe damping expected when many closely spaced frequency 

components are superposed. In this model the evolution of multiple-quantwn 

coherence under any bilinear Hamiltonian is treated as a succession of 

discrete hops in Liouville space, with each hop taking the system from a 

K-spin/n-quantum mode to a K'-spin/n'-quantum mode. In particular, for a 

pure double-quantum Hamiltonian the selection rules are ~K = ±1 and ~n = ±2. 

The rate for each move depends on the number of Liouville states at the 

origin and destination and on the total number of spins present. All rates 

are scaled uniformly by a factor dependent on the properties of the 

material, such as the dipolar line width, but otherwise the behavior 

predicted is universal for all sufficiently complicated systems. 

Results derived by this generic approach are compared to existing 

multiple-quantum data obtained from solids and liquid crystals. 
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I. INTRODUCTION 

A complete description of N coupled spin-1/2 nuclei is provided by a 

2N 
density operator composed of 2 orthogonal components, each representing an 

independent degree of freedom and each carrying with it some particular 

h . 1 . 'f" 1 
p ysLca sLgnL Lcance. When expressed in terms of single-spin angular 

momentum operators, an·eigenoperator associated with a given degree of 

freedom may be classified first according to the number of spins correlated 

out of the total set and then according to the difference in Zeeman quantum 

b f h . f db . 1 2 
num ers or eac paLr o states connecte y a nonzero matrLx e ement. Of 

the various combinations, however, only a limited number are either 

single-spin/single-quantum operators, corresponding to components of 

transverse magnetization, or single-spin/zero-quantum operators, 

corresponding to components of longitudinal magnetization. The remaining 

degrees of freedom generally pertain to multiple-spin/multiple-quantum 

modes, which, although not directly observable in Fourier transform NMR, 

may be excited nevertheless and monitored indirectly in two-dimensional 

experiments.
3 

Coherences of this sort now are routinely created and 

manipulated in a large number of time-domain NMR methods, where their 

properties are used to shape the dynamical evolution of the system, often to 

engineer some form of selective excitation or to control the spectral 

response. Examples of such methods include various techniques designed to 

identify subsystems with selected groupings of spins or coupling patterns as 

well as techniques designed to establish networks of correlated spins 

4 
through coherence transfer. 

Multiple-quantum dynamics are clearly understood in isotropic phases, 

where the scalar, or J, coupling is the principal mechanism for spin-spin 

interactions. When the differences in chemical shifts are sufficiently 



.. 

• 

- 3 -

large compared to the coupling constants, the coupling effectively reduces 

to a weak form in which the ~ component of spin angular momentum is 

separately quantized for each spin. Under these circumstances the 

Hamiltonian is a sum of commuting terms, so there exists no way for two 

spins to exchange energy by a conservative "flip-flop" process. As a 

result, the dynamics are simplified to the point where the equation of 

motion can be solved analytically regardless of the number of spins 

involved.
2 

The situation is far more complex in solids and anisotropic fluids, 

however, for there the direct dipole-dipole couplings, typically strong, 

usually determine the development of the system wit:h time.
5

-
12 

Analytic 

solutions are possible only for very small systems once strong coupling is 

introduced, and soon even numerical solutions become impossible owing to the 

huge numbers of degrees of freedom that must be considered. For example, 

the dimension of the density operator grows from 4096 when N = 6 to 

12 60 
4.4 x 10 when N = 21, and to 1.6 x 10 when N = 100. These large numbers 

notwithstanding, the ability to model multiple-quantum dynamics, even 

approximately, under a strong-coupling Hamiltonian is worth developing, for 

recent experiments have demonstrated that coherences of high order can be 

9-12 
observed in solids and liquid crystals. Analysis of the development of 

multiple-quantum coherence in these systems with increasing excitation time 

has shown that dilute clusters of nuclei can be identified and studied, 

thereby suggesting a potentially new and important role for multiple-quantum 

NMR . h f . 1 h . . 11-14 
~n t e area o mater~a s c aracter~zat~on. 

Despite the complexity of a large system, or perhaps because of it, on 

the macroscopic level there may yet appear a pattern of behavior simple 

enough to predict with a model that neglects the complicated internal 
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details. This principle, which underlies all thermodynamic treatments, 

frequently applies to magnetic resonance phenomena involving large numbers 

of spins. For example, in a rigid solid the 1H magnetization observed after 

a ~12 pulse appears to decay monotonically, although the free induction 

signal contains frequency components distributed quasi-continuously over a 

broad range. The simple overall response results from the interference of 

the different frequencies, a phenomenon which masks the oscillations and 

eventually damps out the signal, giving rise to a broad, featureless 

. h f d . 15 spectrum ~n t e requency oma~n. Consequently, except for the line 

1 
widths, the general appearance of the H NMR spectra obtained from most 

dipolar solids may be readily predicted just by recognizing the constraints 

imposed by the size of the system. Similar constraints may be expected to 

govern other aspects of the dynamics of large systems as well, in particular 

the excitation of multiple-quantum coherence under a nonsecular Hamiltonian. 

With this view in mind, we seek to formulate a simple model for multiple-

quantum dynamics in the presence of strong coupling, through which may 

emerge certain features common to all systems. 

The picture developed in this article approaches these goals first by 

defining the portion of Liouville space relevant to multiple-quantum 

phenomena, and then by treating the dynamical evolution as a series of 

discrete hops in the reduced space. The rate and terminal point of each hop 

are controlled by the degeneracies of the coherences involved and by the 

Hamiltonian governing the system, with the dipolar line width establishing a 

basic rate of flow. In this way we are able to examine the development of 

n-quantum coherence in systems of increasing size and to compare these 

generic results to experimental data already published for specific systems. 

.. 
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II. THEORY 

A. Exact formulation of multiple-quantum dynamics in Liouville space 

The assembly of N spins, represented formally by a density operator p, 

develops in time according to the Liouville-von Neumann equation, 

Q.e. 
dt i[p,H], 

where H is the internal Hamiltonian in the rotating frame. Since any 

operator for the system may be constructed from a complete set of 

(1) 

orthonormal basis operators, the density operator is alternatively viewed as 

16 
a vector in Liouville space, given by 

lp(t)) 
N 
L; 

K=O 

K 
L; L; 

n=-K p 
gK ( t) I Knp) . np 

(2) 

Each Liouville ket IKnp) in this expression represents a basis operator in 

which K single-spin angular momentum operators form a product that connects 

Zeeman states differing by n units. (Note that we specifically use the 

symbol I ... ), rather than I ... >, in order to distinguish Liouville states 

from Hilbert states.) The label p associated with the operator is an 

additional index needed to keep track of the different ways of realizing the 

same values of K and n. If we denote the spin angular momentum operator I 
Q 

for a spin with index s. by a ket ls.a.), then we may write a particular 
J J J 

basis operator as 
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IKnp) (3) 

taking n, the order of the K-spin coherence, as the algebraic sum of the 

components a ( = l, 0, -1 or, equivalently, +, z, -) for each spin. For 

example, there are six two-spin, one-quantum operators possible in a system 

of three spins: r 1+r2z' r 1zr2+' r 1+r 3z, r 1zr3+' r 2+r 3z' and r 2zr3+. Each of 

these operators is represented in Liouville space by a ket IKnp) in which 

K = 2, n = +1, and p runs from 1 through 6. In addition, the states IKnp) 

may be normalized so that their scalar products (KnpiKnp), related to traces 

in Hilbert space, are equal to unity. Details and definitions pertaining to 

the Liouville states and their matrix elements are provided in Appendix A. 

The equation of motion now may be recast as a vector equation 

d 
dtlp(t)) = -iHip(t)), 

where H is a superoperator, defined by 

H = [H, . . . ] . 

Expressed in terms of the components gKnp' this equation is given by the 

equivalent set 

_Q 
dt gKnp(t) 

with 

gKnp(t) 

and 

-i L:: L:: L:: 
K'n'p' 

(Knplp(t)) 
(KnpiKnp) 

°Knp;K'n'p' gK'n'p'(t) ' 

(4) 

(5) 

(6) 

(7) 

, 
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(KnpiHIK'n'p') 
(KnpjKnp} 

Thus the behavior of even the most complex systems can be described 

formally and exactly, but with deceptive simplicity, by a set of coupled 

(8) 

differential equations. In principle, the future development of the system 

is known once the initial condition p(O) and the Hamiltonian are specified. 

Yet knowledge of both the initial condition, usually Zeeman order, and the 

Hamiltonian, which follows from knowledge of the internal interactions and 

rf pulses present during the excitation period, cannot guarantee an exact 

solution. Since such a solution is not within reach for large strongly 

coupled systems, we therefore need to replace the exact density operator 

formalism with a picture that retains the important physical features while 

reducing the mathematical complexity. 

B. Hopping model 

Although the equations (6) suggest that the various components of the 

density operator should vary sinusoidally with time, such oscillations are 

unlikely to be apparent in systems large enough to exhibit interference of 

the sort discussed in the introduction. If, for example, -the conventional 

free induction signal decays monotonically to yield a spectrum with no fine 

structure, then we may reasonably expect that the development of multiple-

quantum signals will be similarly damped. This assumption is justified by 

realizing that, except for coherences of the highest order (where n=N or 

perhaps n=N-1), the dynamical evolution of all degrees of freedom will be 

determined by frequencies too numerous and too close together to be 

d . . . h d 17 
~st~ngu~s e . Hence, in anticipation of the most physically reasonable 
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result, we will seek to replace the exact equation of motion for the density 

operator with a set such as 

.Qg 
dt 

Rg, (9) 

whose solutions are exponential, not oscillatory. In this new picture, g(t) 

is a multidimensional vector formed by the coefficients of lp(t)), and R is 

a matrix of real numbers where each element is a measure of the rate of 

change from one component of g(t) to another. The formulation is equivalent 

to a multisite exchange, or hopping, model; the question now is to define 

the space over which the coherences "hop" and to develop the rates and 

selection rules that govern the motion. 

1. Selection rules 

Eventually we will treat all coherences IKnp) as equivalent and just 

use the quantum numbers K and n. Accordingly, a simplified picture of the 

relevant portion of Liouville space may be obtained by projecting the whole 

of the space onto the K-n plane, as in Fig. 1. What remains is a 

two-dimensional grid in which each point denotes a family of coherences (or 

basis operators) IKn), with K ~ 1 and n = K, K-1, ... , 0, . . . ' -K . In this 

way the number of operators that must be considered is reduced from 22N to a 

figure on the order of N. 

The specific points in Liouville space accessible to the system are 

determined by the Hamiltonian, through the scalar products OK K1 1 1 np; n p 

defined above in eq.(8). In general, the interactions will be described by 

K-spin, n-quantum operators of various orders, but for multiple-quantum 

coherence to emerge the spins must develop under a nonsecular Hamiltonian 

• 
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that is at least bilinear in the spin angular momentum operator. The 

properties of several two-spin Hamiltonians are discussed in Appendix B, but 

for now we choose the double-quantum Hamiltonian 

H 
yx 12 ~ DJ.k (I .I k + I .I k) 

j<k +J + -J -
(10) 

used previously in experimental studies of multiple-quantum phenomena in 

solids and anisotropic fluids,
6 •9 

to make the treatment concrete. In 

practice, this form of the dipolar coupling usually is obtained as. an 

average Hamiltonian, typically over a cycle of eight rf pulses. Note that 

H is related to the secular dipolar interaction H as 
yx zz 

H l(H - H ) • yx 3 yy XX 

where 

H ~ Djk (3I .I k- Ij • Ik) Q = x,y,z • QQ 
j<k aJ a 

and that each dipolar coupling constant Djk depends on the length and 

orientation of the internuclear vector joining spins i and k. 

(11) 

(12) 

The allowed pathways in Liouville space, hence the selection rules, 

follow from the evaluation of all coefficients OK K' , , according to Eq. 
np; n p 

(A7), using the Hamiltonian (10) and the commutation relations 

and 

2I 
z 

(13a) 

(13b) 
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The result for each pair of spins, 

(14) 

where lnl :5 K and K ~ 1, shows that H acts both to increase or decrease 
yx 

the order of coherence by two units and to add or subtract one spin to the 

cluster among which the coherence is shared. The clustering process is 

limited by the requirement that the absolute value of n must not exceed K. 

A "road map" of the Liouville space then may be constructed on the basis of 

these rules once the starting point is specified. The routes open to a 

system of six spins initially in thermal equilibrium in high field and at 

high temperature, where the reduced density operator p(O) is proportional to 

I (K = 1 n = 0) are illustrated in Fig. 2 as an example. Only the upper 
z ' ' 

half-plane (n ~ 0) is shown since the pathways are symmetric about the 

K-axis; owing to this degeneracy, the problem may be simplified accordingly, 

provided that the substitution n ~ lnl is always implicit. With a different 

starting point, say p(O) proportional to I or I (K = 1, n = Ill), the same 
X y 

selection rules lead to the development only of odd-order coherence, i.e., 

lnl = 1, 3, 5 ... , rather than of even-order coherence. 

We note in passing that Fig. 2 clearly shows that four-guantum 

coherence will not develop in a four-spin system initially in equilibrium 

and then subject to H , an observation made in other studies as well. 4b· 12 
yx 

Selection rules for other Hamiltonians, however, such as H or H , permit 
XX yy 

the formation of four-quantum coherence among four spins (~ Appendices B 

and C.) 

l. Hopping rates 

At this point, the equation of motion under H may be brought into the 
yx 



form (9) by taking 

where 

and 

2.: 
K'=K±l 
n'=n±2 

r Kn;K±l,n±2 

2.: 
j<k 

2.: 
p,p' 

(KniKn) 2.: (Knp I Knp) . 
p 
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(15) 

(16) 
(KniKn) 

(17) 

Thus each of the four potential routes into and each of the four potential 

routes out of every accessible point in Liouville space is governed by an 

appropriate coefficient r, which sets the rate of flow. In general, the 

expression (16) is still too complex to solve, but a considerable 

simplification can be effected if the complicated, and possibly unknown, 

spectrum of coupling constants Djk is removed from the summation to yield 

where 

r . Kn;K±l,n±2 

w 
Kn;K±l,n±2 

w . s 
Kn;K±l,n±2 l ' 

(18) 

2.: 2.: I<KnpiHJ.kiK±l,n±2,p')l 
j<k p,p' (19) 

(KniKn) 

and where s
1 

is a quantity that depends on the structure of the material. 

There are no absolute guidelines for constructing the parameter s1 , but its 

form should reflect the coupling constants associated with a particular 
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system. We may, for example, take a lattice sum of. the coupling constants, 

so that 

(20) 

or, alternatively, we may simply take s
1 

as proportional to the dipolar line 

width. Although such an ad hoc rearrangement is a drastic departure from 

the exact form, it is entirely in keeping with the "thermodynamic" spirit of 

the hopping model. Now the exchange between any two accessible sites in 

Liouville space is viewed as proceeding at a rate determined by the 

degeneracy of the coherences in question, and is scaled uniformly by just 

one structural parameter. Therefore, within this approximation the behavior 

of all large spin systems is universal: the rates depend on a material 

property, but the general patterns of development are the same. Since all 

large systems tend to look alike, the units of time can always be scaled in 

such a fashion. This assumption is supported experimentally, to some 

extent, b d . f 1 . 1 d . . 1" d 1 . 11 
y stu ~es o mu t~p e-quantum ynam~cs ~n so ~ so ut~ons. 

To evaluate the hopping rate WKn;K±l,n±2 , we first examine the scalar 

product (KniKn) appearing in the denominator of the defining expression 

(19). This scalar product, reflecting the degeneracy of the Liouville 

state IKn), is the total number of ways of realizing n-quantum coherence 

from K spins-~. In each instance there will be c+ single-spin operators I+, 

c single-spin operators I , and c single-spin operators I in the product 
- 0 z 

term. Note that c+ and c sum to n and that c , c , and c sum to K, so + - 0 

that c
0 

is not independent. For a given selection of c+ and c there are 

then (K ) 
c 
+ 

- K!/c !(K-c )!] different ways of choosing c+ spins out of K 
+ + 

• 
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K-c 
+) different ways of choosing c 

c 
spins out of the remaining 

K-c 
K-c+' for a total of (K )•( +) 

c+ c 
possibilities. The full set is 

obtained by summing over all admissible values of c , beginning with c = n, 
+ + 

K and multiplying the total by the factor (N)' the number of ways of selecting 

a subset of K spins from N. The result is 

(KniKn) 

where 

(N) Q 
K Kn ' 

c 
max 

(21) 

~ 

c=lnl 
(22) 

According to this definition, Q
00 

= 1, Q
10 

= l, and QKK 1; moreover, 

QKn = 0 for n > K. The summation is terminated when (c - lnl) exceeds 

(K- c). 

Similar combinatorial arguments are used to calculate the number of 

ways of connecting Liouville states IKn) and IK±l,n±2), by which is 

determined the numerator of (19). The final expressions are 

w K(N-K}. QK-l,n + QK-l,n±l (23a) 
Kn;K+l,n±2 

N-1 QKn 
and 

w K(K+l}. QK-l,n + QK-l,n±l (23b) 
K+l,n±2;Kn 

N-1 QK+l n±2 
' 
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with QKn as defined above in (22). 

We see immediately from these expressions that moves forward, to 

increasing K, are distinguished from moves backward by the prefactors 

K(N-K)/(N-1) and K((K+l)/(N-1), respectively. Hence for very large Nand 

and relatively small K, the reverse rates are zero and the forward rates are 

on the order of K. Consequently in a homogeneous solid, where N is 

effectively infinity, there will be an overwhelming tendency to correlate 

larger and larger numbers of spins until K approaches JN, at which point 

reverse moves become probable. When K nears N, forward motion slows and the 

reverse rates go as K in the limit that N ~ oo In this way a balance 

between forward and reverse moves is always maintained, regardless of the 

true size of the system. Eventually any assembly of coupled spins, however 

large, comes to exhibit the characteristics of a small system. 

Hopping rates for a six-spin system under H are listed in Table I in 
yx 

order to convey some idea of the details of the exchange processes. Rates 

for other Hamiltonians are .derived in Appendix C. 

}. Solution of the rate equations 

The final set of rate equations is familiar from many other physical 

problems, and naturally can be solved by standard methods. It is convenient 

to assign a serial number to each occupied point in Liouville space (e.g., 

IK=l,n=O) - 1, IK=3,n=O) = 2, IK=S,n=O) = 3, etc.), and form a column vector 

g(t) and rate matrix R as in (9). Laplace transformation of (9) then yields 

g(s) 
-1 

(sl- R) g(t=O), (24) 



.. 

.. 
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where s is the complex variable in the transformation. Solution of (24) is 

facilitated by diagonalizing the rate matrix via the similarity transform 

(25) 

to find the eigenvalues .A ( = .A
1

, .A
2

, ... ).
18 

Use of the identity ZZ-l 

in (24) eventually gives the simpler form 

g. (s) 
]_ 

2: 
j 
~2: 
s-.A. k 

J 

(26) 

for each component, since Z diagonalizes (sl - R) as well. Application of 

the Laplace inversion formula to this last expression yields the desired 

result 

g. (t) 
]_ 

2: 

j 

.A.t 
e J Z •. 

l.J 
(27) 

Analytical solutions are readily obtained for small systems, but in 

1 

general the problem must be solved numerically. The results reported in the 

next section were obtained on an IBM 3081G, using IMSL subroutines for the 

matrix diagonalization and inversion. Double-precision arithmetic was 

employed throughout. 
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III. RESULTS AND DISCUSSION 

A. Development of coherence under a double-quantum Hamiltonian 

If no approximations are made, then a description of the dynamics of N 

coupled spins requires the solution of a 2N x 2N density matrix and 

knowledge of up to N(N-1)/2 dipole-dipole coupling constants. Therefore for 

systems of 6, 21, and 40 spins, we begin with dimensions of 64 x 64, 2.1 x 

1012 , and 1.1 x 10
12

, respectively, and as many as 780 coupling constants. 

Under the assumptions of the hopping model, however, the linear dimension of 

the rate matrix, equal to the total number of sites visited as the 

coherences migrate through Liouville space, is 8 for the case N = 6, 66 for 

the case N = 21, and 220 for the case N = 40. At the same time, the full 

set of coupling constants is replaced by a single parameter that reflects 

the width of the dipolar spectrum. 

Curves illustrating the predicted development of n-quantum coherence 

under H in these three systems are presented in Fig. 3. Each curve traces 
yx 

the combined history of all modes of a given order n by showing the 

variation of the coherence amplitude 

g (t) 
n 

(28) 

with time. Prior to excitation the spins are assumed to exist in 

equilibrium in the high-temperature limit; during excitation the units of 

time are arbitrary, normalized to the inverse of the parameter s
1

. 

The course of development is qualitatively similar in all three 

systems, with lower orders of coherence always appearing before higher 



" 
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orders and with the system reaching a steady state under prolonged 

excitation. In each instance the amplitude of the two-quantum coherence 

quickly peaks and then falls off to a constant level as the excitation is 

maintained. Coherences of higher order develop in turn, each reaching a 

steady-state value of its own after sufficient time. As the total number of 

spins increases, the maximum in the curve g
2
(t) becomes more pronounced and 

higher orders g (t) continue to grow in, up to approximately n = 2)N. The 
n 

sum of·all the amplitudes, including g
0
(t), remains equal to unity at all 

times. 

The need for an "induction time" to elapse before coherence 

of a given order is observed has been predicted in exact theoretical 

17 
treatments of small systems and verified experimentally in studies of 

anisotropic fluids and, recently, of polycrystalline solids.
9

•
11 

The delay 

arises because an n-quantum coherence can be sustained by no fewer than n 

spins, interdependent in a dynamical sense owing to the two-spin 

Hamiltonian, and because it takes time to establish the necessary 

correlations. The formal solution to the equation of motion, 

p (t) exp(-iH t) p(O) exp(iH t) , 
yx yx 

(29) 

suggests that the time required for a coupling Djk to propagate from spin i 

to spin k is related to the inverse rate 1/Djk; consequently, distant 

spins, with smaller couplings, are drawn into the network at later times. 

According to the hopping model, which neglects variations in the coupling 

constants, similar delays still must arise since the migrating coherence 

must travel to more distant regions of Liouville space as the order of 

coherence, and hence the size of the correlated cluster, increases. This 
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point is implicit in the pathways in Fig. 2, which show that the coherences 

IKn) are reached sequentially, in order of increasing K and n. 

Long-term stability of multiple-quantum coherence amplitudes has been 

noted before in numerical simulations of the exact density operator dynamics 

. f . 1 . . 17 1n systems o approx1mate y s1x sp1ns. Such behavior inevitably emerges 

when the dynamics are sufficiently complex, as we assumed originally in 

developing the hopping model. These observations have been used to support 

an earlier statistical picture in which it is assumed that, in the limit of 

long excitation times, all coherence amplitudes have the same magnitude but 

random phases. In this view the contribution of ann-quantum coherence, 

reflected by the integrated intensity of the n-quantum spectrum, is 

proportional to the number of pairs of states differing by n units in the 

Zeeman quantum number. Combinatorial arguments then predict a Gaussian 

distribution, 

g (oo) 
n 

2 
a exp( -n /N), n > 0, (30) 

for then-quantum coherence after a steady state is attained. 17 Precisely 

the same results are obtained with the hopping model, which takes a 

statistical view of the development at all times: the limiting values of all 

coherences g plotted in Fig. 3 are well fit by the Gaussian distributions 
n 

above with N = 6, 21, and 40. 

In Fig. 4, the theoretical predictions for g (t) are compared with 
n 

existing multiple-quantum intensity data for 6 and 21 spins excited under 

H 
yx 

12 
The smaller system is actually a dilute solid solution consisting of 

guest molecules with six protons in a perdeuterated host, so the simple 

picture of six spins, valid for short excitation times, may change as the 



- 19 -

excitation is prolonged. The larger system is a molecule with 21 spins, 

oriented in a nematic phase, and is a realistic example of an isolated 

cluster of finite size. To facilitate the comparison, we have normalized 

each curve to the intensity of the entire multiple-quantum spectrum (n > 0), 

plotting gn(t)/[g2(t) + g4 (t) + ... ]versus time in units of reciprocal s
1

. 

These experimental results, which match the important features of the 

generic theoretical curves both at short and long times, lend support to the 

basic assumptions used to construct the hopping model. 

Multiple-quantum dynamics in infinitely extended systems, such as 

dipolar solids, can be understood only by studying finite systems of 

increasing size, for the complete rate matrix from K = 1 to K = N must 

always be used. When N is large, the rates for the reverse moves K ~ K-1 

are vanishingly small except as K approaches N. If the rate matrix is 

truncated at K < N, the coherences will move towards the highest value of K 

considered - at which point they are trapped, unable to go back because the 

rate is too low and unable to go forward because of the arbitrary cutoff. 

With the detailed balance of the system thus destroyed, the rate equations 

typically cannot be solved, and even when they can be solved, the solution 

is without physical meaning. Consequently, to model the dynamics in a solid 

we need to extrapolate the trends observed in smaller systems. We can 

reasonably predict that low orders of coherence will peak and then fall off 

to a limiting value, and that higher orders of coherence will grow in more 

slowly without necessarily exhibiting local maxima. If the system is in 

fact infinite, then at very long times all coherence amplitudes should reach 

the same level. These expectations are confirmed in Fig. 5, where 

previously reported experimental multiple-quantum intensity data for 

polycrystalline hexamethylbenzene are reproduced. 11 Curves for n = 4, 8, 
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12, and 16 are shown, and the shapes, if not the coherence orders, are 

similar to those in each part of Fig. 3. The distribution of coherence 

after 600 - 700 ~sec is consistent with an effective cluster size of several 

hundred spins, so it is not surprising that g4 (t) reaches a maximum and that 

all curves g (t) appear to approach the same value. 
n 

B. Development of clusters of correlated spins 

To follow the formation of interparticle correlations under a two-spin 

Hamiltonian such as H we now consider the quantity 
yx' 

(31) 

the sum of all coherence amplitudes derived from a cluster of K spins. This 

combined amplitude provides a measure of the growth of a network of K spins 

within which coherences from n = 0 to n = K may develop. 

Curves illustrating the predicted development of K-spin coherence (for 

K = 2, 13, and 20) in a system of 21 spins are shown in Fig. 6. Two 

important features are immediately apparent. First, clusters of increasing 

size appear at increasing times, as expected; and second, coherence 

originating from small clusters peaks early and then falls off, while 

coherence originating from large clusters reaches a plateau as time passes. 

An induction time tK, defined as the time needed for gK(t) to reach half its 

maximum value, therefore can be associated with each cluster. A point-to-

point plot of K vs. tK, connected by a broken line, is presented in Fig. 7 

to show how the 21 spins, initially uncoupled, eventually become completely 

interdependent as the correlations develop. The network formed in this way 
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widens with time and ultimately encompasses all N spins, at which point the 

system is dynamically "mature" and thereafter the effective size K 
max 

remains equal to the true size N. 

Hence at any time there exist independent clusters ranging from 1 to 

K correlated spins, with the largest cluster defining the instantaneous 
max 

effective size of the system. The simplest approximation for K , made in 
max 

previous studies, follows from assuming a Gaussian distribution of n-quantum 

11 coherence. According to this view,- K then may be obtained by fitting 
max 

an observed (or calculated) distribution of multiple-quantum spectral 

intensity to (30). The picture is tantamount to assuming that the system is 

always in the long-term statistical limit, admittedly a chancy proposition 

when the effective size is still increasing, but one that yields reasonably 

consistent results nonetheless. To explore this idea, we first calculate 

the values of K that result from assuming that the n-quantum coherence max 

amplitudes g (t) predicted by the hopping model can be fit to a Gaussian 
n 

and then examine the growth inK over time. Some idea of the quality of max 

the fit is conveyed in Fig. 8, where the calculated amplitudes for N = 21 

are compared with the values exp[-n
2/K (t)] obtained by extracting a max 

time-dependent effective size from the same calculated amplitudes according 

to (30). Even when K is significantly less than N, the computed 
max 

intensities are reasonably well-described by a simple Gaussian, subject to 

the usual underestimation of the contributions from the highest orders of 

. 17 
coherence. In Fig. 7 the solid line shows how K changes with time, 

max 

steadily increasing up to the true size N and then leveling off. Comparing 

curves A and B, we see that the behavior predicted by the hopping model, 

although certainly not described by a simple time dependence, roughly tracks 

the behavior predicted by the the model of an expanding system always in the 
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statistical limit. In particular, the system matures at the same time, and, 

when smoothed, the early time development is remarkably similar in both 

pictures. This basic agreement is critical if multiple-quantum intensities 

are to be used to determine the extent of real spin clusters in various 

materials. 

For comparison, values of the time-dependent effective size measured in 

the 21-spin system studied in ref. 12 are reproduced in Fig. 9. Each point 

has been obtained by fitting the experimentally observed multiple-quantum 

intensities shown in Fig. 4 to the Gaussian (30), and the curve that results 

agrees very satisfactorily with the pattern predicted in Fig. 7. 

C. Nonequilibrium initial conditions 

We now briefly consider the development of multiple-quantum coherence 

in systems initially out of equilibrium, taking as a first example the case 

N = 6 with the eight Liouville states accessible under H equally populated 
yx 

before excitation begins. Under these conditions n-quantum coherence 

develops as in Fig. 10 rather than as in Fig. 3. The initial nonequilibrium 

distribution gKn(O) = 1/8 (for the eight points shown in Fig. 2) evolves, 

2 however, to the same steady-state distribution g - exp(-n /N) reached by 
n 

a system originally in thermal equilibrium, i.e., where g
1 0

(0) = 1. A 
' 

similar result is also obtained for other nonequilibrium initial conditions 

- for example, six-quantum coherence. Note that in these circumstances 

the notion of a Gaussian distribution of coherence intensities, as well as 

the notion of a continuously increasing effective size, becomes meaningless. 

The hopping model, by positing a set of exponential solutions to the 

Liouville-von Neumann equation, may predict curiously unphysical behavior 
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given certain nonequilibrium initial conditions. For example, if p(O) is 

proportional to one of the eigenstates of the rate matrix, denoted by u(O), 

then the solution to (9) is 

u(t) exp(At) u(O), (32) 

where A is the corresponding eigenvalue •. Under these conditions the density 

operator either decays to zero or diverges with time, depending on whether 

the eigenvalue .is negative or positive. This .difficulty poses no serious 

challenge to the hopping model in practice, however, for the initial 

conditions required to bring out such behavior are unlikely to be attained. 

IV. SUMMARY 

The approach described in this paper provides a general framework for 

understanding spin dynamics in systems too large or too complicated to be 

treated exactly. In these systems the Liouville-von Neumann equation for 

the density operator is replaced by a set of rate equations with exponential 

rather than oscillatory solutions, in recognition of the severe damping that 

inevitably accompanies the superposition of a large number of independent 

frequency components. The equations that result then can be solved 

straightforwardly for groups of spins of various sizes. According to this 

picture, the evolution of the density operator is viewed as a series of 

discrete hops in Liouville space, with the selection rules determined by the 

commutation properties of the Hamiltonian. For the pure double-quantum 

Hamiltonian H , each move takes the system from a K-spin/n-quantum mode to 
yx 

a (K±l)-spin/(n±2)-quantum mode. The rate for going from one point in 
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Liouville space to another depends on both the number of Liouville states 

with quantum numbers K, n, K±l, and n±2 at each end and on the magnitude of 

the effective cluster size K relative to the true size of the system N. The 

model shows that, except when K approaches N, the rates for the reverse 

pathways (decreasing K), vanish for infinitely extended systems such as 

dipolar solids, but that all pathways are allowed when N is finite. 

Overall, the jump rates are uniformly scaled by some quantity that depends 

on the properties of the material, such as the dipolar line width, but 

otherwise the behavior predicted is universal. The same approach can be 

taken for other phenomena - for example, the problem of relaxation of 

multiple-quantum coherence under a secular dipolar Hamiltonian. Less 

drastic approximations can of course be introduced, although some of the 

simplicity of the present model will undoubtedly be lost by so doing. 

Extensions of this sort will be discussed in future reports. 
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APPENDIX A: LIOUVILLE STATES FOR N COUPLED. SPINS 

Using the single-spin spherical tensor operators 

T . 
OJ = I ., ZJ 

and T . 
-J 

(Al) 

we construct orthonormal Liouville states 

(A2) 

such that 

In the above expression, the scalar product of two operators A and B is 

defined as 

(A4) 

where At is the adjoint of A. To emphasize that each Liouville state is 

formed as a product of K single-spin operators whose combined action is 

responsible for ann-quantum coherence, we use the abbreviated notation 

(AS) 

where 

j l,K 
a. 

J 
(A6) n 

The parameter p labels the various states with given values of K and n. 
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Matrix elements involving the superoperator H are defined as 

(A7) 

APPENDIX B: FORMS OF THE DIPOLE-DIPOLE HAMILTONIAN 

Dipole-dipole Hamiltonians of different symmetries can appear as average 

Hamiltonians in multiple-pulse NMR experiments. All these operators can be 

condensed into the form 

where 

L 
j<k 

D H(jk) 
jk cr{J 

cr,{J x,y,z 

In terms of the raising and lowering operators, we have 

(Bl) 

(B2) 

1 3 
-I .I k + -4 (1 .I k +I .I k) + -4 (1 .I k + I_J.I-k), (B3) ZJ Z -J + +J - +J + 

H(jk) 
yy 

and the combination 

H(jk) 
yx 

1 
-I .I k + -4 (I .I k + I .I .k) -ZJ Z -J + +J -

2I .I k ZJ Z 
1 
-2(1 .I k +I .I k), +J - -J + 

1 
~-2 (I .I k +I .I k) . 

+J + - J -

(BS) 

(B6) 
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Note that H contains only the two-quantum operators I .I k and I .I k' and 
yx +J + -J -

that the "natural" Hamiltonian H contains only the zero-quantum operators 
zz 

I .I k and I .I k' In contrast, H and H contain both zero-quantum and 
+J - -J + XX yy 

two-quantum terms. 

APPENDIX C: HOPPING RATES IN LIOUVILLE SPACE UNDER VARIOUS HAMILTONIANS 

Hopping rates r were defined in the text as 

r 
Kn;K±l,n±2 

w • s 
Kn;K±l,n±2 1 ' 

where the universal factor 

w 
Kn;K±l,n±2 

2: 
j<k 

2: 
p,p' 

(KniKn) 

establishes the basic rate and where s
1 

is a parameter dependent on the 

(Cl) 

(C2) 

specific set of dipolar coupling constants - for example, the lattice sum 

In this appendix we give expressions for W under different 
Kn;K'n' 

Hamiltonians. 

1. H (~n 0): 
zz 

w 
Kn;K+l,n 

K(N-K) 
N-1 

2QK-l.n + 3QK-l.n-l + 3QK-l,n+l 

QKn 

(C3) 

(C4) 

• 

: 



• 

W = K(K+l) 
K+l,n;Kn N-1 

2. H , H (An~ 0):_ 
XX yy 
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2QK-l.n + 3QK-l.n-l + 3QK-l;n+l 

QK+l,n 

w Kn;K+l,n 
K(N-K) _. 2QK-l.n + 3QK-l,n-l + 3QK-l.n+l 

w K+l,n;Kn 

2(N-l) QKn 

K(K+l) 
2(N-l) 

2QK-l.n + 3QK-l.n-l + 3QK-l.n+l 

QK+l,n 

(CS) 

(C6) 

(C7) 

Note that these rates are exactly half the corresponding expressions for 

H zz 

3. H , H {An= ±2): 
XX yy 

w 
Kn;K+l,n±2 

w K+l,n±2;Kn 

4. H (An= ±2): 
yx 

w Kn;K+l,n±2 

3K(N-K) 
2(N-l) 

3K(K+l) 
2(N-l) 

K(N-K) 
N-1 

QK-l.n + QK-l.n±l 

QKn 

QK-l,n + QK-l,n±l 

QK+l n±2 • 

QK-l,n + QKcl,n±l 

QKn 

(C8) 

. (C9) 

(ClO) 
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W = K(K+1) QK-1.n + QK-1.n±1 
K+1,n±2;Kn N-1 Q 

Q is defined as Kn 

c max 
L: 

c=lnl 

K+1 n±2 
' 

with 0 ~ lnl ~ K and Q00 = Q10 = QKK = 1. 

• 

(Cll) 

(C12) 
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Table I. Hopping rates for six spins under H yx 

K n K' n' w 
Kn;K'n' 

1 0 2 2 1.00000 
2 2 1 0 0.40000 
2 2 3 0 1.60000 
3 0 2 2 0.17143 
3 0 4 2 1. 28571 
4 2 3 0 1.20000 
4 2 5 0 1.44000 
5 0 4 2 0.70588 
5 0 6 2 0.68628 
6 2 5 0 2.33333 
4 2 5 4 0.64000 
5 4 4 2 3.20000 
5 4 6 2 1.00000 
6 2 5 4 0.33333 
5 4 6 6 0.20000 
6 6 5 4 6.00000 
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Figure Captions 

Projection of Liouville space onto a two-dimensional plane. Each 

point represents a family of K-spin/n-quantum coherences. 

Pathways in Liouville space open to a system of six spins evolving 

under the double-quantum Hamiltonian H 
yx 

Liouville states for 

which ~K = ±1 and ~n = ±2 are connected under this Hamiltonian. 

In general, if N spin-1/2 nuclei initially are in thermal 

equilibrium, where (in the high temperature approximation) the 

reduced density operator is proportional to I (K = 1, n = 0), 
z 

then all even orders of coherence, up to N, may develop with time. 

Pathways are symmetric about the K-axis. 

Development of n-quantum coherence in systems of various sizes, as 

predicted by the hopping model. Zero-quantum coherences, not 

shown, begin as g
0

(0) = 1 and decay to steady-state values. In 

each example the time axis is scaled to the inverse sum of the 

dipole-dipole coupling constants. 

Development of n-quantum coherence within isolated groups of 6 and 

21 spins, predicted theoretically (left) and measured experiment-

ally (right). Each point is normalized to the total spectral 

intensity excluding zero-quantum contributions. The experimental 

results are for a dilute solid solution of a molecule with 6 
1

H 

nuclei in a deuterated host (top) and for a molecule with 21 
1

H 

nuclei in a nematic phase (bottom). The different time scales 
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reflect differences in structure and molecular motion between the 

two materials. For the 6-spin system, 12 units of "theoretical" 

time correspond to 1500 p.sec of experimental excitation time; 

whereas for the 21-spin system, 25 units of theoretical time 

correspond to 4200 p.sec of real time. Agreement is excellent in 

the case of the liquid crystal, where averaging of intermolecular 

dipole-dipole interactions effectively isolates the molecules. 

Coupling between guest molecules in the solid solution, however, 

ultimately increases the effective cluster size beyond 6. 

(Experimental data courtesy of J. Baum. 12 ) 

1
H Multiple-qua~tum intensity in polycrystalline hexamethylbenzene, 

measured for increasing excitation times. Smooth curves have been 

drawn through the points. The general pattern of coherence 

development in this unbounded system is similar to that predicted 

in Fig. 3 for groups of finite sizes. (Reprinted from ref. 11) 

Formation of K-spin coherence within a group of 21 spins, according 

to the hopping model. Larger clusters contribute to the spin 

dynamics at later times. 

Variation of the effective size of the system with time under H 
yx 

The points connected by the broken line give the induction time tK 

associated with each K-spin coherence. The solid line results from 

fitting the calculated n-quantum intensities to the function 

2 
exp(-n /K ). In each view, the largest cluster approaches N 

max 

( = 21) spins after prolonged excitation. 
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Plots of gn vs. n, normalized to g
2

, for three excitation times in 

a system of 21 spins. The points give the values of gn/g2 

predicted by the hopping model, and the curves show the best fit of 

these data to a Gaussian distribution. Times were selected to 

obtain K - 4 (solid line), 12 (dotted line), and 21 (dashed 
max 

lirie). 

Largest cluster of correlated spins vs. excitation time for the 

nematic system of Fig. 4, computed by fitting measured multiple-

quantum intensities to a Gaussian distribution. The pattern 

observed is virtually identical to that shown in Fig. 7. For the 

relationship between real time and theoretical time, see Fig. 4. 

12 
(Courtesy of J. Baum. ) 

FIG. 10 Development of n-quantum coherence as predicted by the hopping 

model for six spins not initially in equilibrium. Initial 

conditions are gKn = 1/8 for each of the eight points shown in 

Fig. 2, so that g
0

(0) = g
2

(0) = 0.375 and g
4

(0) = g
6

(0) = 0.125. 

After some time the system follows the same course as one beginning 

in thermal equilibrium. 
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