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Abstract 

LBL-2254 

The chemical transport crystal growth of binary compounds 

in closed containers is analyzed for transport properties under 

conditions of multi-component, gas phase diffusion controlled 

kinetics. The Stefan-Maxwell transport equations for multi-

component gaseous diffusion are integrated and related to phase 

equilibria at ends of the transport path to predict diffusion 

fluxes and component concentrations along the transport path. 

The analysis allows the prediction of interdiffusion contributions 

to the transport flux. 
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Introduction 

Chemical transport reactions are well recognized for'their 

importance in crystal growth (1, 2). These reactions are appropriate 

for the growth of metal chalcogenides because of the high vapor 

pressure of the chalcogen element and because many metal chalcogenides 

vaporize incongruently. Through chemical transport in which low 

vapor pressure component elements of the compound react with a 

halogen to form a volatile halide, the crystal growth temperature 

can be greatly reduced below that required for direct crystal growth 

by sUblimation-condensation. 

The reaction chamber commonly considered in theories of 

closed-system chemical transport is a tube of constant cross-section 

placed in a temperature gradient. The tube contains a solid source 

chemical S at one end and a seed crystal or auto-nucleated crystals 

of S at the other. The central part of the, tube is initially 

evacuated and filled with Io moles of a transport agentAl before 

the tube is sealed and raised to the operating temperatures. 

Gaseous reaction products between Al and S are then formed which 

are transported by diffusion caused by the thermal gradient. 

Previous analyses of closed-tube, diffusion controlled chemical 

transport reactions in a thermal gradient have been presented by 

Schaefer et al. (3, 4) and by Mandel and Lever (5-9). Schaefer 

et al. (3, 4) analyzed the transport case for the simple reaction 

involving two vapor species 

(1) 
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with the limitations of equimolal counterdiffusion and a combined 

diffusion coefficient. They used the simple Fick's Law 

N. 
l. 

dc. 
l. = -0.--

l. dz (2) 

to describe ,the diffusion for the case of j = k. For j ~ k the flow 

term introduced in the system was approximated to unity. They 

discussed the system involving three vapor species, 

is (s) + jAl (g) ;j! kA2 (g) + R, A3 (g) (3) 

but did not attempt a solution. 

Mandel (5) followed a more rigorous approach improving on that of 

Schaefer by eliminating the need for a combined diffusion coefficient 

for all the species and by treating cases involving more than two 

vapor species. Mandel, however, still used the basic Fick's 

diffusion relation 

N. = 
l. 

o. ap. 
l. l. 

- RT rz-:
l. 

(4 ) 

which does not take into account the flow term caused by an increase 

in the gas phase molar concentration on reaction. Multicomponent 

diffusion involving a flow term is best expressed by the standard 

Stefan-Maxwell equations (10) 

n 
1 

CO (x.N. - x.N.) • 
.. l.) )l. 
l.) 

(5) x. = 
l. L 

j=l 

Later, Mandel and Lever (.6) attempted to justify simplification "of 

the above equation by defining an "average diffusion coefficient" 
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for each species which would, in its very definition, take into 

account the flow term. Approximations of the. partial pressures of 

the vapor species would then reduce this "average diffusion coeffi-

cient" to the diffusion coefficient of the species in a mixture as 

needed in their earlier paper (5). 

Mandel (5) also treats the effect of surface reaction rates on 

the product formation rate. Subsequently, Lever (7) treats the prob-

lem of multiple reaction equilibria for vapor transport. Here 

thermal diffusion is neglected and the flow is expressed very 

simply in terms of the diffusion coefficient and a simple parameter 

describing the overall gas composition without reference to 

individual molecular species. Mandel (9) extends this to transport 

of several solids by using coupling parameters that can be 

determined from an (N-I) dimensional equation set where N is 

the number of equilibria. In a later work Lever (8) also treats 

the problem of a single heterogeneous equilibrium and transport. None 

of these studies has treated the effect of multicomponent interdiffusion : 
on chemical transport and transport flow. 

In the analyses of diffusion in mUlticomponent gas mixtures 

the most fundamental gas phase transport equations are the Stefan 

Maxwell equations (Eqn. 5), as formulated by Curtis and 

Hirschfelder (IO). We have used these as our basis for a more 

rigorous solution to the transport problem. The major improvement 

over previous researchers is (i) that we do not approximate the 

flow term and (ii) that we use simple binary diffusivities of the 

species involved. We do not take recourse to the "average 
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diffusion coefficients" of Mandel and Lever, nor do we approximate 

the partial pressure profiles of the gaseous species. 

We consider the diffusion-limited steady-state transport in 

this paper. Since we have not taken into account the limitations 

due to surface reaction and nucleation of the product crystals, the 

product rate predicted will necessarily be an upper limit of the 

experimental rate. The approximation we use is that diffusivity and 

the total concentration is constant because of the slight variation 

of temperature along the tube. 
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Integration of the Stefan-Maxwell Equations 

The heterogeneous reaction equilibrium which applies at the 

solid-gas interfaces has the gener~l form 

(6) 

where v. are rational stoichiometric coefficients of the species 
1. 

Ai. Al is the transport agent and A2 , A3 are the intermediate 

products. 

The equilibrium constant for the above reaction is 

v 2 v3 
P 2 P3 

K = (7 ) 

where P. are the partial pressures of species A .• The temperature 
1. 1. 

dependence of K can be deduced from free energy calculations. 

During steady-state chemical transport the mass flux of the 

product S, N
S

' is related to mass fluxes of the gas phase 

species by 

(8) 

If the mean free path between molecular collisions is small 

compared to the dimensions of the transport tube, the total pressure 

within the tube is independent of position. Thus, 

(9) 
or r xi(z) = 1, o ~ Z ~ L 

where the total pressure Pt is specified by the extent of reaction 

at the source temperature T1 , and 

Ai in the vapor phase. 

X. 
1. 

is the mole fraction of species 
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Diffusion of the various gaseous species along the transport 

path can now be deduced from the Stefan-Maxwell equations, 

1 
-CD <X.N. 

• 0 ~ J 
~J 

, 
x oN 0) , 

J ~ • i=l, 2,3 • 
(10) 

Combining Eqs. (9) and (10), we can eliminate one species, 

say x 3 ' and represent Eq. (10) in a linear form, 

Using Eq. 

Eq. (11) 

all 

a12 

b l 

(8) 

Vx. = 
~ 

and the fact that Do 0 = 
~J 

are found to be as follows: 

N S (V 2 v 3 - vI ) = - --+ 
C D12 D13 

NS 
vI ( I I ) = 

D12 - D13 C 

= 
NS vI 

C l1.3 

(11) 

Do 0 , 

J~ 
the coefficients in 

_ NS v2 (~_ ~) a 2l = C D12 D23 

NS ( -vI + V2+V 3) a 22 = C D12 D23 

b 2 = 
NS v 2 

- C D23 

Eq. (11) can be represented in matrix form as 

VX = A x + B (12 ) 

where 
x =[:~] and B = [:~] 

The solutionsto the homogeneous parts of Eq. (12) are 

(13)" 

(14) 
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where 

It can be shown that A3 and A4 are related to Al and A2 by 

and • 

The general solution to the nonhomogeneous Eq. (12) is 

Az -1 
x = Ae- - A B 

where A is a vector containing arbitrary constants. 

(15) 

Addition of the vector A-IB to the solutions (13) and (14) then 

gives the solution to Eq. (12) : 

m1 z m2z a22b1-a12b2 
xl = Ale + A2e + 

a21al2-alla22 
(16) 

a 2l A I m1z a 21 A2 m2 z al1b2-a2lbl 
x 2 = e + e + ml -a22 m2-a22 a2la12-alla22 

(17 ) 

x3 = 1 ;... x - x 2 1 
(18 ) 

The roots ml and m2 are generally complex and require that 

they be expressed in terms of trigonometric functions. 

If we assume that m. are complex with real and imaginary parts 
:1. 

defined by 

m1 = s + ir 

s - ir 
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where and 1 
r = 

2 

then the concentrations of the gaseous species can be expressed as 

xl = (Xl + eSZ(c
l cos rz + c 2 sin rz) (19) 

x 2 = (X 2 + esz (c 3 cosrz + c 4 sin rz) (20) 

x3 = 1 - x - x 2 1 (2l) 

where (Xl = 
a22bl-a12b2 

a2la12-alla22 

(X2 = 
allb2-a2lbl 

a2la12-alla22 

c l = Al + A2 , c 2 = 'A 
1 - A 2 

c 3 
( A1 + A2 ~ c 4 = = rn

l
-a

22 rn -a l' 2 2 

Note that c 3 and c 4 are dependent on c l and c 2 by the relation 

and 

where t = s - a 22 " 

Formulation of the Chemical Transport Boundary Value Problem 
To obtain a particular solution to the above general solutions 

for xl' x2 and x 3 ' i.e., Eq. 19-21, we must know NS (which is implicit 

in the constants all' a12 , etc.), c l ' c 2 and C, the total concentra

tion of all gaseous species in the ampoule. Accordingly, we need 

four equations to obtain these four quantities. Theseequations can 

be derived from: 
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i) Conversion at the source. (This gives us C, 

the total concentration. ) 

ii) Transport agent conservation in the ampoule. 

iii) The equilibrium condition at the source end. 

iv) The equilibrium condition at the product end. 

i) Conve~sion at the source: 

At temperature TIthe source reaction given by Eq. 6 has the 

equilibrium' con,stant, 

"2 "3 "2 "3 

Kl = 
P2 P3 x 2 x3 

• (CRTl)n (22) = 
P "1 "1 

1 xl 
z=O z=O 

If Y is the extent of reaction at the source for the reaction 

of Eq. (6), and if the initial feed concentration of the transport 

agent is E = I~aL), where L is the tube length and a the tube cross 

sectional area, then the concentration of the transport species 

are given by 

Al = (l-y) E = CXl (23) 

c 2 =Ey "2 = Cx~ V-
I 

(24) 

and c = Ey "3 CX3 = 3 "1 
(25) 

Replacing the values of xi' x 2 and x3 in Eq. 22 by Eq. 23-25, 

we obtain 

. 
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(l-y) VI 
(26) 

Since the mole fractions of the gaseous species must sum to unity, 

it is necessary that 

(l-y) e: + 
C 

e:,y v3 
+-

C VI 
= 1. 

As a consequence, the extent of reaction is simply, 

C 
e: I • 

Combining Eq. (26) and Eq. (28) we obtain 

(27) 

(28) 

(29 ) 

Knowing the equilibrium constant at the source end from free energy 

considerations the total concentration C mthe ampoule can be 

obtained by inverting Eq. 29. 

ii) Transport agent requirements: 

The transport agent Al reacts·with the solid S to form volatile 

intermediates which, after transport to the other end of the tube, 

react to give back the original compounds Al and S. The number of 

moles of the transport agent species must be conserved, whether 

as Al or in some fraction of A2 and A3 • This conservation 

condition is then 
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L 

EAL = IO = Ca f 
0 

[Xl (z) + y 2x2 (z) + Y 3x3 (z) ] dz (30) 

where y. atoms of species Al in A' = ~ 
1. atoms of species Al forming a molecule of Al 

For example, in the reactive transport of ZnS with iodine as a 

transport agent, the reaction equation is 

and the ratio of Y2' the atoms of species I in molecule of ZnI2 

to Y3 ' the atoms of species I in molecules of I2 is unity. 

Similarly, for the reactive transport of Fe2S3 with iodine with 

the reaction equation 

the values of Y2 and Y3 are 3/2 and 0, respectively. 

Generally, for the reaction in Eq. (6) only one of the products 

A2 or A3 contains the transport agent species, and especially 

when the transport agent is an element. We can write the general 

transport equation such that Y3 = O. Thus, for a typical case the 

conservation condition becomes, 

= 

In terms of the constants c. this condition becomes 
1. 
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+ se S1n rL - r(e cos rL-l) [ 
sL.· sL ] 

where c 3 and 04 can be expressed in terms of c 1 and c 2 Q (31) 

iii) Equilibrium at the source end: 
\ 

Equilibrium at the source end requires the reaction Eq. 6 with 

z=o 

V3 

[ 1-« 1 - ".! -c 1 - r--:2:::-a--!---t~2 (tc 1 -rc 2 1] 

iv) Equilibrium at the product end: 

Similarly, equilibrium at the product end of the reaction 

vessel requires 

z=L 

In terms of the constants c., 
1· 

this equation becomes 

(32) 
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[C2 + 
a 2 

t 2 (Clr+c 2t l] 'f + 2 sin rL 
r + 

x [cal + 

. IT 

rLl "l~ 
(CRT2 > 

e SL (cl cos rL + c 2 sin 

(33 ) 

Once C is calculated from Eq. 29, the system of three 

non-linear algebraic simultaneous equations Eqs. 31-33 can be 
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Results 

, ) 

The chemical transport of a number of binary metal chalcog~n~des 

with halogen transport agents was studied by numerical simulatioJ) 

under a variety of transport conditions. The total molar concentra

tion and extent of reaction were calculated from Eqs. 28 and 29. for 

a fixed source temperature and feed concentration of the transport 

agent. The species concentrations and product flux along the transport 

path were than calculated by solving Eqs. 31-33 simultaneously for 

the variables c l ' c2 and NS for a fixed temperature gradient 

and species interdiffusivities. The method of computation used was 

to first set the initial approximate variable values within their 

.respective ranges, and then to seek a minimum error for the equation 

set by unconstrained minimization using the Newton Raphson method 

with internally approximated gradients. 

The computed results of the simulated transport problems were 

examined for dependence of the product flux on the halogen feed con-

centration, the interdiffusion coefficients and the imposed tempera-

ture gradient. In general the following results were found: 

i) For a given temperature gradient and a fixed crystal growth 

temperature the product flux increased with the concentration 

of transport agent feed~ The rate of increase decreases with 

increasing feed concentration, and reaches a maximum when 

the mole fraction of the transport agent predominates over 

other species mole fractions within the ampoule. 

ii) The product flux increases essentially linearly with increasing 

temperature gradieht imposed along the transport path, for 
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a fixed path length and halogen feed concentration. The 

linear rate of increase tends to decrease slightly for 

iii) The interdiffusion coefficient influences the transported 

product flux most significantly in the region of the transport 

path where K = 1. The variation in product flux is within 

25% of that when interdiffusion effects are absent. 

iv) The concentration profiles along the transport path were 

found to be nearly linear in all transport simulations. The 

non-linearity depends to a large extent on unequal 

interdiffusion coefficients, as well as on other factors. 

As a general rule, the non-linearity increases with both 

iodine feed and temperature gradient. 

The effect of interdiffusion coefficient variation was explored 

for a hypothetical metal dichalocogenide with scalable physical 

properties transported with iodine as a transport agent along a 

temperature difference of 25°C. The interdiffusion coefficients 

were varied for each of three values of the equilibrium constants 

at the product end, K2 • The interdiffusion coefficients enter 

into the constants a .. 
~J 

and bi which in turn fix the values of 

the transport parameters r, s ,cl and c2 • It was found, 

however, that c l is approximately equal to 2, whereas c2 has 

a value near -1 for metal dichalocogenide transport. The normalized 

molar product flux was found to vary as much as 25% for fixed values 

of equilibrium constants at the ends of the transport path. 
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Table 1. Dependence of normalized product 

transport parameters r and s • 

rXl0 4 4 * K2 sxlO NS 

8.92 1.1 2.6 0.178 

8.92 2.0 4.8 0.164 

8.92 3.5 8.4 0.141 

1. 66 5.0 12.7 6.91 

1. 66 9.5 23.8 6.17 

1.66 16.5 41. 9 5.55 

0.185 9.7 24.6 4.65 

0.185 19.5 49.3 4.57 

0.185 38.4 97.1 4.34 

flux on 
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Discussion 

The results of the numerical simulation studies are consistent 

with expectations based on simpler predictions of the product flux 

dependence on transport conditions where transport flow and 

interdiffusion effects are omitted. For the transport problem 

which includes interdiffusion and flow, result (i) above is consistent 

with the effect of increasing halogen mole fraction on allowable 

concentrations of other 'species. The near linear dependence of pro

duct flux on temperature gradient is also expected, since the 

interdiffusivities are assumed independent of temperature in the 

present model. 

The significant result of the present study is that of (iii) 

above, which is that interdiffusion and transport flow effects can 

influence the predicted product flux for the chemical transport 

process. The major effect is expected in the region where K ~ 1 

because the vapor phase is truly multicomponent in this range. 

When K differs significantly from unity one or two of the species 

dominate in the vapor phase, and chemical transport is then limited 

by diffusion of other species through this simpler vapor. 
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The superiority of our model over the analysis of previous 

researchers is derived from the exactness of the concentration 

profile and the consequent improvement in the product rate. The 

approximations of the flow terms, diffusion coefficients and concen-

tration profiles in the previous analyses are avoided. The 

product flux is an implicit variable in the problem which is 

solvable by numerical techniques. A computer program has been 

compiled for the transport of binary chalcogenides by halogens, 

(34) 

where M is the divalent metal, Ha the halogen and X the chalcogen. 

1 For Eq. 34, vI = 1, v 2 =,1, v3 = 2' Y2 = 1 and Y3 = O. The results 

for ZnS and MnS transport by 12 will be tabulated and discussed 

in a later paper. 

Our model still assumes no variation of diffusivities D .. 
1.) 

and total concentration C with a variation in temperature. However, 

assuming a linear temperature variation along the ampoule, we can 

link the variations of C and D .. to z and examine the errors thus 
1.) 

caused. 

A linear variation of temperature with distance, coupled with 

the boundary conditions gives us 

T 
(T2-TI ) 

z+ Tl = 
L 

(35) 

and dT T2-TI b.T 
kl dz = = = 

L L 
(36) '. 
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Assuming an ideal gas variation at constant pressure, 

CT (37) 

and T dC + C dT = 0 
dz dz . (38) 

Combining Eqs. 36 and 38, we obtain 

(39) 

or (40) 

At the source end, for z = 0 and T = Tl , if the total concentration 

is Cl as found by Eq. 29, then 

k3 
c l = 

Tl 
(41) 

C 
c l 

= . 
1 + ~ bT 

L Tl 

(42) 

If z 
~ and bT o , then = -= L Tl 

C 
c l 

= 
1 + ~o 

(43) 

If ~o is small, then C = c l which is our assumption in the text, 

is always 1. Hence, if 0 is small, the error is small. However, 

we can use Eq. 43 to further require the model. We have used Eqs. 29, 

30, 32 and 33 to generate the solution to the transport problem. 

In Eq. 29 and 32 we can directly use c l as found above. In Eq. 33 

we can use c 2 instead of C, where 
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{ t 

Only Eq. 30 will have to be transformed to 

(44 ) 

The individual terms under the integral sign can be integrated 

separately and will involve integrations of the form 

sz 
e cos rz dz 
(1 + z .Q..) 

L 

and 
sz . _e __ s_~,,-n __ ._r_z dz , 

(1 + ~ cS) 

These can be found from any integration tables. However, since 

C ex!. and D .. ex Tl • 8 it is not possible to offset the variation 
T ~J 

of C with T. If we combine both the quantities, then 

(CDij ) « TO.8« zO.~ Since incorporation of variation of Dij with 

z will complicate the problem, it is better to eliminat~ the 

variation of C with T in the main problem. 

The simulation of the chemical transport of metal chalcogen 

compounds including interdiffusion effects has several incentives. 

In addition to comparing the suitability of different halogens and 

other compounds as transport agents; the solution method proposed 

allows a prediction of the product compound formation rate for 

diffusion controlled transport under different conditions of temper-

ature, initial transport agent concentration and choice of transport 

agent. The method outlined above allows a prediction of the 

concentration profiles for various species along the transport path, 
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can provide the total pressure in the transport tube, and can 

provide data for predicting the optimum conditions for crystal growth, 
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