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~ .. Classical Simulation of the Fermi Gas 

Claudio Dorsa, Sergio Duarte!, and J¢rgen Randrup 

Nuclear Science Division, Lawrence Berkeley Laboratory 
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Abstract: 

LBL-22S9S 

We demonstrate that it is possible to approximate the one-particle 
phase-space distribution of the excited Fermi gas within the framework 
of classical mechanics by employing a momentum-dependent two-body re
pulsion, to simulate the Pauli exclusion principle. For a suitable choice 
of the parameters in this potential, it is possible to achieve a quite good 
approximation to the momentum distribution over a broad range of tem
peratures and densities. 

1 On leave from Centro Brasileiro de Pesquisas Fisica (CNPQ), Rio de Janeiro, Brazil. 



1 Introduction 

In recent years, there has been steady improvement in the experimental tools for 
studying nuclear collisions at intermediate energies, i.e. bombarding energies from a. 
few tens to a few hundreds of Me V per nulceon. At these energies, the total excitation 
energy of the collision system is comparable to the the total binding energy, so that a 
disassembly into many nuclear fragments is possible. In concert with the developments 
on the experimental front, the theoretical descriptions have grown more refined. At 
the moment, the most sophisticated model of nuclear dynamics at these energies is 
the Vlasov-Uehling-Uhlenbeck (VUU) model, which describes the system in terms 
of individual nucleons which move in a common time-dependent one-body field and 
occasionally scatter with one another.[l] Relative to free collisions, the nucleon-nucleon 
scatterings are suppressed due to the phase-space Pauli exclusion produced by the 
presence of other nucleons; this feature is important since the excitation energy is 
comparable to the Fermi kinetic energy and, consequently, the nucleon gas is still 
quite degenerate. While the formulation and implementation of this model represents 
a major step forward in our ability to model nuclear dynamics at intermediate energies, 
we still have a long way to go before a satisfactory description is at hand. One of the 
most important limitations of the current VUU-type models is the neglect of dynamical 
fluctuations: although an entire ensemble of systems are followed, they are all assumed 
to have the same mean field. This feature strongly limits the utility of the model since 
fluctuations are very prominent at these energies. Another shortcoming is is the fact 
that fragment formation is not well described in the model, a difficulty shared with 
most other dynamical models presently in use. 

Our goal is to develop an alternative model which may provide a useful supple
ment to the VUU description, at least until such a time when that model has been 
further developed to incorporate fluctuations and fragment formation. We seek to 
develop a model based on the microscopic dynamics of interacting classical particles. 
A key feature is the introduction of a momentum-dependent potential for the pur
pose of simulating the Pauli exclusion principle. Such an approach was first taken 
by Wilets et al.[2]. In that work, a repulsive momentum-dependent Pauli potential 
was postulated and the parameters of an ordinary two-body potential were adjusted 
to fit certain gross nuclear properties. Although the model met with some success, it 
was never demonstrated that the phase-space distribution of the nucleons is actually 
well approximated. Since this property is expected to be important for the dynamical 
behavior of a colliding system, there is a need for scrutinizing the problem. There
fore, in the present paper, we reconsider the problem of determining an appropriate 
Pauli potential and we demonstrate that it is in fact possible to obtain a reasonably 
good reproduction of the important features of the Fermi gas, with a suitable choice of 
potential parameters. Our thus determined Pauli potential differs in form from that 
employed in ref. [2]. We see this result as a first step in a program, the next step 
being the inclusion of a real two-body interaction for the purpose of describing both 
nuclear matter and finite nuclei. If this proves possible, the foundation is laid for an 
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interesting dynamical model for the evolution -of a highly excited- nuclear system far 
from equilibrium, including its disassembly into multi-fragment final states. 

2 General considerations 

We consider a system of N structureless identical classical particles in a Euclidian 
space of dimensionality D. The momentum and position of a given particle i, i = 
1, ... ,N, are denoted by Pi and qi, respectively. The particles are interacting via a 
momentum-dependent tW<rbody force, so the total eJ?ergy of the system is represented 
by a Hamiltonian of the form 

H(Pt, ... ,PN,qI, ... ,<Lv) = ~1i + ~~' Vi; . 
• '1 

(1) 

Here 1i = p~ 12m is the kinetic energy of particle i and the tw<rbody interaction energy 
between particles i and j is Vi; = V(Pij,qij), where Pi; = IPi - pjl and qij = Iqi - Q;I· 
The prime on the summation in the interaction term is intended to remind of the con
vention tha.t the sum over j should exclude the self-interaction term Vii corresponding 
to j = i (although the inclusion of Vii would be of no dynamical consequence). 

The dynamical evolution of the particles is governed by Hamilton's equations, 

. aH. aH 
Pi = -- , qi =,- . 

aqi api 
(2) 

The-momentum dependence ofY produces a variable effective mass, so that the stan
dard.relationship between velocity and momentum, Pi = mqi, is replaced by the more 
general form Pi = M . q., where M(Plt ... , PN, qI, ... , <Lv) is the effective mass ten
sor. The ground state of the system. has the minimum energy and it is therefore a 
solution to the 2D coupled equations Pi = 0 and Qi = o. Such a state represents a 
frozen configuration in phase space, with the particles having finite momenta despite 
their vanishing velocities. Thus the associated effective mass tensor is divergent. This 
illustrates how the kinematics is strongly affected by the Pauli potential. 

When considering an entire ensemble of similar systems, as we shall do, it is conve
nient to deal with the N-particle distribution function f(N)(Plt .•• , PN, qlt ... , qN). Its 
form in thermal equilibrium is given by 

f eN) -H/r 
equal - e , (3) 

where H is given by (1) and T is the temperature. 
Any observable of interest can be expressed in terms of the distribution function 

f(N). For example, the reduced one-particle phase-space distribution function is given 
by 

(4) 
i 

where (.) indicates the 2DN-dimensional phase-space integration with feN) providing 
the, weight :function; in .practice,this is .easily accomplished.bY'averaging,over. the _.given 
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ensemble of systems. It is useful in the "present context to normalize 1(1) such that it 
measures the phase-space occupancy, i.e. the number of particles in an elementary cell 
of volume hD around the point (p, q). The spatial density of particles is obtained by 
performing a momentum integration, 

f dP 
p(q) = hDI(p,q) , (5) 

and the total particle number is recovered by subsequent integration over position, 

! f dpdq 
N = dq p(q) = h}J I(p, q) . (6) 

The expression (1) for the energy can be rewritten in terms of the reduced one
and two-particle distribution functions as 

E _ fd~!q[/(l)(p,q):~ +ifd~~q'/(2)(p,p',q,q')V(lp-p'I,lq-q'l} ](7) 

~ ! d~!q/(l)(p,q)[:~ + i! d~~q' l(l)(p',q')V(lp - p'l, Iq - q'l} 1. (8) 

Here the second relation is valid when the two-body correlations can be neglected, i.e. 
when 1(2) (p, p', q, q') ~ /(1) (p, q) 1(1) (p', q'). 

If the ensemble is translationally invariant, then 1(1) is independent of position 
and the spatial dependence of the two-body distribution function /(2) is only via the 
difference Llq = q - q'. We then find 

E = n! ~~[J(l)(p);~ + ~n f dP~:~q/(2)(P,p',~q)V(~p,~q)1 , (9) 

where n = I dq denotes the total volume of the system. Since n ~ 00, it is practical 
to introduce the energy per particle E = EIN, which is well-defined since nlN = lip. 
In practice, such a system can be approximated by a periodic system with a sufficiently 
large periodicity. 

In order to implement the qualitative concept of closeness, it is desirable to intro
duce a metric in phase space. This can be accomplished in a convenient manner by 
defining the dimensionless distance sii between the two phase-space points (Pi, q.) and 
(Pi,q;), 

8;i = P~/P5 + q;ilq5 , (10) 

where Pi; = IPi - Pil and qii = Iqi - q;1. The parameters Po and qo are suitable 
characteristic scales for relative momentum and position and are further discussed 
below. 

In the present study, we present results obtained with Pauli potentials of Gaussian 
form, 

V(p,q) _ Vo (211"P5)-~ e-p2/2p~ (211"q6)-1l e-q2/2q~ hD 

_ VO (~)D e-1I2
/ 2 . 

Poqo 
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Here Vo determines the overall strength, whereas Po and qo determine the ranges in 
momentum and position space, respectively. This form has the special advantage that 
V depends on p and q through the dimensionless separation 8 only, and yet V is 
separable with respect to momentum and position. In fact, V factorizes totally with 
respect to all 2D dimensions of phase space. The complete separability with respect 
to position makes the inclusion of neighboring cells in a periodic system especially 
economical - a distinct calculational advantage. It is useful to define the following 
reduced potentials, 

Vp(p) 

vq(q) 

- I dq V(p,q) 

j dP 
- hD V(p,q) _ TT (2 2) _12.. _q2/2q2 - Yo 1f'qo 2 eo. 

The total strength of the Pauli potential is given by 

! dpdq ! dp ! Vo = ---w;- v(p,q) = hD vp(p) = dq vq(q) . 

(12) 

(13) 

(14) 

Roughly speaking, the parameters Po and qo determine the size of an effectively 
excluded volume around each particle in phase space. Indeed, they can be thought of 
as the extensions in position and momentum of a spheroidal excluded volume around 
each particle. {Note that the range appearing in the two-body Pauli potential is twice 
the radius of the effective excluded volume around each particle, as is easily visualized 
by considering a system of hard spheres.] In order that each particle block a phase
space volume of magnitude hD, we would expect Po and qo to be related by Poqo ~ 21i, 
a sort of "uncertainty relation". {In fact, we should expect the product to be slightly 
smaller than that, with the exact number depending on the dimensionality D, because 
of the geometric fact that hard spheroids can not be packed to uniformity (as hard 
cubes can), but always leave a certain fraction of the space empty.] 

3 Idealized treatment 

In order to gain some familiarity with the model, we consider in this section the 
idealized situation where the two-body correlations can be neglected, 1(2) ~ /(1) 1(1). 

This'situation is expected to arise when the spatial range qo is large in comparison with 
the typical spacing between neighboring particles (which is ,..., p-I/D). The expression 
for the energy then simplifies to 

(15) 

(16) 

Here I(p) is a short notation for 1(1)(p) and the isotropy implies that f only depends 
on the.magnitude.p =·Ipl. The~second.relation'holds when.the.momentum range Po is 
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small compared with PF, which represents the characteristic momentum scale for f(p)j 
we have then vp(p) ~ Vo6(p)hD • [For a given density p, it is convenient to define the 
equivalent Fermi momentum PF through the relation p = rD(PFlh)D pertaining to a 
standard cold Fermi gasj the relevant geometric coefficients are r 1 = 2, r 2 = 1r, r 3 = 
41r 13.] 

The ground state of the system is determined by the requirement that the energy 
be a minimum, for the specified density. By performing the variation p6 E - A6 p, it is 
elementary to show that the solution to this problem is given by a simple parabolic 
distribution, 

1 p2 p2 
f(p) = -(A - -) 0(- - A) . 

Vo 2m 2m 
(17) 

Here the truncation function 0 ensures that no particles are found above the "chem
ical potential" A. The requirement that f be appropriately normalized yields the 
relationship 

, (D+ 2Vo)_2 
A = D+2 EF • 

2 EF 
(18) 

The momentum distribution can be characterized by the mean kinetic energy which 
is easily found to be 

1 I·· p2 D D + 2 Vo 2 
Ean = -. dpf(p)- = ( )D+2 EF • 

phD 2m D + 4 D EF 
(19) 

For a standard cold Fermi gas the mean kinetic energy is given by 

FG D 
Can = D + 2 EF • (20) 

In order to approximate the momentum distribution for the corresponding Fermi gas, 
we demand that Ean be equal to E~~. This requirement then determines the interaction 
strength Vo, 

v; = 2 (D + 4) Dr 
o D + 2 D + 2 EF • 

(21) 

This amounts to Vol fF = 1.43, 1.13, 0.93 for D = 1, 2, 3, respectively. 
This result implies that the "chemical potential" A is given by 

D+4 
A = D+2EF' (22) 

Furthermore, the maximum occupancy attained is given by 

(23) 

This amounts to 1.16, 1.33, 1.51, respectively. Thus, the Pauli potential prevents the 
particles from assembling at zero momentum, as they would in the abscense of the 
momentum-dependent repulsion, and it actually produces a phase-space occupation 
that is fairly close to the correct quantum-mechanical one (which is unity up to the 
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Fermi energy Ep), This.result is encouraging, particularly since the present idealized 
treatment, in which the two-body correlations are neglected, will tend to overestimate 
the occupancy, so that there is reason to expect that a more refined treatment will 
produce even better results. 

Figure 1 shows the function f(p) for D = 1, as calculated with the above determined 
value of the interaction strength Vo, It illustrates the effect of a finite temperature l' 
and a finite momentum range PO. These results are obtained by a simple iterative 
solution method. It is based on the fact that the thermal-equilibrium form of the 
one-.particle distribution function is given by 

(24) 

where.Ep [!] is the single-particle energy for a particle having the momentum Pi due to 
the presence of two-body interactions, this quantity depends on the entire one-particle 
distribution /. Starting from an approximate solution (for example, the analytical 
zero-range parabolic form (17), or the thermal distribution for non-interacting parti
cles), one can then calculate the associated single-particle energies EpU] and then, using 
the formula (24) for the equilibrium distribution, generate an improved approximation: 

f'(p) 

fnew (p) 

_ c e-fp [/]/1' , 

1 
- 1 + b (J'(p) + bf(p)) '. 

(25) 

Here c is the appropriate normalization constant and the "braking coefficient" b is 
introduced as a tunable quantity whose role is to improve the convergence properties 
of the iteration procedure. This simple method is very fast and usually works quite 
well. It can readily be extended to higher dimensions. 

It should be noted that there is little effect of increasing the momentum range Po 
from zero to a finite value, as long as it remains small in comparison with Pp , which 
characterizes the momentum over which J(p) varies significantly. We therefore expect 
the analytical results obtained above for Po = 0 to be of relevence also for moderate 
finite values of Po. 

4. The Fermi gas 

After- the above preparations, we' now .. address the three-dimensional Fermi gas. As 
an approximation to the infinite system, we consider a sample of spatially periodic 
systems. Each elementary cell is of cubic shape and typically contains 64 particles. 
The periodicity condition is easily imposed by letting a leaving particle reenter the 
cell from the corresponding point on the opposite side with the same momentum. The 
interaction of the explicitely considered particles with particles in neighboring cells is 
taken into account to sufficiently high order, typically the inclusion of two layers of 
neighboring cells suffices. [As already noted, this is relatively easy and economical to 
accomplish, due to the spatial factorization of the interaction.] A thermal sample of 
states is generated by employing.the Metropolis procedure.[3]. 

6 

v 

J 



I;; 

.~ 

\. 

The following set of parameters prove to yield quite satisfactory results and they 
have been adopted as a preliminary set ·of standard values: 

Yo - 34.32 MeV, 

Po - 2.067 MeV·l0-22s/fm , 

qo - 6.00 fm. 

(26) 

The strength Yo has the value suggested by the above idealized treatment for D = 3, 
Yo = 0.9276 EF. 

Furthermore, the product of the ranges is Poqo = 1.88n, which is quite consistent 
with our expectation of a value somewhat less than two times n. [In applications 
to nuclear systems, it must be recalled that each nucleon has a four-fold spin-isospin 
degeneracy, so that ordinary nuclear matter would consist of four separate systems 
of the type discussed here; nucleons with different spin-isospin components do not 
interact via the Pauli potential.] 

In order to illustrate the effect of this interaction on the particle motion, we show 
in fig. 2 the phase-space trajectories for the head-on collision of two free particles. 
As expected, the Pauli potential is only important when the relative momentum is 
comparable to, or smaller than, the range PO. For the smallest relative momenta, the 
repulsion is so strong that the effective mass becomes temporarily negative. [As already 
pointed out in ref. [2], this feature makes the relationship between momentum and 
velocity multivaluedand thus precludes a Lagrangian formulation.] These trajectories 
exhibit a similarity with those resulting from the collision of two particles interacting 
with a hard-sphere Pauli potential. 

In fig. 3 we show the mean kinetic energy per particle as a function of temperature. 
Three different densities have been considered, corresponding to the standard Fermi 
energy and both twice and half that~ [This corresponds to normal saturation density 
and densities 2.83 times higher and lower than normal, respectively.] This should cover 
the range of densities occuring in those nuclear collision processes towards which this 
work is oriented. It is seen that the mean kinetic energy tracks well the behavior of 
the Fermi gas as a function of both the temperature and the density. 

The more detailed behavior of the momentum distribution is illustrated in fig. 4, 
which displays the phase-space occupancy f(p, q) as a function of the magnitude of 
the momentum. [In the present system f does not depend on the position, due to the 
translational invariance, and only depends on the magnitude of the momentum, due 
to the isotropy.] For the standard value of the Fermi momentum, a broad range of 
temperatures is considered, from close to zero to around the Fermi kinetic energy. The 
agreement with the results for the corresponding Fermi gases is remarkable. The most 
prominent deviations occur at the lower temperatures, where a peak in f appears at a 
small finite value of p. This is largely an artifact of the finite cell size employed: at low 
temperatures the particles prefer to organize themselves into fairly regular structures 
and this produces pronounced undulations' in f. IT an additional average were made 
over an interval in the periodicity of the order of the range qo, these undulations would 
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be reduced. With this·inmind, we therefore consider. the agreement between the'modeL 
calculations and the Fermi gas results to be quite satisfactory. 

5 Concluding remarks 

In the present paper, we have discussed a system of classical particles interacting via 
a repulsive momentum-dependent two-body potential. We have illustrated some of 
the general features of such a system and, in particular, we have, for the first time, 
demonstrated that it is possible to achieve a fairly good imitation of the Fermi gas, 
with a suitable choice of potential. This result holds promise that it may be possible 
to develop an interesting model for intermediate-energy nuclear dynamics within the 
framework of classical equations of motion~ We are currently pursuing,this next stage 
of investigation. 

This work was supported by the Director, Office of High Energy and Nuclear 
Physics of the Department of Energy under contract DE-AC03-76SF00098, the Con
sejo Nadonal de Investigaciones Cientificas y Tecnicas, Argentina, and the Conselho 
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knowledge the hospitality extended to us by the Nuclear Theory Group at LBL. 
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Figure captions. 

Figure 1. Momentum distribution in the idealized system. 
For the idealized system (D=l, no correlations), the phase-space occupancy /(p) is 
displayed as as a function of the magnitude of the momentum, p. The result (17) for 
zero temperature, T=O, and zero momentum range, Po=O, is the parabolic solid curve. 
The left-hand part shows the effect of increasing the temperature through T=4 Me Y 
(short dashes) to T=8 MeY (long dashes). For T=4 MeY, the right-hand part shows the 
result of increasing the range from zero (short dashes) through a moderate range, Po=3 
MeY·10-22sjfm (long dashes), to a relatively large range, Po=6 MeY.10-22sjfm (solid). 

Figure 2. Two-body collisions. 
For the interesting part of phase space, the figure shows the trajectories of two par
ticles as they approach each other head on from a large distance, interact via our 
standard Pauli potential (the Gaussian form (11) with the parameters given in (26)), 
and ultimately reseparate. The position is in units of fm and the momentum is in 
units of MeY·10-22sjfm. 

Figure 3. Mean kinetic energy. 
The figure shows the mean kinetic energy as a function of the temperature, for three 
different densities characterized by the Fermi kinetic energies TF = 18.5, 37, 74 MeY. 
The dashed curves are the exact Fermi-gas values. The results obtained from the 
Metropolis calculation with our standard Pauli potential (11) are shown as shaded 
bands whose widths correspond to the associated statistical error. 

Phase-space occupancy. 
The figure displays the phase-space occupancy /(1) as a function of the magnitude 
of the momentum (in units of MeY·10-22sjfm), for four different values of the tem
perature. The dashed curve is the exact Fermi-gas values, while the histograms are 
calculated with our standard Pauli potential (11). 
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