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TBEOJUn"ICAL INVESTIGATION OF THE PRECIPITATION OF 6' IN AL-LI 

A.G. Khachaturyan. T.F. Lindsey and J.W. Morris. Jr. 

Center for Advanced Materials. Lawrence Berkeley Laboratory 
and 

Department of Materials Science and Mineral Engineering 
University of California. Berkeley 

Abstract 

This paper contains the results of a theoretical investigation 

of the equilibrium between a disordered FCC solution and an L12 phase in 
a model binary alloy and the transformation paths that may be followed 
when the disordered phase is quenched into the two-phase field. The 
results are specifically applied to binary Al-Li alloys. in which case 
the ordered phase is the metastable A13Li (0') phase that precipitates 
from the disordered solid solution (a). The thermodynamic model as­
sumes that the atoms interact in pairs with an interaction potential 
that is independent of the temperature and composition. and uses the 
"mean field approximation" for the entropy of mixing. The assumptions 
confine its applicability to temperatures well below the ordering tem­
perature of the L12 phase. The model is used to compute the two-phase 
field that separates the disordered solution and the L12 phase. For the 
specific case of Al-Li. it provides results that fit the available 
experimental data and offer a simple explanation for the observed devia­
tion from stoichiometry of the 0' phase. The model predicts that the 
disordered solution orders congruently .on quenching. but is then unsta­
ble with respect to decomposition by a spinodal mechanism that leads 
ultimately to a state of ordered L12 precipitates in a disordered ma­
trix. The results provide plausible interpretations for the transfor­

matioas observed in quenched Al-Li alloys. 

I. 

The aetastable 0' (A1 3LO phase in the aluminum-Ii thium system 

has recently attracted significant interest because of its role as a 

hardening precipitate in Al-Li alloys. The precipitate has the L12 
structure shown in Figure 1. and forms when a homogeneous a solution is 
quenched into the metastable two-phase field that is shown in Figure 2 

[1]. Only the low-temperature portion of the metastable two-phase field 
has been determined [2.3] since the solubility of Li in the parent FCC 
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a-phase is limited to approximately 13 atom percent [4]. The stoichio­

metry of the ordered phase is also uncertain because of the difficulty 

of extracting the precipitate or analyzing the lithium content in situ. 

The &' compositio~s shown on the diagram are taken from low-angle scat­

tering measurements by Cocco. et a1. [5], and plasmon-EELS studies by 

Sung, Chan and Williams [1], who provide the error bar on the high 

temperature data point. 

The limit of stability of the a solution is also of interest 

since thermodynamic instabilities may well determine the microstructure 

of the alloy in the quenched condition. The experimental data (for 

example, references [3,5,6]) suggest that binary alloys with more than 

about 5.5 atom percent Li always contains small &' precipitates in the 

as-quenched state. Dynamic resistivity measurements by Ceresara, et al. 

[7] indicate that a homogeneous ordering reaction precedes the formation 

of discrete &' part ic les in a 6.7" Li binary. 

The only computation of the metastable two-phase field that is 

known to the authors was done by Sigli and Sanchez [8] who used a 

cluster variation technique to achieve an overall fit to the AI-Li phase 

diagram (shown in Figure 3). While their overall ,results are reason­

able, their calculation of the metastable two-phase field that_is of 

interest here differs from the experimental data in at least three 

respects. It predicts that the &' phase that is in equilibrium with the 

a solid solution is essentially stoichiometric, while the available 

experimental data shows significant deviations from stoichiometry. It 

predicts that the initial instability on cooling is a spinodal decompo­

sition into two disordered solutions, while the available experimental 

data show that ordered &' precipitates are invariably present after 

quenching alloys with greater than about 5.5 atomic percent lithium. 

Finally. it predicts an inflection in the metastable a solvus line that 

is not apparent in the experimental data. 

If we confine our attention to the low-temperature portion of 

the .eta.table two-phase field, which is the portion of the metastable 

pha •• diagra. that has greatest practical importance, then it is possi­

ble to analyze the metastable two-phase field with a relatively simple 

and general model. In the limit of low temperature the equilibrium 

states of both the a solution and the &' phase must have nearly perfect 

order. It follows that at sufficiently low temperature the metastable 

equilibria can be computed in the "mean-field approximation" [9-11]. 

Since the mean-field approximation leads to a thermodynamic model that 

is relatively simple to formulate and use. we employ it to estimate the 

metastable two-phase field at intermediate temperature. While it is 
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well known that the model leads to erroneous results near the stoichio­
metric ordering temperature it should provide a reasonable approximation 
at lower temperatures where the equilibrium long-range order parameter 
of the 6' phase is near unity. The mean-field model has the additional 
advantage that it allows a straightforward analysis of the thermodynamic 
instabilities the system may encounter. 

The particular form of the mean-field model that we shall use 
places no constraint on the range of the interatomic interaction, but 
does use the simplifying assumption that the solute atoms interact in 
pairs. For computational simplicity we make the stronger assumption 
that the interaction is independent of the composition and temperature. 

110 Equilibri .. between the Ll2 Ordered Phase &ad the Disordered Solid 
Solutio. 

We wish to find the concentrations, ca and c6" of the disor­
dered solid solution (a) and the L12 ordered phase (6') that are in 
equilibrium at temperature, T, on a fixed FCC lattice. Since the lat­
tice is assumed rigid the equilibria are governed by the Helmholtz free 
energy, F. We therefore compute the Helmholtz free energy functions, 
F(c,T), for the two phases and locate their common tangent. The compu­
tation must recognize the fact that the free energy of the ordered phase 
depends on both its composition and its degree of order (which is speci­
fied by the long-range order parameter, 11). However, since the long­
range order parameter is freely variable its equilibrium value minimizes 
the free energy and can be computed as a function of c and T. 

A. ne BelUolta free e.erlY 

Let a binary solution be made by distributing atoms of the 
solvent and solute species over the sites of a face-centered-cubic 
lattice. The configuration of the solution is then specified by the 
stocha.tic function, q(r), that takes the value 1 at each lattice site, 

r, that i. occupied by a solute atom/and vanishes at all others. If the 
ato •• i.teract in pairs the internal energy of the configuration is 

(1) 

where the energy is measured relative to that of the pure solvent, N° is 
the number o~ lattice sites, eO is the change in energy per atom of 

solute in the dilute solution limit, c is the atom fraction of the 
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solute and W(r-r') is the effective interaction energy between solute 

atoms on lattice sites rand r'. 

In the mean field approximation the expected value. of the 

energy of the solution is obtained by averaging equation (1) over all 

configurations that have the average composition. c. while neglecting 

any correlation between the values of q(r) at rand r'. The result is 

(2) 

where 

c(r) = (q(r» (3) 

is the probability that a solute atom occupies the lattice position at 

r. The Helmholtz free energy of the solution follows from equation (2) 

and the definition 

F = E - TS (4) 

If W(r-r') is independent of temperature. the entropy. S. relative to 

that of the pure solvent is given by the mean field value 

(5) 

where SO is the change in entropy per solute atom in the dilute limit 

and k is Boltzmann's constant. 

For a disordered solution the solute distribution is 

c(r) = c 

and the Helmholtz free energy function is 

(6) 

(8) 

B. TJa. Fr •• B •• ray of a Bi.ary 8y.t •• tJaat I.clad •• a. L12 Ord.red 

Pha •• 

Let a binary system have two possible phases: a disordered 

solution and an ordered phase with an L12 structure. A single fundamen­

tal equation is sufficient to describe both. 
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.... 

The solute distribution in an ordered phase with the L12 

structure can be written as a superposition of composition waves (12) 

where ~ is the long range order parameter and the k i are wave vectors in 

the (100) directions. Specifically, 

k. = (2,,/ a)o. 
1 1 

(10) 

where a is the edge length of the FCC cell and the 0i are the orthogonal 

unit vectors (100), (010) and (001). The directions of the k i are the 

three directions in the star of [100]. 

Letting (~1'~2'~3) be the coordinates of the FCC lattice 

sites, 

(11) 

the solute distribution can also be written in the coordinate form 

(12) 

Equation (12) assumes only two values on the FCC lattice .sites: 

(13) 

on corner sites of the generic type (~1'~2'~3) = (0,0,1), and 

c(r) = c2 = c(I~) (14) 

on face-centered sites of the generic type (0,1/2,1/2). When the con­

centration has the stoichiometric value, c = 1/4, and the long-range 

order parameter is 1, c1=1 and c2=0, which are the appropriate values 

for the fully ordered L12 structure shown in Figure 1. When the long-

range order parameter is 0, c(r) has the constant value, c, of the 

disordered solution. 

With the help of equations (9), (13) and (14) the Helmholtz 
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free energy of the system can be written as a function of the temper­
ature, concentration and long-range-order parameter: 

(IS) 

where V(k1) is the Fourier transform 

(16) 

and we have used the fact that 

(17) 

When ~ = 0 equation (IS) reduces to equation (7), the free energy of the 
disordered solution. Hence equation (1S) is sufficiently general to 
describe both the ordered L12 structure and the disordered solution. 

The equilibrium between the two phases at given T is det'er­
mined by the common tangent between their free energy curves, F(c), or, 
equivalently, by the equality of the relative chemical potential of the 
solute 

(18) 

in the two phases. The linear term in equation (1S), N°foc, mak.es the 
same contribution to the relative chemical potentials of both phases. 
It is hence sufficient to study the modified free energy funct ion 

(19) 

(kTI <4) {c(1+3~) In[c(1+3~)] + [1-c(1-3~)] In[1-c(1-3~)] 

The only material parameters that appear in equation (19) are V(O) and 

V(k1 ), which are sufficient to determine the behavior of the system 
whatever the range of the interatomic interaction. 
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' ... 

It is useful to recast equation (19) in a dimensionless form. 
Defining the dimensionless temperature, 

and the dimensionless interaction parameter. 

we have 

f(~,c,~) = fC(T,c,~)/IV(kl)1 

= [V.-3~2] (c2/2) + 

where we have assumed V(k1 ) < O. 

C. Th. Order Para •• ter 

(20) 

(21) 

(22) 

While the temperature and concentration of the system are 
external parameters that can be fixed experimentally, the order para­
meter is affected by spontaneous redistributions of atoms in the inter­
ior. It hence evolves to whatever value minimizes the, free energy. 
From equation (22) the extrema of the free energy fall at values of ~ 
that satisfy the equation 

(23) 

Equation (23) has no simple analytic solution, but can be solved numeri­

cally. The solution for a given conc~ntration has the form shown in 
Figure 4. 

The behavior of the order parameter is most easily discussed 

by dividing the temperature axis. ~. into four regimes that are separ­

ated by the temperatures ~+, ~e and ~_ indicated in Figure 4. As we 
shall sho'w below, the temperature ~_ satisfies the equation 

~;. = c(l-c) (24) 

Page 7 



There is no similar analytic form for 't'+ and 't'e. The behavior of 1'\ as 
the temperature decreases is: (1) When 't' > 't'+, 1'\ = 0 and the disordered 
solution is stable. (2) When 't'+ > 't' > 't'e equation (23) has three 
solutions which are, in increasing order, 1'\ = 0, 1'\_ and 1'\+" When 1'\ = 1'\_ 
the free energy is a maximum; the corresponding state is unstable. The 
solutions at 1'\ = 0 and 1'\+ are minima. Since the minimum at 1'\ = 0 is the 
lower of the two the disordered solution is the preferred phase; the 

ordered L12 phase with 1'\ = 1'\+ is metastable. (3) When 't'e > 't' > 't'_ there 
are three solutions, 1'\ = 0, 1'\_ and 1'\+, but now 1'\ = 1'\+ provides the least 
value of the free energy. The ordered solution is preferred in this 
temperature range; the disordered solution is metastable. (4) When 't' < 
't'_ there are two solutions, 1'\ = 0 and 1'\+. The solution at 1'\+ minimizes 
the free energy while 1'\ = 0 maximizes it. The ordered solution is 
stable; the disordered solution is unstable. 

It follows that the equilibrium value of the long-range-order 
parameter is given by the discontinuous function 

(25) 

= 0 

However, it is also possible to preserve either· the ordered phase or the 
disordered solution in a metastable state beyond the equilibrium order­
ing temperature. If a disordered solution of composition c is cooled 
below 't'e it remains metastable until 't' ~ 't'_(c), at which point it must 
order spontaneously. If the ordered L12 phase is heated above 't'e it 
remains metastable until 't' ~ 't'+(c). where it must disorder spontaneously. 

D. The Dimensionless Phase Diagram 

The free energy of the solution is given by the function 

(26) 

which depends on the material only through the ratio, V., of the inter­
action parameters. For given 't', the function fa('t',c) with 1'\ = 0 gene­
rates the free energy curve for the disordered solution (a). It termin­

ates at the composition (c_) that satisfies the equation 

't' = 't'_(c) = c(1-c) (27) 

since the disordered solution is unstable with respect to long range 
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order when c~c_. The function f&,('t,c) with 1\ = 1\+ generates the free 

energy curve for the L12 phase (£I'). It terminates at the composition 

(c+) that satisfies the equation 

where the ordered phase becomes unstable with respect to disorder. The 

solubility limits are determined by the common tangent, 

Example free energy curves for given values of 't and V. are 

given in Figure S for the composition range of interest, 0 < c < 0.2S. 

To mate the relation between the two curves easy to visualize the func­

tion actually plotted in the figure is 

(30) 

Figure Sa is a schematic plot in which the range of the ordered phase 

has been exaggerated for clarity. Figure Sb is a specific example of 

the computed results. 

Given the free energies of the two phases as functions of 't 

for given V. the two-phase field can be found by locating the common 

tangent numerically. The results are plotted in Figure 6 for three 

values of V·. The plot is terminated at 't = 0.18 since the order 

parameter of the L12 phase differs significantly from 1 at higher 't, and 

the mean field approximation becomes unreliable. The figure shows the 

breadth of the L12 phase field, which is greatest at intermediate tem­

perature and increases with the value of V*. 

E. n. .-6' Two-pJaa •• Field iJa AI-Li 

To compute the metastable a-&' two-phase field in the AI-Li 

binary we require values for the intera'ction parameters VO and V(k1 ). 

It is po.sible to measure the interaction parameters from x-ray diffuse 

scattering data [13], but this apparently has not been done for the 

aluminum-lithium binary. However, it is clear from Figure 6 that the 

model developed here produces a two-phase field that has the form sug­

gested by'the AI-Li data. The best fit is shown in Figure 7, and 

utilizes the specific values 

V(O)/t = S070( (32) 
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V(k1)/k = - 4060K (33) 

where k is Boltzmann's constant. The two-phase field is not extrapo­
lated to high temperature since the mean-field approximation is unrelia­
ble near the ordering temperature. 

While the fit to the Al-Li metastable phase field is forced. 
the results are encouraging in several respects. The predicted phase 
field matches the experimental data closely on the a side. and simultan­
eously fits the limited experimental data for the 0' composition. As we 
shall show below. the model also provides reasonable values for other 
important properties of the 0' phase. Since the fitted value of V(O) is 
positive the model automatically predicts that the system orders in 
preference to decomposition on cooling. 

The simple model that is used here has the additional advan­
tage that it allows a straightforward analysis of the various reaction 
paths a' homogeneous solution may take if it is cooled too quickly to 
permit nucleation of the equilibrium ordered phase. The dominant reac"", 
tions are those that permit ordering with no change in composition 
(congruent order). Congruent ordering can happen through the nucleation 
and growth of ordered domains. or by spontaneous ordering at the limit 
of stability of the disordered phase (which is the reaction that others 
have termed '~omogeneous order~. The ordered solution may then decom­
pose into the metastable equilibrium phases by the nucleation and growth 
of Li-rich domains. or by spinodal decomposition on the ordered lattice. 

The non-equilibrium reaction paths can be found directly from 
the shapes of the free energy curves (Figure 5). We can gain further 
insight in~o the nature of the reactions through an analytic treatment 
of the thermodynamic instabilities the solution may encounter. Since it 
is fairly siaple to identi!y the reaction paths from the computed free 

energy cUrYes. we ,ive this discussion first. and then follow it with an 
analytic description of the order and spinodal instabilities. 

The reaction paths are shown schematically in Figure 8 for a 
hypothetical experiment in which the temperature is fixed and the compo­

sition is varied. Let a solution be at temperature T and have the free 
energy functions shown in Figure 8. Let its composition be increased 

monotonically from c=O. The disordered solution remains the equilibrium 
phase until its composition reaches the point 0 in the diagram. after 
which it is metastable with respect to nucleation of an ordered phase 

that has a composition near the composition of the equilibrium ordered 
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phase at point E. The locus of equilibrium compositions for AI-Li is 
plotted in Figure 7. Now suppose that nucleation is suppressed, for 
example, by quenching, so that the disordered phase is maintained in a 
metastable condition. It will eventually reach a set of conditions 
under which it can order congruently, that is, at constant composition. 

A. eoa,rueat Order 

A disordered solution of composition, c, is metastable with 
respect to the nucleation and growth of a congruent ordered phase when 
its composition exceeds the point of intersection of the free energy 
curves of the a and 0' phases, shown in Figure 8. This intersection 
occurs when the composition is the solution to the equation 

(33) 

where ~e(c) is defined in Figure 4, and corresponds to the congruent 
transformation temperature, TO' that is often defined in discussions of 
phase diagrams. The order parameter of the congruently ordered phase is 

l1+(C'~e)' The congruent transformation temperature of the 0' phase in 
AI-Li is easily computed from the values V(O) and V(k1), and is plotted 
in Figure 9. 

If the congruent nucleation of the ordered phase is also 
prevented the disordered solution remains stable (its free energy curve 
is concave) until its composition reaches the point A in Figure 8. It 
is then unstable with respect to the formation of the composition waves 
that lead to long-range order ("homogeneous order"). At this point the 
composition has the value c_, which corresponds to the point ~_(c) in 
Figure 4. The locus of the ordering instabilities for AI-Li is plotted 

in Figure 9. 

Be Seeoadary Decoapositioa 

I 

If the solution orders congruently then its composition must 
evolve further to achieve an equilibrium Itate. This can happen through 

the nucleation and growth of one of the equilibrium phases or by the 
spinodal decomposition of the ordered solution. In the example pictured 

in Figure 8, which is typical of the results obtained for AI-Li over 
most of the temperature range studied, congruent order produces a phase 
whose composition lies in the convex portion of the free energy curve of 
the ordered phase. rhe ordered phase is hence unstable with respect to 

a secondary spinodal decomposition into two ordered phases of different 

composition. The secondary spinodal is treated analytically in the 

Page 11 



following section, in which it is shown that the the reaction primarily 

involves the clustering of Al and Li on the Li sublattice of the Al3Li 

structure. 

In the case of AI-Li spinodal decomposition occurs at all 

compositions that lie between the inflection point of the 0' free energy 

curve on the Li-rich side and the termination of the free energy curve 

on the AI-rich side (Figure 8). The locus of these points is shown in 

Figure 10. 

c. Secoadary Disorder 

In the example shown in Figure 8 congruent order leads to 

secondary spinodal decomposition that creates adjacent ordered regions 

that are progressively richer and leaner in Li. But the free energy 

curve of the ordered phase is convex in the direction of decreasing Li 

until it terminates at the composition labelled C in the figure. At 

this point the lean phase spontaneously disorders, and its composition 

evolves further toward the· equilibrium state at D. 

The composition at the point C corresponds to the point ~+(c) 

that is labelled in Figure 4. The locus of the points of secondary 

disorder is is plotted in Figure 10. 

D. The Noa-Eqailihri .. Tr .. sfor.atioa Path 

It is apparent from Figure 10 that the free energy curves that 

are drawn in Figure 8 are qualitatively correct for AI-Li for most of 

the temperature range studied, and are always applicable to the trans­

formation of disordered solutions with less than 13 atom percent Li. If 

such an alloy is quenched until it orders homogeneously the sequence of 

transfor.ations is that indicated by the arrows in Figure 8. The disor­

dered phase spontaneously orders, then decomposes into two ordered 

phases by a secondary spinodal mechanism. As a consequence of spinodal 

decomposition the composition of the Li-lean material eventually reaches 

the instability point, C, and spontaneously disorders. The expected 

final microstructure is a mixture of ordered 0' particles in a disor­

dered matrix. 

IV. A.alysis of the lastability Tr .. sitioas 

The non-equilibrium transitions that occur in the model system 

studied here include three that arise form thermodynamic instabilities: 
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homogeneous order, secondary spinodal decomposition, and spontaneous 

disorder. The first two are amenable to a more detailed analysis that 
provides further insight into their characteristics. 

Ae Do.oleneo.. Order 

Let the composition of the disordered solution be perturbed by 
an infinitesimal reconfiguration of the solute that is described by the 
field oc(r). The associated change in the Helmholtz free energy is, to 
second order 

(34) 

where 

(35) 

and the variational derivative is evaluated in the unperturbed state. 
Substituting equations (2) and (5) into equation (4) gives the result 

A ( r , r ' ) = W ( r , r ' ) + {kTo r r ' /[ c (r)( l-c (r» ] } (36) 

where orr' is the Kronecker delta and c(r) is the unperturbed solute 
distribution. 

According to equation (34) a solution is stable with respect 
to infinitesimal perturbations if the matrix A(r,r') is positive defi­
nite, that is, if all of its eigenvalues, A, are positive, where the A 

are solutions to the equation 

(37) 

The disordered solution first loses stability at the temperature at 
which the least of the A vanishes. Substituting equation (36) into (37) 

yields aD expression for the eigenvalues, 

, 
Ir,W(r-r')oc(r') + {kT/[c(1-c)] - A}6c(r) = 0 (38) 

whose Fourier transform is 
{V(k) + kT/c(l-c) - A}6c(k) = 0 (39) 

where 

(40) 

It follows that the eigenvalues. A, are functions of k, T and c, and 
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satisfy the relation 

A(k.T.c) = V(k) + kT/c(1-c) (41) 

The least eigenvalue is associated with the minimum value of V(k), 

V(ke ). and vanishes at the instability temperature 

(42) 

If k e = 0 the instability at Tc leads to spinodal decomposi­

tion of the disordered solution; if k e ~ 0 the instability leads to 

spontaneous ordering into the structure. determined by the wave vector k e 

and the associated wave vectors that are degenerate by symmetry (the 

vectors of the "star" of k e ). In the case of interest here the minima 

of V(k) fall at the wave vectors k 1=(2n/a){100} and the disordered solu­

tion is first unstable with respect to ordering into the L12 phase. 

~ Secoadary DecoapoaitioD of tke Ordered Phase 

In the homogeneously ordered phase the eigenvalues of the 

matrix' A(r.r') are determined by equation (38) in the form 

l:r,lJ(r-r')6c(r') + (kT/c(r)[1-c(r)] - A}6c(r) = 0 (43) 

The solute distribution in the ordered phase. c(r), was given in equa­

tion (9) in the form of a superposition of concentration waves. The 

function 

a(r) = (c(r)[1-c(r)]}-1 (44) 

in the second term of equation (43) has the same symmetry as c(r) since 

it is also a measure of composition and must, therefore. be expressible 

in the same form: 

where the k i are the wave vectors of type {100} (equation (10». Just 

as the concentration function, c(r), takes the two values c 1 and c2 

(equations (13) and (14» on the corners and faces of the unit cell (the 

Li and Al sublattices, respectively, in 6' A1 3 Li>, the function a(r) 

takes the values 

(46) 

(47) 
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on the corners and faces of the parent FCC cell. 

Substituting equation (45) into (43) and taking the Fourier 
transform yields the eigenvalue equation 

[V(k)+kTaO-A.] oc(k) + kTa1 [oc(k-kt )+oC<k-k2 )+oC<k-k3 )] = 0 (48) 
This equation couples the four variations oc(k). oc(k-kt ). oc(k-k2) and 
oc(k-k3). We can obtain three additional equations in these four varia­
bles by making the three substitutions k -) k~ki' i = 1.2.3 in turn. 
The result is the matrix equation 

(49) 

where a and 13 take the values 1 to 4. kp = k-k i (13=1.2.3>' kp = k (1)=4). 
and the matrix elements AaJ3 are 

(a = 13) 
(50) 

(a 1= 13) 

The solutions to equation (49) fall at values of A. for which 
the determinant of the matrix of coefficients vanishes: 

(51) 

Equation (51) is a fourth-order equation in the eigenvalue. A.. and hence 

has four solutions for each set of wave vectors. kp • Since the matrix 
is symmetric. all four solutions. A. a (a = 1. ...• 4) are real. Each 
eigenvalue determines a particular solution that is specified by four 
values oc(kp;a) (13=1 ••••• 4). It is convenient to define the normalized 
four-dimensional eigenvector Y~(k) whose components are va(kp) (that is. 

va(k-kt ). va (k-k2 ). va (k-k3). va(k». The eigenvectors determine the 

solutions of equation (48) according to the relations 

(52) 

Then the infinitesimal concentration wave associated with the ath eigen­

value of the .atrix AaJ3 (k) has a.plitude Qa(k) and is given by 

(53) 

There is one equation of the form (49) for each independent 

choice of k. and ~ach equation leads to four eigenvalues. A.a(k). Let 

the eigenvalues be ordered so that A.1(k) is the least eigenvalue asso-
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ciated with the wave vector k. and let the least of the eigenvalues. 
AI(k) be associated with the wave vector k 1 : 

(54) 

The ordered solution is unstable with respect to an infinites­
imal fluctuation in its concentration if AI(k 1 ) < O. The values of the 
eigenvalues depend on the concentration and the temperature. The divi­
sion between the stable and unstable domains of the ordered phase in the 
(c.T) plane is the locus of solutions to the equation 

The type of the instability is determined by the vector k 1 • If k 1 = 0 
the instability is a spinodal decomposition of the nonstoichiometric 
ordered phase. If k 1 F 0 then the initial instability creates concen­
tration waves that cause a secondary ordering of the nonstoichiometric 
lattice. 

Since we know of no evidence for secondary ordering in AI3Li. 
we only consider spinodal decomposition. In this case k 1 = 0 and the 

matrix Aap takes the form 

(56) 

where we have used equation (50) and the identity V(kl ) = V(k1) = V(k3). 
Using equations (56) in (51) the four eigenvalues. Aa(O). can be found. 
after some algebra. and are: 

Al - (V(O)+V(kl~1/2 - T(aO+al) 

- (1/2) ((V(kl)-V(O)+2TaI12+12(Tal)2}1/2 

A2 .. (V(O)+V(kl )1/2 - T(aO+al) 

(57) 

( 58) 

A3 = A4 = - V(k1 ) + TaO (59) 
An analysis of these equations shows that when the order parameter. ~. 

is non-zero Al is the smallest. The spinodal instability is hence 
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associated with the vanishing of this eigenvalue. When A1 = 0 equation 
(57) can be written as a quadratic equation for Ts ' the spinodal insta­
bility temperature for given values of c and~. Its positive solution 

is 

(60) 

where 

The spinodal decomposition limits for the ordered 0' phase in 
Al-Li are plotted in Figure 9. For the range of temperatures shown. a 
congruent ordered phase that forms either by nucleation and growth or 
spontaneous ordering is immediately unstable with respect to spinodal 
decomposition. It should be impossible to preserve the homogeneously 
ordered phase; it immediately decomposes. 

To explore the nature of the decomposition we determine the 
eigenvector associated with the minimal eigenvalue. A1' The four­
dimensional eigenvector is. in component form. 

(63) 

where 

(64) 

If this eigenvector is substituted into equation (53) for the concentra­
tion variation oc(r) and the result evaluated on the sites of the FCC 

parent cell the result is: 

6c .. Q1(O)[1+3y2]-1/2[1+3y] 

== Q
1 

(0)[1+312 ] -1/2[1-y] 

(cube corners) 

(cube faces) 

(65) 

where the coefficient. y. is near unity for the range of temperatures of 
interest here. It follows that the secondary decomposition is princi­

pally on the Li sublattice of the 0' structure. The coefficient 1 
approaches the value 1 as the order parameter. ~. approaches 1. When 
the 0' phase is fully ordered oc = 0 on the Al sublattice. and the 
secondary spinodal -is completely confined to the Li sublattice. 
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The spinodal instability in the limit of low temperature can 

be understood in terms of the following physical picture. An Al3Li 

crystal that is substoichiometric in Li, but fully ordered (~=1) has Al 

atoms on all sites of the Al sublattice, and a mixture of Al and Li 

atoms on the sites of the Li sublattice. The latter lie at the corners 

of the FCC unit cell, and hence form a simple cubic lattice. The 

stability of substoichiometric Al3Li at ~=1 is the stability of substi­

tutional solution of Al and Li on a simple cubic lattice with an Li 

concentration equal to 4c. It is well known that such a solution has a 

miscibility gap and undergoes spinodal decomposition on cooling. It 

follows that substoichiometric Al3Li undergoes a secondary spinodal 

decomposition that is confined to the Li sublattice in the limit ~=1. 

V. Disc.ssioll uul Collclusioll 

Two sets of results are obtained in this work: those that 

pertain to the behavior of a model system that contains an L12 phase and 

those that specifically concern the metastable a+o' field in AI-Li. 

Regarding the model system, the results include the general 

shape of the low-temperature portion of the two-phase field that separ­

ates the L12 phase from the disordered solution and the transformation 

paths that may be followed when the disordered solution is quenched into 

the- two-phase field. 

Perhaps the most interesting result is the cascade of insta­

bilities that is experienced during a quench. The cascade of instabil­

ities is diagrammed in the isothermal free energy plot shown in Figure 

8. The temperature of the diagram is that at which the disordered 

solution first becomes unstable with respect to spontaneous order into 

the L12 structure. Hence the system begins from pOint A in the diagram. 

Because of the ordering instability its state drops to point B on the 

L12 free energy curve. But pOint B is itself unstable with respect to 

spinodal decomposition. The spinodal decomposition causes adjacent 

reaions of the solution to change their compositions in opposite direc­

tions, as shown by the arrows. The solute-poor phase evolves to pOint 

C, at which it is unstable with respect to disorder, and transforms to 

point D, which lies on the free energy curve for the disordered solu­

tion. At the same time the state of the solute-rich phase evolves 

toward point E, where the ordered phase is stable. If the parent solu­

tion has a solute composition well below that of the L12 phase, which is 

true in most cases of experimental interest, the final result is a 

Page 18 



microstructure that consists of islands of ordered phase in a disordered 
matrix. 

Somewhat similar instability cascades have been suggested by a 
number of authors. principally from analyses of second-order transi­
tions. Allen and Cahn [IS] identified a secondary spinodal (which they 
call a "conditional spinodal") near the second-order trans it ion 1 ine in 
Fe-AI. using a Landau-type free energy expansion that is valid for low 
values of the long-range order parameter. A detailed analysis of the 
secondary spinodal associated with a second-order order transition was 
provided by Kubo and Wayman [16.17] as part of their. analysis of the Cu­
Al system. They also observed the structures they predicted to arise 
from the secondary spinodal through high resolution studies of decom­
posed alloys. Woychik. et ale [18] have recently provided specific 
experimental evidence for a homogeneous ordering followed by spinodal 
decomposition in Cu-Ti solutions. Soffa and Laughlin [19] have recently 
reviewed relevant data and analyses. 

There is also experimental evidence for instability cascades 
in Ni-based systems that form L12 phases of the sort treated here. The 
evidence. which is reviewed by Soffa and Laughlin [19]. is taken primar­

ily from studies of the precipitation of Ni3Ti in the Ni-Ti system. It 
should be noted. however. that the schematic free energy curves that 
Soffa and Laughlin offer to interpret the phenomenon assume continuity 
between the ordered and disordered states (Le •• that they are related 
by a second-order transition). and hence do not include the "secondary 
disorder" phenomenon predicted by the present model (Figure 8). 

B. ~ AI-Li 8y.t •• 

To evaluate the results that pertain to the AI-Li system it 
should be noted that the thermodynamic model that is used here is based 

on several strong assumptions. The atoms are assumed to interact in 
pairs through an interaction potential that is independent of tempera­
ture aad composition and the entropy of the system is evaluated in the 

mean field approximation. These assumptions necessarily restrict the 
results to low temperature where the order parameter of the 6' phase is 

close to unity. and have the consequence that the numerical results are 
approximate. Nonetheless the model does provide a good fit to the 
metastable a-6' region in AI-Li. and provides a simple explanation for 
the observation that the 6' phase deviates significantly from its stoi­
chiometric compos~tion. The breadth of the 6' field is a necessary 
consequence of the fact that the system orders in preference to decompo­

sition at low temperature. 
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The model also permits a detailed analysis of the transforma­

tion paths that may be followed when the a solution is quenched into the 

metastable a+o' field.-· The model predicts a three-step decomposition 

sequence. First. the quenched alloy orders congruently. either homo­

geneously or through congruent nucleation and growth. Congruent order 

should always follow sufficiently rapid quenching since the ordering 

reaction requires only short-range diffusion. and is hence kinetically 

preferred to the nucleation and growth of the equilibrium phase. Se­

cond. the uniformly ordered solution decomposes by a spinodal mechanism 

into ordered regions that differ in Li content. Third. the low-Li 

constituent disorders on reaching the limit of stability for the ordered 

phase. The final microstructure is a mixture of ordered 0' precipitates 

in a disordered matrix. 

The model seems to provide a reasonable picture of the behav­

ior of AI-Li on quenching that is in general agreement with the limited 

available experimental data. All experimental studies known to the 

authors conclude that small precipitates form when alloys with greater 

than about 5.5 atomic percent Li are quenched to room temperature. All 

structural analyses known to the authors conclude that these precipi- _ 

tates are ordered 0' phase. If the quench is done rapidly enough to 

suppress the nucleation of the metastable equilibrium 0' phase then the 

precipitation pat~ must be indirect. as suggested by the results of this 

investigation. 

The studies of Ceresara. et ale (7] may provide more specific 

evidence for the picture presented here. They studied the resistivity 

of as-quenched samples of AI-6.7Li, and observed that the resistivity 

decreased before increasing to a maximum. Their observations suggest 

that a long-range ordering reaction precedes the spontaneous formation 

of discrete precipitates at roo. temperature. Their results are pre­

dicted if the initial reaction is a congruent ordering that is immedi­

ately followed by spinodal d~composition of the ordered phase. 

The only work of which we are aware that suggests an alternate 

deco.position scheme is that by Papazian. et a!. (20]. who concluded 

that the small precipitates present after quenching are Li-rich GP zones 

that form through spinodal decomposition of the disordered solution. 

However. this conclusion was based on the coarsening kinetics of the 

precipitates rather than on their structure. All published work known 

to the present authors concludes that the system is ordered in the as­

quenched condition. 
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C. Exte.sio.s 

The model can be extended to treat other interesting proper­
ties of the 0' phase in Al-Li. For example. the constants VO and V(k.1 ) 
that determine the metastable a+o' field in the Al-Li phase diagram also 
determine the first- and second-nearest-neighbor interaction potentials 
in a model of the alloy in which the range of interaction is confined to 
second-nearest-neighbors. In work. that will be published separately we 
have used the values given in equations (31) and (32) to estimate the 
energy of a (111) antiphase boundary in A13Li and the energy of the a-o' 
interface with results that are in good agreement with experiment. 

Finally, the model should also be applicable to other systems 
that contain ordered phases with the L12 structure, such as the y' phase 
in Fe- and Ni-based superalloys. Some indications of this are contained 
in the experimental data summarized by Soffa and Laughlin [20]. Its 
extension to these systems is under investigation. 
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Fig. 1 

Fig. 2 

Fig. 3 

Fig. 4 

Fig .S 

Fig. 6 

Fig. 7 

Fig. 8 

The L12 ordered structure of the 0' Al3Li phase. 

The metastable two-phase region between the disordered AI-Li 
solution (a) and the Al3Li L12 phase (0') in AI-Li (after 
Sung, Chan and Williams [1]). 

The aluminum-lithium phase diagram showing the metastable 0' 
field computed by Sigli and Sanchez [8]. 

Schematic variation of the order parameter (~) of the L12 
phase with reduced temperature ('t'). The branches ~+ and ~_, 
and the reference temperatures 't'+, 't'e and 't'_ are defined and 
discussed in the text. 

Free energy curves for the disordered AI-Li solution (a) and 
the Al3Li ordered phase (0'). For clarity the free energy is 
measured by the quantity fIt (defined in the text) so that the 
common tangent is along the axis f"=O. Figure Sa is a schema­
tic plot to illustrate the cross-over and instability limits 
of the two curves. Figure Sb is an example of the computed 
curves. 

The boundaries of the two-phase region between a disordered 
solution and an L12 ordered phase for three values of the 
interaction parameter, V •• 

The computed metastable two-phase (a+o') region for AI-Li 
showing the experimental data. The interaction potentials are 
V(O)/k'" S0701, V(k1)/k = - 40601. For simplicity the error 
bar on the upper data point on the right hand side (Fig. 2) 
has been deleted. (It should be noted that more recent work 
by Liu and Williams [14] suggests that this data point may lie 

at lower Li content than is shown he,re.) 

Sche.atic drawing showing the cascade of instabilities exper­

ienced by a disordered solution of composition A. The solu­
tion orders congruently to B, which is unstable with respect 

to spinodal decomposition. The Li-lean product of the spino­
dal decomposition evolves to composition C, at which point it 
is unstable with respect to disorder. The final result in­
cludes order·ed particles of 0' of composition E in a disor­

dered solution of composition D. 
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Fig. 9 

Fig. 10 

The metastable two-phase (0.+0') region in AI-Li showing the 

computed curves for which a 'disordered solution is (a) meta­

stable with respect to the congruent nucleation and growth of 

the ordered phase (upper curve) and (b) unstable with respect 

to spontaneous. homogeneous order. 

The metastable two-phase (0.+0') region in AI-Li showing the 

computed sub-region (lightly shaded) in which a homogeneously 

ordered Al3Li phase is unstable with respect to spinodal 

decomposition. A solution quenched into the regions marked A 

and D in the figure is metastable. A solution quenched into 

the region C orders homogeneously (at the dashed line) and 

then decomposes through a secondary spinodal. A solution 

quenched into the region B is metastable with respect to 

order. but will undergo spinodal decomposition if it orders. 
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Fig. 1 The LI2 ordered structure of the 0' A13Li phase. 
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The computed metastable two-phase (a+&') region (shaded in the 
figure) for AI-Li showing the experimental data. The interac­
tion potentials are V(O)/k = S070K. V(k1)/k = - 4060K. For 
simplicity the error bar on the upper data point on the right 
hand side (Fig. 2) has been deleted. (It should be noted that 
more recent work by Williams and co-workers [14] suggests that 
this data point may lie at lower Li content than is shown 
he re.) . 
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Schematic drawing showing the cascade of instabilities exper­
ienced by a disordered solution of composition A. The solu­
tion orders congruently to S, which is unstable with respect 
to spinodal decompositio~ The Li-lean product of the spino­
dal decomposition evolves to composition C. at which point it 
is unstable with respect to disorder. The final result in­
cludes ordered particles of 0' of composition E in a disor­
dered solution of composition D. 

32 



,\., 

w a: 
::> 
~ a: w 
a.. 
:E 
w 
t-

'400~----------~~~~--

300 

200 

100 

fl' 

.00 .05 .1 0 .15 .20 .25 

Fil. 9 

ATOMIC FRACTION LITHIUM 

The .etastable two-phase (a+6') relion in AI-Li showing the 
co.pnted curves for which a disordered solution is (a) meta­
stable with respect to the consruent nucleation and growth of 
the ordered phase (upper curve) and (b) unstable with respect 
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FiS. 10 The metastable two-phase (a+o') res ion (shaded in the figure) 
in AI-Li ahowins the computed sub-res ion (cross-hatched) in 
which a homoseneously ordered A13Li phase is unstable with 
respect to spinodal decomposition. The curve alons which the 
disordered a solution is unstable with respect to spontaneous 
order (the dashed line) is included for reference. 
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