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PRECIPITATION OF 'l"1IB S' PHASE IN AL,-LI ALLOYS 

A.G. Khachaturyan, T.F. Lindsey and J.W. Morris, Jr. 

Center for Advanced Materials, Lawrence Berkeley Laboratory 

and 

Department of Materials Science and Mineral Engineering 

University of California, Berkeley 

Abstract 

This paper treats the equilibrium between a disordered FCC solu­

t ion and an L12 phase in a mode I binary alloy and analyze s the trans­

formation paths that may be followed when the disordered phase is 

quenched into the two-phase field. The results are specifically ap­

plied to binary Al-Li alloys, in which case the ordered phase is the 

metastable A13Li (&') phase that precipitates from the disordered solid 

solution (a). The thermodynamic model assumes that the atoms interact 

in pairs with an interaction potential that is independent of the 

temperature and composition, and uses the "mean field "approximation" . 
for the entropy of mixing. The assumptions confine its applicability 

to temperatures well below the ordering temperature of the L12 phase. 

The model is used to compute the two-phase field that separates the 

disordered solution and the L12 phase. For the specific case of Al-Li, 

its results fit the available experimental data and offer a simple 

explanation for the observed deviation from stoichiometry of the &' 

phase. The model solution orders congruently ~n quenching, but is then 

unstable with respect to decomposition by a spinodal mechanism that 

leads ultimately to a microstructure that contains ordered L12 precipi­

tates in a disordered matrix. The results offer plausible explanations 

for the transformations observed in quenched Al-Li alloys. 
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I. Introduction 

The metastable &' (AI 3Li) phase in the aluminum-lithium system has 

recently attracted significant interest because of its role as a hard­

ening precipitate in AI-Li alloys. The precipitate has the L12 struc­

ture shown in Figure 11 and forms when a homogeneous a solution is 

quenched into the metastable two-phase field that is shown in Figure 2 

[1]. Only the low-temperature portion of the metastable two-phase 

field has been determined [2.3] since the solubility of Li in the 

parent FCC a-phase is limited to approximately 13 atom percent [4]. 

The stoichiometry of the ordered phase is also uncertain because of the 

difficulty of extracting the precipitate or analyzing the lithium 

content in situ. The &' compositions shown on the diagram are taken 

from low-angle scattering measurements by Cocco. Fagherazzi and 

Shiffini [5]. and plasmon-EELS studies by Sung. Chan and Williams [1]. 

who provide the error bar on the high temperature data point. 

The limit of stability of the a solution is also of interest since 

thermodynamic instabilities may well determine the microstructure of 

the alloy in the quenched condition. The experimental data (for ex­

ample. references [3.5.6]) suggest that binary alloys with more than 

about 5.5 atom percent Li always contain small &' precipitates in the 

as-quenched state. Dynamic resistivity measurements by Ceresara. et 

al. [7] indicate that a homogeneous ordering reaction precedes the 

formation of discrete &' particles .in a 6.7% Li binary. 

The only theoretical investigation of the metastable two-phase 

field that is known to the authors is a recent computation by Sigli and 

Sanchez [8] who used a cluster-variation technique. The computed phase 

field. which is shown in Figure 3. is troublesome in at least three 

respects. It predicts an essentially stoichiometric &' phase while the 

available experimental data shows significant deviations from stoichio­

metry. It predicts that the initial instability on cooling is a spino­

dal decomposition into two disordered solutions while the available 

experimental data show that ordered &' precipitates are invariably 

present after quenching alloys with greater than about 5.5 atomic per­

cent lithium. Finally. it predicts an inflection in the metastable a 

solvus line that is not apparent in the experimental data. For these 
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reasons it seems worthwhile to recompute the metastable two-phase 

field. 

If we confine our attention to the low-temperature portion of the 

metastable two-phase field. which is the portion of the metastable 

phase diagram that has greatest practical importance. then it is possi­

ble to treat the problem with a relatively simple and general model. 

In the limit of low temperature the equilibrium states of both the a 

solution and the 5' phase must have nearly perfect order. It follows 

that at sufficiently low temperature the metastable equilibria can be 

computed in the "mean-field approximation" [9-11]. Since the mean­

field approximation leads to a thermodynamic model that is relatively 

simple to formulate and use. we employ it to estimate the metastable 

two-phase field at intermediate temperature. While it is well known 

that the mean-field model leads to erroneous results near the stoichio­

me tr ic orde ring temperature it should prov ide a re asonabl e approxi­

mation at lower temperatures where the equilibrium long-range order 

parameter of the 5' phase is near unity. The mean-field model has the 

additional advantage that it does not assume that the interatomic 

interaction is short-range. 

The particular form of the mean-field model that we shall use 

places no constraint on the range of the interatomic interaction. but 

does assume that the solute atoms interact in pairs. For computational 

simplicity we make the stronger assumption that the interaction is 

independen~ of the composition and temperature. 

II. Equilibriu. between the L12 Ordered Phase and the Disordered Solid 

Solution 

We wish to find the concentrations. xa and x5" of the disordered 

solid solutio.n (a) and the L12 ordered phase (5') that are in equilib­

rium at temperature. T. on a fixed FCC lattice. Since the lattice is 

assumed rigid the equilibria are governed by the Helmholtz free energy. 

F. We therefore compute the Helmholtz free energy functions. F(x.T). 

for the two phases and locate their common tangent. The computation 

must recognize the fact that the free energy of the ordered phase 

depends on both its composition and its degree of order (which is 

specified by the long-range order parameter. 11). However. since the 
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long-range orde r parame ter is free ly var iab Ie its equil ibr ium value 

minimizes the free energy and can be computed as a function of x and T. 

A. The Helmholtz free energy 

Let a binary solution be made by distributing atoms of the solvent 

and solute species over the sites of a face-centered cubic lattice. 

The configuration of the solution is then specified by the stochastic 

function. q(r). that takes the value 1 at each lattice site. r. that is 

occupied by a solute atom and vanishes at all others. If the atoms 

interact in pairs the internal energy of the configuration is 

E = LreOq(r) + (1/2)!:r,r,W(r-r')q(r)q(r') 

= N°eox + (1/2)L r ,r,W(r-r')q(r)q(r') (1) 

where the energy is measured relative to that of the pure solvent. N° 

is the number of lattice sites. eO is the change in energy per atom of 

solute in the dilute solution limit. x is the atom fraction of the 

solute and W(r-r') is the effective interaction energy between solute 

atoms on lattice sites rand r'. 

In the mean field approximation the expected value of the energy 

is obtained by averaging equation (1) over all configurations that have 

the average composition. x. while neglecting any correlation between 

the values of q(r) at rand r'. The result is 

E (2) 

where 

x(r) = (q(r) > (3 ) 

The Helmholtz free energy of the solution follows from equation (2) and 

the definition 

F = E - TS 

If W(r-r') is independent of temperature. the entropy. S. relative to 

that of the pure solvent is given by the mean field value 

where SO is the change in entropy per solute atom in the dilute limit 

and k is Boltzmann's constant. 
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For a disordered solution the concentration field is 

x(r) = x (6) 

and the Helmholtz free energy function is 

F(x.T) = N° [fOx+(1/2)V(0)x 2] + N°kT{xlnx+(1-x)1n(l-x)} (7) 

where fO = eO-Tso and 

( 8) 

B. The Free Energy of a Binary Syste. that Includes an L12 Ordered Phase 

Let a binary system have two possible phases: a disordered solu­

tion and an ordered phase with the L12 structure. A single fundamental 

equation is sufficient to describe both •. 

The concentration field in an ordered phase with the L12 structure 

can be written as a superposition of composition waves [12] 

(9) 

where 11 is the long range order parameter (0):11):1) and the k i are wave 

vectors in the <100> directions. Specifically. 

(10) 

where a is the edge length of the FCC cell and the e i are the ortho­

gonal unit vectors [100]. [010] and [001]. The directions of the k i 
are the three directions in the star of [100]. 

Letting (~1'~2'~3) be the coordinates of the FCC lattice sites. 

r = a[~lel+~2e2+~3e3] 

the concentration field can also be written in the coordinate form 

x(r) = x(~1'~2'~3) 
= x + x11{exp[i2~~1]+exp[i2~~2]+exp[i2~~3]} 

Equation (12) assumes only two values on the FCC lattice sites: 
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on corner sites of the generic type (0.0.1). and 

(14) 

on face-centered sites of the generic type (0.1/2.1/2). When the con­

centration has the stoichiometric value. x = 1/4. and the long-range 

order parameter is 1. xl=l and x2=0. which are the appropriate values 

---- --- --for-the---ful-I-y-ord-e-red--Ll-2--str-nc-ture-show_n_in_F.igu_re_l. When the lon~_-____ _ 

range order parameter is O. x(r) has the constant value. x. of the 

disordered sQlution. 

With the help of equations (9). (13) and (14) the Helmholtz free 

energy of the system can be written as a function of the temperature. 

concentration and long-range-order parameter: 

F(T. x.1\) = (NO /2) {fO x+ [V(O)+3V(k1 )1\2] x2) + 

(N°kT/4) {x(1+31\)ln[x(1+31\)] + [1-x(1-31\)]ln[1-x(1-31\)] 

+ 3 x (1-1\ ) In [ x (1-1\ )] + 3 [1-x (1"1\)] In [1-x (1"1\)] } 

where V(k1 ) is the Fourier transform 

(15) 

V(k1 ) = r r W (r) exp(ik1 - r) 

and we have used the fact that 

(16) 

(17) 

When 1\ = 0 equation (15) reduces to equation (7), the free energy of 

the disordered solution. Hence equation (15) is sufficiently general 

to describe both the ordered L12 structure and the disordered solution. 

For given T. the equilibrium between the two phases is determined 

by the common tangent between their free energy curves. F(x), or, 

equivalently, by the equality of the relative chemical potential of the 

solute, 

(18) 

in the two phases. The linear term in equation (15), NOfox. is inde­

pendent of the configuration and makes the same contribution to the 

relative chemical potentials of both phases. It is hence sufficient to 

study the modified free energy function 
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f'(T 1 x'l1) = (No)-1[F-NO f Oc] 

= (1/2) [V(0)+3V(k1 )11 2]x2 + (19) 

(kT/4){x(1+311)ln[x(1+311)] + [1-x(1-311)]ln[1-x(1-311)] 

+ 3x(1-11)ln[x(1-11)] + 3[1-x(1-11)]ln[1-x(1-11)]} 

The only material parameters that appear in equation (19) are V(O) and 

V(k1 ), which are sufficient to determine the behavior of the system 

whatever the range of the interatomic interaction. 

It is useful to recast equation (19) in a dimensionless form. 

Defining the reduced temperature, 

'C = kT/IV(k1 ) I 

and the dimensionless interaction parameter, 

we have 

f'('C,X,l1) = f'(T1x,11)/IV(1:1)I 

= [V*-3112] (x2/2) + 

(20) 

(21) 

(22) 

('C/4)(x{1+311)ln[x(l+311)1 + [1-x(1-311)1In[1-x(1-311)1 

+ 3x(1-11)ln[x(1-11)] + 3[1-x(1-11)]ln[1-x(1-11)]} 

where we have assumed V(k1 ) < O. 

C. The Order Paraaeter 

While the temperature and concentration of the system are external 

parameters that can be fixed experimentally, the order parameter is 

changed by spontaneous redistributions of the atoms so that the free 

energy assumes a minimum value. From equation (21) the extrema of the 

free energy fall at values of 11 that satisfy the equation 

(23) 

Equation (23) has no simple analytic solution. but can be solved numer­

ically. The solution for a given concentration has the form shown in 

Figure 4. 

The behavior of the order parameter is most easily discussed by 

dividing the temperature axis. 'C. into four regimes that are separated 

by the temperatures 'C+, 'C c and 'C_ indicated in Figure 4. As we shall 

show below, the temperature 'C_ satisfies the equation 
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~_ = x(1-x) (24) 

There is no similar analytic form for ~+ and ~c. The behavior of ~ as 

the temperature decreases is: (1) When ~ > ~+, ~ = 0 and the disordered 

solution is stable. (2) When ~+ > ~ > ~c equation (23) has three 

solutions which are, in increasing order, ~ = 0, ~_ and ~+. When ~ = 
~_ the free energy is a maximum; the corresponding state is unstable. 

The solutions at 11 = 0 and ~+ are minima. Since the minimum at 1'\ = 0 

is the lower of the two the disordered solution is the preferred phase; 

the ordered L12 phase with 1'\ = 1'\+ is metastable. (3) When ~c > ~ > ~_ 
the re are three sol u t ions, ~ = 0, 1'\_ and 1'\+, but now ~ = 1'\+ prov ide s 

the least value of the free energy. The ordered solution is preferred 

in this temperature range; the disordered solution is metastable. (4) 

When ~ < ~_ there are two solutions, 1'\ = 0 and ~+. The solution at 1'\+ 

minimizes the free energy while 1'\ = 0 maximizes it. The ordered solu­

tion is stable; the disordered solution is unstable. 

It follows that the equilibrium value of the long-range-order 

parameter is given by the discontinuous function 

{~ < '~c (x» 

(~ > ~c(x» 
However. it is possible to preserve either the ordered phase or the 

disordered solution in a metastable state beyond the equilibrium order­

ing temperature. If a disordered solution of composition x is cooled 

beloy ~c it remains metastable until ~ ~ ~_(x), at which point it must 

order spontaneously. If the ordered L12 phase is heated above "C c it 

remains metastable until "C ~ "C+(x), where it must disorder spontaneously. 

D. The Dimensionless Phase Diagram 

The free energy of the solution is given by the function 

(26) 

which depends on the material only through the ratio, V-, of the inter­

action parameters. For given~, the function f~("C,x) with 1'\ = 0 gene­

rates the free energy curve for the disordered solution (a). The free 

energy curve for the disordered solution terminates at the composition 

{x_> that satisfies the equation 

(27) 
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since the disordered solution is unstable with respect to long range 

order when x ~ x_. The function fi,('t'.x) with 11 = 11+ generates the 

free energy curve for the L12 phase (0'). It terminates at the compo­

sition x+ that satisfies the equation 

't' = 't'+(x) (28) 

where the ordered phase becomes unstable with respect to disorder. The 

solubility limits are determined by the common tangent. 

(29) 

Example free energy curves for given values of 't' and V* are given 

in Figure 5 for the composition range of interest. 0 < x < 0.25. To 

make the relation between the two curves easy to visualize the function 

actually plotted in the figure is 

f" = f' - ll* x e (30) 

Figure Sa is a schematic plot in which the range of the ordered phase 

has been exaggerated for clarity. Figure Sb is a specific example of 

the computed results. 

Given the free energies of the two phases as functions of 't' for 

given V* the two-phase field can be found by locating the common tan­

gent numerically. The results are plotted in Figure 6 for three values 

of V*. The plot is terminated at 't' = 0.18 since the order parameter of 

t.he L12 phase differs significantly from 1 at higher 't'. and the mean 

field approximation becomes unreliable. The figure shows the breadth 

of 'the LI2 phase field. which is greatest at intermediate temperature 

and increases with the value of V*. 

E. The (1-0' Two-phase Field in Al-Li 

To compute the metastable a-5' two-phase field in the AI-Li binary 

we require values for the interaction parameters V(O) and V(k1 ). It is 

possible to measure the interaction parameters from x-ray diffuse 

scattering data [13]. but this apparently has not been done for the 

a1 uminum-l ithium binary. However. it is clear from Figure 6 that the 

model developed here produces a two-phase field that has the form 

suggested by the AI-Li data. The best fit is shown in Figure 7. and 

utilizes the specific values 
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V(O}/k = S070K (31) 

V(k1 }/k = - 4060K (32) 

where k is Boltzmann's constant. The two-phase field is not extrapo­

lated to high temperature since the mean-field approximation yields 

erroneous results near the ordering temperature. 

While the fit to the Al-Li metastable phase field is forced. the 

results are encouraging in several respects. The predicted phase field 

matches the experimental data closely on the a side. and simultaneously 

fits the limited experimental data for the 5' composition. As we shall 

show below. the model also provides reasonable values for other impor­

tant properties of the 5' phase. Since the fitted value of. yeO) is 

positive the model automatically predicts that the system orders in 

preference to decomposition on cooling. 

III. Non-equilibrium Reactions 

The simple model that is used here has the additional advantage 

that it allows a straightforward analysis of the various reaction paths 

a homogeneous solution may follow if it is cooled too quickly to permit 

nucleation of the equilibrium ordered phase. The dominant reactions 

are those that permit ordering with no change in composition (congruent 

order). Congruent ordering can happen through the nucleation and 

growth of ordered domains. or by spontaneous ordering at the limit of 

stability of the d~sordered phase. The ordered solution may then 

decompose into the equilibrium phases through the nucleation and growth 

of disordered domains. or through spinodal decomposition on the ordered 

I at tic e. 

The non-equilibrium reaction paths can be found directly from the 

shapes of the free energy curves (Figure S). In addition. we can gain 

further insight into the nature of these reactions through an analytic 

treatment of the thermodynamic instabilities the solution may encoun­

ter. Since it is fairly simple to identify the reaction paths from the 

computed free energy curves. we give this discussion first, and then 

follow it with an analytic description of the order and spinodal 

instabilities. 

The reaction paths are shown schematically in Figure 8 for a 

hypothetical experiment in which the temperature is fixed and the 
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composition is varied. Imagine a solution that is at a temperature T 

a t which it has the free energy func t ions shown in Figure 8. Le tits 

composition be increased from x=O. The disordered solution remains the 

equilibrium phase until the composition reaches the point D in the 

diagram, after which it is metastable with respect to the nucleation of 

the ordered phase with a composition near the equilibrium ordered com­

position at point E. The locus of equilibrium compositions for Al-Li 

is plotted in Figure 7. Now suppose that nucleation is suppressed, for 

example, by quenching, so that the disordered phase is maintained in a 

metastable condition. 

A. Congruent Order 

A disordered solution of composition, x, becomes metastable with 

respect to the nucleation and growth of a congruent ordered phase when 

its composition exceeds the point of intersection of the free energy 

curves of the a and 0' phases, as shown in Figure 8. This intersection 

occurs when the composition is the solution to the equation 

't' = 't' C (x) (33) 

where 't'c(x) is defined in Fifure 4. The order parameter of the congru­

ently ordered phase is Tl+(x,'t'c). The congruent transformation tem­

perature is easily computed for the case of the 0' phase in AI-Li given 

the values for yeO) and V(k1 ) in equations (31) and (32). The result 

is plotted in the metastable a-o' phase diagram in Figure 9. 

If the congruent nucleation of the ordered phase is also prevented 

the disordered solution remains stable (its free energy curve is con­

cave) until its composition reaches the point A where it is unstable 

with respect to the spontanteous formation of the composition waves 

tha t lead to long-range order. At this point the compos it ion has the 

value x_, which corresponds to the point 't'_(x) in Figure 4. The locus 

of the ordering instabilities for AI-Li is plotted in Figure 9. 

B. Secondary Deco~osition 

If the solution orders by either congruent nucleation or spon­

taneous order then its composition must evolve further to achieve the 

equilibrium state. This may be accomplished either by the nucleation 

and growth of one the equilibrium disordered phase or by spinodal 

decomposition of the ordered solution. In the example pictured in 
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Figure 8. which is typical of the results obtained for A1-Li over most 

of the temperature range studied. either method of achieving long-range 

order leads to an ordered solution whose composition lies in a range 

where the free energy curve of the ordered phase is convex. The or­

dered phase is hence unstable with respect to a secondary' spinodal 

decompos it ion into two ordered phase of different compos it ion. The 

secondary spinodal decomposition is treated analytically in the follow­

ing section. in which it is shown that the principal mechanism is spon­

taneous clustering of Al and Li on the Li sublattice of the A13Li 

structure. 

In the case of A1-Li spinodal decomposition occurs at all composi­

tions that lie between the inflection point of the I)' free energy curve 

on the Li-rich side and the termination of the free energy curve on the 

AI-rich side. The locus of these points is plotted in Figure 10. 

C. Secondary Disorder 

In the example shown in Figure 8 congruent order leads to secon­

dary spinodal decomposition that creates adjacent ordered regions that 

are progressively richer and leaner in Li. But the free energy curve 

for the ordered phase is concave down in the direction of decreasing Li 

content until it terminates at the composition C that is labelled in 

the figure. At this point the lean phase spontaneously disorders. and 

evolves toward the metastable equilibrium concentration at D. 

The composition at the point C is corresponds to the point 't'+(x) 

that is labelled in Figure 4. The locus of the secondary disorder 

points is easily computed. and is plotted in Figure 10. 

D. The Non-eqnilibri .. Transfo~tion Path 

It is apparent from Figure 10 that the free energy curves that are 

drawn schematically in Figure 8 are qualitatively correct for Al-Li for 

most of the temperature range studied. and are always applicable to the 

transformation of disordered solutions with less than 13 atom percent 

Li. If such an alloy is quenched to its spontaneous ordering tempera­

ture the sequence of transformations is that indicated by the arrows in 

Figure 8. The disordered phase spontaneously orders. then decomposes 

into two ordered phases by a secondary spinodal mechanism. The compo­

sition of the Li-1ean material eventually reaches the instability 

12 



". 

point. C. and spontaneously disorders. The expected final micro­

structure is a mixture of ordered 0' particles in a disordered matrix. 

IV. Analysis of the Instability Transitions 

The non-equil ibr ium trails it ions that occur in the model system 

studied here include three that arise from thermodynamic instabilities: 

spontaneous order. secondary spinodal decomposition, and spontaneous 

disorder. The first two are amenable to a more detailed analysis that 

provides further insight into their characteristics. 

A. Instability with Respect to Homogeneous Order 

Let the composition of the disordered solution be perturbed by an 

infinitesimal reconfiguration of the solute that is described by the 

field ox(r). The associated change in the Helmholtz free energy is. to 

second order 

(34) 

where 

A(r .r') = [02f' {x(r)} /ox(r)ox(r')] (35) 

and the variational derivative is evaluated in the unperturbed state. 

Substituting equations (2) and (5) into equation (4) gives the result 

A(r .r') = W(r .r') + {kTorr ,f[x(1-x)]} (36) 

where orr. is the Kronecker delta. 

According to equation (34) a solution is stable with respect to 

infinitesimal perturbations if the matrix A(r.r') is positive definite. 

that is. if all of its eigenvalues. A. are positive. where the A are 

solutions to the equation 

(37) 

The disordered solution first loses stability at the temperature at 

which the least of the A vanishes. Substituting equation (36) into 

(37) yields the eigenvalue equation 

Lr,W(r-r·)ox(r·) + (kT/ [x(l-x)] - A}ox(r) = 0 

whose Fourier transform is 

{V(k) + kT/ x(l-x) - A}ox(k) = 0 

13 
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where 

(40) 

It follows that the eigenvalues. A. are functions of k. T and x. and 

satisfy the relation 

A(k. T. x) = V(k) + kT/ x(l-x) (41) 

The least eigenvalue is associated with the minimum value of V(k). 

V(k·). and vanishes at the instability temperature 

Tc = - x(l-x)V(k O ) (42) 

If k.= 0 the instability at Tc leads to spinodal decomposition of 

the disordered solution; if k· i: 0 the instability leads to spontaneous 

ordering into the structure determined by the wave vector k· and the 

associated wave vectors that are degenerate by symmetry (the vectors of 

the "star" of k.). In the case of interest here the minimum of V(k) 

falls at the wave vector kl=(2~/a)[100] and the disordered solution is 

first unstable with respect to ordering into the L12 phase. 

B. SecoJUIary Deco~ositioD of the Ordered Phase 

In the homogeneously ordered phase the eigenvalues of the matrix 

A(r.r·) are determined by equation (38) in.the form 

(43) 

The concentration field in the ordered phase. x(r). was given in equa­

tion (9) in the form of a superposition of concentration waves. The 

function 

a(r) = {x(r)[l-x(r)]}-l (44) 

in the second term of equation (43) is also a measure of composition 

and must. therefore. be expressible in the same form: 

a(r) = QO + Ql{exp(ik1 ·r)+exp(ik2 ·r)+exp(ik3 ·r)} (4S) 

where the k i are the wave vectors of type [100] (equation (10». Just 

as the concentration function. x(r). takes the two values Xl and x2 

(equations (13) and (14» on the corners and faces of the unit cell 

(the Li and Al sublattices. respectively. in 5' A1 3Li). the fUnction 

a(r) takes the values 
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al = [xl(l-xl)]-l = aO + 3al 

a2 = [x2(1-x2)]-1 = aO - al 

on the corners and faces of the FCC cell. 

(46) 

(47) 

Substituting equation (45) into (43) and taking the Fourier trans-

form yields the eigenvalue equation 

(48) 

This equation couples the four variations &x(k). &x(k-1i). & x (1:-:k2 ) and 

&x(k-k3). We can obtain three additional equations in these four 

variables by making the three substitutions k -) k-k i • i = 1.2.3 in 

turn. The result is the matrix equation 

[AaP - A&aP] &x(1:p) = 0 (49) 

where a and P take the values'l to 4. 1:p = 1:-1:1 (P=i=1.2.3). kp = k 

(P=4). and the matrix elements AaP are 

Aap = V(kp ) + TaO 

= Tal 

The sol ut ions to equation (49) are the value s of A for which the 

determinant of the matrix of coefficients vanishes: 

(51) 

Equation (51) is a fourth-order equation in the eigenvalue. A. and 

hence has four solutions for each set of wave vectors. k p• Since the 

matrix is symmetric. all four solutions. Aa (0' = 1 ••••• 4) are real. 

Each eigenvalue determines a particular solution that is specified by 

four values &x(kp;a) (P=1 ••••• 4) which give the amplitudes of the 

composition waves associated with the four wave vectors ~p. It is 

convenient to define the normalized four-dimensional eigenvector vcr(k) 

whose components are va(kp) (that is. va(k-kt ). va (k-k2 ). va (k-k3 ). 

va(k». The eigenvectors determine the solutions of equation (48) 

according to the relations 

(52) 

Then the infinitesimal concentration wave associated with the ath 

eigenvalue of the matrix AaP(k) has amplitude ~(k) and is given by 

1S 



(53) 

There is one equation of the form (49) for each independent choice 

of k, and each equation leads to four eigenvalues, Aa(k). Let the 

eigenvalues be ordered so that Al(k) is the least eigenvalue associated 

with the wave vector k. and let the least of the eigenvalues Al(k) be 

associated with the wave vector k 1 : 

(54) 

The ordered solution is unstable with respect to an infinitesimal 

fluctuation in its concentration if Al(k1 ) < O. The values of the 

eigenvalues depend on the concentration and the temperature. The divi­

sion between the stable and unstable domains of the ordered phase in 

the (x.T) plane is the locus of solutions of the equation 

Al(k1 .T.x) = 0 (55) 

The type of the instability is determined by the vector k 1 • If k 1 = 0 

the instability is a spinodal decomposition of the nonstoichiometric 

ordered phase. If k 1 + 0 then the initial instability creates concen­

tration waves that result in the secondary ordering of the nonstoichio-

. metric lattice. 

Since we know of no evidence for secondary ordering in the &' 

Al3Li phase that is of interest here. we only consider the possibility 

of spinodal decomposition. In this case k 1 = 0 and the matrix Aa~ 

takes the form 

All = A22 = A33 = V(k1 ) + kTaO 

A44 = YeO) + kTao (56) 

where we have used equation (SO) and the identity V(k1 ) = V(k2 ) = V(k3). 

Using equations (56) in (51) the four eigenvalues. Aa(O). can be found. 

after SOme algebra. and are: 

Al = [V(O)+V(k1 )] /2 - T(aO+al) 

- (1/2){[V(kt)-V(O)+2Tal]2+12(Tal)2}1/2 
A2 = [V(O)+V(k1 )]/2 - T(aO+al) 

+ (1/2){[V(kl)-V(O)+2Tal]2+12(Tal)2}1/2 

A3 = A4 = - V(kl) + TaO 

16 
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An analysis of these equations shows that when the order parameter. ~. 

is non-zero A1 is the smallest. The spinodal instability is hence 

associated with the vanishing of this eigenvalue. When A1 = 0 equation 

(57) can be written as a quadratic equation for Ts' the spinodal insta­

bility temperature for given values of x and~. Its positive solution 

is 

(60) 

where 

B = [3V(O)+V(k1 )/4]x2(1-x2) + [V(0)+3V(kl)/4]x1(1-x1) (61) 

C = V(0)V(k1 )xl (1-xl)%2(1-x2) (62) 

The spinodal decomposition limits for the ordered 6' phase in AI­

Li are plotted in Figure 10. For compositions less that approximately 

17 atomic percent Li a congruent ordered phase that forms either by 

nucleation and growth or by spontaneous ordering is unstable with res­

pect to spinodal decomposition. Since this range includes the homo­

genization limit at approximately 13 atomic percent Li it should be 

impossible to preserve the homogeneously ordered phase; it immediately 

decomposes. 

To explore the nature of the decomposition we determine the eigen­

vector associated with the minimal eigenvalue. Al. In component form 

the vector is 

(63) 

where 

(64) 

If this eigenvector is substituted into equation (53) for the concen­

tration variation 6x(r) and the result evaluated on the sites of the 

FCC parent cell the result is: 

6x = Q1 (0) [1+31 2 ]-1/2[1+31] 

= Q
1 

(0) [1+31 2 ]-1/2[11 ] 

(cube corners) 

(cube faces) 

where the coefficient. 1. is near unity for the range of temperatures 

of interest here. It follows that the secondary decomposition is 

prinoipally on the Li sublattice of the 6' struoture. The coefficient 
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y approaches the value 1 as the order parameter. ~. approaches 1. When 

the &' phase is fully ordered &x = 0 on the Al sublattice. and the 

secondary spinodal is completely confined to the Li sublattice. 

v. DiscussioA aad eoAclusion 

Two sets of results are obtained in this work: those that pertain 

to the behavior of a model system that contains an L12 phase and those 

that specifically concern the metastable a+&' field in AI-Li. 

A. The Model Syste. 

The results for the model system include the general shape of the 

low-temperature portion of the two-phase field that separates the L12 

phase from the disordered solution and the transformation paths that 

may be followed when the disordered solution is quenched into the two­

phase field. 

Perhaps the most interesting result is the cascade of insta­

bilities that is experienced during a quench. which has not. to our 

knowledge. been noted or predicted previously. The cascade of insta­

bilities is diagrammed in the isothermal free energy plot shown in 

Figure 10. The temperature of the diagram is that at which the dis­

orde red solution firs t become s unstable with re spect to spontaneous 

order into the L12 structure. Hence the system begins from point A in 

the diagram. Because of the ordering instability its state drops to 

point B on the L12 free energy curve. But point B is itself unstable 

with respect to spinodal decomposition. The spinodal decomposition 

causes adjacent regions of the solution to change their compositions in 

oppos i te dire c t ions. as shown by the arrow s. The solute-poor phase 

evolves to point C. at which it is unstable with respect to disorder. 

and transforms to point D. which lies on the free energy curve for the 

disordered solution. At the same time the state of the solute-rich 

phase evolves toward point E. where the ordered phase is stable. If 

the parent solution has a solute composition well below that of the L12 

phase. which is true in most cases of experimental interest. the final 

result is a microstructure that consists of islands of ordered phase in 

a disordered matrix. 
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B. The Al-Li Syst •• 

To evaluate the results that pertain to the Al-Li system it should 

be noted that the thermodynamic model that is used here is based on 

several strong assumptions. The atoms are assumed to interact in pairs 

through an interaction potential that is independent of temperature and 

composition and the entropy of the system is evaluated in the mean 

field approximation. These assumptions necessarily restrict the re­

sults to low tempe~ature where the order parameter of the &' ,hase is 

close to unity. and have the consequence that the numerical results are 

approximate. Nonetheless the model does provide a good fit to the 

metastable a-&' region in Al-Li. and provides a simple explanation for 

the observation that the &' phase deviates significantly from its stoi­

chiometric composition. The breadth of the &' field is a necessary 

consequence of the fact that the system orders in preference to decom­

position at low temperature. 

The model also permits a detailed analysis of the transformation 

paths that may be followed when the a solution is quenched into the 

metastable a+&' field. The results do seem to provide a reasonable 

picture of the behavior of Al-Li on quenching that is in general agree­

ment with the limited available experimental data. The model predicts 

that the quenched alloy orders congruently. either spontaneously or 

through congruent nucleation and growth. and then decomposes by a 

spinodal mechanism. followed by spontaneous disorder of the low-Li 

constituent. to yield a mixture of ordered &' precipitates in a dis­

ordered matrix. All experimental studies known to the authors conclude 

that small precipitates form when alloys with greater than about 5.S 

atomic percent Li are quenched to room temperature. All structural 

analyses known to the authors conclude that these precipitates are 

ordered &' phase. If the quench is done rapidly enough to suppress the 

nucleation of the metastable equilibrium &' phase then the precipita­

tion path must be indirect. as suggested by the results of this inves­

tigation. 

The studies of Ceresara. et al. [7] may provide more specific 

evidence for the picture presented here. They studied the resistivity 

of as-quenched samples of Al-6.7Li. and observed that the resistivity 

decreased before increasing to a maximum. They concluded that an 

19 



ordering reaction precedes the formation of discrete precipitates. 

Their results are predicted if the initial reaction is a congruent 

ordering that is immediately followed by spinodal decomposition of the 

ordered phase. 

The only' work of which we are aware that sugge s ts an al ternate 

decomposition scheme is that by Papazian. et a1. [IS]. who concluded 

that the small precipitates present after quenching are disordered. Li­

rich GP zones that form through spinodal decomposition of the dis­

ordered solution. However. this conclusion was based on the coarsening 

kinetics of the' precipitates rather than on their structure. All 

published work known to the present authors concludes that the system 

is ordered in the as-quenched condition. 

e. Bxto .. 10 .. 

The model can be extended to treat other interesting properties of 

the 0' phase in Al-Li. For example. the constants V(O) and V(k1 ) that 

determine the metastable a+o' field in the AI-Li phase diagram also 

determine the first- and second-nearest-neighbor interaction potentials 

in a model of the alloy in which the range of interaction is confined 

to second-nearest-neighbors. In work that will be published separately 

we have -used the values given in equations (32) and (33) to estimate 

the energy of a (111) antiphase boundary in A13Li and the energy of the 

a-o' interface with results that are in good agreement with experiment. 

Finally. the model should also be applicable to other systems 

that contain ordered phases with the L12 structure. such as the y' phase 

in Fe- and Ni-based superal10ys. Its extension to these systems is 

under investigation. 

This work was supported by the Director, Office of Energy Research. 

Office of Basic Energy Science. Material Sciences Division of the U.S. 

Department of Energy under contract No. DE-AC03-76SF00098. 
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Fig. 1 The LI2 ordered structure of the &' A13Li phase. 
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solution (a) and the A13Li L12 phase (0') in Al-Li (after 
Sung. Chan and Williams [1]). 
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Fig. S 
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ATOMIC FRACTION LITHIUM 

Free energy curves for the disordered AI-Li solution (a) and 
the Al3Li ordered phase (&'). For clarity the free energy is 
measured by the quantity fIt (defined in the text) so that the 
common tangent is along the axis f"=O: a) is a schematic plot 
to illustrate the cross-over and instability limits of the two 
curves; b) is an example of the computed curves • 
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ATOMIC FRACTION LITHIUM 

The computed metastable two-phase (a+o') region (shaded in the 
figure) for A1-Li showing the experimental data. The interac­
t ion potent ia 1 s are V(O) /k = 5070(_ V(k1 ) /k = - 4060(. Fo r 
simplicity the error bar on the upper data point on the right 
hand side (Fig. 2) has been deleted. (It should be noted that 
more recent work by Williams and co-wOrkers [14] suggests that 
this data point may lie at lower Li content than is shown 
here. ) 
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Fig. 8 Schematic drawing showing the cascade of instabilities exper­
ienced by a disordered solution of composition A. The solu­
tion orders congruently to B. which is unstable with respect 
to spinodal decompositio~ The Li-lean product of the spino­
dal decomposition evolves to composition C. at which point it 
is unstable with respect to disorder. The final result in­
cludes ordered particles of 0' of composition E in a disor­
dered solution of composition D. 
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Fil. 9 The aetastable two-phase (a+6') relion in Al-Li showing the 
coaputed curves for which a disordered solution is (a) meta­
stable with respect to the conlruent nucleation and growth of 
the ordered phase (upper curve) and (b) unstable with respect 
to spontaneous, homoleneous order. 
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Fig. 10 The lIletastable two-phase (a+&') regioD. (shaded in the figure) 
in AI-Li showinl the cOlllputed sub-relion (cross-hatched) in 
which a homoleneously ordered A13Li phase is unstable wi th 
respect to spinodal decomposition. The curve along which the 
disordered a solution is unstable with respect to spontaneous 
order (the dashed lino) is included for reference. 
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