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THERMODYNAMIC PROPERTIES OF POLAR FLUIDS FROM A
PERTURBED-DIPOLAR-HARD-SPHERE EQUATION OF STATE

PF. Bryan Iand J-M. Prausnitz

Materials and Molecular Research Division, Lawrence Berfefey Laboratory and

Chemical fngimeering Department, University of California, Berkefey 94720

ABSTRACT

Based on theoretical resuits for a system of hard spheres with dipoles, a new equation of
state is applied to the correlation of thermodynamic properties for four fluids: argon.
ammonia, water, and acetonitrile. The reference system has the same dependence on
density as that given by the Carnahan-Starling equation, but the coefficients are now
functions of temperature through the reduced dipole moment. These coefficients are
chosen to match the Padé approximant developed by Stell, Rushbrooke and Hoye for the
Helmholtz energy of dipolar hard spheres. The reference system proposed here shows a
phase transition for reduced dipole moments greater than 1.9. A simple, empirical
perturbation term is added to the reference system to account for induction and
dispersion forces. For polar fluids, the equation gives resul‘ts significantly better than
those obtained from conventional cubic equations of glzhe, when using the sam-e limited

experimental data for deter mining equation-of -state parameters.

*This work was supported by the Director, Office of Energy Research,
Office of Basic Energy Sciences, Chemical Sciences Division of the U.S.
Department of Energy under Contract No. DE-AC03-76SF00098.



INTRODUCTION

While much attention has been given to the equation of state for nonpolar fluids,
relatively little work has been reported on the equation of state for those fluids whose
molecules possess an appre&able dipole moment. For practical applications to systems
containing polar fluids, it has become common practice to use empirical exten;ions of
methods originally intended for nonpolar fluids (eg. Soave(1980), Ludecke and
Prausnitz(1985), Guo, et al (1985a, 1985b), Ikonomou and Donahue (1986), Vimalchand
and Donahue ( 1‘985)' and Huron et al(1978)) or else to use “chemical” equations of state
such as those of Grenzheuser and Gmehling(1986, 1981), Gmehling et al (1979), Wenzel
et al (1982), Kulasinska, et al (1983), and others.

Recently, however, there has been much interest in the use of perturbation theory to
describe properties of polar fluids. Perturbation theories have been reported for dipolar
hard spheres (Stell, et al (1974}, (1973), and (1972)) and multipolar Lennard- Jones fluids
(Annath et al {1974). Twu and Gubbins (1975). Fiytzani-Stephanopoulos, et al (1975). and
Gray, et al(1978)). These theories have‘led to some successful applications for
representing the properties of real fluids (Gubbins and Twu (1978). Twu. et al (1978).
and (1976), Winkelmann (1983). (1981), and (1979). and Chung. et al (1984)). All of
these perturbation theories use a reference system which exhibits only repulsive forces:
tvpical reference systems are assemblies of hard spheres or othé} rigid convex bodies.
However, for highly polar fluids, these reference systems can lead to difficulties in
convergence of the perturbation series. Among others, Chung et al ( 198‘4) state the need

for a more sophisticated reference system to surmount this obstacle.

In this work. we use a reference svstem containing orientation-averaged attractive
(dipole-dipole} forces in additior to repulsive forces; this reference system is combined
with a semi-empirical perturbation term to represent thermodynamic properties of real

polar fluids.



EQUATION OF STATE FOR POLAR FLUIDS

We use an equation of state of the van der Waals form where compressibility
factor z is the sum of two contributions, one from the reference system and one from a

perturbation,

7 = mmee- = gzref . zpert (1)

It has been customary to use for the reference system an assembly of convex bodies
(usually spheres) which exhibit only repulsive forces at contact. Attractive forces, at

somewhat larger distances, are taken into account in the perturbation term.

In a departure from previous practice, we use here a reference system that
contains hard spheres with ideal dipole moments at their centers. This reference system
therefore includes not only the usual forces of repulsion but, in addition. dipole-dipole
forces which, on average. are attractive. The perturbation term takes into account

attractive forces arising from induction and dispersion.

For the compressibility factor of the reference system, we write a generalized

Carnahan-Starling expression:

|- flly «fi2in2 . fi3ly3

where the reduced density is:

n = bp/4 = npad/6 (37



and the coefficients depend on reduced dipole moment\ﬁ:

fi} - 1-061357) + 3.06030p2 - 4.63519p3 + 0.869561+ (4)
fl2l « 1+279108} - 12.6917p2 + 15.802643 - 2.77528}14 (5)

f3] = 1+2.98994) - 13.1452)2 + 14.566413 - 2.50544:4 (6)

Here p is density and o is the hard-sphere diameter. In the original Carnahan-
Starling equation, all coefficients {1l = fl2l = {131 = 1. In this work, however, these
‘coefficients are functions of temperature through the reduced dipole moment L =
w/(03kT)1/2 « (2np2/3bRT)/2. When p is in Debye, b in cm3/mole, and T in Kelvins, ¥ =
95.59 p/(bT)1/2,

Dimensionless dipole momem'}i depends on .,dipolé moment, tempefature, And
molecular size. For the fluids examined here, at their normal boiling points, the values of
TL are: argon (0.00), ammonia (1.33), water (1.41). and acetonitrile {1.42}); at their critical
temperatures. they are: argon (0.00), ammonia (1.02), water (1.07). and acetonitrile

(1.14):

The coefficients in equation (2) were determined by fitting 10 a complex egquation
of state for hard spheres with point dipoles at their centers. That equation was
developed by Stell, Rushbrooke, and Hoye (1973) who devised a Pade approximant to the
Helmholtz energy of a sysiem of hard spheres using the perturbation theory of Stell,
Rasaiah, and Narang (1974, 1972). Their Padé approximant ("Stell's equation”), discussed
in Appendix I, gives the Helmholtz energy ol a svstem of dipolar hard spheres as a
function of reduced density n and reduced dipole moment "|f: it is valid for values of {l to

at least 2.00 and perhaps slightlv higher.

]



The Helmholtz energy obtained from Stell's equation is in good agreement with
Monte-Carlo calculations for dipolar hard spheres. The third and fifth columns of Tab‘le i
show “experimental” (Monte-Carlo) Helmholtz energies and those calculated from Stell's

equation. Monte-Carlo calculations are taken from Patey and Valleau (1974).




Table 1. Effect of Reduced Dipole Moment on the Helmholtz Energy of a

System of Dipolar Hard Spheres. Results from Monte-Carlo Simulation,

from Dipole-Dipole Carnahan-Starling (DDCS), and from Stell's (SRH) Equations
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0.437

~(A - AHSY/RT
Monte-Carlo DDCS
0.0037 0.0042
0.052 0.055
0.22 0.24
0.58 0.61
1.2 1.2
2.1 2.1
33 3.4
0.0055 0.0039
021 0.22
I.1 1.1
5.2 3.2

AHBS s the Helmhotz energy at the same n with jt = 0

0.0050
0.20
1.2
3.2



As discussed in the Appendix [, Stell's equation for the Helmholtz energy gives an
equation of state that is mathematically complex. To simplify the reference system, the
Carnahan-Starling (1969) form is retained here as shown by equation (2). Functions fl1],
f12] and f(3! (Equations (4) - (6)) reduce 10 the Carnahan-Starling values when j = 0.
These functions are determined by fitting to "data” generated from Stell's equation. The
compressibility factors calculated from equations (2), (4), (5), and (6) are in good

agreement with those caiculated from Stell's equation, as shown in Figure 1.

Although not immediately apparent by visual inspection, Figure | shows that when
K > 1.90, dipolar hard spheres exhibit a phase transition. This behavior was also noted
by Stell, Rushbrooke, and Hoye (1973), who made representative VLE calculations but did
not repori the critical dipole moment -(or, equivalently, critical temperature) for dipolar
hard spheres. When Stell's equation is used, the critical reduced dipole moment is 1.91.
- again showing excellent agreement with equations (2), (4), (5), and (6). Figure 2 shows
the phase transition more clearly in an expanded view of a portion of Figure |. an
1sotherm at'ﬁ = 2.5 is included to show the behavior at high reduced dipole moments {low

temperatures).

Table | compares our results for the Helmholtz energies of dipolar hard spheres
(equations (2), (4). (5). and (6)) to those obtained from Stell's equation and by Monte-

Carlo simulation.

The dipole-dipole Carnahan-Siarling (DDCS) equation provides a reference system
that represents the behavior of dipolar hard spheres. For the perturbation term we use a
semi-empirical form. suggested by Wong and Prausnitz (1985), similar to that of Redlich

and Kwong (1949). The proposed equation of state is:



|+ fllings fl2] 2 - (1313 a
Z = -- - - - \7)
- (1 -3 RT(v + 0.2b)

where the second term on the RHS is a form intermediate between the well-known

attractive forms .broposed by van der Waals and by Redlich and Kwong.

-

At the critical temperature T., parameters a and b in Equation (7) can be

determined from the usual criteria; at the critical point,

OP

(<-==-) - 0 (8)
v el Te

2P

f-mmmme } = 0 {9)
ovZ . Tc

where Jic = p/(a3kT)1/2,

Equations (8} and (9) give values of (b./v.) and (a./RT.v.). Since accurate
experimental values for v, are often not available, parameters a. and b.are here

determined bv:

a, R2T 2
PV (R ) ztheo (oo ) , (10)
RT v, P
and:
\ S U ) chheo fommme i 1}



where z.theo js the compressibility factor calculated from equation (7) at the critical
point; that is, the point where equations (8) and (9) are satisfied. When applied to argon.
equation (11) gives a value for b, Which is about 10% smaller than that which gives the
most accurate calculated values for the-rcritical romnressibility and the liquid molar
volumes. Sincé these properties are extremely sensitive to b, the direct use of equation
(11) leads to poor results. Therefore, the value of b, was adjusted upward by 10%,
providing an improvement for all calculated properties for all fluids examined, especially

liquid molar volumes. The calculation of properttes from Equation (10} is further

improved if b, is fixed so as to match a single experimental value of the liquid molar
volume. The proced-urei for matching b, to experimental liquid molar volumes is
explained in detail by Panagiotopoulos and Kumar (1985), who demonstirate the
technique for three popular two-parameter equations of state. Appendix [I describes

application of this technique to Equation (7).

Reduced values of b (adjusted) and a, can be found f{rom:

be = bP/RTe = 0.178 + 1.124p / (RT2/PI/2 (1D
3, = aP/RTZ = 05352 + 0.1288p - 0.1783 p.2 (13

{For dimensional consistency, equation (12) must have p in Debye, T, in Kelvins, P, in

bars, and R = 83.14 cm3-bar/mole-K)

For our engineering-oriented purposes, parameter b, however determined, is
independent of temperature to a good approximation. Parameter a. on the other hand.
increases markedly with falling temperature. This "dependence must be given accurately.
especially for the calculation of vapor pressures, where an error of a few percent in a can

lead to an error of 100% in the calculated vapor pressure. Soave (1972) showed that. for



the Redlich-Kwong equation of state, a plot of (a/a.)1/2 vs. (T/T)!/2 is linear for non-
polar fluids at temperatures below. the critical. An examination of the properties of argon
with Equation (7) confirms this linearity, but the plot of {a/a )72 vs. (T/T.)1/2 gives one
line for {T/T.) < 0.8 and another for (T/T¢) = 1.0, with nonlinear behavior in the
intermediate region 0.8 < (T/T.) < 1.0. .Therefore, we propose that the dependence of a

on T be given by:

(a/ac)/2 = (0.41 « 0.07S(T/TH/2)1-9) « (o« BT/TI/2)(1+0) (14)
where the weighting function @ is defined by:

@ = tanh [10((T/T) - 1)] | (15)

1]

Function @ approaches +1 as T/T. approaches zero, and approaches -1 as T/T,

approaches infinity. The transition between these two values occurs almost entirely in a

small temperature range near T/T, = 0.9.

The first expression on the RHS of Equation {14) represents the high-temperature
(T/T. » 1.0) behavior of a. The constants shown are suitable for all of the substances
examined here; these values should be used unless a large body of data is available at

high temperatures over a wide range of densities.

The second expression on the RHS of equation {14} represents the low-temperature
{T/T¢ < 0.8) behavior of a. Constants a and P can be determined in manv ways but. for
engineéring purposes, the most convenient is to use data for the vapor pressure and
enthalpy of vaporization at a single specified temperaiure, most commonly the normal

boiling point. The appendix describes the procedure for fixing @ and B from such data.

.
g
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Function @, defined by Equation (15), blends the high- and low-temperature
functions for a smoothly together in the range of temperatures just below the critical

temperature.
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"RESULTS

Figure 3 shows calculated and experimental results for ammonia; the data were
taken from the compilation of Haar and Gallagher .(1978). Calculations are based
exclusively on experimemal. data for critical temperature, critical pressure, dipole
moment, normal boiling point, and enthalpy of vaporization at the normal boiliné point.
The calculations are in good agreement with experiment, aithough there is some
discrepancy in the near-critical region, as is common with equations of state of the Van
der Waals form." The calculated boundaries of the two-phase region are also in good

agreement with experiment, again with the exception of the critical region.

Figure 4 compares calculated and experimental vapor preséures for ammonia (Haar
and Gallagher (1978)), water (Keenan, et al (1978)), argon (Angus and Armstrong (1971)),
and acetonitrile (Francesconi, et al (1975)). Required input data are the same as those’
indicated above. Agreement is excellent; about the same as would be obtained with the
original Soave-Redlich-Kwong (SRK) equation for argon (and other non-polar fluids}, and
somewhat better than that from the SRK equation for polar fluids. With more
experimental data as inpm. an even better correlation for a (and hence vapor pressure}

can be obtained, as suggested by Soave (1980).

Figuré 5 shows that calculated saturated-liquid molar volumes are also in good
agreement. with experimental data for ammonia (Haar and Gallagher (1978)), water
iKeenan, et al {1978)). and argon (Angus and. Armstrong (1971)), even though no
volumetric data were used to determine the parameters. The calculated liquid volumes
for acetonitrile are less accurate, for reasons that are not clear. Calculations for other
highly polar fluids give much bhetter results. suggesting that the polarity of acetonitrile
alone does not fully explain the relatively poor performance of Equation {7} in predicting
its saturated-liquid molar volume. Better values of b, and hence of liquid volume. can be

obtained if a single liquid-volume datum is available to fix parameter b.
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Figure 6 compares calculated second virial coefficients with experimental results
taken from the compilation of Dymond and Smith (1980). Agreement is excellent for-
argon, good for ammonia and water, and fair for acetonitrile. The results are surprisingly
good, in view of the well-known difficuity of simuitaneously correlating high-density
properties (vapor pressures aﬁd liquid volumes) and low-density properties (second
virial coefficients) with a simple equation of state. Appendix III] discusses a fundamental

problem concerning calculation of the second virial coefficient from Equation (7).

COMPARISON WITH CONVENTIONAL EQUATIONS

To determine the effect of dipolar forces in the reference system. calculations were
performed for polar fluids with and without reduced dipole moment'ﬁ. Poi' polar fluids,
the change in reference sysiem has almost no effect on the accuracy of the calculated
vapor pressures, because parameter a is determined from vapor-pressure data. However;
there is significant improvement in calculated saturated-liquid molar volumes and in
second virial coefficients when the dipolar reference system is used. Table 2 compares

the accuracy of Equation (2) with and without a dipole moment in the reference system.

The results obtained here suggest that, when using a semi-empirical perturbed
- hard-sphere equation, it is worthwhile to include the effect of reduced dipole moment on
the reference term. For pofar (luids, significant improvement is obtained with little

additional computational effort and without adding any additional adjustable parameters.

ACKNOWLEDGEMENT |

This work was supported by the Director, Office of Energy Research. Basic Energy
Science, Chemical Sciences Division of the US Department of Energv under Contract DE-

AC03-765F00098. Additional support was provided by the Gas Research [nstitute.



Table 2. Influence of Dipole Moment on Calculated Liquid Volumes and on
Second Virial Coefficients for Ammonia and for Water

(constants are deter mined from critical and vapor-pressure data)

Average Absolute Deviation Between

DDCS Equation and Experimental Data

Property Temperature (K) p =pexptl p=0
Percent
ysat liq(NH3) 197 - 400 2.2 7.1
vsat lig(H,0) 273 - 590 1.9 8.4
cm3/mole
BINH;) 273 - 523 32 86

B(H,0) 323-723 97 203
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 APPENDIX |
DIPOL AR-HARD-SPHERE EQUATION OF STATE OF STELL, ET AL

For Helmholtz energy A, the Padé approximant of Stell, et al (1973) is:

A- ABS -4/3 14y To(n)
- - ~ (I-1)
RT 1 +-5/6 |2 I3(n)/1a(n)

where AHS is the Helmholtz energy of a system of hard spheres (no dipoles) at

temperature T and reduced density 1. Here:
1-06910n-1.169012+0.7510 n3

I(n) = (1-2)
- {1 -qp)3

1+1.1913n-0.4252 42
in) - (I-3)
1-1.12790-0.7317 n2

and the reduced dipole moment | is defined by | = p/(03kT)V2 = (2mu2/3bRTI/2Z . The
equation of state is obtained from:
OA
P= -f—— t1-4)
sv T
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APPENDIX 11

DETERMINATION OF EQUATION-OF-STATE PARAMETERS

In dimensionless form. the Perturbed DDCS equation (Equation (7)) is:

~ .Pb Sa 1
P = — - f(o}p) - (11-1)

4RT bRT 125+

If pressure, temperature, and dipole moment are known, the only remaining variables
are parameters 2 and b and reduced density n. To fit an experimental vapor-pressure
datum, we use two criteria, equality of pressure and equality of chemical potentials in the
two phases; both criteria must be satisfied. For the perturbed DDCS equation, the vapor-

liquid-equilibrium (VLE} criterion mayv be conveniently stated as:

Sa . o
= Fipsathiq) - F(psatvap) (11-2)

bRT

where function F is defined bv:

(3 - 1111 - 37130y . n(-4r!30 . 2612! - 2)

Inn+(1-f3Y In (1-n) »
201-m)
Fly) = ' (11-3)
Ini1.25 - n)

If we know the saturated-liquid molar volume corresponding to the vapor-
pressure datum. we can determine the unique pair of parameters a and b that

simultaneously satisfies the VLE criterion and gives the proper value of  for the liquid

phase by the following procedure:
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1. Make initial estimates of a and b.
Compute |i.
Compute nsat liq and g3t vap from (11-1).

Compute new value of a from (11-2) and (11-3).

wos N

New value of a = old value of a ?
NO : Replace old value of a with new value and go to step 3.
YES : Go to step 6.

6. nstliq (calculated) - ns3t liq (experimental) ?

-

NO : Adjust value of b and go to step 2.
YES : Exit. The values of a and b are consistent with the experi-

mental values for Psat and vsatlig,

The algorithm described above is only an example; for converging the “inner loop”
{steps 3 - 5). there may be more efficient methods than the resubstitution scheme
described. and there are many formulae for adjusting b in the “outer loop” {steps 2 - 6).
The procedure indicated above is tedious but, with sufficient repetition, it is possible 10
develop tables and/or equations relating the dimensionless groups Ph/4RT, 5a/bRT, Tf

and nsaliq (and, if desired, 3L vap) (o one another.

This repetition has been carried out by Panagiotopoulos and Kumar (1985) for
three popular two-parameter equations of state. The Perturbed DDCS equation. however,
has one more independent dimeasionless group in addition to those in popular equations

of the Van der Waals or Redlich-Kwong type. '

Instead of fitting simultaneously a and b, it is more convenient to fix b at the
critical value and to develop a simple method for determining the (emperature
dependence of a. When b is known. there are a number of simple ways to determine
constants a and P in equation (14), and hence to fix the temperature dependence of a in

the sub-critical region:
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t'l) The original approach of Soave (1972) can be applied to the DDCS equation if
the acentric factor is known.

(2) If the vapor pressure is known at two different temperatures, Equations
(II-1) - (I1I-3) allow calculation of a at each temperature. Constants @ and § are then
obtained by straightforward algebra.

(3) If the vapor pressure and the enthalpy of vaporization are known at a given
temperature {(such as the normal boiling point), the value of a can be fixed at thrat point
from the vapor-pressure datum, and from the derivative (da/dT) which is related to the
enthalpy of vaporization. The latter relation is a complex one which requires solution by
numerical methods. When such data are used, it is much simpler to use the enthalpy of
vaporization with the Clausius-Clapeyron equation to estimate vapor pressures at
temperatures a few degrees above and below the temperature of interest. These
estimated vapor pressures are used to calculate a at each point; da/dT is calculated {rom
these two values by [inite-difference approximation. In either case, @ and B are easily

calculated when a and its derivative with respect 10 temperature are known.
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PENDIX 11
CALCULATION OF SECOND VIRIAL COEFFICIENTS

The relatively large errors in the calculated second virial coefficients follow from a
fundamental problem. Neither Stell’s equation nor equation (2) give the correct-second .
virial coefficient for a system of dipolar hard spheres, as determined by Keesom (1912).
It is possible to relate the function f{1! to this theoretical value by: f{1] - Btheo - 3 where
Btheo js the réduced theoretical second virial coefficient (Btheo = 3B/2n03), which is equal
to 4 for non-polar hard spheres and decreases with increasing dipole moment. If flll s
determined in this way, agreement between experimental second virial coefficients and
those calculated from the resulting equation is excellent, even for acetonitrile. However,
since the virial series converges slowly or not at ali for liquid-like densities. use of the
t.b.eorétical second virial coefficient leads to serious problems in the calculation of high-
density fluid properties. In this work, it was considered more important to represent
accurately the high-density behavior. Therefore, Keesom's result was not used in the

development of the DDCS equation.
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NOTATION

= equation-of-state constant reflecting attractive forces
= equation-of-state constant reflecting repulsive forces
= second virial coefficient

= Boltzmann constant

pressure

= gas constant

= absolute temperature

= molar volume

= compressibility factor

NI~ TR RO N
[}

Greek Letters

a.p = constants reflecting temperature dependence of parameter a

p = molar density ‘

D = function providing smooth transition for temperature dependence
of parameter a between super- and sub-critical temperatures

n = bp/4 = dimensionless density

o] = hard-sphere diameter

8 = dipole moment

Superscripts

ref = reference part of equation of state

pert = perturbation part of equation of state
theo = theoretically calculated
expt = experimentally determined
HS = hard sphere
= dimensionless
Subscript

C = crittcal
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