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THE ROLE OF DISLOCATION INTERACTION WITH SOLUTE ATOMS 
IN THE,STRENGTHENING OF METALS 

Chol Kyl Syn 

Inorganic Materials Research Division, Lawrence Berkeley Laboratory and 
Department of Materials Science and Engineering, College of Engineering; 

University of California, Berkeley, California 

ABSTRACT 

In Part 1, the anisotropic elastic interaction energy of a straight 

edge dislocation with a substitutional solute atom of Ag or Cd in the 

matrix of Zn is computed. Then the force-displacement relation for 

rigid glide of the dislocation with respect to the solute atmosphere is 

calculated. It is shown that the anisotropic elasticity can reveal some 

important details which are not found in the isotropic elasticity approach, 

and that different sources of interaction contribute additively to the 

total interaction energy, but non-additively to the total force for the 

rigid glide. A detailed discussion indicates that solute atoms within 

the dislocation core may not distribute uniformly along the dislocation 

line, but form discrete clusters. 

In Part 2, the equilibrium configurations of dislocation lines 

in the shear stress fields of substitutional solute atoms distributed 

in square arrays and the flow stresses required to drive the dislocation 

lines through such arrays are computed by numerical methods and then 

compared with the predictions by the theories on the dislocation-point 

obstacle interaction. The assumptions used in the point-obstacle ap-

proximation is shown to be justifiable to a considerable accuracy. An 
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attractive solute atom turns out to be a stronger obstacle than a re-

pulsive one and it is attributed to the fact that the attractive solute 

atom faces the dislocation on the steeper side of its shear stress field 

while the repulsive solute does so on the other side. 

. , 
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GENERAL INTRODUCTION 

Theoretical considerations on the stress to initiate dislocation 

glides through obstacles in metallic crystals of dilute binary solid 

solution at low temperatures can be categorized in two groups. The 
1-3 

first group is concerned with the stress needed to free a dislocation 

from the cloud of solute atoms which are segregated at and around the 

dislocation itself. 4 5 The second group' treats the computation of the 

stress required to move a dislocation through discrete solute atoms 

which are uniformly distributed at random on the dislocation glide 

plane. The second group includes what are customarily known as theories 

on "solution hardening"; the first group inc1ud,es theories usually 

referred to as the "Cottrell-Bilby" theory or "locking" theories. The 

initial stress is commonly referred to as "yield stress" in the "locking" 

theories because the liberation of the locked dislocation from the 

solute cloud is predicted to involve a distinctive yield point phenomenon. 

In the solution hardening theories the initial stress is referred to as 

the "flow stress ll since it is not predicted to show yield. point phe'onomenon 

and is simply the beginning of plastic flow. 

The appearance of an abrupt maximum in the tensile stress-strain 

curve at the onset of a large-scale plastic flow is known as the yield 

point phenomenon. 6 Johnston and Gilman have proposed a different 

interpretation of this phenomenon. From experimental observation, they 

attribute the sharp drop in stress to the rapid generation of large 

number of mobile dislocations. Thus it seems that the solute atom 

locking of dislocation does not have to be invoked to explain the 
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the yield point phenomena in general. As for the "solution hardening", 

10-13 some of earlier well-designed experimental observations indicated 

that solution hardening comes from the increased density of grown-in 

dislocations upon alloying. However recent experiments, 14 which were 

'done with eu crystals with very low initial dislocation density 

« 104/cm2), show that the flow stress is independent of the initial 

dislocation density. 

The "locking" concept seems to be rather well established. It is 

a very useful concept in the "serrated yielding", which is a repeated 

appearance of yield point phenomena over a certain range of temperature 

and strain rate during plastic flow in commercially pure or dilutely 

15 alloyed metals. However, all of the "locking" theories allow the 

dislocation core (the region within one Burgers vector range) to be 

saturated with solute atoms. Thus the solute concentration within the 

core becomes much higher than the solubility limit. Nevertheless, no 

considerations are given to this aspect in the theories. In the 

"solution hardening", it is conceivable that the interaction between 

the gliding dislocation and individual solute atoms is more important 

than the interaction between dislocations, at least in crystals with 

low dislocation density. However, most of the theories fail to 

recognize the fact that exactly half of the randomly distributed solute 

atoms on any glide plane in a crystal of binary solid solution are 

attractive obstacles to dislocations, while the other half are repulsive, 

if only the "size" effect is considered. One other important problem 

is the general tendency to regard the solute atoms as point obstacles, 

16-18 since it simplifies the computer simulations of dislocation movement 

,"' .. , 
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through the randomly distributed solute atoms. This assumption also 

19-22 enables the statistical treatments of the same problem in simple 

forms. 

It is therefore important to re-examine closely the above-described 

problems and clarify the confUSing points. Rather than to propose a 

complete new theory, however, it would be more worthwhile to look into 

the basic assumptions and concepts from different viewpoints from those 

of the existing theories. By removing some of the assumptions, adding 

some other new ones, and applying some more realistic computing devices, 

we may be able to extract a few useful and important conclusions. To 

this end, we divide this paper into two parts. In Part 1, we will 

examine and discuss the "locking" phenomenon more in detail. In Part 2, 

we will investigate the solute-dislocation interaction without intro-

ducing some of the assumptions used in other theories and clarify the 

limit of the "point-obstacle" approximation. The scope of the problems 

and the main assumptions used will be described in the introduction 

section in each part and the discussions will be done separately in 

each part. 

Before we start Part 1, we will review rather in detail the 

interaction between a substitutional solute atom and an edge dislocation 

due to the "size" effect. This is known as the most dominant source 

of the interaction in most of the common solid solutions. 
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PRELIMINARY REVIEW 

Usually the solute atom-dislocation interaction is analyzed in 

terms of linear isotropic elasticity. A spherical cavity of radius r 
o 

22 is cut in an elastic continuum of the matrix ; an elastic sphere of 

radius r', representing the solute atom, is introduced and the 

are pulled together and cemented at an equilibrium radius 

r = r (l+s) , where s is the atomic size misfit (an experimental measure o 

of s is given by l/a·da/dc 23 where a is the lattice parameter and 

c is the solute concentration of solute). Since a spherical inclusion 

causes radial displacements only, the elastic strain field of the solute 

atom interacts with the hydrostatic component of the dislocation stress 

field. The elastic work done in this interaction gives the interaction 

energy due to the "size effect". 

In the linear elastic approximation a pure screw dislocation has 

no hydrostatic stress component and spherical solute atoms interact 

only with the edge components of dislocations. There is nevertheless 

an elastic interaction between a substitutional solute atom and a 

24 screw dislocation. It results from the torque that the stress field 

of the solute atom exerts on the dislocation, trying to twist it into 

an edge orientation where the strain energy interaction can lower its 

total energy. 

For our purpose in Part 2, it will be more convenient to represent 

the elastic distortions due to solute atoms by internal back stresses 

on the glide plane. In Fig. 1, the x-y plane is the glide plane of an 

edge dislocation with Burgers vector b in the y-direction and a solute 

So' ,.. 
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atom is located at (0,0, h) • 25 Then as shown by Weertman and Weertman, 

the solute atom causes a shear stress in the glide plane, in the direc-

tion of b, equal to 

L zy 

where G is the shear modulus. The elastic constants of solvent and 

(1) 

solute are assumed to be 'identical in deriving Eq. (1). If we select 

the (111) plane as the glide plane in fcc crystals, we obtain 

h1 = ±b / i6 for solute atoms on the nearest atomic layers to the glide 

plane, and h2 = ± 3b/ i6 for second layer solute atoms. It is clear 

from Eq. (1) that the solute atom at (x,y,h) exerts a back stress to 

the dislocation which is exactly opposite to the back stress due to the 

solute atom at (x,y,-h). 

The interaction energy, U, between an infinitely long edge 

dislocation and an individual solute atom is obtained by the integration 

of L as follows zy 

L b dxdy zy 
(2) 

21 which, when integrated, gives the well known Cottrell interaction energy, 

h 
(2b) 

The force-displacement relationship for cutting the stress field 

of an isolated solute atom by a long, straight edge dislocation, is 

obtained by taking the derivative of U with respect to y: 



F = -dU/dY 

-6-

3 
= -8 G£ r b 

o 

26 Cottrell has pointed out that Eq. (2b) overestimates the 

(3) 

interaction energy near the center of the dislocation because of the 

effects of core and deviations from Hooke's law. He has suggested 

that these effects can be taken into account approximately by altering 

Eq. (2b) to 

u = 4 G£ r 3 b 
o 

h (4) 

where p can be thought of as the effective width of the dislocation. 

At dislocation-solute spacings less than p, the only interaction is 

with the crystal itself and not with the dislocation. The corresponding 

force-displacement relation becomes 

F = -8 G ro 
3 

£ b (5) 

27 2 2 2 2 Stefansky and Dom adopt a new correction term f = l-exp{-S(x. +y +h )/b } 

which is a mathematical equivalent to the Cottrell's correction, such that 

-Cf T bfdxdy = 4 Gr 0
3 

£b zy 
h (6) 

In Eq. (6), the corrected total work done by T ,is equated to the cor­
yz 

rected interaction energy of Cottrell's. These corrections are si8Oifi-

cant only within the dislocation core region of one Burgers vector from 



''f' 
, .. 

" . 

-7-

, " 

the disloction center, and are imperceptibly small outside the core 

region. 

The common practices have been to leave this core region out of the 

analysis, because of the breakdown of the linear elasticity. However, 

the most significant part of the interaction can occur within the core. 

Since no other simple, usable alternative ways are available, it seems, 

to be rather profitable to employ the core corrections, even if the 

validity of the corrections is open to a serious debate. In principle, 

the correction factors p or a can be determined by comparing measured 

binding energies for substitutional solute atoms with the predictions 

of Eq. (4). The results, however, are not convincing, since it is 

difficult to estimate the elastic contribution to the measured energies. 

We will employ the correction term of Stefansky and Dorn, because it 

is more convenient to use in the numerical computations. We will 

uniformly set a = 3, which is equivalent to p2 

27 Stefansky and Dorn. 

2 
= 0.07 b , following 
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PART 1. INTERACTIONS BETWEEN AN EDGE DISLOCATION 
AND SUBSTITUTIONAL SOLUTE ATOMS 

IN AN ANISOTROPIC RCP CRYSTAL 

I. INTRODUCTION 

In this part, we will investigate the interaction of a straight 

edge dislocation with substitutional solute atoms which are locally 

concentrated about the dislocation. By using the core correction of 

Stefansky and Dorn, and by following the "locking" theory of Jacobson,3 

we will evaluate the interaction energy, force-displacement relation 

and solute concentration within and around the dislocation core. 

Instead of the conventional practice of isotropic elasticity, we 

will employ the anisotropic elastic solution of the dislocation theory, 

because the letter is considered to give a more realistic result than 

the former. For a particular case of study, we have chosen Zn as the 

host metal and Ag and Cd as the solute species. The anisotropic elastic 

solution of the dislocation stress in RCP crystals is available in a 

simpler form than in other crystal structures. Zinc, with a non-ideal 

axial ratio of 1.85 shows a strong anisotropy in its elastic property 

and its elastic constants from OOK to the melting point are known. 

Silver and cadmium distort the lattice of Zn in a contrasting way (see 

Discussion). 

The investigation takes account for the anistropy under three 

approximations. First, the dislocation-solute interaction is assumed 

due to the elastic "size"and "modulus" effects. We neglect other 

f . . 5 sources 0 1nteract10n. Second, the solute concentration in the 

bulk is so small that the solid solution is assumed to be an ideal 

solution. We neglect chemical and elastic solute-solute interactions. 

,', 
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Third, the breakdown of linear elasticity within the dislocation core 

is artificially removed by following the Stefansky-Dorn method described 

in the preliminary review. 

In section II the anisotropic dislocation-solute interaction will 

be formulated and computed. Then the force-displacement relation 

governing rigid glide of an isolated dislocation will be computed with 

and without the artificial core correction in section III. In section 

IV, we will discuss the assumptions and results obtained in sections 

II and III, and the distribution of solute atoms within the dislocation 

core. 
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II. FORMULATION AND COMPUTATION OF THE INTERACTION ENERGY 

A. The "Size" Effect 

When a solute atom is substituted for a host atom in an anisotropic 

matrix containing an edge dislocation, the matrix is anisotropica11y 

strained against the dislocation stress field. If E is the tensor 

strain produced by the solute atom and ~ is the local tensor stress due 

h d ' 1 i h h UO ,28 to t e 1S ocat on, t en t e interaction energy, s' 1S 

(i ,j = x,y,z) (7) 

where n is the atomic volume of the matrix atoms. 

In the coordinate system shown in Fig. 2, an edge dislocation on the 

basal plane lies parallel to [1010], and its Burgers vector is parallel 

to [1210]. For this orientation the principal axes of the strain in-

duced by a substitutional solute atom are parallel to the principal axes 

of the dislocation stress field. Hence Eq. (7) is reduced to 

3 

U~ = 'E aiiE'in = -n(E a +E a +E a ) 
1 . xx xx yy yy zz zz 

i=l 

where the aii's are given by Chou,29 and n = a2c/3/4 for the hcp 

crystal with lattice parameters a and c. The principal strains 

E , E (=E ), and E can be estimated from the lattice parameter xx yyxx zz 

variation with average solute concentration Co through the relation 

E = l/c' dc/dC and E = l/a. da/dC .23 zz 0 yy 0 

(8) 

y' 



.' 

-11-

B. The "Modulus" Effect 

If a substitutional solute atom has different elastic constants 

from those of the matrix, its elastic response to the dislocation stress 

field will be different from that of the matrix. Then the interaction 

energy, U~, will be determined by computing the difference between the 

strain energy stored within the solute atom and the strain energy stored 

4 within an equal volume of the matrix,as follows 

(9) 

where crij and 0ij are respectively the stresses acting on the solute 

and matrix, and eij and eij are respectively the strain induced in the 

solute and the same volume of the matrix. The integration should be 

performed over the volume of the solute atom. If eij is uniform within 

the solute atom and is the same as eij , we will have the following 

expression. 

(i,j = x,y,z) (10) 

where cijkR. andc~jkR. are respectively the elastic constants of the 

solute and the matrix. If the variation of the elastic constants with 

respect to the solute concentration Co is known, then LlcijkR. t s can b~ 
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replaced by l/cijk~ dCijk~/dCo as F1eischer
30 

does in analogy with 

the "size" effect. In most cases this variation is not known. As 

a crude approximation, we simply take the differences in the elastic 

constants of the metals of solute and matrix. 

For solute elements of RCP structure, the five independent elastic 

constants are known and so are the five independent ~Cijk~'s. For 

solute elements of FCC structure, we have to determine the five 

elastic constants for an imaginary RCP structure. For practical pur-

poses, however, from the equivalence of atomic arrangement of (111) 

plane of FCC and (0001) plane of RCP, we can obtain the necessary elastic 

constants as is shown in Appendix. 

C. CompQ.tation 

The interaction energies, U; and U~, were computed for Ag and Cd 

solute atoms about an edge dislocation in Zn, oriented as in Fig. 2. 

The principal strains are Exx = Eyy = 0.35 and Ezz = -0.71 for Ag, 

E = E 
xx yy 

= 0.11 and E zz = 0.27 for Cd, computed from room temperature 

31 X-ray data. The elastic constants of Zn,32 Ag,33 and Cd34 at 300 0 K 

and 473°K were used in Eqs. (9) and (10). The computed contours of 

U;, U~ and U~ + U~ are plotted in solid lines (473°K) and dashed lines 

(300 0 K) in Figs. 3 to 5. Contours in dotted lines represent the isotropic 

interaction energies at 300 oK. The numbers attached to the contours 

represent the interaction energy in units of eV. 

• 
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III. FORCE-DISPLACEMENT RELATION 

The force for an isolated edge dislocation to glide as a whole with 

respect to a single immobile atom is obtained from the following relation. 

F = -au lay 
I 

(11) 

where Ulrepresents the appropriate interaction energy. Then the total 

force due to the whole solute atmosphere will be obtained as a sum of 

the contributions from each solute atom in the atmosphere. 

At a sufficiently high temperature, T , where diffusion can readily a 

occur, the solute atoms will form an atmosphere about the isolated dis­

S 
location according to the following equilibrium relation. 

C exp[-UI(y,z)/kT ] o a C A (y ,z) = ---..::...---.;;;;...---..;.....;;:...----
1 - C + C exp[-UI(y,z)/kT ] 

o 0 a 

(12) 

where k is the Bo1tzman factor, C the average atomic fraction of solute o 

atoms in the matrix, and CA the solute atom fraction at (y,z). If our 

specimen is annealed at Ta long enough for solute atoms to attain an 

equilibrium distribution given by Eq. (12), and then quenched rapidly 

enough to prevent subsequent diffusion, the solute atmosphere given by 

Eq. (12) will be retained and the dislocation will be locked by the 

solute atmosphere. 

The force, FI , per unit length of the dislocation resulting from 

the rigid displacement of the dislocation to a position, y', with 

respect to the immobile solute atmosphere will be 3 

00 

F(y' ) (13) 

y,z=_oo 
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aUI (y-y' ,z) 
where F(y') = - ay is the force exerted on the dislocation 

at y' from a solute atom located at (y,z), CAin the volume fraction 

of solute atom at (y,z), and 6v = l'b'c/2 = ac/2 the elemental volume 

of an HCP crystal per unit length over which the solute atoms are dis-

tributed. The resolved shear stress, TI , on the glide plane in the 

direction of the Burgers vector (or y-direction) can be computed from 

the following relation 

=LI: -
C

A 
(y,z) 
n 6V (14) 

y z 

To introduce the core correction into the computation of TI , we 

have to mUltiply U; and U~ in Sec. II by the correction term 

f = l_exp[_S(x2+y2+z2)/b2], which was discussed in the preliminary 

review. Then UI in Eq. (11) will represent the core-corrected interac­

tion energy. Since our dislocation is straight and parallel to the x-

axis and the matrix is an anisotropic HCP crystal, we used the correction 

term in the form of f = l-exp[-3{(y/a)2+(z/c/2)2}] in the actual ca1cula-

tion. 

The summation in Eq. (14) was done from -10 to +10 lattice sites for 

both y and z in the machine computation, for the forces beyond the limit 

are several orders of magnitude lower than the maximum force. The 

specimen was assumed to have been rapidly quenched to OaK after annealing 

at 473°K,and then tested at 300 oK. Therefore the elastic constants of 

Zn,32 Ag33 and Cd34 at 473°K and 300 0 K were used to compute CA and 

aUI/Cly respectively. 

Figures 6 and 7 show the results obtained from Eq. (14) for an 

.I ., 
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extremely dilute concentration, Co = 10-7• .f and TT (in solid lines) 

represent respectively the stresses due to "size" and "size + modulus lt 

effects. TT (in dash-and-dotted lines) represents TT with the 
c 

core correction. The stress due to only the "modu1us lt effect was 

computed and it turned out to be several orders of magnitude smaller 

than the stress due to the "size" effect. However, the difference be-

tween TS andT T tells us that the "modulus" effect may not be neglected 

at all. We will return to this point in the discussion section. 

Other<computations were done to see how much the solute atoms 

within the dislocation core contribute to the stress-displacement 

relations. It was found that more than 90% of the total force is 

contributed from the core solute atoms, as are shown in the dashed lines 

in Figs. 6 and 7. 
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VI. DISCUSSION 

In this section, we will focus our discussion on the effects of the 

anisotropy, and effect of solute atoms and their distribution within the 

dislocation core to the solute-dislocation interaction. The core cor-

rection will be briefly discussed and its effect on the solute concentra- .' 
tion will be incorporated in the effect of core solute atoms. The 

annealing or equilibrating temperature of the solute atmosphere will be 

briefly mentioned at the end of this section. 

A. Effect of Anisotropy 

1. Contrast in Energy Contours 

Isotropic interaction energies at 300 0 K by "size" and "modulus" 

(shear modulus + bulk modulus) effects were computed from the expressions 

1 30 formulated by Cottrell and Bilby, and Fleischer, respectively, and 

plotted in dotted lines in Figs. 3 and 4 for comparison. We can see 

strong contrasts between the isotropic and anisotropic, and between Ag 

and Cd. The anisotropic interaction energies are of longer range and 

their contours are not circular. The anisotropic contours from the 

"size" effect interaction for Ag split into four leaves, while those 

for Cd are rather similar to the isotropic contours in shape. This 

strong contrast due to the "size" effect may be explained by the fact 

that Ag solute atoms expand the lattice along the a-axis and shrink it 

along the c-axis, while Cd solute atoms expand it in both directions, 

even though the expansion by Cd is highly anisotropic. 

Two other interesting points emerge from the computation of the 

"size" contours. One point is the relative magnitude of the binding 

energy (at room temperature) in the conventional concept (i.e., the 



-17-

maximum interaction energy at r =b). The conventional isotropic computa-

35 tion predicts 0.16 eV and 0.22 eV for Ag and Cd, respectively, while 

the present computation shows that they are 0.37 eV and 0.39 eV, respec-

tive1y. The other point is the position of the binding energy (or the 

maximum interaction energy on the circle of r = b). The conventional 

isotropic computation indicates that this position should be always one 

Burgers below the dislocation center (i.e. y = 0 and z = -b in the present 

coordinate: system) if an oversized solute atom is involved. The present 

anisotropic approach shows that for Cd, the position is the same as 

predicted by the isotropic computation, but for Ag, it is different. As 

is clear from Fig. 3(a), for Ag, on the circle of r = b, there are two 

points at which the interaction energy becomes maximum. If the 

present c~mputation is valid even within this circle we can also 

determine the lattice sites where the interaction energy becomes maxi-

mum. Since the nearest atomic layer below the dislocation is one half 

of d (= inter-planar spacing of atomic layers parallel to the dislocation 

glide plane =0.928b in Zn) away from the dislocation for Cd, (0,-d/2) 

is the site, and for Ag (-b,-d/2) and (+b,-d/2) are the sites. Actually, 

we have taken these sites as the dislocation core sites in the computation 

of solute concentration within the core. 

The "modulus" contours at 473°K are of considerably longer range 

than those at 300 oK, contrary to the case of the "size" contours. This 

seems to be caused by the faster decrease of the elastic constants of 

Zn than those of Ag and Cd as the temperature goes up, as is clear from 

Eq. (10). 

The total "size and modulus" interaction contours, when compared 

with the "size" contours, are severely distorted within one half of a 
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Burgers vector, but are not perturbed seriously beyond that range. This 

is due to the fact that the "size" effect is of a longer range (- l/r 

dependence, where r is distance from the disloction center) than the 

2 "modulus" effect (- l/r dependence). 

2. Force-Displacement Relation 

The force-displacement diagrams by the "size" effect in Figs. 6 

and 7 also show a strong contrast in shape between Ag and Cd. This is 

due to the difference in the shape of the interaction energy contours. 

For Ag, there are two potential-well like valleys below the dislocation 

[see Fig. 3(a)]. Thus every Ag solute atoms should climb up the steep 

potential slope twice, while each Cd solute atom should do so only once 

[see Fig. 3(b)]. This will be clearly understood if we move the solute 

atmosphere with respect to the dislocation instead of moving the dis-

location with respect to the solute atmosphere. 

As we briefly mentioned in Sec. III, the maximum stresses due to 

the "modulus" effect only turned out to be several orders of 

magnitude smaller than those due to the "size" effect. As is clear 

from Figs. 4(a) and (b), the "modulus" effect is locally concentrated 

around the dislocation center and the magnitude of interaction energy 

along the line, z = -d/2, will be small, compared with that of the "size" 

effect. However, when combined with the "size" effect, the "modulus" 

effect dramatically changes the force-displacement diagrams, at least 

in the present two cases. For Ag solute atoms, the "modulus" contours 

at 473°K with (+) sign stretched vertically over a rather long range, 

while the "size" contours of (-) sign extends in the directions tilted 

about 45° from the y-axis. When the two effects are combined, the 



. '. 

" 

-19-

slope of the interaction potential (i.e. aUiay in Eq. 14) will sharply 

increase. The sign alternation of the "modulus" effect for Ag, at 473°K 

slightly increases the magnitude of the total interaction energy at the 

positions where the magnitude of the "size" interaction energy is maxi-

mum. Thus the combined interactions increase the maximum stress in the 

force-displacement diagram by a large amount. For Cd, the "modulus" 

interaction energy of (-) sign contributes to the total interaction 

energy by an amolttlt which cannot be neglected, and which in tum ex-

ponentially increases the solute concentration, leading to the sharply 

heightened maximum of the force-displacement diagram. However, the 

negative "modulus" effect for Cd slightly decreases the slope of the 

interaction potential. Actually, when C' is rather high ( > '" 10-4), 
o 

and hence the dislocation core is completely saturated with solute atoms 

at the same T. = 473°K, we can show that the maximum stress in the force­a 

displacement diagram due .to the "size + modulus" effect is lower than 

that due to the "size" only. 

From the discussion on the interaction energy contours and force-

displacement diagram, we can conclude that if we use the isotropic 

approach to highly anisotropic crystals, we will certainly lose some 

very important details. Furthermore, we may not consider only one 

source of interaction, only because it is dominant, lttlless the inter-

action energy of this source is at least larger by one order of 

magnitude than the interaction energies due to other sources. 
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B. Core Correction 

So far there is no way to estimate the correction factor, S 

precisely on a purely theoretical basis. The value of S would remain 

uncertain as is the whole experimental data on the binding energies, 

until more reliable experimental and theoretical developments are avail-

ahle. One promising approach seems to be the application of suitable 

interatomic potential to the discreet atomic lattices containing dis-

36 locations and vacancies. But this approach is not developed enough 

yet to be applicable to the substitutional solute atom problem. 

The core correction is more effective for Cd than for Ag. The 

correction term f = 1 - exp{-3[(y/b)2+(z/c/2)2]} actually reduces the inter-

action energy at (y = 0, z = -b/2) about 50%. As a solute atom approaches 

closer to the dislocation center, the reduction of the interaction 

energy becomes larger. The lattice site of the maximum interaction 

energy for Cd is closer to the dislocation center than that for Ag, as 

is clear from Figs. 5(a) and (b). 

C. Core Solute Atoms 

As mentioned earlier, the dominant contribution to the force-

displacement relation comes from the solute atoms within the dislocation 

core. This is due to a combination of the following two factors. First, 

the gradient of the interaction potential (i.e. aur/ay) is extremely 

steep within the core range. Second, the solute concentration within 

the core is also extremely high. Thus it is worthwhile to discuss the 

factors which affect the core concentration. 

The core correction is an artificial device to remove the singularity 

of the linear elasticity which does not exist in the real crystals 
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containing dislocations and solute atoms. Thus the core concentrat~on 

can be reduced by the core correction which in fact reduces the magnitude 

of the interaction energy within the core. The core concentration can 

be affected by the interactions between solute atoms themselves. Even 

though we stated that we neglect the chemical and elastic interaction 

between solute atoms, it seems very appropriate to check how these 

interactions can influence the core concentration. We consider three 

sources of solute-solute interaction, one direct and two indirect, as 

follows. 

1. Direct Chemical Interaction 

The solubilities of Ag and Cd in Zn are very small, which indicates 

there is a strong attractive interaction either between solute atoms or 

between solute and matrix atarns. Within the core crowded with solute atoms 

attractive to each other, the clustering of solute atoms is likely to 

occur. ~his attractive interaction between solute atoms will enhance 

the solute atom flow to the dislocation during the annealing at a high 

temperature, thus resulting in increasing the core concentration. On 

the other hand, the repulsion between solute atlom would reduce the core 

concentration. Within the core, the repulsion would tend to prevent 

the clustering. But this repulsion will be blocked by the vibrational 

entropy effect which will be discussed later. 

2. Relaxation Effect 

The first group of solute atoms which arrived within the dislocation 

core during the annealing treatment would relax and somewhat neutralize 

the strain field of the dislocation. The relaxed dislocation then 

would exert a weaker attraction to the next group of solute atoms. 
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Thus the actual core concentration would be lower than that given by 

Eq. (12). This relaxation effect has been treated by Larche and Cahn37 ; 

a detailed discussion of which is beyond the scope of this paper. 

3. . 38 39 
V~brationa1 Entropy Effect ' 

Consider the solute atoms as pinning points and the dislocation as 

a vibrating string between the pinning points. The dislocation would 

tend to repel the solute atoms or push them into clusters to preserve 

its vibration frequency as low as possible, because the lower frequency 

is related to higher entropy. Considering this effect, Bauer38 derived 

the following expression, 

C = co 

C exp [- (U. - .!.2 kT R.n C ) /kT ] o c co a 

1-C +C exp [-(U
c
- 21 kT C ) /kT ] o 0 co a 

where U is the interaction between the dislocation and solute atom c 

within the core, and C is the core solute concentration. When co 

C «1, Eq. (15) is reduced to o 

C = C 2 exp[-2U /kT ] 
co 0 c a 

(15) 

(16) 

Unless U is extremely large in magnitude, Eq. (16) leads to a tremendous c 

reduction of the core concentration as shown below. 

To see the effect of the core and Bauer corrections, we computed 

the core concentrations, i) without any correction, ii) with only 

core correction, and iii) with both corrections, as a function of C • 
o 

The results are shown in Figs. 8 and 9. For Ag, the correction effects 

are negligible, when C > 10-4, while for Cd, the core correction reduces o 

significantly C even uhen C > 10-4 • The Bauer correction when co 0 

~. 
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combined with the core correction causes an enormous reduction.of C . , co 

for Cd when C < 10-4 , and for Ag when C < 10-5• 
'0 0 

The theoretical development of the vibrational entropy effect 

is based on assump'tions which are not compatible with those of the 

present paper. The expression of the vibrational entropy change of the 

dislocation due to solute atoms 38 approaches infintty as C. decreases. . co 

ThllS the correction effect becomes greater as the average concentration 

C decreases as is shown in Figs. 8 and 9. Nevertheless the concept o 

of vibrational entropy implies an important consequence of clustering39 

of solute atoms'which may' or may not interact directly with each other. 

Thus if the solute concentration is higher than the solubility limit,' 

the clustering will enh-ance the nucleation of second phase particles on 

the dislocation. There is no definite evidence yet to show the, 

clustering of substitutional solute atoms in the dilute alloys. But 

40 Thompson has provided evidence indica~ing the clustering of point 

defects (radiation-induced interstitials or vacancies)' in irradiated Cu 

crystals when dislocations are saturated with such defects. 

In terms of the clustering, the "locking" theories may have to be 

rephrased in the follOwing framework. The solute atoms which are 

locking dislocations form clusters along the dislo~ations. When an 

external stress is applied, dislocations will bow out between clusters. 

The yield stress will be determined by the distribution of clusters and 

cluster strengths. Thus the force-displacement relation should be 

computed for the interaction between a flexible dislocation and a 

cluster. 
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D. Effect of Anne'aling' Temperature 

In the computation of the force-displacement relation, we considered 

only one annealing temperature, 473°~ (- 0.68 Tm. T '=693°K for Zn). m 

A higher annealing temperature will reduce the solute segregation at 

dislocations in two ways. First, the ma8I!.itudes of the elastic constants 

will decrease and so does the effective interaction energy.' The lowered 

interaction energy will lead to the less segregation. Second, a higher 

temperature will provide the solute atoms and matrix with more thermal 

energy which drives the solute atoms away from the dislocations. Thus 

to get the yield point phenomenon in a crystal containing solute atoms, 

the annealing temperature should be low enough to ensure the segregation, 

but high enough to allow the diffusion of the, solute atoms. 
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V. CONCLUSIONS 

The anisotropic linear elasticity was applied to the solute­

dislocation interaction in Zn crystals and the following new conclusions 

were obtained: 

1. The application of the anisotropic elasticity can reveal important 

details of interaction energies and force-displacement relations 

which have not been found by the isotropic approach. 

2. For a Cd solute atom, the l()west gradient of the anistropic interaction 

energy due to the "size" effect lies in the direction predicted by 

the isotropic approach, while for a Ag solute atom, this gradient 

is highly deviated from such direction. 

3. If the conventional lower limit of one Burger's vector of the linear 

elasticity is adopted, then the anisotropic elasticity gives 0.37 eV 

and 0.39 eV for Ag and Cd respectively as the binding energies of 

a solute atom to an edge dislocation due to the "size" effect 

in Zn, while the isotropic method gives 0.16 eV and 0.22 eV respectively. 

4. Different sources of interactions, when combined, can inf'luence 

additive1y the total interaction energy, but affect the total force­

displacement relation for rigid glide of a straight dislocation in 

a more complicated way. 

5. The core correction and the vibrational entropy effect can reduce 

the solute concentration within the core by orders of magnitude. 
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PART 2. EQUILIBRIUM CONFIGURATION OF DISLOCATION 
IN THE STRAIN FIELD OF SUBSTITUTIONAL SOLUTE ATOHS 

I. INTRODUCTION 

41-45 Current theories on the "solution hardening" employ at least 

one of the following three assumptions: i) Solute atoms are point 

obstacles; ii) Dislocation lines are flexible string with a constant 

line tension; and iii) Dislocation lines bow out in circular arcs 

between the point obstacles when subjected to an external shear stress. 

All the computer simulations16- l8 of dislocation motions through the 

random distribution of solute atoms, and subsequent statistical 

19-22 analyses of thermally activated motion of the dislocations through 

such distributions, have been based on essentially all 

three assumptions. In the framework of linear elasticity, however, a 

solute atom 'acts as an internal strain center with a certain influence 

range, and induces positive and negative shear stress fields on the 

dislocation glide plane of the surrounding matrix, as shown earlier. 

Thus the dislocation shape will be affected by the shear stress 

fields of the solute atom itself. 
~ 

Our purpose in this Part 2 is to examine the relevance of those 

three assumptions, especially the first and third ones. The examination 

will be done by computing the equilibrium configurations of dislocation 

lines which are determined by a balance between the shear stress fields 

of solute atoms, dislocation line tension and externally applied shear 

stress on the glide plane. Our detailed analysis will be proceeded 

based on the following assumptions: 
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(a) The dislocation-solute interaction is governed by the isotropic 

linear elasticity. 

(b) The dislocation-solute interaction is due to the "size" effect 

only. 

(c) There are no solute-solute interactions. 

Cd) Solute atoms only in the first nearest atomic layers parallel 

to the glide plane are considered. 

(e) Solute atoms are distributed in square arrays over the glide plane. 

(f) Dislocation lines are flexible and extensible strings with a 

cons t ant line tension. 

vIe take account of the fact that exactly one half of the solute atoms 

are attractive strain centers and the other half are repulsive ones under 

the assumption (b). We will show that the assumption (f) of the constant 

line tension can be removed from the present investigation~ 

27 Using the same set of assumptions, Stefansky and Dorn have shown 

that for extremely low con,centrations, the flow stress in the square 

arrays of the solute atoms increases asymptotically with the square root 

. 41 42 of the concentration, as prediced by eX1sting theories.' They have 

shown also that as the concentration increases, the increasing rate of 

the flow stress slows down, and eventually the flow stress itself begins 

to decrease. Nevertheless, it will be shown that'even for relatively 

high concentrations, the approximations of point obstacles and circular 

bowing of dislocation lines are justifiable to the remarkable accuracy. 

It will be also shown that the strengths of attractive and repulsive 

solute atoms are not identical in conflict with some earlier approaches. 
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II. SUMMARY OF THE EXISTING THEORIES 

In this section, three existing theories will be briefly reviewed, 

because they are considered to contain some important or disputable 

.concepts which can be clarified by the analysis in the sections 

following this summary. 

A. Theory of Mott and Friede146 

This theory is based on the idea that dislocations in an alloy are 

not rigid straight lines as originally conceived by Mott and Nabarro. 

Instead they tend to be wavy in order to minimize their total energy 

in the stress fields of the solute atoms. 

In a random solid solution, one half of the solute atoms adjacent 

to the glide plane will be attractive, and according to Friedel, the 

dislocation line will zigzag from one attractive solute to another. 

Then the flow stress is determined by a balance between the dislocations 

tendency to minimize its length and its attraction to solute atoms. 

Cutting of the solute atoms by the dislocation line is the same whether 

they are attractive or repulsive, but only the attractive solute atoms 

are assumed to determine the zigzag in this theory. 

The theory is formulated in terms of the triangular array of 

attractive solute atoms as shown in Fig. 10. .A dislocation prefers the 

zigzag configuration ABC to the straight line configuration X-X' as in 

passing from the latter to the former it gains more in interaction 

energy than it loses in line energy. The interaction energy gained per 

unit length along X-X' is 
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where Ur is the total interaction energy and Co is the solute concentra­

tion on the glide plane. The solute ato.ms are regarded as point obstacles 

and Ur is equal to the maximum absolute value of Eq. (4). The increase 

in the total line energy is 

r 
x 

wher~ r = Gb 2/Z is the dislocation line energy per unit length. 

By minimizing El-EZ with respect to y, Friedel obtains the tri­

angular distribution that gives the minimum barrier to the moving dis-

location. Then the flow stress 0 at OOK, i.e. the stress required to 

move the dislocation from a stable configuration ABC to an equivalent 

configuration is given approximately by, 

B. Friedel's Forest Mode14l ,46 

Even though Friedel has set this model to explain the dislocation 

cutting of unattractive forest dislocations, some authors apply this 

model to the solution hardening, because the assumptio,ns are based on 

the pOint-obstacle concept. In the following review, we replace the 

term "unattractive forest dislocations" by "solute atoms". 

Substitutional solute atoms are randomly distributed on the glide 

plane as illustrated in Fig. 11. A dislocation initially held by A, B, 

C overcomes the solute atom B by an external stress, OF' and then 

bows out under the same force to meet a new solute atomD after moving 

a distance y. The radius of curvature, R, for the arc ADC is determined 
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by 

where r is the dislocation line energy. Then it can be easily shown 

that x is given by 

2 2yR ~ x 

where x is the distance between two adjacent solute atoms -along the 

(18) 

dislocation line. If the shaded area S is on the average equal to the 

2 
area is per solute atom, where is is the average spacing between solute 

atoms on the glide plane, then 

~ xy (19) 

From Eqs. (15) to (17), we have 

x = (20) 

2 if we put r = Gb /2. Assuming the external work OF b x d, where d is 

the distance moved by the dislocation to cut the solute atom B, is 

equal to the total interaction energy UI of the ~o!ute atom B with the 

. dislocation, and putting d ~ b,' from Eq. (20), we have 

(21) 

If the maximum absolute value of interaction energy due to the "size" 

effect is taken on for UI from Eq. (4), OF becomes 

(22) 
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42 Fleischer's Theory 

In this theory also, a random distribution of solute atoms is 

assumed and the flow stress at OOK is determined by an averaging process. 

A dislocation cutting a solute atom B will bend by an angle 8 at an 

adjacent solute atom A as shown in Fig. 12. Fleischer assumes that the 

area swept by the dislocation is equal to the average area t~ per 

solute atom. Thus 

(23) 

When the force Fm due to the applied stress, 0L' which is given by 

(24) 

is balanced with the force due to the dislocation line energy such that 

F = 2r sin(8/2) 
m 

(25) 

then the dislocation segment CAD can overcome the solute atom A without 

thermal activation. Then from Eqs. (23) to (25) and with r = Gb
2
/2, 

we have 

(26) 

This is exactly the same as Eq. (20) by Friedel. Then by substituting 

Eq. (26) into Eq. (24), the flow stress at OOK is given by 

(27) 

If we note Fm = Ur/d, and then use the "size" effect for Ur , 0L will 

be exactly the same as OF in Eq. (21). 
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The constant line tension, the circular bowing of dislocation 

between obstacles [Eq. (17)], and the line energy force on the obstacles 

[Eq.· (25)] in the last two theories constitute the concept of the 

16-18 . 
"point-obstacle", on which the computer simulations and statistical 

20-22 analyses are based. We will return to this point-obstacle ap-

proximation later. One interesting feature of the last ,two models is 

that if a new stress a* is defined such that a* = a·~s' then a* is 

independent of ~s or Co' as can be seen from Eq. (22). We will show 

that our numerically computed flow stresses approaches asymptotically 

a constant value as ~s increases. 
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III. FORMULATION 

In this section, we will adopt the formulation by Stefansky and 

27 
Dorn' in a square array of substitational solute atoms on the glide 

plane. The formulation will lead to a differential equation which determines 

the equilibrium configurations of a dislocation introduced into the square 

array at various external shear stress levels. Actually the solute atoms 

will be distributed rather at random over the glide plane. However, 

the equilibrium shapes of dislocation in the shear stress fields of 

solute atoms can be exactly solved only in simple regular arrays because 

of the simplicity in formulation and computation. Such an analysis 

would be almost impossible in random arrays of solute atoms unless 

some arbitrary assumptions are used .• 

If the dislocation-solute atom interaction is attributed to the 

,"size" effe·ct, a gliding dislocation line will, on the average, 

pass equal numbers of attractive and repulsive solute atoms. Thus, 

a square array shown in Fig. 13 will be the simplest !r'egular array. 

In Fig. 13, we set the origin of the cartesian coordinates at one of 

the repulsive solute atoms and label each solute atom with two 

indices, m and n. Let the glide plane be the (111) plane in FCC 

crystals and ~ be the spacing between solute atoms. Let our sub­
s 

stitutional solute atoms be oversized, and then the size misfit parameter 

£ will be positive. If £>0, the solute atoms in the atomic plan~ above 

the glide plane will be repulsive obstacles and the solute atoms in 

the lower atomic planes will be attractive ones, as is clear from Eq. (1). 

Then for repuilisive solute atoms, h in Eci. (1) is b/16 while for the 
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attributive onesh is -b/16. Therefore, if our glide plane is infinite 

in extent, the shear stress (with the core correction introduced 

earlier) at a point (x,y,o) on the glide plane due to the entire 

solute atoms on the first atomic planes above and below the glide 

plane will be given by 

6GEr3 
1" = __ 0.:c. 

yz 

00 

L (_l)m+n 
(28) m,n=_OO 

(y-nt ) 
s 

Now we introduce an edge dislocation into the square array of solute 

atoms such that the Burgers vector is parallel to the y-axis and the 

dislocation line is parallel to the x-axis, and then we let the dislocation 

relax to its minimum energy configuration·in the stress fields, 1" ,of yz 

the solute atoms. Because of the nature of the alternating distribution 

of solute atoms, the equilibrium configuration of the dislocation line 

y = y(x) wi11'.be a periodic function of x with 

energy of a dislocation 1ine47 will then be 

a period of 2t • 
s 

The total 

where U is the energy of a straight dislocation segment of length 2t 
o s 

lying parallel to the x~axis at y =._O~ ris the:line tension of-the 

dislocation per unit length, and 1" is a resolved shear stress of the 

externally applied stress on the glide plane. 
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The equilibrium shape, y =·y(x), of the dislocation can be obtained 

by applying the calculus of variation to minimize U. Then U must 

satisfy the Euler equation, 

~ (au) _ au = 0 
dx op ay' 

where p=dy/dx. From this we obtain the differential equation for the 

equilibrium configuration 

d
2
y/dx

2 
= 

. {1+(dy/dx)2}3/2 
- ~(T' + T·. ) r yz 

The left-hand side of Eq. (30a) is equal to the curvature of the 

dislocation line. Thus if T is not considered, then Eq. (30a) yz 

will be equivalent to Eq. (17). 

(30a) 

For computation it is more convenient to introduce dimensionless 

variables by letting X'=x/b, Y=y/b. For the edge orientation, the line 

tensic:n r is given by 3Gb
214.48 Thus Eq. (30a) may be transformed to 

4 
- -(T/G + T /G) 3 yz 

(30b) 

where, by letting ro=o/2 and Ls='X-/b in "Eq.(28), Ty/G is given by 

2 

2: 
(Y-nL ) (l-e -3Riiin) 

(_1)m+n __ .::...s ___ _ 

R5 
mn 

3E: 
T /G = -

yz 416 
(31) 

m,n 

with 

R _ [(X-mL )2 + (Y-nL )2 + 1/6]1/2 
mn s s (32) 
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Equation (30b) is a second order non~homogeneous differential equation 

which can be solved numerically with two independent boundary 

conditions. Since our solutions should be periodic and hence symmetric 

about the y-direction, we can conclude that dY/dX = 0 at each solute 

atom, and thus we have the necessary boundary conditions. 
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IV. COMPUTATION AND RESULTS 

A. Computation Algorithm 

Equation (30b) cont~ins three parameters: T/G, Ls and'E, which 

can be. fixed to some constant values. The computations were performed 

numerically. A computer code was programmed such that a series of 
, 

trial values Y of Y at x = 0 were picked up until the desired ,curve 
o 

Y = Y(X) having zero slop at X = L was obtained. For a trial value of 
s 

Y , dY/dX at X = 0 was always put equal to zero; and the construGtion 'of 
o , ' ' 

the solution curve Y = Y(X) wasl'erformed by using a fifth order· Rooge:-

49 Kutta method. This method involves essentially step-by-step ,solution 

of Eq. (30b) over the interval 0 ~ X ~ L , and it requires that the 
s 

initial' conditions be known at the starting point X = O. In order to 

obtain the flow stress at OOK, the parameter T/G was increased to a' 

series of new values,' holding Land E' constant. As T/G approaches 'the s 

flow stress, the position and shape of the dislocation line change 

gradually. If T/G exceeds the flow stress, dY/dX is nonzero at X = L , s 

for all possible values of Y. Thus in this way the flow stress' can be o 

approximated as closely .as desired. In the present wo'rk, the flow: 

stress was computed 'to an accuracy of about ± 0.1%. 

B. Results for Alternating Arrays 

The equilibrium configuratioris of dislocation line and the flow 

stress required for a dislocation to sweep through the solute atoms in the 

square arraY,were computed. The size misfit parameter E = 0.'06 was used 

for all the computations. A sequence of the equilibrium configurations 

of dislocation line with T increasing from zero to a stress level close 

to the flow stress in an alternating array (with t = 20b) of repulsive (R) 
s , ' 
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and attractive (A) solute atoms is shown in Fig. 14. Solute atoms are 

represented in dotted cIrcles only to show their positions along the 

x-axis. 

, When 1'=0, the dislocation line zigzags in a triangular shape and 

rounds off slightly within a range of one Burger~ vector around each 

solute atom. When 1',increases, then the dislocation line gradually 

bows out between the solute atoms. Fig. 15 shows the equilibrium 

configurations of dislocation line (in solid lines) at the flow stress 

levels for a series of 9- 'so The scales aiong the x-axis were distorted 
s 

to emphasize the gradual change in the shape of the dislocation line. 

As the solute atom spacing, 9- , increases, the dislocation line bows 
s 

out deeper and deeper between sqlute atoms. These equilibrium 

configurations in Fig. 15 are somewhat different from the configuration, 

, 27 
shown schematically in Fig. 16 which Stafansky and Dorn 'describe as a 

representative case of their computed equilibrium configurations. They 
/" 

seem to have computed the equilibrium configurations for 9- < l5b, 
s --

using a less accurate numerical method. Their description of the 

configurations is consistent with the present results when 9- ~ l5b, 
s 

but seems to be incomplete when 9- ':;: 150. , s 

The distances on the y-axis between the repulsive solute atoms 

and the dislocation lines are 0.25b to O.30b. This indicates that 

the flow stress (or the instability of .the equilibrium configuration) 

is determined by the dislocation configuration around the repulsive 

solute atoms rather than the configuration around the attractive ones 

in the present alternating arrays. Actually, the peak of the shear 

stress field of our substitutional solute atom i's O. 2525b away from the 

.. 

. -



-39-

physical center of the solute atom itself. We will return to this 

point later. 

In Fig. 17, the flow stresses, Ty/G,was plotted in a solid line 

against b/~. This quantity, b/~ , is equivalent to the average concen-s _ s 

tration, C , of solute:atoms,as is clear from Eq. (23). As J/, decreases, a ,-,' s 

the flow stress, Ly • increases gradually, but the increasing rate 

gradually slows down, and as ~ becomes smaller than about lOb, then 
s 

Ly passes a peak and, decreases' thereafter. As is clear from Fig. 15, 

a dislocation line tends to _be more s-traight as ~ decreases. A straight , _ s 

dislocation will be equally pushed and pulled by the solute atoms of 

opposite signs. Thus the'strerigthening effect due to higher concentrations 

of solute atoms will be eventually diminished as pointed out by Matt and 

7-9 ' 27 Nabarro and again Stefansky and Do-m. 

C. Dislocatioll Configurations and Flow Stresses 

in- Unmixed Arrays 

In addition to the flow stresses for the alternating arrays, we 

also computed the flow stresses for square arrays of purely repuslive 

solute atoms and purely attractive solute atoms. In the actual 

m+n . 
computations, (-1) in Eq. (32b) was replaced by (-1) for repulsive 

and by (+1) for attractive square arrays, respectively. The computed 

flow stresses for square arrays of repulsive solute atoms with the 

size misfit £=0.06 were plotted in a dashed line in Fig. 17. As 

predicted by Eq. (22), the flow stress increases linearly with l/~ • 
s 

It is noticed that the flow stress for alternating arrays approaches 

asymptotically the flow stress ,for repuslive arrays as the solute atom 

spacing, ~s' increases. In Fig. lawe plotted Ly vs ~s in a slightly 
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* By defining a new dimensionless flow stress Ly different way. 

* that Ly=Lyb~s/2r, which is used in some statistical ana1ysis21 

such 

of random 

arrays of point obstacles, we can compare different arrays on a basis 

of a fixed numerical constant. As is shown in Fig. 18, the flow stresses, 

* L , for the repulsive and attractive arrays are independent of ~ . while 
y s 

* Ly for the alternating arrays increases at first and then asymptotically 

* approaches Ly for the repulsive arrays. 

* The flow stresses, Ly , for the attractive arrays turned out to be 

slightly higher than those for the repulsive arrays, as is shown in 

Fig. 18. This is 
. 46 

in conflict with the common practices that the flow 

stresses for both arrays is taken to be the same. Figures 19a and 19b 

show only portions of dislocation lines (plotted in solid lines) for 

two stress levels in the immediate neighborhood of a solute atom in 

the repulsive and attractive arrays with ~ =lOb, respectively. The 
s 

equilibrium configurations in the two types of arrays are very similar 

except the relative positions of dislocation lines with respect to the 

center of the solute atom. A closer examination on the equilibrium 

configurations shows that the cunvatures of the dislocation lines for 

attractive arrays are greater than those for repulsive ones at the 

same external stress levels. rhis means that dislocation lines in 

attractive arrays tend to be more undulated than those in repulsive 

arrays. To shed a light on this difference, we computed the shear 

stress field of each type of solute atoms using Eq. (1) with the core 

correction of Stafansky and Dorn and then plotted (in dashed lines) 

the positive (or repuslive) side of the stress field contours in 
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Figs. 19a and 19b. Comparing two figures of Figs. 19a and 19b, we 

can find that dislocation lines in an attractive array should climb 

up a steeper slope of the back shear stress hill of solute atom than 

such a slope in a repulsive array. We will show how a steeper slope 

can lead to a greater curvature and hence a greater flow .stress level 

in the discussion section. 

, 
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v. POINT OBSTACLE APPROXIMATION 

Despite the frequent use of the point obstacle approach such as 

in theoretical problems (e.g., Refs. 19-22, 41, 42 and 51) in which 

the dislocation-obstacle interaction is involved. the approximations 

used in the approach have not been· studied in detail. By following our 

50 previous work, a formal basis for the point obstacle approximation to 

the interaction between a dislocation and a circularly symmetric 

obstacle will be presented in this section. The result will be, applied 

to our substitutional solute atom interaction with dislocations. 

Consider a physical obstacle whose interaction with a gliding 

dislocation is circularly symmetric in the glide plane and has an effective 

range (d') which is small compared to the average separation of obstacles 

(~). Assume the dislocation is acted on by a resolved shear stress T 
s 

and consider that portion of the dislocation which is pressed against 

a particular obstacle. The local equilibrium configuration of the 

aislocation line will appear roughly as shown in Fig. 20. The total 

energy of this configuration may be written 

E = f fdl + Tb~ + W 

L 

(33) 

where f is the line energy of the dislocation and the integral is taken 

over the portion (L) of the dislocation line included in the figure; ~ 

is the area behind L and Tb~ measures the potential energy of Lunder 

applied stress T; and W is the total energy of the interaction of L 

with the obstacle. In the square arrays E is equivalent to Eq. (29). 

Using a two dimensional form of Gibbs52 construction (illustrated 

in Fig. 20) the obstacle may be formally reduced to a point and the 
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energy W,localized. Given that d' is small we enclosed the obstacle 

in an imaginary circle (D) of small radius d appreciably greater than 

d' • Only the portion 'of L within D is perturbed by the obstacle. We 

then extrapolate the arms of L into. D until they'meet ata point (x). 

Let the extrapolated line~ represent the dislocation within D and let 

the point of intersection 'represent the obstacle. The total energy 

of this hypothetical configuration (I,.') is 

E' - f f dl' +, Tb'\" + W, 

L' 

which is identical to E if 

(34) 

(35) 

If the dislocation is in mechanical equilibrium, there must be no 

possible variation of L (or, equivalently, ofL') which causes the 

energy to decrease. As may be easily seen by considering variations which 

- leave the po~ition of the point (x) in L' unchanged, ,it is necessary 

for equilibrium that W, have its minimum value, W' (x'), 'consistent with , 

the position (x) and the configuration of L()utside of D, and L' be 

-
symmetric about a line (1) through x and the physical center of the 

obstacle. If L' satisfies these conditions and if it is in equilibrium 

with respect to all variations which carry x along 1 and constrain W' 
, 

to W'(x), then it is in equilibrium with re~pect to any variation 

whatever. Hence fromEq. (34), L' is in mechanical equilibrium only if 

6E' - f (fIR - Tb) 6xndl' + dW'/dxl - 2f cos$/2 6xI~O (36) 

L 
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In this equation, R is the radius or curvature of the element dl' of 

L and Ox is the normal displacement of this,element. The angle 1JJ 
n 

is tlJ.e angle formed by L' at the intersection point x and the term 

involving 1JJ accounts for the net change in line length L' due to the 

displacement of oXl of ~ along 1. 

Since the variations oX
n 

and oXl are inoependent and may have 

i h ' h' I' 36 . ld tw • diti f e t er s1gn, t e 1nequa 1ty Y1e s 0 necessary con ons or 

equilibrium: 

(1) Tb = fiR 

everywhere on L' and 

(Z) F = dW'/dx
l 

= Zfcos1JJ/Z 

(37) 

(38) 

at the intersection point x. These conditions are the central equations 

of the point obstacle approximation as described earlier. Actually, 

Eq. (37) is equivalent to Eq. (17) and Eq. (38) is also equivalent to 

Eq. (25), because 1JJ ~ TI-e 

Equation (38) may be used to generate a mechanical-force-displacement 

relation for the dislocation-obstacle interaction in the point obstacle 

representation. Thus, function [F(xl )] is obtained by displacing or 

deforming the unperturbed segments of the dislocation (for example, 

by increasing the applied stress) so that the dislocati~n passes through 

the obstacle while maintaining an equilibrium configuration. The 

resulting function [F(xl )] will be insensitive to the precise configuration 

of obstacles when R»d, and will be insensitive to the obstacles separation, 

~ , when ~ >d. When these two conditions are satisfied the force-dis-s s 

placement relationship is a fixed property of the representative point 



, -45-

obstacle. In the limit jI, .»d the finite displacement of the dislocation 
s 

in sweeping through the obstacle may be ignored. The obstacle may then 

be treated as a mathematical point which influences the dislocation 

only when in physical contact with it., 

We applied this method of point obstacle representation to our 

substitutional solute· ,atoms in repulsive and attractive square arrays. 

A sequence of computed equilibrium configurations of dislocation in a' 

repulsive square array with £=0.06 and R, =lOb is illustrated in solid \ s 

lines in Fig. 21. The scale of the figure has been distorted .to allow 

clear distinction between the different configurations. The three 

lower dislocation lines are stable equilibrium configurations assumed 

with increasing applied stress; the two upper dislocation lines are 

unstable equilibrium configurations for a dislocation which has passed 

the pe~k of the positive side of the back shear stress field of a 

solute atom in the array. We have also shown in dotted lines the point 

obstacle representation of each configuration, by drawing an osculating 

circle to each equilibrium configuration. The discrepancy between 

the true and approximated dislocation configurations is significant 

only in'the vicinity of the obstacle (:S .lb). 

The point obstacle force-displacement relation computed by applying 

Eq. (38) to this case is illustrated ina solid -line in Fig. 22a. The 

same relation computed for an attractive solute atom with the same size 

misfit (£=0'.06) in a square array with the same period R, =lOb is also 
s 

illustrated in a solid line in Fig. 22b.; In a previous work (e.g., Ref. 51) 

the force displacement relation for. rigid motion of a straight dislocation 

,through the solute atoms was used as an approximation to the dislocation-
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point obstacle interaction. The force-displacement relatio~ for rigid 

motion was computed under the assumptions of the above-mentione4 two 

cases: ~epulsive and attractive square array (with ~ =lOb) of solute 
s 

atoms (with ~=O.06) from Eq. (5) and is compared to our force-displacement 

relations for the flexi~le ~islocation-point obstacle interaction in 
. . 

dotted lines in Figs. 22a and 22b. ' The agreement between the two curves 

in each figure is good. Use of our point-obstacle representation 

results in a slight increase in the maximum forceE1 and small shifts in 

the position of the maximum with respect to the physical center of the 

solute atom. Since the dotted lines in both figures should be exactly 

symmetric with respect to the force axis. We can compare the two solid 

lines through the dotted lines, we can find here once again that an 

attractive solute atom is a stronger obstacle than a repulsive solute 

atom. 

Further computations indicated that the force-displacement relation 

is reasonably insensitive to the solute atom spacing ~ ~4b as can be 
s 

anticipated from the upper two stress l~vels for the repulsive and 

attractive square arrays in Fig. 18. 
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VI. DISCUSSION 

This section is divided into four subsections and appropriate 

discussions are given on the following five topics in order: 

i) relevance of the assumptions, ii) relative strengths of the repulsive 

and attractive arrays, iii) point-obstacle approximation, and iv) a 

new problem raised from the present study. 

A. Relevance of Assumptions 

The assumptions listed in the introduction section are made to 

simplify our analysis in the next sections. Thus the isotropic 

linear elasticity on which the current theories on the dislocations are 

based seems to be the most appropriate assumption. The anisotropic 

elasticity may be adopted, but undoubtedly it will make a very complicated 

analysis. In addition to the "size" effect, other sources of dislocation-

solute interaction can be also considered in principle. However, ex-

pressions of the back shear stress on the glide plane, equivalent to 

Eq. (1) due to the "size" effect are not available yet in simple forms 

like Eq. (1) for these other sources. 

The elastic solute-solute interaction can be neglected safely when 

the inter-solute atom spacing, Jt , is larger than the effective range s 

of about 3b. When R,. is less than 3b ,the back stress fields of s 
. 27 

solute atoms overlap each other as shown by Stefansky and Dom, and 

then the elastic solute-solute interaction must be accounted. The 

short range ordering of solute atoms will lead to clustering of solute 
5 '. . 

atoms in conflict with our model of regular arrays in dilute solid 

solutions. 27 Stefansky and Dorn pointed out that solute atoms on the 
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second nearest atomic layers parallel to the glide plane are 25% as 

strong as the solute atoms in the first nearest atomic planes. Thus 

by constructing an appropriate regular array these solute atoms on the 

second nearest atomic planes can be fully accounted. 

The regular array approach is relevant and justified in the sense 

that it allows the analysis of the equilibrium configuration of dis-

location lines, which is practically impossible with the random array 

approach as mentioned earlier. The assumption of the constant line 

tension seems to be appropriate, because the deviations of the disloc~tion 

lines from the edge orientation were extremely small for the entire 

spectrum of t 'so The maximum slopes of the dislocation line with . s 

respect to the edge orientation were less than 3° for the size misfit 

parameter E = 0.06. If Eis very large (Le., strong solute atom) and 

.hence the deviation cannot be neglected, by replacing the line tension 

term, r, by a suitable function of orientation and position, we can 

give a full correction for the deviation. Then we may have to solve 

a slightly different equation from Eq. (30-a). The elastic self 

interaction between segments of curved dislocation can be neglected 

from the same reason. Foreman53 has shown that such second order 

effect is small, particularly in the case of weak obstacles. 

B. Strengths of Repulsive and Attractive Arrays 

Referring to Figs. 19(a) and (b), we will show here qualitatively 

why the steeper slope of the back stress field requires a higher flow 

stress in an attractive array than the less steep slope does in a 

repulsi ve array. 

i 
.~ 

. -: 
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If the left-hand side of Eq. (30-a) is replaced by a new parameter 

K representing the curvature of dislocation line, and (-) sign on the 

right-hand side is dropped, then Eq. (30-a) is transformed to 

K = b/r (T + T ) yz (30-c) 

Then the variation of the curvature in the y-direction will be determined 

by the slope of the shear stress field, T ,along the y-direction as yz 

follows: 

aK/ay = b/r • aT lay yz . (39) 

Thus under a constant external stress, T, identical virtual displacements 

0.£ dislocations by an infinitesimal distance along the y-direction will 

result in a greater increase in the curvature in an attractive array be~ 

cause of the steeper slope, aT lay than in a repulsive array with the yz 

same distribution of solute atoms. Then small displacements of disloca-

tion from the same initial level of T to the same final level of T 
yz yz 

will lead to a greater final curvature in the attractive array than in , 

the repulsive array, if the initial curvature was the same in both 

arrays. To maintain a greater curvature, a greater external stress 

should be applied. 

The difference in the flow stresses between the repulsive and 

attractive arrays is, however, not so significant as the difference in 

the slopes. This seems to be due to the following two facts, as is 

obvious from Figs. 19(a) and (b). First, the slope of the shear stress 

field decreases as a dislocation approaches the peak and ridge of the 

stress field. &econd, the absolute magnitudes of the dislocation 



-50-

curvatures are very small at all external shear stress levels. Thus 

as the dislocations continue to press on the attractive solute atoms, 

the curvature change becomes smaller, and the smaller curvature change 

influences the already very small curvature only insignificantly. 

c. Point-Obstacle Approximation 

In the point obstacle approximation of the dislocation-solute 

atom interaction, the equilibrium configuration of dislocation lines 

subjected to an external stress T is represented by a circular arc 

between the equivalent point obstacles, the radius being determined by 

Eq. (37). As we' have shown in a repulsive array in Fig. 21, this circle 

represents very accurately the true configuration of the dislocation line 

except in the immediate vicinity of the soiute atoms. Even in this 

vicinity the maximum discrepancies between the two configurations are 

less than b/50. Even in the alternating arrays, the circular approxima-

tion seems to be excellent as is shown in dashed lines in Fig. 15, 

when the solute atom spaCing, R- is greater than lOb. 
s 

The second feature of the point obstacle representation is that 

an obstacle will be cut if the angle ~ between two segments of disloca-

tion held by the solute atom is less than a critical angle ~c as can 

be seen from Fig. 20. We measured this critical angle in the repulsive 

and attractive arrays from the equivalent circular configurations at 

the flow stress levels, and found that this critical angle does not 

change with the solute atom spacings. As anticipated, the critical 

angle ~c for the attractive arrays was slightly smaller than that for 

the repulsive arrays. Then we measured the angle ~c in the alternating 
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arrays from Fig. 15 and found that Wc varies widely at the attractive 

-
solute atoms but remains constant at the repulsive solute atoms even 

* though the dimensionless flow stressTy drops rapidly as t decreases. 
. s 

The variation of critical angle Wc at the repulsive solute atom is 

illustrated in Fig. 23 in terms of cos(WC/2) vs ts/b. Comparing Fig. 

23 with Fig. 18, we can obtain an interesting conclusion that even in 

the alternating arrays of high solute concentration (- 1%) the principle 

of critical angle works perfectly. 

The fact that the two features of the point obstacle approximation 

are obeyed almost exactly in the r~pu1sive or attractive arrays indicates 

. that a dislocation mO'tion through the distribution of discrete obstacles 

whose interaction with the dislocation is symmetric with respect to the 

glide plane can be predicted by the point obstacle approximation. By 

symmetric with respect to the glide plane means that the sign of the 

interaction energy is the same whether the obstacle is placed below or 

above the glide plane. In this sense, all the substitutional solute 

atoms with the size misfit e: :j: O,are antisymmetric obstacles. The 

best example of the symmetric obstacles would be substitutional solute 

atoms with zero size misfit but with non-zero modulus misfit. 

In Fig. 15, the dislocation line configuration in the alternating 

array with t = lOb does not cross the x-axis, while the lines in the 
s 

same arrays with higher t cross it. However, in Fig. 24 we shift s 

the repulsive solute atoms in the array with ts = lOb by O.2525b 

upward along the y-direction and the attractive ones by the same 

distance downward such that the peaks of the positive sides of· the 

back shear stress field of the repulsive and attractive solute atoms 
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are aligned on the x-axis. * Then the flow stress Ty ' increases from 

0.02050 to 0.04603, by more than twice, and the dislocation configura-

tion changes dramatically as shown in Fig. 24. Thus if we make a square 

array of solute atoms with their peaks of the positive sides of the 

back stress fields, not just with the geometrical centers of the solute 

atoms, the flow stress and equilibrium dislocation configuration will 

be precisely predicted by the rules of point obstacle approximation. 

Thus the point obstacle approximation seems to be a really promising 

approach and all the computer simulations and the statistical analyses 

of dislocation motions through random arrays of discrete obstacles may 

be justified whether or not the obstacles are symmetric. However, this 

justification is not without a qualification. In the computer simula-

16-18 tions . performed so far, a dislocation segment bowing out between 

two neighboring point obstacles does not recognize the existence of a 

third obstacle, no matter how close it might be until the segment 

literally touches the geometrical center of the third obstacle. In 

this connection, we investigated the perturbation of the equilibrium 

configuration of dislocation by a third obstacle and the result will be 

shown below. 

D. Perturbation of Dislocation Configuration 

The perturbation of the equilibrium configuration of dislocation 

lines by a third solute atom is likely more serious in the alternating 

arrays than in the repulsive or attractive arrays. Thus we introduced 

a third solute atom between two solute atoms in the alternating square 

array with R, = 20b. Then we solve'd Eq. (30~b) demanding the zero-s . 

i 
• I 
• ! 
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slope boundary condition to be satisfied at the first and second solute 

atoms for various positions of the third solute atom. 

The results are illustrated in Fig. 25 in dashed lines with respect 

to the tmperturbed configuration in solid lines. The upper group 

represents the perturbed configurations by a repulsive third atom, while 

the lower ,group represents the perturbed shapes by an attractive one. 

The numerical values in the brackets preceded by the flow stresses 

represent the position of the third solute atom. The repulsive third 

atom distorts the configuration slightly when it is placed one Burgers 

vector away from the x-axis, but rather seriously when it is at one 

half of Burgers vector above the midpoint of the x-axis. The flow 

stress is increased substantially. The attractive third atom also 

perturbs the configuration slightly when it is one Burgers vector away 

from the x-axis, and the flow stress is decreased considerably, when 

the third one is above the x-axis. As the third solute atom deviates 

from the midpoint along the x-axis, the perturbation becomes more 

serious. When the attractive third is placed one half of Burgers 

vector below the x-axis, the distortion of dislocation is very serious 

and the flow stress is increased by more than twice • In any case of 

the configurations in Fig. 25, the perturbation effect of the third 

solute atom to the configuration of dislocation and flow stress is not 

ignorable at all, even though the third obstacle is not in physical 

contact with the dislocation. It is not clear yet whether the 

perturbations due to the attractive and repulsive third atoms in the 

alternating random arrays (arrays in which attractive and repulsive 

solute atoms are mixed at random) may cancel each other on the average 
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or not. Therefore, a compensation for the perturbation effect should 

be provided in a new, more realistic computer simulation or statistical 

analysis utilizing the point obstacle approximation, unless the perturba-

tion effects are cancelled out by the solute atoms of opposite signs. 

In this paper, all the computations were done by assuming the size 

misfit £ =0.06. 

lose generality. 

However, all the discussions and conclusions will not 

27 Stefansky and Dorn computed the flow stress variation 

with £ and found that the flow stress variation with ~ maintains the 

same trend as appeared in Fig. 17. 

• ! 
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VII. CONCLUSIONS 

Dislocation interaction with substitutional solute atoms distributed 

in square arrays on the dislocation glide plane was studied and the fol­

lowing conclusions were obtained: 

1. The force-displacement relations for cutting the stress fields of 

attractive and repulsive solute atoms are not identical in the 

point-obstacle representation of the solute atoms. A greater 

maximum force is required to cut attractive solute atoms as the 

slope of their effective opposing stress field is steeper than 

that of repulsive solute atoms. 

2. The equilibrium configurations of dislocation lines, can be ap­

proximated by the osculating circular arcs to a considerable 

accuracy and the cutting of solute atoms by dislocation lines 

can be exactly predicted by the critical-angle criterion of the 

point obstacle approach. 

3. The perturbation of the equilibrium configuration of dislocation 

line by a third solute atom is not negligible in the implementa­

tion of the point obstacle approximation to the random array of 

solute atoms via computer simulations or statistical analyses, 

tmless the perturbation effects are cancelled by the solute atoms 

of the opposite signs. 
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APPENDIX 

Estimation of Elastic Constants of FCC element in HCPStructure 

In Fig. AI, the equivalence of atomic arrangement of the (111) 

plane of FCC structure and the (0001) plane of HCP structure is shown 

and the x-axis is drawn parallel to an edge dislocation line and the 

y-axis parallel to the Burgers vector of the dislocation line in each 

structure. The z-axis is perpendicular to the x- and y-axes and is 

coming out of the paper. 

Due to the symmetry of stress and strain tensors, the tensor, ~ 

of elastic constants, cijkt ' is reduced to the matrix, {c}, of elastic 

constants of double indices" cij • The elastic constant matrix for 

hexagonal system, {c}h' for the coordinate system shown in Fig. 2 is 

given by 

cll c12 cl3 0 0 0 

c12 cll c13 0 0 0 

{c} = . h c13 c13 c33 0 0 0 

0 0 0 c44 
0 0 

0 0 0 0 c44 
0 

0 0 0 0 0 c66 

where 2c66 = cll - c12 and indices 1, 2, and 3 correspond to the x-, 

y-, and z-axes, respectively. 

(Al) 

The elastic-constant matrix, {c} , 
c for the coordinate system x, y 

andz in any cubic system is given by 
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o o o 

o o o 

{c} = 
c 

(A2) o o o 

o o o o o 

o o o o o 

o o o o o 

This matrix, {c} , will transform to a new matrix,· {c I} when the 
c c 

coordinate system x, y and z transform to a new coordinate system x', y' 

and Zl in Fig. A2 such that the x ' _, y'- and z'-axes are parallel to the 

It-, y--aild z-axes of Fig. Al, respectively. 

{c I} = 
C 

o 

o 

o o 

o 

o o 

o 

o 

o 

Al Thus {c I} is given by 
c 

o 

o o 

o 

o '-c I 
16 

o 

o 

(A3) 

where cl1 = c11 + H/2, ci2 = c12 - H/6, ci3 = c12- H/3, c33 = cn + 2H/3, 

c44 = c44 - H/3, c 66 = c44 - H/6, ci6 = .fi H/6 t and H = 2c44 +c12 - c11• 

Thus by comparing Eqs. (Al) and (A3) , we can choose elastic constants 

of FCC structures which are corresponding to those of HCP structures. 
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FIGURE CAPTIONS 

Fig. 1. Solute atom-dislocation geometry. 

Fig.' 2. 'Solute atom-dislocation geometry in an anisotropic hexagonal 

Fig. 3. 

Fig. 4. 

Fig. .5. 

Fig. 6. 

Fig. 7. 

Fig. 8. 

Fig. 9. 

crystal. The solute atom is represented by principal strain 

components generated. by itself • 
. ' 

Anisotropic interaction energy contours for Ag (a) .and Cd 

(b) solute atoms due to the "size" effect. 

Anisotropic interaction energy contours for Ag (a) and Cd (b) 

,solute atoms due to the "modulus" effect. 

Anisotropic i~teraction energy contours for Ag (a) and Cd (b) 

solute atoms due to the "size plus modulus" effect. 

Force-displacement relations for rigid glide of an edge 

dislocation with resp~ct to_Ag solute atmosphere with and without 

corrections (see text) • 

. Force-displacement relations for rigid glide of an edge 

dislocation with respect to Cd solute atmosphere with and 

without, corrections (see text). 
, 

'Variation of solute-concentration C within the dislocation core 
co 

with the average solute concentration Co for Ag. 

Variation of solute concentration C within the dislocation co 

core with the average 'solute concentration C for Cd. 
o 

Fig. 10. Friedel's triangular array of solute'atoms. 

Fig. 11. Dislocation held by point obstacles in a random array: 

Friedel's model. 

Fig. 12. Dislocation bending around point obstacles' in a random array: 

Fleischer's model. 



Fig. 13. Alternating square array of repulsive (R) and attractive (A) 

solut~ atoms. The double indices are given to each solute 

atoms by 'the distances to the x- and y-axes in unit of 

intersolute spacing, ~ • 
s 

Fig. 14. A series of equilibrium configuration of dislocation line 

at different external shear stress levels in ,the alternating 

square array of ·~=20b. 
s 

Fig. 15. Variation of equilibrium configurations of dislocation line 

at the flow stress level in alternating arrays with ~ =lOb 
s 

to SOb, increasing by lOb. 

Fig. 16. A representative equilibrium configuration computed by 

Stefansky and Dorn. 

Fig. 17. Variations of the fiow stress Ly/G with b/~s. 

'Fig. 18. * Variations of the flow ~tresses Ly with ~s/b. 

* definitio~ of Ly ' see the text. 

For the' 

Fig. 19. The equilibrium configurations of dislocation lines (in solid 

lines) in the positive side of the shear stress fields of 

solute atom (in dashed lines) in repulsive (a) and attractive 

(b) arrays. Only the portion in the vicinity of one solute 

atom in each array is illustrated. 

Fig. 20. A geometric construction used to define the point properties 

of an obstacle having a circularly symmetr1c interaction with 

a dislocation. 

Fig. 21. Sequence of equilibrium configurations of a dislocation (in 

solid lines) and their representations (in dotted lines) in a 

repulsive array of ~ =lOb. The physical center of the repulsive 
s 

solute atom is placed at the origin of the coordinates. 

, 
• 

-1 



-65-

Fig. 22. The force-displacement relations for the dislocation interaction 

with one repulsive (a) and one attractive (b) solute atoms. 

T is the force exerted by the dislocation on the obstacle at 

equilibrium as a function of distance from the physical center 

of the obstacle. The solid curves are computed from the 

point obstacle approximation by suing Eq. (38). The dotted 

comparison curves computed from Eq. (4) assume a rigid and 

straight dislocation. 

Fig. 23. Variation of critical angles at the repulsive solute atoms 

in the alternating square arrays with ~ lb. 
s 

Fig. 24. Equilibrium configuration of dislocation line at the flow 

stress level when the physical centers of repulsive and 

attractive solute atoms in an alternating array of ~ =lOb s 

are shifted sach that the peaks of the positive shear stress 

fields of the solute atoms are aligned. The physical centers 

are represented by crossed circles. 

Fig. 25. Perturbed equilibrium configunations (in dashed lines) of 

dislocation lines by a third solute atom at various positions 

(represented by two numbers in the parenthesis) in an 

alternating square array of ~ =20b are compared with the 
s 

unperturbed configuration (in solid lines). Variation of the 

flow stress due to the perturbation is also shown by numbers 

precedirig the parentheses. 
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Fig. AI. Equivalence of atomic structure of the (Ill) and (0001) planes 

in FCC and HCP structures respectively. 

Fig. A2. The (Ill) plane in FCC structure and definition of the cartesian 

coordinates. 
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