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THE ROLE OF DISLOCATION INTERACTION WITH SOLUTE ATOMS
IN THE ,STRENGTHENING OF METALS
Chol Kyl Syn
Inorganic Materials Research Division, Lawrence Berkeley Laboratory and

Department of Materials Science and Engineering, College of Engineering;
University of California, Berkeley, California

ABSTRACT

In Part 1, the anisotropic elastic interaction energy of a straight
edge dislocation with a substitutional solute atom of Ag or Cd in the
matrix of Zn 1s computed. Then the force-displacement relation for
rigid glide of the dislocation with respect to the solute atmosphere is
calculated. It is shown that the anisotropic elasticity can reveal some
important details which are not found in the isotropic elasticity approach,
and that different sources of interaction contribute additively to the
total interaction energy, but non-additively to the total force for the
rigid glide. A detailed discussion indicates that solute atoms within
the dislocation core may not distribute-uniformly along the dislocation
line, but form discrete clusters.

In Part 2, the equilibrium configurations'of dislocation lines
in the shear stress fields of substitutional solute atoms distributed
in square arrays and the fiow stresses required to drive the dislocation
lines through such arrays are computed by numerical methods and then
compared with the predictions by thé theories on-thg dislocation-point
obstacle interaction. The assumptions used in the point-obstacle ap-

proximation is shown to be justifiable to a considerable accuracy. An
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attractive solute atom turns out to be a stronger obstacle than a re-
pulsive one and it is attributed to the fact that the attractive solute
atom faces the dislocation on the steeper side of its shear stress field

while the repulsive solute does so on the other side.
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GENERAL INTRODUCTION

Theoretical considerations on the stress to initiate dislocation
glides through obstacles in metallic crystéls of diluté binary solid
solution at low temperatures can bg categorized in two groups. The
first groupl_? is concerned with the stress needed to free a dislocation
from the cloud of solute atoms which are segregated at and around the
dislocation itself. The second éroup4’5 treats the computation of the
stress required to move a dislocation through discrete solute atoms
which are uniformly distributed at random on the dislocation glide
plane. The second group includes what'aie customarily known as theories:
on "solution ha;dening"; the first group includes theories usually
referred to as the "Cottrell-Bilby' theory or "locking" theories. The
initial stress is commonly referred to as "yield stress" in the "locking"
theories because the liberétion 6f the locked disldcation from the
solute cloud is predicted to involve a distinctivé yield point phenomenon.
In tﬁe solution hardening theories the ihitiql stfess is referred to as
the "flow stress" since it is not predicted to show yieid.point pheonomenon
and is simply the beginning of plastic flow;

The appearance of an abrupt maximum in.the tensile stress-strain
curve at the onset of a large-scale plastig flow is known as the yield
point phenomenon. Johnston and Gilmap6 have pfoposed a different
interpretation of this phenomenon. From experimental observation, they
attribute the sharp drop in stress to the rapid generation of large
number of mobile dislocations. Thus it seems that the solute atom

locking of dislocation does not have to be invoked to explain the



_ the yield point phenomena in general. As for the "solution hardening",
some of earlier well-designed experimental observat:i.onslo_13 indicated
that solution hardening comes from the increased density of grown-in
disiocations upon alloying. However recent experim.ents,l4 which were
‘done with Cu crystals with very low initial dislocation density .
(< 104/cm2), show that the flow stress is independent of the initial
dislocation density.
The "locking" concept seems to be rather well established. It is
a very useful concept in the "serrated yielding", which is a repeated
iappearance of yield point(phenomena over a certaln range of temperature
and strain rate during plastic flow in commercially pure or dilutely
alloyed metals.15 However, all of the "locking'" theories allow the
dislocation core (the region within one Burgers vector range) to be
saturated with solute atoms. Thus the solute concentration within the
core becomes much higher than the solubility limit. Nevertheless, no
considerations are given to this aspect in the theories. In the
"solution hardening",rit is conceivable that‘thé interaction between
the gliding dislocation and individual solute atoms is more imﬁortant
than the interaction between dislocations, at least in crystals with
low dislocation density. However, most of the theories fail to
recognize the fact that exactly half of the randomly distributed solute “
atoms on any glide plane in a crystal of binary solid solution are
attractive obstacles to dislocations, while the other half are repulsive,
if only the '"size'" effect is considered. One other important problem
is the general tendency to regard the solute atoms as point obstacles,

since it simplifies the computer simulationsl6—18 of dislocation movement
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through the randomly distributed solute atoms. This asshmption also
enables the statistical treatmjentslgm22 of the same problem in simple
forms,

L1t is therefore important to re-examine closely the above-described
problems and clarify the confusing points. Rather than to propose a
cbmplete new theory, however, it would be more worthwhile to look into
the basic assumptions and concepts from different viewpoints>from fhose
of the existing theories. By removing some of the assumptions, adding
some other new ones, and épplying some more realistic computing devices,
we may be_able to extract a few useful and important conclusions. To
this end, we divide this paper into two parts. In Part 1, we ﬁill
examine and discuss the "locking'" phenomenon more in detail. 1In Part 2,
we will investigate the solute-dislocation interaction without intro-
ducing some of the assumptibns used in other theories and clarify the
limit of the "point-obstacle" approximation. The scope of the problems
and the main assumptioné usea will be described in the introduction
section in each part and the discussions will be done separately in
each part.

Before we start Par£ 1, we will review rather in detail the
interaction between a substitutional solute atom and an edge Qislocation

due to the "size" effect. This is known as the most dominant source

of the interaction in most of the common solid solutions.



PREi.IMINARY REVIEW
Usually the solute atom-dislocation interaction is analyzed in
terms of linear isotropic elasticity. A spherical cavity of radius r, -
is cut in an elastic continuum of the matrixzz; an elastic sphere of
radius r‘, representing the solute atom, is introduced and the
are pulled together and cemented at an équilibrium radius
r = ro(l+€), where € is the atomic size misfit (an experimental measure

of € is given by 1/a-da/dc 23

~where a 1is the lattice parameter and

¢ 1s the solute concentration of solute). Since a spherical inclusion

causes radial displacements only, the elastic strain field of the solute
atom interacts with the hydrostatic component of the dislocation stress

field. The elastic work done in this interaction gives the interaction

"size effect".

energy due to the

In the linear elastic approximatioﬁ a pure screw dislocation has
no hydrostatic stress component and spherical solute atoms interact
only with the edge components of dislocations. There is nevertheless
an elastic interaction between a substitutional solute atom and a
screw dislocation.24 It results from the torque that the stress field
of the solute atom exerts on the dislocation, trying to twist it into
an edge orientation where the strain energy interaction can lower its
total energy.

For our purpose in Part 2, it will be more convenient to represent
the elastic distortions due to solute atoms by internal back stresses

on the glide plane. 1In Fig. 1, the x-y plane is the glide plane of an

edge dislocation with Burgers vector b in the y-direction and a solute
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atom is located at (o,o,h). Then as shown by Weertman and Weertman,25

the solute atom causes a shear stress in the glide plane, in the direc-

tion of b, equal to

.3 yh
T _ = 6Gr € (1)
zy o (x? 2+h2)5f2 |

where G is the shear modulus. The elastic constants of solvent and
solute are assumed to be 'identical in deriving Eq. (1). If we select
the (111) plane as the glide plane in fcc crystals, we obtain
h1== +b/V/6 for solute atoms on the nearest atomic layers to the glide
plane, and h2 = +3b//6 for second layer solute atoms. It is clear
from Eq. (1) that the solute atoﬁ at (x,y,h) exerts a back stress to
the dislocation which is exactly opposite to the back stress due to the
solute atom at (x,y,-h).

The interaction energy, U, between an infinitely long edge

dislocation and an individual solute atom is obtained by the integration

of T as follows
zy

y.OO
U=I J’ szb dxdy (2)

which, when integrated, gives the well known Cottrell interaction energy,

U= 4Gro3eb' }2‘ ~
. y +h

(2b)

The force-displacement relationship for cutting the stress field
of an isolated solute atom by a lbng, straight edge dislocation, is

obtained by taking the derivative of U with respect to y:



F = -0U/dy = -8Ge r 3b _yh__ (3)
: o 2.2.2
(y"+h")
Cottrell26 has pointed out that Eq. (2b) overestimates the e
interaction energy near the center of the dislocation because of the
effects of core and deviations from Hooke's law. He has suggested
that these effects can be taken into account approximately by altering
Eq. (2b) to

'U=4Ger_o3b zh 5 | | (4)

y>4n4p®
where p can be thought of as the effective width of the dislocation.
At dislocation—-solute spacings less than p, the only interaction is .
with the crystal itself and not with the dislocation. The corresponding

force-displacement relation becomes

- 3 h ,
F——8Gro €b 5 .7 9.2

(y"+h™+0")

(5)

Stefansky and Dorn27 adopt a new correction term f = l-exp{-B(x?+y2+h2)/b2}

which is a mathematical equivalent to the Cottrell's correction, such that

y [o o]
3 h <
- T bfdxdy = 4Gr ~€b —5———x (6) c
j f zy 0 y2+hz+p2 _
-0 -0
.

In Eq. (6), the corrected total work done by Tyz’ is equated to the cor-
rected interaction energy of Cottrell's. These corrections are signifi-

cant only within the dislocation core region of one Burgers vector from



the disloction center, and are imperceptibly small outside the core
region.

The common practices have been to leave this core region out of the
analysis, because of the breakdown of the linear elasticity. However,
the most significant part of ﬁhe interaction can occuf within the core.
Since no other simple, usable alternafive ways are available, it seems,
to be rather profitable to employ the core corrections, even if the
validity of the corrections is open to a serious debate. In principle,
the correction factors p or B‘can be determined by comparing measured
binding energies for substitutional sblute atoms with the predictions
of Eq. (4). The results, however, are not convincing, since it is
difficult to estimate the elastic contribution to the measured energies.
We will eﬁploy the correction term of Sfefansky and Dorn, because it
is more convenient to use.in the numerical computations. We will

uniformly set B = 3, which is equivalent to p2 = 0.07 b2, following

Stefansky and Dorn.27



PART 1. INTERACTIONS BETWEEN AN EDGE DISLOCATION
AND SUBSTITUTIONAL SOLUTE ATOMS
IN AN ANISOTROPIC HCP CRYSTAL
I. INTRODUCTION : "

In this part, we will investigate the interaction of a straight
edge dislocation with substitutional solute atoms which are locally
concentrated about the dislocation, By using the core correction of
Stefansky and Dorn, and by following the "locking" theory of Jacobson,3
we will evaiuate the interaction energy, force-displacement relation
and solute concentration within and around the dislocation core.

Instead of the conventional practice of isotropic elasticity, we

will employ the anisotropic elastic solution of the dislocation theory,
because the letter is considered to give a more realistic result than
the former. TFor a particular case of study, we have chosen Zn as the
host metal and Ag and Cd as the solute species. The anisotropic elastic
solution of the dislocation stress in HCP crystals is available in a
éimpler form than in other crystal.structureS. Zinc, with a non—ideall
axial ratio of 1.85 shows a strong anisotropy in its elastic property
and its elastic constants from 0°K to the melting éoint are known.
Silver and cadmium distort the lattice of Zn in a contrasting way (see
Discussion).,

The investigation takes account for the anistropy under three
approximations. ¥irst, the dislocation-solute interaction is assumed Bl
due to the elastic "size' and "modulus" effects. We neglect other
sources.of interaction.5 Second, the solute concentration in the
bulk is so small that the solid solution is assumed to be an ideal

solution. We neglect chemical and elastic solute-solute interactions.
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Third, the breakdown 6f linear elasticity within the dislocation core
is artificially removed by following the Stefansky-Dorn method described
in the preliminary review.

In section II the anisotropic dislocation-solute interaction will
be formulated and computed. Tﬁen the force-displacement relation
governing rigid glide of an isolated dislocation will be computed with
and without the artificiai core correction in section III. In section
IV, we will discuss the assumptions and results obtained in sections
II and III, and the distribution of solute atoms within the dislocation

v

core.
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II. FORMULATION AND COMPUTATION OF THE INTERACTION ENERGY

A, The "Size" Effect

When a solute atom is substituted for a host atom in an anisotropic
matrix containing an edge dislocation, the matrix is anisotropically
strained against the dislocation stress field. If € is the tensor

strain produced by the solute atom and 0 is the local tensor stress due

, 28
to the dislocation, then the interaction energy, U;, is

= = ;E: Gijeijﬂ’ (1,5 = x,5,2) n
i .

where Q is the atomic volume of the matrix atoms.

In the coordinate system shown in Fig. 2, an edge dislocation on the
basal plane lies parallel to [1010], and its Burgers vector is parallel
to [1210]. For this orientation the principal axes of the strain in-
duced by a substitutional solute atom afe parallel to the principal axes

of the dislocation stress field; Hence Eq. (7) is reduced to
EE: oii i —Q(exxgxx+eyyoyy+ezzczz) (8)

where the Gii's are given by Chou,29 and Q = ach3/4 for the hep

crystal with lattice parameters a and c¢. The principal strains T

€ _, € _(=€_), and €__ can be estimated from the lattice parameter
xx’ yy' xx 2z

variation with average solute concentration Cb through the relation

= . = . 23
€y = 1/c dc/dCo and Eyy 1/a da/dCd
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B. The "Modulus" Effect

If a substitutional solute atom has different elastic constants
from those of the matri#,.its elastic response to the dislocation stress
field will be different from that of the matrix. Then the interaction
U&, will.be determined by computing thé difference between the

strain energy stored within the solute atom and the strain energy stored

energy,

within an equal volume of the matrix,as follows4
°.._1 L . | : ' e o
Uy = Ellloijeij-'oijeij) dv, (i,j = x,y,2) (9

where Oij and cij are respectively the stresses acting on the solute

and matrix, and e}, and e,, are respectively the strain induced in the

ij ij

solute and the same volume of the matrix. The integration should be

performed over the volume of the solute atom. If e!, is uniform within

1

the solute atom and is the same as eij’ we will have the following

expression.
u° =1 (c! e!.e' - e e, .,e ,)dv
M 2 1jk271j" k& 1jk27ij k2
= E-Q (c!., .-c e, .e
2 1ijk& "1jh&°7ij k&
=Lonc, . e e (1,5 = %,5,2) (10)
2 13k2513°Kke? ’ 2
where cijkl and c&jk% are respectively the elastic constants of the

solute and the matrix. If the variation of the elastic constants with

respect to the solute concentration Co is known, then Ac 's can be

1jk8
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replaced by 1/c dcijkk/dco as Fleisc':her30 does in analogy with

ijk2
the "size" effect. In most cases this variation is not known. As
a crude approximation, we simply take the differences in the elastic -
constants of the metals of solute and matrix. |

For solute elements of HCP structure, the five independent elastic
constants are known and so are the five independent Acijk2'8° For
solute elements of FCC structure, we have to determine the five
eléstic constants for an imaginary HCP structure. For practical pﬁr—
poses, however, from the equivalence of atomic arrangement of (111)

plane of FCC and (000l) plane of HCP, we can obtain the necessary elastic

constants as is shown in Appendix.

C. Computation

The interaction energies, Ug and Uﬁ, were computed for Ag and Cd
solute aﬁoms about an edge dislocation in Zn, oriented as in Fig. 2.
The principal strains are €. =€ = 0.35 and € = -0.71 for Ag,

XX vy zz
= eyy = 0.11 and szz = 0,27 for Cd, computed from room temperature

X~ray data.31 The elastic constants of Zn,32 Ag,33 and Cd34 at 300°K

€
XX

and 473°K were used in Eqs. (9) and (10). The computed contours of
Ug, Uﬁ and Ug + Uﬁ are plotted in solid lines (473°K) and dashed lines
(300°K) in Figs. 3 to 5. Contours in dotted lines represent the isotropic

interaction energies at 300°K. The numbers attached to the contours

represent the interaction energy in units of eV. ¥
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I1ITI. FORCE-DISPLACEMENT RELA&ION-
The force for an isolated edge dislocation to glide.as a whole with
respect to a single immobile afom is obfained from the following relation.
F - -au. /3y (1)

where U, represents the appropriate interaction energy. Then the total

I
force due to the whole solute atmosphere will be obtained as a sum of
the contributions from each solute atom in the atmosphere.

At a sufficiently high temperature, Ta’ where diffusion can readily

occur, the solute atoms will form an atmosphere about the isolated dis-

5
location according to the following equilibrium relation.

Cexp(-Up(y,2) /KT ]

€, (3,2) = (12)

1- Co + C0 exp[—UI(y,z)/kTa]

where k is the Boltzman factor, Co the average atomic fraction of solute

atoms in the matrix, and C, the solute atom fraction at (y,z). If our

A

specimen is annealed at Té long enoughvfor solute atoms to attain an
equilibrium distribution given by Eq. (12), and then quenched rapidly
gnough to prevent subsequent diffusion, the solute atmosphere given by
Eq. (12) will be retained and the dislocation will be locked by the
solute atmosphere.

The force, F_, per unit length of the dislocation resulting from

I’
the rigid diéplacement of the dislocation to a position, y', with

respect to the immobile solute atmosphere will be3

b C.(‘y,Z)
P = Y R Ag— - (13)

Y2z==
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, dy
at y' from a solute atom located at (y,z), CA/Q the volume fraction

where F(y') = - is the force exerted on the dislocation
of solute atom at (y,z), and AV = 1+b:c/2 = ac/2 the elemental volume
of an HCP crystal per unit length over which the solute atoms are dis--
tributed. The resolved shear stress, Tr» oD the glide plane in the
direction of the Burgers vector (or y-direction) can be computed from

the féllowing relation
)i (y ) C (y,2)

T (yDb = F ") —ZZ A— v 1)

To introduce the core correction into the computation of Tps we
 have to multiply U° and U° in Sec. II by the correction term

= l-exp[- B(x2+72+z2)/b 1, which was discussed in the preliminary

review, Then UI in Eq. (11) will represent the coOre-corrected interac-

tion energy. Since our dislocation is straight and parallel to the x-

axis and the matrix is an anisotropic HCP crystal, we used the correction

term in the form of f = 1-exp[-3{(y/a)2+(z/c/2)2}] in the actual calcula-

tion.

The summation in Eq. (14) was done from -10 to +10 lattice sites for

both y and z in the machine computation, for the forces beyond the limit

are several orders of magnitude lower than the maximum force. The

specimen was assumed to have been rapidly quenched to 0°K after annealing

at 473°K, and then tested at 300°K. Therefore the elastic constants of
Zn,32 Ag33 and Cd34 at 473°K and 300°K were used to compute CA and
BUI/ay respectively.

Figures 6 and 7 show the results obtained from Eq. (14) for an
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extremely dilute concentration, Co = 10—7. ® and TT (in solid lines)
 represent respectively the stresses due to "size'" and "size + modulus"
effects. 'Ti (in dash-and-dotted lines) represents 1% with the
core correction. The stress due to only the "modulus" effect was
computed and it turned out to‘be severél orders of magnitude smaller
than the stress due to the "size" effect. However, the difference be-
tween T° and.‘rT tells us that the "modulus" effect may not be neglected
at all., We will return to this point in the discussion section.
Otheifcoﬁputations were done to see how much the solute atoms
within the dislocation corevcontribute to the stress-displacemént
relations;' It was found that more than 907 of the total force is
contributed from the core solute atoms, as are shown in the dashed lines

in Figs. 6 and 7.
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VI. DISCUSSION

In this section, we will focus our discussion on the effects of the
anisotfopy, and effect of solute atoms and their distribution within the
dislocation core to the solute-dislocation interaction. The core cor-
rection will be briefly discu§sed and its effect on the solute concentra-
tion will be incorporated in the effect of core solute atoms. The
annealing or equilibrating temperature éf the solute atmosphere will be
briefly mentioned at the end of this sectionm. |

A. Effect of Anisotropy

1. Contrast in Energy Contours

Isotroﬁic interaction energies at 300°K by "size" and "modulus"
(shear modulus + bulk modulus) effects were computed from the expressions
formulated by Cottrell and Bilby}' and Fleischer,30 respectively, and
plotted in dotted lines in Figs. 3 and 4 for comparison. We can see
strong contrasts between the isotropic and anisotropic, and between Ag
and Cd. The anisotropic interaction energies are of longer range and
their contours are not circular. The anisotropic contours from the
"size" effect interaction for Ag split into four leaves, while those
for Cd are rather similar to the isotropic contours in shape. This
strong contiast due to the '"'size'" effect may be explained by the fact
that Ag solute atoms expand the lattice along the a-axis and shrink it
along the c-axis, while Cd solute atoms expand it in both directions, Y
even though the e#pansion by Cd is highly anisotropic.

Two other interesting points emerge from the computation of the
"size" contours. One point is the relative magnitude of the binding

energy (at room temperature) in the conventional concept (i.e., the
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maximum interaction energy af T =b). The conventional isotropic computa-
tion predicts 0.16 eV and 0.22 eV for Ag and Cd,35 respectively, while
the present computation shows that they are 0.37 eV and 0.39 eV, respec-
tively. The other point is the position of the binding energy (or the
maximum interaction energy on the circle of r = b)'. The conventional
isotropic compufation indicates thet this position should be always one
Burgers‘below the dislocation center (i.e. y = 0 and z = -b in the present
coordinate: system) if an oversized solute atom is involved. The present
anisotropic approach shows that for Cd, the position is the same as
predicted by the isotropic computation, but for Ag, it is different. As
is clear from Fig. 3(a), for Ag, on the circle of r = b, there are two
points at which the igteraction energy becomes maximum. If the

present éqmputation is valid even within this circle we can also

determine the lattice sites where the interaction energy becomes maxi-
mum. Since the nearest atomic layer below the dislocation is one half

of d (=inter-planar spacing of etomic layers parallel to the dislocation
glide plane =0.928b in Zn) away from the dislocation for Cd, (0,-d/2)

is the site, and for Ag (-b,-d/2) and (+b,~d/2) are the sites. Actually,
we have takeﬁ fhese sites as the dislocation core sites in the computation
of solute concentration within the core.

The "modulus" contours et 473°K are of considerably longer range
than those at 300°K, contrary to the case of the '"size'" contours. This
seems to be caused by the faster decrease of the elastic constants of
Zn than those of Ag and Cd as the temperature goes up, as is clear from
Eq. (10).

The total "size and modulus' interaction contoufs, when coﬁpared

with the "size" contours, are severely distorted within one half of a
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Burgers vector, but are not perturbed seriously beyond that range. This
is due to the fact that the '"size" effect is of a longer range (~ 1l/r
dependence, where r is distance from the disloction center) than the

"modulus" effect (~ l/r2 dependence).

2. Force-Displacement Relation

The force-displacement diagrams by the "size" effect in Figs. 6
and 7 also show a strong contrast in shape between Ag and Cd. This is
due to the difference in the shape of the interaction energy contours.
For Ag, there are twé.potential-well like valleys below tﬁe dislocation
[see Fig. 3(3)1. Thus every Ag éolute atoms should climb up the steep
poteﬁtial slope twice, while each Cd éolute atom should do so only once
[see Fig. 3(b)]. This will be clearly understood if we move the solute
atmosphere with respect to the dislocation instead éf moving the dis-
location.with respect to the solute atmosphere.

As we Eriefly mentioned in Sec. III,'the maximum stresses due to
the "modulus" effect only turned out to be several orders of
magnitude émaller than those due to the '"size'" effect. As is clear
| from Figs. 4(a) and (b),.the "modulus' effect is locally concentrated
around.ﬁhe dislocation center and the magnitude 6f interaction energy
along the line, z = -d/2, will be small, compared with that of the "size"
effect. However, when combined with the "size" effect, the "modulus"
gffect dramatically chanées the force-displacgment diagrams, at least
in the present two cases. For Ag solute atoms, the "moduius" contours
at 473°K with (4+) sign stretchéd vertically over a rather long range,
while the "size" contours of (-) sign extends in the directions tilted

about 45° from the y-axis. When the two effects are combined, the
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slope of the'interaction potential (i.e. N;{ay in Eq. 14) will sharply
increase. = The sign alternation of the "modulus" effect for Ag, at 473°K
slightly increases the magnitude of the total interaction energy at the
positions where the magnitude of the "size" interaction energy is maxi-
ﬁum. Thus the combined interactions increase the maximum stress in the
force-displacement diagram by a large amount. For Cd, the "modulus"
interaction energy of (~) sign contributes to the total interaction
energy by an amount which cannot be neglected; and which in tumm ex-
poﬁentially increases the solute conceﬁtration, leading to the sharply
heightened maximum of the force-displacement diagram. However, the
negative "modulus" effect.for C& slightly decreases the slope of the
iﬁteraction potential., Actually, when.Cg is rather high (> ~ 10_4),

and hence the dislocation core is completely saturated with solute atoms -

at the same Ta = 473°K, we can show that the maximum stress in the force-

- displacement diagram due to the "size + modulus" effect is lower than .

that due to the "size" only.

From the discussion on the interaction energy contours and force-
displacement diagram, we can conclude that if we use the isotropic
approach to highly anisotropic crystals; we will certainiy lose some
very important details. Furthermore, we may not consider only one
source of interacﬁion, only because it is dominant, unless the inter~
action eneré&vof this source is at least larger by one order of

magnitude than the interaction energies due to other sources.
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'B. Core Correction

So far there is no way to estimate the correction factor, B
‘precisely on a purely theorétical basis. ' The value of B would remain

uncertain as is the whole experimental data on the binding energies,
until more reliable experimental and theoretical developments are avail-
able. One promising appréach seems to be the application of suitable
interatomic potential»to the discreet atomic lattices containing dis-
locations and vacancies.36 But this approach is not developed enough
yet to be applicable to the‘sﬁbstitutional solute atom problem.

The core correction is more effective for Cd than for Ag. The
correction term f = 1 - exp{—S[(y/b)2+(z/c/2)2]} actually reduces the inter-
action energy at (y = 0, z = -b/2) about 50%. As a solute atom approaches
closer to the dislocation center, the reduction of the interaction
energy becomes larger. The lattice site of the maximum interaction
energy for Cd is closer to the dislocation center than that for Ag, as
is clear from Figs. 5(a) and (b).

C. Core Solute Atoms

As menfioned earlier, the dominant contribution to the force-
displacement relation comes from the solute atoms within the disloéation
core. This is due to a combination of the following two factors. First,
the gradient of the interaction potential (i.e. BUI/By) is extremely
steep within the core range. Second, the solute concentration within
the core is also extremely high., Thus it is worthwhile.to discuss the
factors which affect the core concentration.

The core correction is an artificial device to remove the singularity

of the linear elasticity which does not exist in the real crystals
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containing dislocations and solute atoms; Thus the core concentration
can be reduced by the core correction which in fact reduces the magnitude
of thé interaction energy within the core. The core concentration caﬁ
be affected by the interactions between solute atoms themselves. Even
though we stated that we neglect the chemlcal and elastic interaction
between solute atoms, it seems very appropriate to check how these
inferactions can influence the core concentration. We consider three
sources of solute-solute interaction, one direct and two indirect, as
follows.

1. Direct Chemical Interaction

The solubilities of Ag and Cd in Zn are very small, wﬁich indicétes
there is a strong attractive interaction either between solute atoms or
between_solute and matrix atoms. Witﬁin the core crowded with solute atoms
attractive to each other, the clustering of solute atoms is likely to
occur. This éttractive interaction between solute atoms will enhance
the solute atom flow to the dislocation during the annealing at a high
temperature, thus resulting in increasing the core concentration. On
the other hand, the repulsion betweeﬁ solute atom would reduce the core
concentration. Within the core, the repulsion would tend to prevent
the clustering. But this repulsion will be blocked by the vibrational
entropy effecf which will be discussed later.

2. Relaxation Effect

‘The first group of solute atoms which arrived within the dislocation
core during the annealing treatment would relax and somewhat neutralize
the strain field of the dislocation. The relaxed dislocation then

would exert a weaker attraction to the next group of solute atoms.
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Thus the actual core concentration would be lower than that given by

Eq. (12). This relaxation effect has been treated by Larché and Cahn37;

a detailed discussion of which is beyond the scope of this'paper.

3. Vibrational Entropy Effect38’39

Consider the solute atoms as pinning points and the dislocation as
a vibrating string between the pinning points. The dislocation would
tend to répél the solute atoms or push them into clusters to preserve
its vibration frequency as low as possible, bécause the lower frequency
is related to higher entropy. Considering this effect, Bauer38 derived
the following expression,

1 _
. cexp[-(U - 5 KT &n C__)/KT ]

co (15)

N 1
1-C0+Co exp[-(Uc— > kT Cco)/kTa]

where Ué is the interaction between the dislocation and solute atom
within the core, and Cco is the core solute concentration. When

C0 <§ 1, Eq. (15) is reduced to

—c '
c_, = C.~ expl-2U /kT ] (16)

Unless Ué is extremely large in magnitude, Eq. (16) leads to a tremendous
reduction of the core cbncentration as shown below.

To see the effect of the core and Bauer corrections, we computed
the core concentrations, i) without any correction, ii) with only
cére correction, and iii) with Both corrections, as a.function of Co'
The results are shown in Figs. 8 and 9. For Ag, the correction effects
are negligible, when C° > 10-4, while for Cd, the core correction reduces

significantly Cco even when Co > 10_4. The Bauer correction when
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combined with the core correction causes an enormous reduction .of Cco

-4 5

for Cé when Co <10 ', and for Ag when Co <10 °,

The théoreﬁical development of the vibrational.entropy éffect
1s based on assumptiohs‘which are nét compatibienwiéh'those of the
préseﬁt pape;. The e#pression of the vibrational-entropy‘chahge of fhe'
dislocation due to solute atoms3$ approaches infinfty-as Ceo decreases.
Thus the éorrection effecf becomes greatgr'asjth;'average concentration
C0 decreases as is shown in Figs. 8 and >9. Névertheless the concept
of vibrational entropy implies an important consequence of Clusteriné”
of solute atbmsiwhicﬁ may or may not inﬁeract directly with each other.
Thus if tﬁé solute cﬁncentration is higher than the solubility limit,
the clustering will enhance the nucleation of second phase.particle; on
the disloéation. There is no definite evidence yet to show the
‘clustering of substitutioﬁal solute atoms in theldilute alloys. But
Thompson40 h;s provided evidence indicating the clustering of point
defects (radiation—inducéd'interstitials or vacapcies)'in irradiated Cu

crystals when_dischatiﬁns‘are’saturégea with such defects.

In ferms of the clustering, the "loéking“ theories may hévé to be
rephrased in the following framework. The éolute étoms which are
‘lockingﬂdislocgtions form‘élusters glong the disloqaﬁions. When an
external stress is apﬁlied,.dislocations wiil bow out between clusters.
The yield stress will be determined by the distribution of clusters and
' clustér strengths. Thus the fbrce-displacement relation should be ~

computed for the interaction between a flexible dislocation and a

cluster.
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3

D. Effect of Annéaiigg;;empérature

‘In the computation of the force-~displacement relation, we‘considered
oniy one annealing temperature, 473°K (~ 0.687Tm. Tm\='693°K for Zn)..
A higher annealing temperature will redﬁce the solutelsegregation at
dislocapioﬂs inAﬁwo ways. Fifst, the magqitudes of the.elastic constants
will decrease and so doesfhe effective interaction energy. fhe lowered
interaction energy wiil lead to the less segregation; Second,.abhigher
temperature will provide the solute atoms and matrix with more thermal
enérgy which drives the solute atoms away from);he dislocations. Thus
to get thé yield poinﬁ phenomenon in a crystal-containing sdlute atoms,
the annealing temperature should be lowvenough to ensure the segregation,

but high enough to allow the diffusion of'the‘splute>atoms.
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V. CONCLUSIONS

The anisotropic linear elastidit& was applied to the solute-

dislocation interaction in Zn crystals and the following new conclusions

were obtained:

1.

The application of the anisotropic elasticity can reveal important
details Qflinteraction energies and force-displacement relations

which have not been found by the isotropic approach,

For a Cd solute atom, the lowest gfadieﬁt of the anistropic interaction
energy due to thev"size" effect lies in the direction predicted by

the isotropic approach, while for a Ag solute atom, this gradient

is hiéhly deviated from such direction.

If the conventional lower 1imitlof one Burger's vector of the linear
elasticity is adopted, then the anisotropic elasticity gives 0.37 eV
and 0.39 eV for Ag and Cd respectively as the binding energies of

a solute atom to an edge dislocation due to the "size' effect

in Zn, while the isotropic method gives 0.16 eV and 0.22 eV respectively.
Different sourcesiof interactions, when coﬁﬁined,can influence
additively the total interaction energy, bﬁt affect the fotal force~-
displacement relation for rigid giide of a straight dislocation in

a more complicated way.

The core correction and the vibrational entropy effect can reduce

the solute concentration within the core by orders of magnitude.
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PART 2, EQUILIBRIUM CONFIGURATION OF DISLOCATION
‘IN THE STRAIN FIELD OF SUBSTITUTIONAL SOLUTE ATOMS

I. INTRODUCTION

Current theorie341_45 on the "solution hardening' employ at least
one of the following three assumptions: i) Solute atoms are point
obstacles; ii) Dislocation liﬁes are flexible string with a constant
line tension; and iii) Dislocation lines bow out in circular arcs
between the point obstacles when subjected to an external shear stress.
All the computer simulationsm“18 of dislocation motions through the
random distribution of solute atoms, and subsequent statistical

19-22
analyses

of thermally activated motion of thg dislocations through
such distributions, have been based on essentially all

three assumptions. In the framework of linear elasticity, however, a
solute atomacts as an internal strain center with a certain iﬁfluence
range, and induces positive and negative shear stress fields on the
dislocation glide plane of the surrounding matrix, as shown earlier.
Thus the dislocation shape will be affected by the shear stress

fields of the solute atom itself,

Our purpoéé in this Part 2 is to gxamine the relevance of those
three assumptions, especially the firét and third ones. The examination
will be done by computing the equilibrium configurations of dislocation
lines which are determined by a balance between the shear stress fields
of golute atoms, dislocation line tension and externally applied shear

stress on the glide plane, Our detailed analysis will be proceeded

based on the followiﬁg assumptions:
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(a) The‘diélocation;solute intefaction is governed b& the isotropic
linear elasticity.
(b) The dislocation-solute interaction is due to the "size" effect
only.
(c) Therevaré no solute-solute interactions.
(d) Solute atoms only in the first nearest atomic layers parallel
to the glide plane are considered.
(e) Solute atoms are distributéd in square arrays over the glide plane.
(f) Dislocation lines are'flexible and extensible strings with a
| constant line tension.
We take account of the fact that exactly one half of the solute atoms
are attractive strain centers and thé other half are repulsive ones gnder
the assumption (b). We will show that the assumption (f) of the constant
line tension can be removed from the present investigation.
Using the same set of assumptions, Stefansky and Dorn27 have shown
thaf for extremely low concentrations, the flow stress in the square
arrays of the solute atoms increases asymptotically with the square root

41,42 They have

of the concentration, as prediced by existing theories.
shown also that as the concentration increases, the increasing rate of
the flow stress slows down, and eveﬁtdally the‘flow stress itself begins
to decrease. Nevertheless, it will be shown that even for relatively
high concentrations, the approximations of point obstacles and circular
bowing of dislocation lines are justifiable to the remarkable accuracy.

It will be also shown that the strengths of attractive and repulsive

solute atoms are not identical in conflict with some earlier approaches.
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II. SUMMARY OF THE EXISTING THEORIES
In this section, three existing theories.will be briefly reviewed,
because they are considered to contain some important.or disputable
_concepts which can be clérified by the analysis in the sections .

following this summary.

A. Theory of Mott and Friedel46

This theory is based on the idea that dislocations in an allo& are
not rigiq straight lines as originally conceived by Mott and Nabarro. -
Inétead they tend to be wavy in order to minimize their total energy
in the stress fields of the solute atoms.

In a random solid solution, one half of the solute atoms adjacent
to the glide plane will be attractive, and according to Friedel, the
dislocation line will zigzag from one attractive solute to another. |
Then the flow stress is determined by a balance betwegn the dislocations
tendency to minimize its length and its attraction to solute atoms.
Cutting of the solute atoms by the dislocation line is the same whether
they are attréctive or repulsive; but only the attractive solute atoms
are assumed to determine the zigzag in this theory.

The theory is formulated in terms of the triangular array of
attractive solute atoms as shown in Fig. 10. A dislocation prefers the
zigzag configuration ABC to the étraight line configuration X-X' as in
passing from the latter to the former it gains more in interaction
energy than it loses in line energy. The interaction eneréy gained per

'

unit length along X-X' is
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where UI is the total interaction energy and Co is the solute concentra-

~—

tion on the glide plane. The solute atoms are regarded as point obstacles
and UI is equal to the maximum absolute value of Eq. (4). The increase

in the total line energy is

E, = -% [Vx%4y? -x]

where T = Gb2/2 is the dislocation line energy per umit length,

By minimizing El_Eé with respect to y, Friedel obtains the tri-
angular distribution that gives the minimum barrier to the movihg dis~
location. . Then the flow stress 0 at 0°K, i.e. the stress required to
move the dislocation from a stable configuration ABC to an equivalent

configuration is given approximately by,

I
0=36GeC,

B, Friedel's Forest Model“”46

Even though Friedel has set this model to expléin the dislotation
cutting of unattractive forest diélocations, some authors apply this
model to the solution hardening, because the assumptions are based on
the point-obstacle concept. In the following review, we replace the
term "unattractive forest dislocations" by "solute atoms'. ,

Substitutional solute atoms are randomly distributed on the glide
plane as illustrated in Fig. 11. A aislocation initially held by A, B,
C overcomes the solute atom B by antextérnal stress, OF’ and then
bows out under the same force to meet a new solute atom D after moving

a distance y. The radius of curvature, R, for the arc ADC is determined
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by .
= F/OFb ’ - @an
where T is the dislocation line energy. Then it can be easily shown

‘that x is given by
2yR = X : (18)

where x is the distance between two adjacent solute atoms -along the

dislocation line. If the shaded area S is on the average equal to the
2

~area ls per solute atom, where QS is the average spacing between solute

atoms on the glide plane, then
S=2=5 /Co'= Xy (19)
From Eqs. (15) to (17), we have

x = (c;bsag/cF)l/3 | : - (20)

if we put I' = Gb2/2. Assuming the external work Oantd, where d is
the distance moved by the dislocation to cut.the solute atom B, is
equal to the total interaction energy UI of the solute atom B with the
"dislocation, and puttiﬁg d=b, from Eq. (20), we have

= (02/@’)? /2 21

If the maximum absolute value of interaction energy due to the "size"

effect is taken on for UI from Eq. (4), Op becomes

1 .39 3

AR 9,1/2 ¢ 1/2 _ 1 32 12 1 32

Ge
2/7 o 2v7 5

(22)
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C. Fleischer's Theory42

In this theory also, a random distribution of solute atoms is
assumed and the flow stress at 0°K is determined by an averaging process.
A dislocation cutting a solute atom B will bend by an anglé 8 at an
adjacent solute atom A as shown in Fig. 12. Fleischer assume; that the
area swept by the dislocatién is equal to the average area 2; per

solute atom. Thus

2

x29/2 = ZS

_ .2 o
= b /co (23)

When the force Fm due to the applied stress, OL’ which is given by

Fm = Gl‘xb (24)

is balanced with the force due to the dislocation line energy such that
F = 2T sin(6/2) (25)

then the dislocation segment CAD can overcome the solute atom A without
thermal activation. Then from Egs. (23) to (25) and with T = Gb2/2,

we have

~ 2, .1/3
x = (G25/0)) | (26)

This is exactly the same as Eq. (20) by Friedel. Then by substituting

Eq. (26) into Eq. (24), the flow stress at 0°K is given by
o, = (F_/Gb") c » (27)

If we note Fm = UI/d’ and then use the 'size" effect for U OL will

I'

be exactly the same as Op in Eq. (21).
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The constant line tension, the circular bowing of dislocation
between obstacles [Eq. (17)], and the line energy force on .the obstacles
[Eq. (25)] in the last two theories constitute the concept of the

"point-obstacle'", on which the computer sim.ulationsm_18 and statistical

analyseszo_22 are based. We will return to this point-obstacle ap-
ptoximation later. One interesting feature of the last two models is
that if a new stress 0* is defined such that o* = O'QS, then 0% is
independent of ZS or Co’ as can be seen from Eq. (22). We will show

that our numerically computed flow stresses approaches asymptotically

a constant value as QS increases.
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IITI. FORMULATION

In this sectioq, we wili adopt the formulation by Stefansky and
Dorn27 in a square array of subétitational sblute atoms on the glide
plane. The formulation will lead to’g differential equation which determines
the equilibrium configurationé of a dislécation introduced into the square
afray at various external shear stress levels. Actually the solute atomé
will be digtributed rather at random over the glide plane. However,
the equilibrium shapes of dislocation in the shear stress fields of
solute atoms can be exactly solﬁed only in simple regular arrays because-
of the simplicity in formulation and computation.. Such an analysis
would be almost impossible in random arrays of solute atoms unless
some arbitrary assumptionsiafe used,

If the dislocation-solute atom interaction ié attributed to the
"size" effect, a gliding dislocation line will, on the average,
pass equal numbers of attractive and repulsive séiute atoms. Thus,
a square array shown in Fig. 13 will be the simplest regular array.
In Fig. 13, we set the origin of the cartesian coordinates at one of
the repulsive solute atoms and label each solute atom with two
indices, m and n. Let the glide plane be the (111) plane in FCC
crystals and ls be the spacing between solute atoms. Let our sub-
stititional solute atoms be oversized, apd then the size misfit parameter
€ wiil be positive. If €>0, the solute atoms in the atomic planes above
the glidé plane will be repulsive obstacles and the solute atoms in
the lower atomic planeswill be attractive ones, as is clear from Eq. (1).

Then for repulsive solute atoms, h in Eq. (1) is b/V6 while for the
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attributive onesvh is -b//6. Therefore, if our glide plane is infinite
in extent, the shear stress (with the core correction introduced
'éarlier) at a point (x,y,o) on the glide plane due to the entire
solute atoms on the first atomic planés abové and below the glide

plane will be given by

'6G€r3 z
T = [ (_l)m+n
yz /g

m,n=-%°

(28)
-(35) teema ) 2+ rn2 ) 2407 6
(y-nls) {1—e~ ?

[Gemt ) %+ (y-nt ) 24p7 /61%/2

Now we introduce an edge dislocation into the square array of solute
atoms such that the Burgers vector ié parallel tb the y-axis and the
dislocation line is parallel to the x-axis, and then_we let the dislocation
relax to its minimum energy configuration-in the stress fields, &yz,'of
the solute atoms. Because of the nature of the alternating distribution
of solute atoms, the equilibrium configuration of the dislocation line
'Y’= y(x) will.be a periodic function of x with a period of 228. The total

energy of a dislocation 1ine47 will then be

U= AU0+ fls ;I" [Vl‘+(dy/dx)2 - 1] - fy "Eyzbdy—‘rbyz dx (29)
_gs . 0 :

where Uo.is'the energy of a straight dislocation segmept of length 228

. lying parallel to the x—axis aty =RO;1F-is the line tension of -the

distocation per unit length, and T is a resolved shear stress of the

externally applied stress on the glidevplane.
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The equilibrium shape, y = y(x), of the dislocation can be obtained
by applying the calculus of variation to minimize U. Then U must

satisfy the Euler equatidn,

where p=dy/dx. From this we obtain the differential equation for the

equilibrium configuration

2 2
d"y/dx b .
‘ ="_(T'+T,).
{l+(dy/dx)2}3/2 r yz

(30a)

The left—hand side of Eq. (30a) is equal to the curvature of the
dislocation line. Thus if Tyz is not.considered, then Eq. (30a)
will be equivalent to Eq. (17).

For computation it is more convenient to introduce dimensionless
.vériables by letting X=x/b, Y=y/b. For the edge orientation, the line

tensin I is given by 3Gb2/4.48 Thus Eq. (30a) may be transformed to

a®y/ax®
[1+(d¥ /dx) 21372

A .
- S(T/G‘ + Tyz/G) (30b)

where, by letting ro=B/2 and LS=2S/b in Eq.(28), Tyz/G is given by

2

' 41 =3Rgn
(Y-nL ) (1-e )
3€ :z : min s
T /G = —— (—l) (31)
vz s Rin

with

R = [(x;mLS)Z + (Y-nLS)2 + 17612

mn (3?)
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Equation (30b) is a second ofder non-homogeneous differential equation
which can be solved numerically with two independent boundary
conditions. Since our solutions should be periodic and hence symmetric
about the y—direétion, we can conclude that dY/dX = 0 at each solute

atom, and thus we have the necessary boundary conditions.
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IV. COMPUTATION AND RESULTS

—

A, Computation Aigorithm
.Equatiop (30b) contains>three pétameters: 1/G, L, and\e,.which
can be,fixea to some constanﬁ valués. The"coﬁputations were pé;formed
nﬁmericaily. A’coﬁputer code was programmed’such that a seriés 6f
trial ?alueévYo OfAY at X = O.were picked up ﬁntii the des;red.curYe
Y = Y(X) having ;efo éiop at X = LS was obtained. For a trial value_of

Y , dY/dX at X = 0 was always put equal to zero, gnd the construction of

o’
the solution éurve.Y é'Y(X) ﬁas perfqrmed by using a fifth‘order\Runge—
Kupta method.49 This méthod involves eéséntiélly step—by-step so1ution
of Eq. (30b) over the interval 0 € X < LS,'and'it requires-that the
initial'coﬁditions be known at the starting point X = 0. 1In order to

‘obtéin the flow stresé at 0°K, the parameter T/G was increased to a-

' series of new vaiues,’holdiﬁg L, and E';onétant., As 1/G approaches ‘the

flow stress, the position and shape of the dislocation line change |

gradually. If 1/G exceeds the flow stress, &Y[dX is nonzero at X = L-s -
for all possiblevﬁélues of Yo" Thus in this way the flow stress can' be
approximated as closely as desired. Invthe present.work, the flow

-

stress was computed 'to an accuracy of about * 0.17%.

\

B. Results forAAlﬁernating Arrays

" The equilibrium configu}ations of dislocation line and the flow
stress'required»for a.dislocation to sweep through the solute atoms in.thé
square array,wefe computgd. The size misfit paraméter € = 0.06 was used
for all éhe computations. A sequence of the equilibrium configurations
of\dislocatibn line with T increasing'from zero to a stress level élose

to the flow stress in an alternating array (with QS = ZOB) of repulsive (R)



and attractive (A) solute atoms is shown in Fig. 14, Solute atoms are
represented in dotted circles only to show their positioﬁs aléng the
xfaxié.

When T=0, the dislocation line zigzags in a triangulat shape and
rounds off slightly within a range of one ﬁurger% vector around each‘
solute atom.  When T,increases,-then the dislocation line gradually
bows oﬁt—between‘the solute atoms. Fig. 15 shows the equilibrium
configurations of dislocation line (in solid liqeé) at the flow stress
levels for a series of ls's. The ;cales along the #—axis_were distorted
to emphasize the gradﬁal change in the shape of the dislocation line.

As the solute atom spading, ls, increases, the dislocation line bows

out deeper and deeper Between sqiute.atoms. These equilibrium
éopfigurations in Fig. 15 are somewhét different from thé configuration,
shown schematically in Eig. 16 which Stafansky and Dorn27'describe as a
repreﬁentative case of their computed equilibrium configurations. They
seem to have computed the equilibrium configurations for ZS < 15b,

using a less accﬁrate:numerical method., Their description of the

configurations is consistent with the present results when 285115b,.

but seems to be incomplete when lsfi 15b. -

The distances on the y=axis between the refulsive solute atoms
énd the dislocation lines are\0‘25b to 0.30b. This indicates that
the flow stress (or the instability of the equilibrium configurétiqn)
is determined by thé dislocation cbnfiguration around the repulsive
solute atoms rather than ?ﬁe configuration around the attraétiﬁelones
in the.présent alternating arrays. Actﬁally, the peak of the shear

stress field of our substitutional solute atom is 0.2525b away from the
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physical center of the solute atom itself. We will return to this
point later.

‘In Fig. 17, the flow stresses, T&/G,was plotted in a solid line
against>blls. This quantity, p/%s, is equivalent to the average concen-
tration, Cb, of splqtefatéms,‘gs is clear from Eq..(23). As QS decreases,
the flow stfess, TY’ iné;éééesfgra&ually, but the increasing rate
gradually slows down, and as.ls becomes smaller than about 10b, then
TYpaSSes a peak ahd»deéreases:fhereafﬁer. As is clear from Fig. 15,

a dislocation line'tendsztﬁ.be'more s£réight as KS decreases, A straight
dislocation will be equalij:pgshediéﬁd~pulled by the solute atoms of
-opposite signs. Thus’the §trengthgniﬁg effect.due to highef concentfations
of solute atoms will be eventdally'diminished as pointed out by Mott and

Nabarro7_9 and again Stefansky and Dd-rn.27

C. Dislocation Configurations and Flow Stresses

in~Unmixed Arrays

In addition to the flow‘stresses.for the alternating arrays, we
alsp computed the flow streéses for square arrays\of purely repuslive
solute atoms and purely attractive solute atoms. In the actual
computations, (—1)m+n in Eq.‘(32b) was replaced by (-1) for repulsive
and by (+1) for attractive square arrays; respectively. The coméuted
flow stresses for square arrays of repulsive solute atoms with the
size misfit €=0.06 were plotted in a dashed line in Fig. 17. As
predicted‘by Eq. (22), the flow stress increases linearly with l/ls.
It is noticed that the flow stress for alternating arrays approaches
asymptotically the flow stress for repuslive arrays as the solute atom

spacing, ZS, increases. 1In Fig. 18 we plotted TY vs £S in a slightly
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*
different way. By defining a new dimensionless flow stress TY such

*

T
that ¥

Tkas/ZF, which is used in some statistical analysis21 of random
arrays of point obstacles, we can compare different arrays on a basis
of a fixed numerical constant. As is shown in Fig. 18, the flow stresses,

* .
T , for the repulsive and attractive arrays are independent of %S. while
¥

<
TY for the alternating arrays increases at first and then asymptotically

*

¥ for the repulsive arrays.

approaches T
The flow stresses, Ti, for the attractive arrays turned out.to be
slightly higher than those for the repulsive arrays, as is shown in
Fig. 18, This is in cbnflict with the common practices46 that the flow
stresses for both arrays is taken to be the same. Figures 19a and 19b
show only portions of dislocation lines (plotted in solid lines) for
two stress levels in fbg imﬁediate neighborhood of a solute atom in
the repulsive and attractive arrays with £S=10b, respectively. The
equilibrium configurations iﬁ.tﬁe two types of arrays are very similgr
except the relative positions of dislocation lines with respect to the
center of the solute atom. A cioser examination on the equilibrium
configﬁrations shows that the cunvatuées of the dislocation lines for
attractive arrays are greater than those for repulsive ones at the
same external stress levels; This means fhat dislocation lines in
attractive arrays tend to be more undulated than those‘in repulsive
arrays. To shed a light on this difference, we computed the shear
stress field of each type of éolute atoms using Eq. (1) with the core

correction of Stafansky and Dorn and then plotted (in dashed lines)

the positive (or repuslive) side of the stress field contours in
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Figs. 19a and 19b. Comparing two figures of Figs. 19a and 19b, we
can find that‘dislocation lines in an attractivé array should climb
up a éteeper slope of the back shear stress hill of solute atom than
such a slope.in a repulsive array. We will show how a steeper slope

can lead to a greater curvature and hence a greater flow stress level

in the discussion section.
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V. ©POINT OBSTACLE APPROXIMATION

Despite the frequent use of the point obstacle approach such as
in theoretical problems (e.g., Refs. 19-22, 41, 42 and 51) in Which
the dislocation-obstacle interaction is involved, the approximations
used in the approach have not béen~s£udied in detail. By following our
previous Work,so a formal basis for the point obstacle approximation to
the interaction betweeh a dislocation and a circularly symmetric
obétacle will be presented in this section. The result will be applied
to our substitutional solute atom interaction with dislocations.

Consider a physical obstacle whose interaction with a gliding
dislocation is circularly symmetric in the glide plane and has an effective
range (d') which is small compared to the average separation of'ébstacles
(ﬁs). Assume the dislocation is acted on by a resolved shear stress T
and consider that portion of the dislocation which is pressed against
" a partigular qbstacle. The local equilibrium configuration of the
dislocation line will appear roughly as shown in Fig. 20. The total

energy of this configuration may be written

E=f rdl + TbA, + W (33)
4 .
where T' is the line energy of the dislocation and the integral is taken

over the portion (L) of the dislocation line included in the figure; AL
is the area behind L and TbAL measures the potential energy of L under
applied_stress T; and W is the total energy of the interaction of L
with the obstacle. In the square arrays E is equivalent to Eq. (29).
Using a - two dimensional form of Gibbs52 construction (illustrated

in Fig., 20) the obstacle may be formally reduced to a point and the
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energy W\lbcalized. Given that d' is small we encldsea the obétéclel
in an'imaginary circle CD)‘of small radius d appreciébly‘greater than
d'. Only the portion of L within D is perturbed by the obsﬁacle. We
then extrépoléte the arms of L inté‘D until théy'ﬁeet'at.a poinf ).
Let the exfrapoiated lineg represent tﬂe dislocation wifhin D and let
fhe point of intersectién'represént'the obstacle. The t&tél énergy

-

\of‘this hypothetical configuration (L') is

- - E ='f Tdl' + TbA , + W' - (34)
.. R ‘ 'L' -
.which is identical to E if

W' =-w+'f ;I‘(dl-—dl')"-l— T (da -da ) (35)
If the dislocation is_in mechanical equilibrium, there must be no

poséibie vériatiénqu L (Of;‘equiﬁaleﬁtly, of'L') which causes the :

energ& to deérease. As mayvbe easily seeﬂ by consideriﬁg variations which

ieave tﬁé poéition of the point (x)‘in L' unchanged, .it is necessary

fof equiliﬁ;ium that W' have its minimum value,!W'(x), consistenf.witb

the position (x) and the confiéﬁration of L outside of D, and L' be

éymmetric about a line (1) through x énd the physitalvéenter‘of the

obstacle. if L' satisfies these conditions and-if it is din equi;ibrium

- with respeqt to all variations which carry x along 1 and constrain I’

to W'(x), then ip is iﬁ equilibrium with re;pect to aﬁy‘vaﬁiation

whatever. Hence from Eq. (34), L' is in mechanical equilibrium only if
SE! =;‘.‘(F/R_-va) 6xndl' + dW'/dxl - 2T cosy/2 5x1§0 - (36)
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In this equation, R is the radius or curvature of the element dl' of

L and Gxn is the normal displacement of this.element. The éngle 1
is the angle formed by L' at the intersection point x and the term
 involving ¥ accounts for the net change in line length L' due to the

displacemenp.of 8x., of x along 1.

1

1

either sign, the inequality36 yields two necessary conditions for

Since the variations th and Ox, are independent and may have

equilibrium: C

(1) ™ =T/R ' , 37)

everywhere on L' and

_ (2) F = dW'/dx, = 2cos¥/2 (38)
at the intersection point x. These conditions are'the ¢entral equations}
of the point obétacle approximation as described earlier. Actually, |
Eq; é37) is equivaleﬁt:to Eq. (17) and Eq. (38) is also equivalent to

Eq. (25), because Yy = T-6 ’ . ) .

Eqﬁation (38) méy be used to generate a mecﬁanical’force-diéplacement
relatioq_for the dislocation-obstacle interaction in the point abstacle.
.représentation. Thus?.function [F(xl)] is obtained by displacing or
defbrming the unperturbed segments 6f the dislocation‘(for e#ample,
by increasing the applied stress) so that the dislocation passes through
the obstacle while maintaining an equilibrium configuration. The
resulting function [F(xl)] will be insénsitive to the precise configuration
of obstacles wheh R>>d, and will be inseﬁsitive to the obstaéles separation,
Qs, when 2;>d. When these two conditions arévsatisfied the force-dis-

placement relationship is a fixed property of the representative point '
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obstacle. In the limit Zs>>d the finite displacement of the dislocation'
in sweeping through the.obstacle‘na§ be ignored. The obstacle may then
be treated-as a mathematical point which influences the dislocation
only when in physical contact with it.. -
We applied this method of point obstacle representation to our
»suhstitutional soluteuatons in’repulsive and attractive square arrays.
A sequence of computed equilibrlum configurations of dlslocation 1n a’
repulsive square array with €=0. 06 and 2 lOb is illustrated in solid '
lines in Fig. 21. The scale of the figure has been distorted to allow
clear distinction between the different configurations. The three
" lower dislocation lines are.stable equilibrium configurations assumed
with increasing applied stress;vthe two upneerislocation lines are
unstable equilibrium configurations for'a dislocation which has passed
the peak of the positive s1de of the back shear stress field of a
solute atom in the array,' We have-also shown in dotted lines the point
obstacle representation of each configuration, by drawing an osculating
circle to each equilibrium configuration, fhe discrepancy between
the true and appronimated dislocation configurations is signiticant
only in the Vicinityvof the obstacle (S,lb). -
The point ohstacle‘force—displacement relation computed'by applying

oA

Eq. (38) to this case is illustrated in a solid line in Fig. 22a. The

same relation computed for an attractive solute atom with the same siae -
misfit (€=0206) in a square array With the same period RS=10b_is also
illustrated in a solid line in Fig. 22b.: In a previous WOrk (e.g., Ref. 51)

the force displacement relation for rigid motion of a Straight dislocation

‘through the solute atoms was used as an approximation to the dislocation-

N
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poiﬁt obstacle interaction. The forcejdisplacement relatioq for rigid
motion was computed under the assumptions of the above-mentioned two
cases; repulsive and aftractivé square array (with'QSélOb)vof solute
atoms (with €=0.06) from Eq. (5) and is compared to our force-displacement
relations for the flexible Qiélocation—point obstacle interacfion in
dotted lines in Figs. 22a and 22b. ° The agreemeht between the two curves
in each figure is good. Use of our point—oﬁstacle representation
results in a slight increaée in the maximum»forces and small shifts inv
the position of the maximum with respect to the physical center of the
solute atom. - Since the dotted lines in both figures should be exactly

symmetric with respect to the force axis. Wevéan compare the Fwo solid
',1ines thr;ugh the dotted lines, we can find here once again that an
attfactive solute atom is a strohgervobStacle'than a repulsive solute
vatom.

Further computations indicated that the force-displacement relafion
is reason;bly insensitive to the solute atom spacing 25214b as can be

anticipafed from the upper two stress levels for the repulsive and

attractive square arrays in Fig. 18.
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VI. DISCUSSION
This section is divided into fdur subsections and appropriate
discussions are given on the following five.topics in order:
i) relevanée of the assumptions, ii) relative strengfﬁs of thg repulsive
and attractive arrays, iii) point-obstacle approximation, and iv) a

new problem raised from the present study.

A, 'Relevancé of Assumptions

The éssumptioné listed in the introduction section are made to
simplify ourlanalysis in the next sections. Thus the isotroﬁic
linear elasticity on which the current theories on the disldcations are
based séems to be the most appropriate assumption. The anisotroéic
elasticity may be adopted, but undoubtedly it will make.a very complicated
analysié; In addition to the "size" effect, other sources of dislocation-
solute interaction can be alsp considered in principlé. vHowever, ex-
pressions of the back shear stress on the glide plane; equivaient to
Eq. (1)>due to the "size'" effect are not available.yetbih simple forms
like.Eq. (1) for these other sources.

The elastic solute-solute interaétién can be neglected safely when
thé inter-soluté atom spacing, Qs’ is larger than the-effective range
of about 3b.‘ When Qé is less than 3b, the back stress fields of
sélute atoms overiap each other as shown by Stefansky and'Dorn,27.and
then the elastic solute-solute interaction must be accounted. The
short faﬁge 6rdering of solu&e atoms-will lead to clustering of solute
atoms5 in conflict'with our model of regulaf:arrays in dilute solid

solutions. Stefansky and Dorn27 pointed out that solute atoms on the
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second nearest atomic layers parallel to the glide plane are 25% as
strong as the solute atoms in the first nearest atomic planes. Thus
by constructing an appropriate regular array these solute atoms on the
second nearest atomic planes can be fully accounted;

The regular array approach is relevant aﬁd justified in the sense
that it allows the analysis of the equilibrium configuration of dis;
location lines, which is practically impossible with the random array

approach as mentioned earlier. The assumption of the constant line

tensiom seems to be appropriate, because the deviations of the dislocation

lines froﬁ the edge orientation were extremely small for the entire
spectrum of Qs's. The maximum sloées of the dislocation line with
respect to the edge orientation were less than 3° for the size misfit
parameter € = 0.06. If € is very large (i.e., strong Qolute atom) and
hence the déviation cannot be neglected, by replacing the line tension
term, 'y, by a suitable function of orientation and pos;tion, we can
give a full correction for the deviation. Then we may have to solve

. a slightly different equation from Eq. (30-a). The elastic self
interaction between segments‘of curved dislocation can be neglected
from the same reééon. Foréman53 has shown that such second order

effect is small, particularly in the case of weak obstacles.

- B. Strengths of Répulsive and Attractive Arrays

Referring to Figs. 19(a) and (b), we will show here qualitatively
why the steeper slope of the back stress field requires a higher flow
stress in an attractive array than the less steep slope does in a

repulsive array.
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If the left-hand side of Eq. (30-a) is replaced by a new parameter
K representing the curvature of dislocation line, and (—) sign on the

right-hand side is dropped, then Eq. (30-a) is transformed to
K = b‘/l' (t+ Tyz) | . ' (30-c)

Then the variation of the curvature in the y~direction will be determined
by thebslope of the shear stress field, Tyz’ along the y-direction as

follows:

/3y = b/T © BT /%y (39)

Thus under a constant external stress, T, identical virtual displacements
of dislocations by an infinitesimal distance along the y—directioﬁ will
result in a greater increase in the curvature in an attractive arraj b;—
cause of the steeper slope, 3Tyz/8y than in a repulsive array with the
same distribution of solute atoms. Then small displacements of disloca-
tion from the same initial level of Tyz to the same final level of Tyz
will lead to a greater final curvature in the attractive array than in .
the repulsive array, if the initial curvature was the same in both
‘arrays. To maintain a greater curvéture, a greater external stress
should be‘applied.

The difference in the flow stresses between the répulsive and
attractive arrays is, however, not so significant as the difference in
the slopes. This seems to be due to the following two facts, as is
obvious from Figs. lé(a) and (b). First, the slope of the shear stress

field decreases as a dislocation approachés the peak and ridge of the

stress field. Second, the absolute magnitudes of the dislocation



curvatures are very small at all external shear stress levels. Thus
as the dislocations continue to press on the attractive solute atoms,
the curvature change becomes smaller, and the smaller curvature change

influences the already very small curvature only insignificantly.

C. Point-Obstacle Approximation

In the pdint obstacle approximation of the dislocation-solute
atom interaction, the eduilibrium configuration of dislocation lines
subjected to an external stress T is represented by a circular arc
between‘the equivalent point obstacles, the radius being determined by
Eq. (37). As we have shown in a repulsive array in Fig. 21, this éircle
represents very accurately the true configuration of the dislocation line
except in the immediate vicinity of the solute atoms. Even in this
vicinity the maximum discrepancies between the twq configurations are
less than b/50. Even in the alternating arrays, the circular approxima-
tion seems to be excellent as is shown in dashed lines in Fig. 15, _ §
when the solute atom spacing, Ré is greater than 10b. , é

The second feature of the point obstacle representation is that
an obstacle will be cut if the angle'w between two segments of disloca-
tiog held by the solute atom is less than a critical angle wC as can
be seen fromlFig. 20. We ﬁeasured this éritical angle in the repulsive
and attractive arrays from the equivalent circular configurations at
the flow.stfess levels, and found that this critical angle does not
change with the solute atom spacings. As anticipated, the critical
angle wc for the attractive arrays was slightly smaller than that for

the repulsive arrays. Then we measured the angle wC in the alternating
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arrays from Fig. 15 and found that wc varies widely at the attractive
solute atoms but remains constant at the repulsive solute atoms éven
though the dimensionless flow streSS'T; drops rapidly ag ZS decreases.
The variation of cfitical'angle wc at the repulsive solﬁte‘atom is
illustrated in Fig. 23 in terms of cos(wC/Z) Vs Qs/b. "Compariqg Fig.

23 with Fig. 18, we can obtain an interesting conclusion that even in
the alternating arrays §f high solute concentration (~ 1%) the principle
éf critical anéle works perfectly,

The fact that the two features of the point obstacle apéroximation
are obeyed almost exactly in the repulsive or attractive arrays indicates
‘that a dislocation motion through the distribution of discré;e pbstacles
“whOSe interaction with the dislocation is symmetric with reépect to the
glide plane can be predicted by the point obstacle approximation.b By
symmetric with respect to the glide élane means that the sign of the
interaction energy is the same whether the obstacle is placed below or
above the glide plane. In this sense, all the substitutional solute
atoms with the size misfit € # 0, are antisymmetric obstacles. The
best example of the symmetric obstacleé would be substitutional solute
atoms with zero size misfit but with non-zero modulus misfit. |

In Fig. 15, the dislocation line configuration in the alternating
array with QS = 10b does not cross the x-axis, while the lines‘in the
same arrays with higher RS qross ié; However, in Fig. 24 we shift
‘the repulsive solute atoms in the arfay with RS = 10b by 0.2525b
upward along the y—direcﬁion and the attractive ones by'thé saﬁe
distanée downward such tﬁat the peaks of the positive sides of. the

back shear stress field of the repulsive and attractive solute atoms
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are aligned on the x-axis. Then the flow stress T;, increases from
0.02050 to 0.04603, by more than twice, and the dislocation configura-
tion changes dramatically as‘shown in Fig. 24, Thus if we make a squaré
array of solute atoms with their peaks of the positive sides of the
back stress fields, not just with the geometrical centers of the solute
atoms, the flow stress and equilibrium dislocation configuration will
‘be precisely predicted by the rules of point obstacle approximationm.,
Thus the point obstacle apprbximation seems to be a really promising
approach and all the computer simulations and the statistical analyses
of dislocation motions through random arrays of discrete obstacles may
be justified whether or not the obstacles are symmetric., However, this
justification is not without a qualification. In the computer simula-
tionslé-la performed so far, a dislocation segment bowing out between
two neighboring point obstacles does not recognize the existence of a
third obstacle, no matter how close it might be until the segment
literally touches the geometrical center of the third obstacle. 1In
this connection, we investigated the perturbation'of the equilibrium
configuration of dislocation by a third obstacle and the result will be

shown below.

D. Perturbation of Dislocation Configuration

The perturbation of the eﬁuilibrium configuration of dislocation
lines by a third solute atom is likely more serious in the alternating
arrays th;n in the repulsive or attractive arrays. Thus we introduced
a third solute atom between two solute atoms in the alternating square

array with 25 = 20b. Then we solved Eq. (30-b) demanding the zero-
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slope boundary conditionrto be satisfied at the first and second solute
atoms fer verious positiohs of the third solute atom.

The results are illﬁstratediih'Fig. 25 in dashed 1ines &ith respect
to the unperturbed configuration in solid lines. The upper group
represents the perturbed configurations by a repulsive thlrd atom, while
the lower group represents the perturbed shapes by an attractive one,
The numerical values in the brackets'preceded by the flow stresees
'representbthe position of the third selute atom. The repulsive third
atom distorts the configuration slightly when it is placed one Burgers
vector away from the x-axis, but rather seriously when it is at omne
half of Burgers vector above the midpoint of the x~axis. The flow
stress is increased substantially. The attractive third atbm also
perturbs the configuration slightly when it is one Burgers vector away
from the x-axis, and the flow stress is decreased considerably, when
the third one is above the x-axis. As the third solute atom deviates
from the midpoint along the x-axis, the perturbation becomes more
serious. When the attractive third is placed one half of Burgers
vector below the x-axis, the distortion of dislocation is very serious
and the flow stress is increased by more than twice. In any case of
the configurations in Fig. 25, the perturbation effect of the third
solute atom to the configuration of dislocation and flow stress is not
ignorable at all, even though the third obstacle is not in physical
contact ﬁith the dislocation. It is not clear yet whether the
perturbations due to the attractive and repulsive third atoms in the
 alternating random érrays (arrays in which attractive and repulsive

solute atoms are mixed at random) may cancel each other on the average
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or not. Therefore, a comﬁensation for the perturbation effect should

be provided in a new, more realistic computer simulation or statistical
analysis utilizing the point obstacle approximation, unless the perturba-
tion effects are cancelled out by the solute atoms of oppositeAsigns.

In this paper, all the computations were done by assuming the size
misfit € = 0.06. However, all the discussions and conclusionsvwill not
lose generality. Stefansky and Dorn27 cdmputed the flow stress variation
with € and found that the flow stress Qariation with % maintains the

same trend as appeared in Fig., 17.
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VII. CONCLUSIONS

Dislocation interaction with substitutional solute atoms distributed

in square arrays on the dislocation glide plane was studied and the fol-

lowing conclusions were obtained:

1.

The force-displacement relationé for cutting the stress fiélds of
attractive and repulsive solute atoms are not identical in the
point-obstacle represéntation of the solute atoms. A greater
maximum force is fequired to cut attractive solute atoms as the
slope of their effective opposing stress field is steeper than

that of repulsive solute atoms.

"The equilibrium configurations of dislocation lines can be ap-

proximated by the osculating circular arcs to a considerable
accuracy and the cutting of solute atoms by dislocation lines

can be exactly pfedicted by the criticai—angle criterion of the
point obstacle approach.

The perturbation of the equilibrium configuration of dislocation
line by a third solute atom is not negligible in the implementa-
tion of the point obstacle approximation to the random array of
solute atoms via computer simulations or statistical analyses,
unless the perturbation effects are cancelled b& the solute atoms

of the opposite signs.
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APPENDIX

Estimation of Elastic Constants of FCC elemernt in HCP Structure

In Fig. Al, the equivalence of atomic arrangement of the (111)
plane of FCC structure and the (0001) plane of HCP stfucture is shown
and the x;axis is drawn parallel to an edge dislocation line and the
y-axis parallel to the Burgers vector of the dislocation line in each
structure. The z-axis is perpendicular to the x~ and y-axes énd is
fgoming out. of the paper.

Due to the symmetry of stress and strain tensors, the tensor, c |

of elastic cbnstants, c is reduced to the matrix, {c}, of elastic

1jkL’

constants of double indices, c The elastic constant matrix for

13"

hexagonal system, {c}h, for the coordinate system shown in Fig. 2 is

given by
[ e ey ey O 0 0 -
2 11 43 © 0 o
l{c}h = | 13 13 ¢35 0 0 Q- (A1)
0 0 0 ¢y O 0
0 0 0 0 44 .0
0 0‘ 0( 0 0 66
" where 2066'= ¢11 = 10 and indices 1, 2, and 3 correspond to the x-,

y-, and z-axes, respectively.
The elastic~constant matrix,'{c}c, for the coordinate system x, y

and z in any cubic system is given by



-58-

[ 11 %12 12 0 0 0 7
¢2 11 2 0 0O 0
i '{c}c = c19 €5 €9 O 0 0 | (A2)
0 0 0 Cus 0 0
0 0 0 0 Cha 0
0 (0] 0 0 0 Lt

This matrix,'{c}c, will transform to a new matrix,'ﬁ:?c when the
coordinate system x, y and z transform to a new coordinate system x', y'
and z' in Fig. A2 such that the x'-, y'- and z'-axes are parallel to the

%—, y- and z-axes of Fig. Al, respectively. Thus ﬁf}c is given byAl

i1 12 ‘13 0 e O 1
o oy ey 0 0 0
&J}C - ¢j3 3 3 0 -cjg O (A3)
| 0 0 0 cz4 0 —ci6
P T 524 0
0 »O 0 —ciﬁ 0 cé6
 where ¢y = C1 * H/2, ciz =¢yp - H/6, ci3 =cyym H/3, c53 ; cyp * 2H/3,
cz4,= Cup = H/3, cé6 = ¢y H/6, cié = v2 H/6, and H = 2c44 +vc12 - Cype

Thus by comparing Eqs. (Al) and (A3), we can choose elastic constants

of FCC structures which are corresponding to those of HCP structures,
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. FIGURE CAPTIONS
Solute atomedislocafion geometry.
Solute atom—-dislocation geometry in an anisotropic hexagonal
crystal.‘ The solﬁté atom is répresented by principal strain
6ompdnents génerated.by itself, —

Anisotropic interaction energy contours for Ag (a) and Cd

(b) solute atoms due to the "size" effect.

" Anisotropic interaction energy contburs for Ag (a) and cd (b)

. .solute atoms due to the '"modulus' effect.

Anisotropié interaction energy contours for Ag (a) and Cd (b)

solute atoms due to the "size plus modulus" effect.

Force-~displacement relations for rigid glide of an edge

. dislocation with respgct to_Ag solute atmosphere wi;h and without

corrections (see text).

.Force—displacemént relations for'rigid glide Qf an edge

‘dislocation with respect to cd solute étmosphere with and
‘without corrections (see text).

‘Variation of solute concentration CCo within the dislocation core

with the average solute concentration_Co'for Ag.

Variation of solute concentration Cco within the dislocation

Friedel's triangular array of solute atoms.

Dislocationvheld by point obstacles in a random array:

Friedel's model.

Dislocation bending around point obstacles in a random array:

Fleischer's model.



Fig. 13. Alternating sqﬁare array of repulsive (R) and attrective A)
solute atoms. The double indices are given to each solute
 atoms by ‘the distances to the x—'and y-axes in/unit of
intersolute spacing, ZS.
Fig. 1l4. A series of eéuiliﬁrium.configuration of dislocation line
| at different external shear stress levels in the altermating
square array of-&é=20b.
Fig. 15. . Variation of equilibrium configurations of dislocation line
aﬁ the flow'stfess level in alternating arrays ﬁith 28=1OB
" to 50b, increasing by 10b.
Fig. 16. A representetiQe.equilibfiuﬁ configuration computed by

Stefansky and Dorn.

Fig. 17. Variations of the flow stress TY/G with b/Ré.

*

Fig. 18. Variations of the flow ‘\stresses'TY

with Rs/b; For the -
definition of T;,.see the tegt.
Fig. 19. The equilibrium configurations of'dislqéation lines-(in solid
| lines) £n the positiVe side of the shear stfess fields of
solute atom (in dashed lines) in repulsive (a) and attractive
(b) arrays. Only the portion in the vicinity of.One solute
atom in each array is illustrated; |
Fig. 20. A geometric construetion use& to define the point properties
lofran obstacle having a circularly symmetric‘intefaction with
a dislocation.
Fig. 21. Sequence of equilibrium configurations of a dislocation (in
solid lines) and their representations (in dotted lines) in a
. repulsive array of £s=lOB. The phyeical center of the repulsive

solute atom is placed at the origin of the coordinates.



Fig. 22,

Fig. 23.

Fig. 24.

Fig. 25.
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The force-displacement relations for the dislocation interaction

"with one repulsive (a) and one attractive (b) solute_atoms.

F is the force exerted by the dislocation on the 6bstac1é at
equilibrium as a function of distance from the physical center
of the obstacle. The solid curves are computed from the

point obstacle approximation by suing Eq. (38). The dotted

comparison curves computed from Eq. (4) assume a rigid and

'straight dislocation.

Variation of critical angles at the repulsive solute atoms

in the alternating square arrays with Zs/b.

Equilibrium configuration of dislocation line at the flow

stress level ﬁhen the physical centers of repulsive and
attractive solute atoms in an alternating array Ef £S=10b

are shifted siich that the peaks of the positive shear stress
fields of the soiute atoms are aligned. The physical centers
are represented by crossed circles.

Perturbed equilibrium configunatioﬁs (in dashed lines) of
dislocation lines by a third solute atom at various positions
(répresented by two numbers in the parenthesis) i; an
alternéting square arraybof 28=20b are compared with the
unperturbed configuration (in solid lines). Variation of the

flow stress due to the perturbation is also shown by numbers

preceding the parentheses.



Fig. Al.

Fig. A2.
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Equivalence'of atomic structure of the (111) and (0001) planes

in FCC and HCP structures respectively.

The (111) plane in FCC structure and definition of the cartesian

coordinates.
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