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and
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ABSTRACT

The central result of this paper is an analytic solution for
the interfacial tension of a sharp antiphase boundary in an ordered
binary crystal whose atoms interact in pairs. The general solution is
valid for an arbitrarily long-range interatomic interactiomn, and for any
orientation of the antiphase boundary in any superstructure. The result
can be expressed in terms of the Fourier transform of the interaction
energy, V(k), or may alternately be written as a series in the poten-
tials, 'i’ that govern the interaction between solutes in the ith near-
est neighbor positions. In the latter case the coefficients of the
successive terms in the series are integrals of simple trigonometric
expressions. The results are specified to treat {111} and {100} anti-
phase boundaries in the L1, (CujAu-type) structure and {100} boundaries
in the Llo (CuAul-type) structure. The equations are exhibited for
interactions up to the eighth nearest neighbors. The tension of the
(111} antiphase boundary in the AljLi (L1,) phase is computed in a
second-neighbor interaction model in which the interatomic potentials
are chosen to give a best fit to the phase diagram. The result, 72
erg/cnz. is in reasonable agreement with the most recent determinations
by other techniques.

I. INTRODUCTION

An antiphase domain boundary separates two regions of ordered
crystal that differ from one another by a translation along a basis
vector of the superlattice unit cell. Since the structures are other—
wise identical, the increase in energy when an antiphase domain is
introduced into a stable ordered crystal can be attributed to the anti-
phase boundary itself and sassociated with the interfacial temsion of the
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boundary, oA,

In a model solid whose atoms interact only with their nearest
neighbors the antiphase boundary energy can be computed from the change
in the numbers and types of nearest neighbors that is caused by the
antiphase shift. Such calculations were done by Flinn [1960] for anti-
phase boundaries with 1/2<110)> displacement vectors in the L1, struc-
ture..

However, the nearest-neighbor bonding model is always an over-
simplification, and specifically cannot apply to the L1, structure since
interactions with more distant neighbors are required to stabilize the
structure in its long-range ordered state [Danielian, 1961, 1969]. More
generally, in any ordered intermetallic structure there is a resonance
between the conduction electrons at the Fermi surface and the ordering
concentration waves that automatically introduces a long-range effective
interaction [Krivoglaz, 1983]. Recent developments in the electron
theory of metals make it possible to determine the long-range interac-
tion in ordered systems [for example, Stocks, et al., 1986].

Several resecarchers have incorporated some of this behavior
into treatments of antiphase boundaries, Krasko [1969] expressed the
antiphase boundary emergy of the le structure in terms of the equilib-
rium short-range order parameters of the relevant disordered alloy;
Foiles [1986] used the "embedded atom"” method to calculate the equilib-
rium configuration and enexgy of the {111} and (100} antiphase bounda-
ries in v’ NijAl, which has the L1, structure; Sanchez, et al. [1986]
used a short range interaction along with a cluster variation technique
to study the same boundaries. The latter methods are, however, specific
to & given boundary and set of experimental conditions. It remains
desirable to find a general analytic techmique for estimating tbhe ten—
sion of an antiphase boundary with arbitrary orientation in an arbitrary
ordered structure while accounting for long—range interactionms,

If we confine our attention to sharp boundaries in systems
whose atoms interact in pairs, we might attempt the problem by general-
izing the method of Flinm [1960] to include interactionrs with more
distant neighbors. This approach is made difficult by the problem of
counting the number of pairs that are changed by an antiphase displace-
ment., In fact, if the method is extended beyond the immediate neighbors
the counting problem alone would seem to require a specific computer
solution for each individual case. We have, therefore, taken an alter—
nate approach which is both completely general and relatively straight-
forward.
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Since the emergy associated with the introduction of an anti-
phase domain can be wholly attributed to its boundaries, a theory that
calculates the energy of an arbitrary distribution of antiphase domains
can be used to compute the temsion of an antiphase boundary in any
orientation. We need only let the antiphase domain be a plate that is
extended along the habit plane of interest; the total energy of the
domain is twice the boundary energy. When the atoms interact in pairs
such a theory can be constructed without imposing any restriction om the
range of interatomic interaction by applying the method of concentration
waves [Khachaturyan, 1962, 1973, 1978].

The theory is developed in four parts. In the first we de-
scribe the atomic distribution in an ordered binary crystal that con-
tains an arbitrary distribution of antiphase domains. In the second we
calculate the free energy increment due to the antiphase domains. In
the third we specialize the result to the case of an extended antiphase
domain along a particular crystallographic plane, and obtain a general
analytic solution for the tension of an antiphase boundary. In the
fourth we apply this solution to three cases of particular interest:
{111} and (100} boundaries in the L1, (CujAu) structure, which are the
important antiphase boundaries in the y' NijAl and &' AljLi phases,
among others, and {100} boundaries in the L1, (CuAul) structure.

The specific development that is given here assumes a sharp
antiphase boundary in an ordered binary solution of atoms distributed
over the sites of a rigid lattice. It hence neglects any elastic dis—
tortion or atomic redistribution that may occur near the boundary.
Since any equilibrium relaxation decreases the interfacial temsion, the
computed value is an upper bound. However, the result should be accu-
rate for antiphase boundaries that form at low temperature, and is
specifically applicable to the important case of an antiphase boundary
created by the passage of a partial dislocation during plastic deforma-
tion at moderate temperature.

II. THE SOLUTE DISTRIBUTION IN AN ORDERED BINARY SOLUTION WITH ANTI-
PHASE DOMAINS

A. The Solste Distribution
The solute distribution in a binary crystal is specified by a

function, x(r), defined at the lattice sites, r, of the fully disordered
parent structure, that gives the probability that an atom of a particu-
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lar type (the "solute") will be found at the site, r. If the solution
has a high degree of long-range order and 8 nearly stoichiometric compo-
sition the variable, x(r), has a value very close to either 0 or 1 at
every lattice site.

Let the ordered crystal contain an arbitrary distribution of
antiphase domains, and let ba be the vector that gives the antiphase
shift in the ath domain. The antiphase vector, b¢, is always a transla—
tion vector of the disordered parent lattice but, by definjtion, is not
a translation vector of the ordered superlattice. It follows that the
number of possible values of ba is equal to the number of lattice sites
within the smallest unit cell of the superlattice.

If x°(z) is the solute distribution within a reference domain
of the ordered crystal the distribution within the ath domain can be
written

z,(2) = x%°(z+d,) ‘ (1)

Moreover, the shape of the ath domain can be specified by the functionm,
ea(:). which has the value

ea(:) = 1 (r in the ath domain)

(2)
= 0 (otherwise)
With this notation the solute distribution is
x(z) = 2¢x°(:+b¢)6a(r) (3)

The solute distribution can always be written as a sum of
concentration waves [Khachaturyan, 1963, 1973, 1978]:

x(£) = (/NI x(k)elk® (4)

where N® is the total number of crystal lattice sites, x(k) is the
amplitude of the concentration wave with wave vector k, kr is the scalar
product between the vectors k and r, and the sum is taken over the N°
wave vectors, k, in the first Brillouin zone of the disordered parent
structure, whose values are determined by cyclic boundary conditions on
the whole crystal. The amplitudes of the solute concentration waves,
x(k), are the Fourier transforms

x(k) = I_x(r)e kT | (5)
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B. Concentration Waves in the Presonce of Antiphase Domains

We wish to describe the solute distribution in an ordered

" crystal that contains an arbitrary distribution of antiphase domains.
Using equation (3), the concentration wave amplitudes are

x(k) = Z o KF(Z x0(x+b )0 (1))

(6)
= (N°) 1z, .5 x0(x’,b )0, (k-k")
. where
’ = -ik’
x%(k,by) = Z x°(x+bg)e " F (M
&) = -i(k-k*) S
8,(k-k’) = Z_6(x)e * (8)

" The solite distribution in a homogeneously ordered crystal can
always be written [Khachaturyan, 1962, 1978] '

x%(g) = x + Ejyjeikj‘ ' 9
where x is the average concentration of the solute and the kj are the
wave vectors of the concentration waves that generate the superstruc-—
ture. The solute distribution within the ath antiphase domain is, then,

2%(e+dy) = x + Ejyjexp(ikjbd)exp(ikjr) (10)

The amplitude of the kth concentration wave associated with this distri-
bution is '

z%(k,b,) = E:x"(:ﬂ:‘)o—ikr
(11)
= No[x&(k) + ijjexp(ikjbu)é(k-kj)]

where 5(k) is equal to unity when k=0 and is zero otherwise. The

amplitude of the kth concentration wave in a crystal that contains an
arbitrary distribution of antiphase domains is found by substituting
equation (11) into equation (6):
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x(k) = Z [x0, (k) + Ejyjexp(ikba)ed(k—kj)]
' (12)
= x°(k) + Z:j,a{-yj[e(1kjb¢)-1]66(k-kj)l
= x9(k) + AxA (k)
In this equation,
x0(k) = IZ,8,(k) + Z;7;[Z,0,(k"k;)]
(13)
=-N°{x5(k) +-2j7j6(k-kj)]
where we have used the.identity.
. -ik : - -ik
2,8,(k) = Z e ' EF[Z 0, (0)] = Z e %%
(14)

= N°3(k)

The x°(k) are the Fourier amplitudes of the concentration waves in the
homogeneous reference state. The AxA(k) are the amplitudes of the
concentration waves that perturtb the homogeneous concentration field
when the antiphase domains are introduced, and are

ah(m) = 2 ly;le!K)Pe)-110, (x-x)) (15)

I1I. THE ENERGY OF AN ARBITRARY DISTRIBUTION OF ANTIPHASE DOMAINS

If the states of a binary solution are distributions of atoms
over a fixed lattice then the equilibrium of the solution is comtrolled
by its Helmholtz free emergy, F. When, moreover, the solution is nearly
stoichiometric and the long-fnnge order parameter is high,'F can be

evaluated . in the mean field approximation. We need only comsider that

part of the Holmholtz free energy, F®, that depends on the solute con-—

figuration. Assuming that the atoms interact in pairs, the configura-

tional part of the free energy is given in terms of the concentration
field by {Khachaturyan, 1978]

F® = (1/2)Z, N(r-2")x(2)x(=")
(16)
+ kTZ_{x(z)1alx(2)]+({1-x(r)]11n{1-x(x)])

where W(r-x’) is the interchange interaction energy between solute atoms
on sites at r and £, T is the absolute temperature and k is Boltzmann's
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constant.

If we neglect relaxations near the antiphase boundaries the
configurational entropy of the solution is negligibly changed by the
introduction of antiphase boundaries. It follows that the relevant part
of the free energy is the configurational emergy

E® = (1/2)2, W(r=z')x(r)x(z’)

, (17)
= (1/2N) 5 V(K | x(k) |2

where the second form is obtained by taking the Fourier transform and
the interaction potential, V(k), is

V(K) = I _W(r)e kT (18)

The configurational energy of an ordered phase that contains
an arbitrary distribution of antiphase domains is obtained by substitut-
ing the composition amplitudes, equation (12), into (18). The result is

E® = (1/2N0)5, V(K) [x°(k) + AxA(m)1lzo(k) + AxP(x)]e

= (1/2N)Z, V(K) |x°(x) |2
(19)
+ (1/2N9)Z, V(X) [xo(K)AxA (k) + x0(k)*AxA(X))

+ (1/2N0)Z, V(b) laxh () 12

The first term on the right in equation (19) is the energy of a homogen—
eously ordered phase. The second two terms give the increment to the
configurational enerxgy due to the antiphase domains, It follows with
the help of equations (13) and (15) that

ABA = (1/2N0) 22 o (V(K)y yalei(EsPa)-11 (o7 (KaPp) 110, (x-k ) 0f (k1)
(20)
+ (/222 V(K (v (e ¥ 3Pa) -110, (k) [36(K) +Z,788(k k)]

+ v30o™H(E3Pa) 1] 08(k-k ) [T8(X)+Z 785 (k-k )]}

Equation (20) can be simplified substantially by using the
properties of the Fourier transform, 6(k), of the shape function of an
antiphase domain. It follows from its definition (equation (8)) that
this functions vanishes when |k| is greater than ~ 2a/L, where L is the
dimension of the antiphase domain in the direction of k. But the wave
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vectors k; and kj-k-,(j # m) are of the order 2n/ay, where a, is the

lattice parameter of the superlattice. Hence when the antiphase domain
is large compared to the crystal lattice parameter, which is the case
that interests us, the Fourier transforms Ga(k ) can be neglected, and
the transforms Oa(k--kj) and Oa(k-kj)eg(k-k-) can also be neglected
qnless j=m. It follows that we may set j=m in equation (20), which
simplifies to
A _ 2, i(k;b.)_117ra-i(kiba) 110 (1 -
AEA = (1/2N0)2y 2, 0 (V) |y 12 (62K Pa)-111e71 (K Pp)-1)0, (k-k O (KK )
+ (/2024 (V(k ) 7120, (0) (o2 (X jPa) 1671 (K 3B g) 2] (21)
= (1/2N0)Z, 2, 5 (W(k +m) |y 12 (o1 X 30a)-11 (671K sBp)-1]0(x) 08 (x))
+ (U2, (V(k ) |7 1%0,(0) o1k jPa) 4o "i(k ybq)-2))
where we have used the vector K,

£ =k - ky (22)

‘ The second term in equation (21) can be cast into the same
form as. the first if we use the identity

(1/N®)2,0,(x)08(x) = N% g = [Z,0,(r)]18.4

(23)
= 0,(008,4
where N® is the number of lattice sites in the ath domain. Then
0,(0) [o1(EjPa)+o~i(kybg) 2 o
(24)

- [e““j";’d][f“"j"p’-ﬂ(1/N')z‘ea(x)95(z)
and equation (21) can be rewrittem
ABA = (1728003 Uy 122, IV -V DY 0k .0 12} 29)
where
lagk 012 = 2,401k ;Pa)-11 (o7 (k508) 110, (x)0(x) (26)

Equation (25) is the solution for the excess energy associated with an
arbitrary distribution of antiphase domains,
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III. THE TENSION OF AN ANTIPHASE DOMAIN BOUNDARY ON THE (hkl) PLANE
A. The Tension of a Single Antiphase Domain Boundary

Since the antiphase domains have identical structures the
excess energy of a collection of antiphase domains can be wholly attri-
buted to the domain boundaries. If the boundaries are sharp, that is,
if relaxations in the vicinity of the boundary can be neglected, the
excess energy is simply the integral of the interfacial tension over the
antiphase boundary area:

AEA = [goh(m)ds 27

where oA(n) is the tension of an element of antiphase boundary (dS) with
the normal vector, m, and the integral is taken over the whole area of
antiphase boundary.

_ Now let there be only one domain, and let it have the form of
a flat plate on the plane (hkl). If the lateral extension of the plate,
L, is large compared to its thickness, D, (small aspect ratio) thea its
lateral boundaries make a negligible contribution to the excess energy
and

AEA = 24A(bk1)S (28)

where S is the surface area of the plane face of the plate. If, more-—
over, D is larger than the effective range of interatomic interactionm,
£, then aA(hkl) is equal to the tension of an isolated boundary. The
problem of computing the antiphase boundary energy is hence reduced to
the problem of determining the excess energy due to an antiphase plate
that has a thickness greater than the range of interatomic interaction
(r°/D < 1) but an extension large enough that its aspect ratio is small
(D/L << 1),

If there is only a single antiphase domain the indices a and
and the summation can be eliminated from equation (26), which reduces to

k.0 = (eik;®-110(x) (29)
where 6(x) is the Fourier transform of the shape function of the domain,

and b is its antiphase vector. The excess energy is obtained by substi-
tuting equation (29) into (25), and is
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AEA = 2%z Iy |zsin2(kjb/2)\ll(kj) (30)

where N% is the number of crystal lattice sites in the (hkl) plane that
bounds the domain, )

2
Uk;) = (1/NSNO)Z [V(x+k;)-V(k )1l (31)

and the relation |¢|"‘kjb -112 = 4sin(kjb/2) has been used. It follows
that the tension of an antiphase boundary parallel to the (hkl) plane is

oA(bk1) = (N’/S)Zj|7j|2‘ll(kj)sin2(kjb/2)]
(32)
- -1 2 .2
= (s) Ejl'rjl Wk ;) sin“(k;b/2)]

where s is the area per atom in the (hkl) plane.

Of the parameters that appear on the right hand side of
equation (32), the area per atom, s, is fixed by the parent structure
and the indices, (hkl), of the boundary plane. The coefficients, Yo and
the ordering wave vectors, k;, are fixed by the structure of the ordered
superlattice. Only the fnnction,‘ll(kj) needs to be evaluated.

B. The Fumctioa ‘Kkj)

The functiom \F(kj) is evaluated by simplifying equation (31).
We begin by evaluating the shape function, 8(x). To facilitate this we
define a new set of unit translations (Ay, Ay, Aj) for the disordered
parent lattice, where A; and A, are chosen to lie in the (hkl) plane.
Any reference vector of the disordered phase can then be written

r= ‘Al + nAz + pAs
(33)
= p + pAy
where m, n, p are arbitrary integers. The vector p lies in the (hkl)

plane and enumerates the crystal lattice sites within the plane. The
reciprocal vectors to the set Ai are defined by the relationms

AY = (AyxAL)/ (A (A xAy)] (i,j,k = 1,2,3) (34)

An arbitrary wave vector, x, in the first Brillouin zone of the disor-
dered crystal can be written in terms of these:
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2rlvAp + HAg + GAS]

(35)
T + 2nEAY '

Using the orthogonality relations
- | | “x‘j = sij (36)
) the scalar product between & and r is
xkxr = (v+2n5A%)(p+pA3) = Tp + 2aip (37)
The transformed shape function is them
0(x) = Z_6(r)e 15T
- [zha-itp][zpe—iZntp] |
(38)
= 0,(%)053(3)
= Os(t)[e-i"g(N.z"l)v][sin(nwz)/sin(nt)]

The second form of equation (38) shows that the shape function can be
expressed as the product of two sums. The first defines the two-dimen-
sional function, 6.,(x), by a summation over the sites on the (hkl) plane
within the domain., The second sum defines the one-dimensional function,
©3(%), and involves a summation over the (hk1l) planes that lie within
the domain. The fnnction.93(t) is evaluated in the last form of equa-
tion (38). N, is the number of (hkl) planes in the domain.

Given equation (38), the square of the shape functionm is
lecx) 12 = lo ()| 2(sin?(xEN,)/sin?(n8)] (39)
Substituting this result into equatiom (31) yie@ds |
Hk,) = (L/NPNO)E, [V(x+k )-V(E D110, () 12 [s1a?(xEN,)/sin?(x0)]  (40)
where x = v+2nlA®;,
Equation (40) can be simplified further by using the proper—
ties of the shape function. The functiom |63(t)|2 assumes non-vanishing

values only within a range lAtl ~ 2a/L about v = 0, where L is the
extension of the plate in the habit plane. Given its definition in
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equation (18), the potemtial V(k+e) is equal to V(k) + O(r°/L) when <t is
confined to this range and r£%/L is small, and approaches the constant
value V(k) in the limit (r®/L) -> 0. Eence when the extension of the
plate in the habit plane is large compared to the range of interaction,,

V(k+e 1o (0) 12 = vk reeznzag lo (v 12

(41)

V(k +2nzag) e, (v) |2
It follows that
i w(kj) = (1/N3N1)2§[AV(kj.§)][sinz(nﬁNz)/sinz(nt)]{(1/N’)Zt|0s(t)|2} (42)
where N® = NIN3, N2 is the total number of (hkl) planes in the crystal
and N? is the number of the crystal lattice sites in an (hkl) plane that
extends through the crystal, and

AV(k.,%) = V(2n§A§+kj)-V(kj) (43)
Since the function Ies(t)l2 obeys the identity

/NHz lo(v) |2 = N (44)

where N*® is the number of lattice sites in the portion of the (hkl)
plane that lies. within the domain,

Uk ) = (1/N*)Z, [AV(K §,8)]1 [sin(xEN,)/ sin?(n2)] (45)
The values of the variable § permitted by the cyclic boundary conditions
are § = (2n/N1)n. where n is an integer in the range -N1/2 <a<N;/2.
Since N* is arbitrarily large the sum over & can be replaced by the
integral
(/N ) = L2070, ag.) (46)
so that
W(ky) = a8 01aV( L 0] [sin? (N} /sin?(x)]) (47
Once w«kj) is evaluated from equation (47), the tension of the

(hkl) antiphase boundary can be found by substituting the result into
equation (32).
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IV, APPLICATIONS TO FCC-BASED SUPERSTRUCTURES

To illustrate the calculation of the antiphase boundary ten-
sion we apply the general formalism to three cases of interest: the
{111} and {100} bonndaries'in the L1, (CusAn) structure, and the {100}
boundary in the Llo (CuAul) structure. In keeping with the way in which
the problem is usually phrased we shall present the results as a series
in the real-space interaction potentials, Wi. that give the interaction
between a solute atom and neighboring solutes that are in the ith near-—
est shell., VWe shall also calculate one numerical example, the interfa-

cial temsion of the (111} antiphase boundary in &' AljLi.

The Fourier transform, V(k), of the interaction potential,
W(x), within a crystal can be expressed as a series in the interactionms,
Wi. with successively more distant neighbors., Writing the wave vector k
in the form

k= (2!‘[/.)[0101 + Nz‘z + @303] (48)

where the w; are the coordinates along three unit vectors, e; parallel
to the axes of the unit cell, the potential is

Vik) = Eivi(ul.uz.m3) (49)
where Vi is the contribution from interaction with neighbors in the ith
shell. The first eight terms in the series for the FCC structure are

[Khachaturyan, 1963, 1978]

vy = 4'1[cos(nml)cos(nuz)+cos(nuz)cos(nw3)+cos(nu1)cos(nm3)] (50)

vV, = 2'2[cos(2um1)+cos(2n02)+cos(2nu3] ‘ (51)
V; = 8W3[cos(Znul)cos(nuz)cos(nu3)+cos(2nm2)cos(nm1)cos(nu3)
(52)
+ cos(2n03)cos(nml)cos(nuz)]
Vo= 4'4[cos(2nul)cos(an2)+cos(2nu1)cos(Znu3)
(53)
+ cos(2nwy)cos(2nwg)]
Vg = 4'5[cos(3nm1){cos(nw2)+cos(nm3)}+cos(3nm2){cos(nw1)+cos(nm3)}

(54)
+ cos(3nwg) {cos(nwg)+cos(nuwy)}]
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<
(=,
1

= 8Wclcos(2nwy)cos(2nwy)cos(2nw,)] (55)
Vq = 8W7[cos(3nm1){cos(2nw2)¢os(nw3)+cos(um2)cos(2nw3)]

+ cos(2nwy) {cos(nwy)cos(3nwg)+cos(3nw,)cos(nuwg)} (56)
+ cos(nwg) (cos(2nwy)cos(3nuwz)+cos(3nw,y)cos(2nwg)}]

Vg

zws[cos(4nm1)+cos(4nm2)+cos(4nm3}] (57)
The most convenient set of reciprocal lattice vectors for the
FCC lattice is the set a’ that point along the three cube axes and have

‘magnitude (1/a). In terms of these vectors the reciprocal vector, Ay,
to the (hkl) plane is

A$ = hay + kag + lay | (58)

A. The {111} Aatiphase Boundary in the L1, Superlattice
The L1, structure is an ordering on the FCC lattice in which

solute atoms occupy the corner positions in the FCC unit cell. It has
the stoichiometric composition A3B. and is assumed by a number of impor-—
tant intermetallic compounds, including vy’ N13A1 and &' A13Li. The
solute distribution in the L1, structure is [Khachaturyan, 1978]

2(z) = I + InleiF1T+eik2 4o ik37) | (59)
which has the form of equation (9) with

kj = (2n/a)oj (oj = [100],(010],[001]) (60)

and

Y; = I (61)

For the (111) plane in the L1, structure the vector A% is

(1/a){111], and

27%Ag = (2a/2)(8.%.8] (62)

In this case ¥(ky) = ¥(ky) = ¥(k3), so we need evaluate only ¥(ky). The
vector

2nEAY + kg = (20/a) [145.8,8] (63)
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has the form of equation (48) with wy = (1+8), wy = w3 = §. Using the
definition (43) and equations (50)-(57), the series for the potential
AV(k,,8) is, to the eighth neighbor interactionm,

= ~ 4W;lcos(2n§)-1] + 6W,[cos(2n})-1]

- 8W3[cos(2n§)cosz(n§)-1] + 12W4[c032(2n§)—1]

8W5[cos(2n§)cos(n§)-1] + 8W6[coss(2n§)-1]
- (64)

16'7[cos(3n&)cos(Zn&)cos(n&)-ll + 6Wglcos(4ng)-1]

= sin(n8) (4W; - 12V, + 8W;[2+cos(2x&)] - 24W,[1+cos(2xE)]
+ 8Ws(3-2cos(2n§)] - 4Ws(3-2c0s(2n8)+cos(4n§)]
+ 16W5[3+3cos(2af)+cos(4ng)] -24VWgll+cos(2a)]]

If equation (64) is substituted into equation (47) and integrated term-
by-term the result is

where we have used the identity

b §

f.!;/,dtlcos(pnt)sinz(N n¢)} = (1/2)/-;/,dt{cos(Zpuﬁ)ll—cos(ZNan)}
= 0 (p < Np) (66)
which holds for all integers, p, less than.Nz.

Note that equation (66) is only certain to hold when r® ¢ D.
When the range of atomic interaction exceeds D then the series modifying
Wi for large values of i may contain terms in cos(2pnf) with p » N
The integral does not vanish for these terms, and oA becomes dependent
on the domain thickness. This result reflects the physical limitation
that cA has its asymptotic value only when £® < D so that the boundaries

of the domain do not interfere.

To complete the solution to equation (41) for the antiphase
boendary energy we also need the area, s, per lattice site im the (111)
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plane,
s = (v3)a?/4 : (67
and the antiphase vector, b, There are, in fact, two possible values

for b: (a/2)[110] and (a/2)[11Z]. However, both lead to the same value
of the antiphase boundary temsion, since the sum

stinz(kjb/Z) =2 (68)
is the same in both cases.

The antiphase boundary energy for the (111) boundary in the
L1, structure is evaluated by substituting equations (60), (61), (65),
and (66)-(68) into equation (32)., The result is

A111) = (16/a%3)T2n2 (W, -3W, +4W3-6W,+6W-3W+12W,—6Wg+..]  (69)

When the le phase is perfectly ordered, x=1/4 and n=1 and the antibhase
boundary tension is

A111) = (1/a23) [W;-3W,+4W3-6W +6W-3N(+12W,~6Wg+..]  (70)

To test the validity of equation (70) we show that it reduces
to the simple result obtained by Flinn [1960] when only nearest neighbor
interactions are included, and then use it to compute the energy of a
(111) antiphase boundary in A13Li. In the nearest neighbor model equa-—
tion (80) becomes

A1 = /v, (71)

which reproduces the result obtained by Flinn [1960], who simply counted
the number of wrong B-B bonds across a (111) boundary shifted by

(a/2){110]. (To make the association, however, one must recognize that.

the the interaction energy used by Flinn [1960] is defined so that its
value is W;/2).

To estimate the energy of a (111) antiphase boundary in AljLi
(8') we use values for the interaction potentials V(0) and V(ky) that
provide a fit to the metastable two—phase region between the orderxed &’
phase and the disordered Al-Li solution [Khachaturyan, Lindsey and
Morris, 19861:

V(o) = 7x10713 ergs (72)
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V(kg) 5 - 5.6x10713 ergs (73)

These two values of V(k) permit the computation of the first two inter—
action potentials from equation (49). The result is

ne

L2 7.9x10714 ergs . (74)

v, S - 4azx10714 ergs - (7%)
Then, from equation (70),

A1) = 12 erg/cmz (76)
which is in reasonable a;reement with the value obtained by Glazer and
Morris [1986] from an analysis of available data on dislocation interac-
tions.

B. The Temsiom of the (100) Bouadary im the L1, and L1, Supo:lnfficos

The reciprocal vector, AY, for a (100) plane in the FCC lat-
tice is

27A§ = (2n/a2){100] 7
The ordering vector kg is perpendicular to the (100) plane, and hence
perpendicular to the antiphase vector, b, which lies in the plane. It
follows from equation (32) that W(kl) does not influence o(100). More-
over, W(k,) = ¥(kj) by symmetry. We therefore need only evaluate Wky).
Given the vector
22Ag + kg = (22/2)[Z01] (78)
the potential difference is’

AV(kg4,%) = 4sin2(ﬂ§){-W2+4'3-4W4-4'6+8'7-2W8[1+cos(2n§)]+"J (79)

Substituting equation (79) into equation (47) and integrating term-by-
term gives the result

q’(ks) = -2w2+8w3-8'4-8'6+16'7_4'8+... (80)

Given the antiphase vector across a (100) boundary in Ll,, b =
(1/2)[011], and the area per lattice site, s = a2/2, the tension of the
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(100) antiphase boundary in the L1, structure is
oA(100) = (32/a%)(Zn)2[-W,+4W;-4W, -4 W +8W,-2Wg+...] (81)

In the completely ordered state, x=1/4, n=1, and
oh(100) = (2/a2)[-W,+4W;-4W -4 W +8Wo-2Wg+...] (82)
To compute the energy of a (100) antiphase boundary in the Llo

(CuAnl) ordering on the FCC lattice we first require the solute distri-
bution, for, L1;, which is [Khachaturyan, 1978]

2%(z) = x + neik3T (83)

It follows that there is only one ordering vector, k3 = (2n/2)[001],
with amplitude Y3 = xn. Since the Llo structure is also an ordering on
FCC, the vector A%, the function W(ks), the area s, and the antiphase
vector, b, have exactly the same values as they do for the (100)'plane
in the le superlattice. The antiphase boundary energy for the (100)
plane in L1y is, hence,

eR(100) = (1/9) Iyl uxy)

(84)
= (16/82)(In)2(-W,+4W;-4W -4 W +8W1-2Wg+...]
For the completely ordered state,
oA(100) = (1/a2)[-Wy+4W;-4W 4N 48V -2Wg+...] (85)

V. DISCUSSION

The solution derived above is, to our knowledge, the first
analytic solution for the antiphase boundary energy that includes inter—
actions beyond the second neighbor shell. It is convenient in the sense
that it can incorporate the long-range interatomic interaction in either
of two forms. Given the function V(k), which might be determined by
diffuse x—ray scattering or calculated from the electron energy in
momentum space, the tension of an arbitrary antiphase boundary can be
found from equations (60) and (41). Given the roal space interaction,
W(r), the tension can be calculated from the series expansion in equa-

tion (62). In either case, the solution is relatively straightforward,

as illustrated by the examples presented in the previous section.
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However, the calculation does assume a sharp interface that is
undisturbed by chemical relaxation or elastic distortion, and hence
places an upper limit on the antiphase boundary tension. It seems
obvious that chemical relaxations will occur in boundaries that reach
equilibrium at moderate to high temperature; recent studies by Foiles
[1986] and by Sanchez, et al. [1986] suggest that this is the case in
Ni3A1. Chemical redistributions near an equilibrium boundary should be
less important at low temperature, and, for kinetic reasoms, should not
contribute significantly to the tension of an antiphase boundary that is
formed at moderate temperature by the passage of a partial dislocation.
The latter case is of significant practical interest since it governs
the strength of intermetallic compounds and the hardening achieved by
ordered precipitates at moderate temperature.

The calculation also assumes a pairwise interatomic interac-
tion, or, more specifically, a pairwise reconfiguration potential for
the solute species. The issue of the interatomic potential has recently
been investigated by Stocks, et al, [1986], for various intermetallic
compounds. Their results suggest that a pairwise interaction is reason—
able for some systoms, but may lead to significant errors in treating
the ordering behavior of others [Stocks, 1986]. Since the antiphase
boundary is a perturbation on a phase that is already ordered, it is not
clear how important many-body interactions may be in the preseant case.

The theory was applied to obtain one numerical result, for a
(111) antiphase boundary in &' AljLi. The result obtained, ~ 72
ergs/cnz. should be compared to the value 57315ergs/cm2 found by Glazer
and Morris [1986] from an analysis of dislocation interactions with &'
precipitates in Al-Li alloys. Given that the calculation ignores inter-—
actions beyond the second neighbors, that the values of the interaction
parameters '1 and '2 are only approximately known, and that there are
also approximations in the dislocation—interaction approach [Glazer,
1986; Glazer and Morris, 1986] the agreement soems reasonable.

However, the calculated value for the (111) boundary in &’
A13Li differs significantly from theoretical values reported elsewhere
[Furukawa, et al., 1985; Jensrud, 1986]. The source of the discrepancy
is relatively oasy to identify. The method of calculation used by these
authors ultimately traces back to the nearest-neighbor model used by
Flinn [1960). As noted by Marcinkowski [1963], the Flinn equation can
be re—expressed in terms of the ordering temperature, Ty, which is, in a
mean field model with nearest neighbor interactions (the Bragg-Williams
model),
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Using equation (71) the (111) antiphase boundary enmergy can be written
oA(111) = xT(/(v3)0.8242 (87)

This result was, however, misstated in later work [Copley and Kear,
1967] from which the more recent presentations are drawn. Part of the
confusion probably arose from the fact that the interaction potential
used by Marcinkowski [1963] is twice that defined by Flinn [1960]. The
consequence was to introduce fairly large errors into the nearest-
‘neighbor result. For example, the equation written.by Jensrud [1986] is
in error by a factor of 4; correcting the error reduces the value
reported, 160 e:gs/cmz. to 40 ergs/cm2
agreement with the present results,

, which is in much more reasonable

Unfortunately, it is not possible to relate the antiphase
boundary energy to the ordering temperature when long-range interactions
are taken into account., The ordering temperature for an L1, phase in
the mean field approximation is [Khachaturyan, 1978]

kTo = (0,205 [‘4'1+6W2-8'3+12W4—8'5+8W6-16W7+6'8+...] (88)
which is not a simple multiple of cA(lll) as given in equation (83).

Finally, we should mention the implications of the antiphase
boundary energy for the stability of the ordered phase. Two relevant
aspects of structural stability are governed by the antiphase boundary
energy. The first is the stability with respect to the spontaneous
formation of antiphaseé boundaries, If UA is negative for any plame then
the ordered phase is unstable with respect to the formation of antiphase
boundaries parallel to that plane. There appear to be ordered struc-—
tures for which this is the case, and their interesting behavior is
being: explored. '

The second relevant instability arises when the antiphase
boundary tensidn is more than twice that of an interface between the
ordered structure and the disordered parent lattice. In this case the
antiphase boundary is unstable with respect to the formation of a film
of disordered phase. This situation apparently applies in the case of
5’ Al-Li, for which the precipitate—matrix boundary energy is of the
order 20 ergs/cnz [Bauman and Williams, 1985] and also applies to v’
NijAl, at least at elevated temperature. In the latter case disordered
films have been observed along antiphase boundaries [Cahn, 1986].
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