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Strengthening Contributions of Strong Ordered Precipitates 

J. Glazer and J. W. Morris, Jr. 

Center for Advanced Materials, 
Lawrence Berkeley Laboratory, and 
Dept of Materials Science and Mineral Engineering, 
University of California, Berkeley 

Abstract 

The Hanson and Morris solution for the critical resolved shear stress of a random 
array of point obstacles is modified to consider the case of strong ordered precipitates. The 
solution approximately accounts for the effects of dislocation self-interactions and elastic 
anisotropy. The modified solution leads to a simple relationship between the antiphase 
boundary energy and the minimum looped precipitate diameter. This relationship is used to 
predict antiphase boundary energies for Al3Li and Ni3AI of 57 ± 15 mJ/m2 and 102 ± 35 
mJ/m2. These values are in good agreement with recent determinations of the antiphase 
boundary energy by other techniques. 

I. Introduction 

The contribution of ordered precipitates to the critical resolved shear stress of 
precipitation-hardened alloys has been extensively studied (Ardell, 1985; Glazer, 1986). 
However, most analyses use theories premised on the assumption that the strengthening 
obstacles are relatively weak. This paper will develop a theory of order hardening by 
strong precipitates in the context of the random array theory of dislocation glide. Two 
examples of such precipitates in systems of technological interest are the L12 precipitates 
Ni3AI (1), present in Fe- and Ni-based superalloys, and Al3Li (0'), found in aluminum­
lithium alloys. These precipitates are sheared by dislocations when they are small and are 
bypassed by Orowan looping at larger sizes. The focus of this paper is the relationship 
between the minimum radius at which the precipitates are looped and the energy of the 
antiphase boundary created when they are sheared. 

A theory for the critical resolved shear stress of a material hardened by shearable 
precipitates must include an expression for two parameters that describe the force required 
to bypass a precipitate: the force required to shear a precipitate as a function of its size (F s)' 
and the force required for Orowan looping (Floop)' the effective upper limit to the force 
with which a precipitate can resist the passage of a dislocation. These parameters will be 
discussed in tum below . 

The force required to shear spherical (or cuboidal) ordered precipitates is generally 
measured either in terms of the energy of the antiphase boundary (y) created when the 
precipitate is sheared at its widest point or by the precipitate diameter (dloop) at which 
Orowan looping first becomes preferable. It can be shown easily that the shear force is 
given by 
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(1) 

where d is the precipitate diameter. The looping diameter is a convenient obstacle strength 
parameter since it can be determined unambiguously from transmission electron 
micrographs of defonned material. The antiphase boundary energy can be determined from 
phase diagram infonnation (e.g. Khachaturyan and Morris, 1986) or from measurements 
of dislocation pair spacings (e.g. Huang and Ardell. 1986). In either case. the antiphase 
boundary energy is determined indirectly and its usefulness depends on the accuracy of the 
theory used to calculate it from the experimental evidence. Perhaps not surprisingly, the 
values of the antiphase. boundary energy for both Ni3A1 and A13Li have been in debate. 

Orowan looping occurs when the size of the precipitate exceeds a critical value, the' 
looping diameter dloop' At this size, the force required to shear the precipitate is greater 
than the force required to loop it. The value of the critical resolved shear stress at the 
looping diameter is a function of the ratio of the applied force to the dislocation line tension. 
In a simple model that neglects any dislocation self-interactions, the precipitates are looped 
when the applied force is equal to twice the line tension. However, it has been known for 
some time that the attraction between the arms of a dislocation as it bows about a particle 
of finite size significantly lowers the applied force required for looping (Bacon, Kocks and 
Scattergood, 1973). Although this ·decrease is often neglected, it has a correspondingly 
large effect on the critical resolved shear stress whether the theory is phrased in tenns of 'Y 
or in tenns of dloop' 

This paper develops a model for the critical resolved shear stress of alloys 
hardened by ordered. precipitates .in the context of the random array model for dislocation 
glide developed by Hanson and Morris (1975a and b). The strength of the precipitates is 
written in tenns of the average diameter of the precipitates and the looping diameter. The 
effect of dislocation self-interactions is approximately included. Finally, the antiphase 
boundary energies predicted by the theory are compared with the best available values 
determined by other methods. 

II. Critical resolved shear stress for a random array of strong obstacles 

n.l The Hanson and Morris random array theory 

Most investigations of strengthening by discrete obstacles have developed the 
consequences of a single model of dislocation glide (Ardell, 1985; Glazer, 1986). The 
most important assumptions of this model are as follows. The dislocation glides in an 
idealized single crystal microstructure characterized by the mean square obstacle spacing Is 
of a random distribution of point obstacles. The obstacles are mathematical points whose 
interaction with the mathematical dislocation is the same as the interaction between the 
physical obstacle and dislocation. The strength of the obstacle in athermal glide is given by 
the peak in the force-distance curve for the physical dislocation-precipitate interaction. In 
the absence of dislocation self-interactions, the force exerted by a dislocation on an 
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obstacle is defmed as F = 2T cos ('1'/2) where T is the dislocation line tension and 'I' is the 
bow-out angle defined in Fig. 1. The strength of the obstacle is given in dimensionless 
form by B = F/2T = cos ('1'/2) where F is now the force required to bypass the obstacle 
either by shearing or looping. The maximum effective particle strength, achieved when the 
particle is looped under the applied force Floop, is Be. The value of the line tension depends 
on whether the dislocation is edge or screw in character; in discussions of real materials, in 
which both types of dislocations contribute to deformation, the line tension of the 
dislocation type that appears to control the process is used. 

In order to calculate the critical resolved shear stress, most models assume isotropic 
elasticity and a Poisson's ratio of zero. The line tension is also assumed to be constant 
along the length of the bowing dislocation. Essentially all of the analytic and computer 
simulation solutions to this model lead to an equation for the critical resolved shear stress 'C 

in terms of the dimensionless value 

(2) 

where b is the Burgers vector in the glide plane. The analytic solution for the critical· 
resolved shear stress is given by 

'C* = QB3/2. (3) 

The various solutions account differently for the statistical randomness of the array, 
resulting in values of Q between 0.7 and 1.0. 

Hanson and Morris (1975a) consider explicitly how the statistics of dislocation­
obstacle interactions along the dislocation line affect the critical resolved shear stress. The 
distinguishing feature of the solution is that the dislocation is described in terms of its 
configuration, the unique set of pinning points along its length. The unit interaction is with 
the configuration rather than with isolated obstacles. In this representation, the critical 
resolved shear stress for an entire array is defined simply as the stress required to bypass 
the weakest point in the strongest line, or configuration, within the array. This solution has 
been used for both analytic and computer simulations of strengthening behavior in real 
materials (Melander and Persson, 1978a and b; Altintas and Morris, 1986a and b; Glazer, 
Edgecumbe and Morris, 1985). The Hanson and Morris solution for an infinite array leads 
to equation (3) above with a value of Q of approximately 0.9 for values of B less than 0.7. 
The solution also relates the critical resolved shear stress for a mixture of obstacles to that 
for identical obstacles .. The effect of a mixture of obstacle strengths is important in real 
materials and will be discussed in a later paper. 

n.2 The Effect of Dislocation Self-Interactions 

The term dislocation self-interaction is used here to describe the elastic interaction 
between different segments of a dislocation that is bowed about an obstacle so that the 
elastic strain fields of the segments overlap. If the arms of the dislocation bow toward one 
another, the interaction lowers the total line energy of the dislocation. This self-interaction 
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force is additive to the applied shear force and helps the dislocation to bypass the obstacle. 
The effect can be easily seen for the case of Orowan looping, which occurs when the arms 
of the dislocation are antiparallel. The force required to reach this condition if the 
dislocation bows in a circular arc is considerably greater than the force needed if the arc is 
distorted elliptically by the attraction between the bowing arms. Conversely, if the 
elliptically bowed arc that defmes the actual looping criterion is approximated by the 
circular arc assumed in most solutions for the critical resolved shear stress, then looping 
occurs before the arms of the dislocation are antiparallel. In the terms of the Hanson and 
Morris model, this effect can be described by a value of Be less than one. 

Bacon, et al. (1973) have quantified the effect of dislocation self-interactions on the 
stress for Orowan looping. They model their results for impenetrable obstacles by treating, 
them as penetrable obstacles in the constant line tension approximation. The model is most 
useful when the ratio of particle diameter to particle spacing is small. Bacon, et al. find an 
expression for the critical cusp angle for Orowan looping 

where 

Be = cos ('{I/2) = (In D+ 0.7) lin I 

D = [d-1 + l~l]el, 

(4) 

and d and I are,the average'particle diameter and spacing; respectively, expressed in units 
of the inner cutoff radius of the dislocation, which is on the order of the Burgers vector. 
Since point obstacles are in many ways the geometric equivalents of fully penetrable 
obstacles, Bacon et al. use this result to correct Be in some early solutions for the critical 
resolved shear stress of a random array of point obstacles. 

The same technique can be applied to modify the Hanson and Morris solution for 
dislocation self-interactions. Equating I to the mean square obstacle spacing in these units, 
Is/b, in equations (2) and (4) and comparing the resulting equation for the critical resolved 
shear stress to equation (3) leads to an expression for the line tension T 

T = (Gb2 I 41tK) In (Is I b). (5) 

where K is 1 for edge dislocations and (1 - v) for screw dislocations. It should be noted 
that this equation for the line tension differs from the standard form derived by deWit and 
Koehler (1959). The identification of variables within the logarithmic term is somewhat 
arbitrary. Since the line tension is not very sensitive to the exact values, the simpest 
possible choices have been made. When the obstacles are small and well-spaced, Be can be 
approximated by (In dIln 1). The values of B for precipitates that are still small enough to be 
shearable scale with Be. The remaining difficulty is assigning a value to Be. For 
impenetrable obstacles, Bacon et al. (1973) found that the value of Be increases as the ratio 
dll increases because the increased separation between the arms of the dislocation lessens 
the strength of their interaction. However, for penetrable obstacles such as the ordered 
precipitates in question here, the distance separating the arms will be considerably less than 
the diameter of the precipitate. An exact solution to this problem does not exist, but 
Hanson and Morris suggest that Be = 0.7, which implies d« Is, is a reasonable choice. 

1.1 
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For ordered spherical precipitates, these considerations lead to a relatively simple 
formula for the critical resolved shear stress. By analogy to equation (1), the precipitate 
strengths can be defined in terms of their diameters as 

(6) 

where Tloop refers to the sample for which d100p was measured and c is a constant. For a 
given material, the ratio of the line tensions reduces to a ratio of In (Is/b). The critical 
resolved shear stress can be written using equation (3) as 

1:. = O.9[Be( d / dloop )(TloopIT)]3/2 (7) 

where ,;. is defined in equation 4, T in equation 5 and Be is 0.7. This equation is precise if 
all the precipitate cross-sections in the glide plane have diameter d. In any real material, 
there will be a distribution of precipitate sizes and a distribution of cross-sectional diameters 
for each precipitate. The effect of this distribution is discussed elsewhere (Munjal and 
Ardell, 1976; Glazer and Morris, 1986; Glazer, 1986). -

Because the precipitates are ordered, matrix dislocations are coupled as 
superdislocations that are total dislocations in the precipitate crystal structure. For the L12 
structure, the dislocations are paired. Force balances for the ordered precipitate situation 
are given in the reviews by Brown and Ham (1971) and Ardell (1985). A simple pileup of 
two uncoupled dislocations doubles the applied stress on the obstacles (Friedel, 1964). 
When ordered precipitates are present, the antiphase boundary area between the two 
dislocations further increases the stress on the lead dislocation by an amount that depends 
on the configuration of the second dislocation as well as the first. The statistics of this 
interaction have not been studied. However, the strong line assumption predicts that the 
case in which the applied stress is least magnified (Le. by a factor of two), not the average 
situation, controls the critical resolved shear stress. Consequently,,;· (equation 7) should 
be divided by two to account for the effect of the superdislocations pairs on the critical 
resolved shear stress. 

Equations (6) and (7) were derived under the assumption of isotropic elasticity. 
This assumption is good for aluminum, but it is quite poor for nickel or iron. Scattergood 
and Bacon (1975) showed that the effect of elastic anisotropy on the Orowan stress could 
be modeled with reasonable accuracy in the constant line tension approximation by simply 
replacing the average values of G and v with the anisotropic values appropriate to the slip 
sys tern. For face-centered cubic materials, these are the values for {Ill} planes. 
Transformation equations to calculate G111 and vl11 from the cubic elastic constants clb 
c12 and c44 are given by Ardell (1986). 
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III. Determination of antiphase boundary energies 

TIll Relationship of the antiphase boundary energy to the looping diameter 

The minimum precipitate size at which Orowan looping occurs is directly related to 
the looping diameter. If self-interactions are neglected, the antiphase boundary energy is 
defmed by the simple force balance 

Floop = 2T' = dloop "I (8) 

where T' is the deWit and Koehler line tension and 1 is the predicted value of the line 
tension when self-interactions are neglected. In the terms of the modified Hanson and 
Morris solution described in Section II.2, the force balance is 

(9) 

For screw dislocations these relations imply that 

y = [0.7 / ( 1 + v )]1 (10) 

For a typical metal with a- Poisson's ratio near one.:third, equation (10) says that the 
antiphase boundary energy is overestimated by approximately a factor of two if self­
interactions are neglected. 

IlI.2 Sample calculations of the antiphase boundary energy 

One measure of the validity of the theory for the critical resolved shear stress given 
above is whether the antiphase boundary energies predicted by equation (9) are reasonable. 
Calculations for Ni3A1 and Al3Li are given below. Both of these coherent precipitates have 
sufficiently low misfit strains that it is reasonable to assume that most of the peak 
dislocation-precipitate interaction is due to the ordered structure of the precipitate. 

Ni3A1: Both Ni3AI and Ni3(AI,Ti) precipitates have been studied in Ni, Fe-Ni-Cr 
and Co-Ni-Cr alloys. The minimum looped diameter of the precipitates is 15 ± 3 nm 
(Raynor and Silcock, 1970; Thompson and Brooks, 1982; Munjal and Ardell, 1976; 
Chaturvedi, Lloyd and Chung, 1976). The variation in chemical composition probably 
contributes to the size of this range. Where the looping diameter was not explicitly 
measured, it has been estimated to be 1.5 times the average precipitate diameter when the 
strength began to peak. Previous work on the effect of the precipitate size distribution on 
the critical resolved shear stress suggests that perhaps 10% of the precipitates exceed the 
looping diameter at this point (Glazer and Morris, 1986). Measurements of precipitate size 
distributions in aluminum-lithium alloys by Gu. Lied1, Kulwicki and Sanders (1985) and 
in Ni-AI alloys by Munjal and Ardell (1976) suggest that about 10% of the precipitates are 
greater than one and a half times the average diameter. This argument gives an 
approximate value for the looping diameter consistent with those that were explicitly stated. 
The value of Is can be calculated using· the volume fraction (generally about 0.1) and an 
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average precipitate diameter of about 35 nm. Thompson and Brooks (1982) give an average 
value of the shear modulus, 73.9 GPa. The Burgers vector varies slightly with 
composition, but is about 0.255 nm. Edge dislocations apparently control deformation 
(Raynor and Silcock, 1970; Chaturvedi, et al. 1976; Ardell, Munjal and Chellman, 1976). 

Assuming elastic isotropy, the values above lead to a value for the antiphase 
boundary energy of 177 ± 40 mJ/m2. However, these alloys are anisotropic and this value 
should be improved if proper values of G and v are used. In their solution, Scattergood 
and Bacon assume that the elastic constants of the matrix and the precipitate are identical. 
However, it seems reasonable to assume that the exact solution for different elastic 
constants will be bracketed by the homogeneous solutions that assume the elastic constants 
of the precipitate and the matrix, respectively. Ledbetter (1984) gives the elastic constants 
for an Fe-Ni-Cr alloy similar to those studied by Raynor and Silcock (1970) and 
Thompson and Brooks (1982) at room temperature as cn = 2.07, c12 = 1.32 and c44 = 
1.23, all in units of lO11pa. Douin, Veyssiere and Beauchamp (1986) cite elastic constants 
for Ni3AI at 650°C: cn = 1.781, c 12 = 1.193 and c44 = 1.0232, also in units of 1011Pa. 
These values may be transformed to determine Gn1 and vn1. For "(-Fe, these are 48 GPa 
and 0.362, which lead to a value for "( of 93 ± 25 mJ/m2; for Ni3AI, they are 38.6 GPa 
and 0.404, and the corresponding value of the antiphase boundary energy is 112 ± 30 
mJ/m2, where the uncertainty comes from the error in the looping diameter. Averaging 
these values leads to a fmal estimate for the antiphase boundary energy of 102 ± 35 mJ/m2. 

Douin, et al. (1986) have probably made the best direct measurements of "(111 in 
Ni3AI polycrystals. These calculations are based on glide dissociation distances measured 
by weak beam transmission electron microscopy on isolated dislocations and include the 
effect of elastic anisotropy on the dislocation line energy. Their previous calculations that 
did not include the effects of anisotropy led to a value for the antiphase boundary energy of 
180 ± 30 mJ/m2 (Veyssiere, Douin and Beauchamp, 1985). The anisotropic calculations 
led to a revised value of 111 ± 15 mJ/m2• These values are extremely close to the values 
determined here of 177 ± 40 mJ/m2 (isotropic elastic constants) and 102 ± 35 mJ/m2 

(anisotropic elastic constants). While the extent of the agreement may be fortuitous, it does 
suggest that the antiphase boundary energy values predicted by analysis of the critical 
resolved shear stress given here are reasonable. It should be noted that numerous other 
values given in the literature calculated by a variety of methods are considerably higher than 
the anisotropic value of 111 mJ/m2 ; these range from 135 mJ/m2, which is reasonable, to 
380 m1/m2, which is not (see for example, Ardell, 1980; Raynor and Silcock, 1970; 
Singhal, 1971). 

Al3Li in AI: The looping diameter of the Al3Li precipitate in binary aluminum­
lithium alloys has been measured by a number of investigators (de Hosson, Huis in't Veld, 
Tamler and Kanert, 1984; Sainfort and Guyot, 1985; Miura, Matsui, Furukawa and 
Nemoto, 1985; Furukawa, Miura and Nemoto, 1985). A survey of the data suggests that 
the looping diameter is 50 ± 10 nm. However, these data are measured in alloys of widely 
differing mean square obstacle spacings, so Tloop must vary considerably. Since aluminum 
is nearly isotropic, average values of G and v of 30 GPa and 0.35, respectively, are 
reasonable. The Burger's vector is approximately 0.29 nm. In contrast to superalloys, 
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deformation in aluminum-lithium alloys appears to be controlled by screw dislocations 
(Miura et al., 1985; Huang and Ardell, 1986). The data are given in Table 1. Substituting 
these values into equations (5) and (9) lead to values for T and y for each case. Although 
the looping diameters are quite different, each data set leads to an antiphase boundary 
energy of -57 mJ/m2. The uncertainty on this value is approximately ± 15 mJ/m2. 

Most other values of the antiphase boundary energy for Al3Li have been calculated 
from dislocation pair spacings. These values range from 130 to 195 mJ/m2 (Sainfort and 
Guyot, 1985; de Hosson et al., 1984; Tamura, Mori and Nakamura, 1970; Huang and 
Ardell, 1986). However, Khachatwyan and Morris (1986) have shown recently that the 
antiphase boundary energy can be calculated from thermodynamic information to good 
accuracy. Their calculations, which are based on second near· neighbor interactions, predict 
an antiphase boundary energy of 77 mJ/m2, which is close to the value determined here 
from the looping diameter. This calculation should provide an upper limit for the antiphase 
boundary energy since it assumes perfect order in the precipitate and an infinitely sharp 
interface. A number of other theoretical calculations based on the order-disorder 
temperature that lead to different values of the antiphase boundary energy are discussed by 
Khachaturyan and Morris (1986). 

III.3 Discussion 

There has .been considerable controversy over the value of the antiphase boundary 
energy for both Ni3AI and AI3Li. The values determined here agree with two of the most 
recent calculations done by completely different techniques. This agreement lends 
credibility both to the antiphase boundary energies and to the assumptions of the basic 
theory. Since there are many other values in'the literature, itis.worth considering whether 
these values are physically reasonable. 

It has been known for some time that that antiphase boundary energy scales with 
the order-disorder temperature and that the order-disorder temperature must be less than the 
melting points of the pure components of the ordered phase. Thus, it would be very 
surprising if the antiphase boundary energy of Ni3AI did not significantly exceed the 
antiphase boundary energy for Al3Li. 

According to the analysis given in Section II, the numerical value of the antiphase 
boundary energy is strongly affected by the character of the dislocations that control 
deformation through the value of the line tension. In view of their common matrix and 
precipitate crystal structures, it seems surprising that deformation at room temperature is 
dominated by edge dislocations in superalloys, but by screw dislocation in aluminum­
lithium alloys; nonetheless, the experimental evidence seems relatively clear. A simple 
analysis suggests that since the critical resolved shear stress is proportional to the 
interaction force and inversely proportional to the dislocation line tension, deformation of 
an order-hardened alloy should be controlled by edge dislocations because their line 
tension is lower (Glazer, 1986). The reason for the behavior observed in aluminum­
lithium alloys is not known. If the assumption of screw control is incorrect, the antiphase 
boundary energy of Al3Li would be even lower. 

\.! 
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Finally, it seems appropriate to comment on the discrepancy between the antiphase 
boundary energies determined here from the minimum loop diameter and those determined 
from the dislocation pair spacing in underaged material. The pair spacing method has 
several drawbacks. It is generally assumed that the only important forces controlling their 
spacing are the repulsion between the dislocations and the attractive force from the 
antiphase boundary area between them. However, if this were the case the second 
dislocation should follow the contour of the lead dislocation, whereas transmission electron 
microscopic investigations suggest that the radii of curvature of the dislocations is different 
(De Hosson, et al., 1984; Furukawa, et al., 1985; Nembach, Suzuki, Ichihara and 
Takeuchi, 1985). These micrographs suggest that the second dislocation assumes a local 
strong line configuration. If this is the case, the dislocation pair spacing calculations leave 
out important forces that could significantly affect antiphase boundary energy predictions. 

Conclusions 

A modified version of the Hanson and Morris theory for the critical resolved shear 
stress has been developed that includes dislocation self-interactions and the effect of elastic 
anisotropy. The modified version can be used to predict the critical resolved shear stress of 
materials hardened by strong obstacles. For strong ordered precipitates, the theory predicts 
a simple relationship between the minimum looped precipitate diameter and the antiphase 
boundary energy. This relationship accounts for the effect of the mean square obstacle 
spacing on the minimum looping diameter through the dislocation line tension. The 
predicted antiphase boundary energies for Ni3AI of 102± 35 mJ/m2 and Al3Li of 57 ± 15 
mJ/m2 are in good agreement with recent determinations by other techniques. 
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Table 1 Antiphase boundary energies calculated from experimental data on binary 
aluminum-lithium alloys. 

Minimum Mean 
Reference looped Volume precipitate Is T Y 

0 diameter fraction diameter (nm) (JIm) (mJ/m2) 
(nm) (nm) 

deHosson et al 30 0.05 140 900 2.4 X 10-9 56 
(1984) 

Furukawa et al 25 0.18 80 275 2.0 X 10-9 57 
(1985) 

Sainfort and 17 0.25 11 35 1.4 X 10-9 58 
Guyot (1985) 

t 



Figure 1 The force the dislocation exerts on the obstacle is defined as 
F =" 2T cos ('P/2) where T is the line tension. 
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