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Abstract 

It is well known that the resonant tori of an integrable, classical Hamil

tonian system break up under a small perturbation into new tori which 

wind around the remaining nonresonant tori. It turns out that the 

Maslov indices of one of these satellite tori depend on the Maslov in

dices of its unperturbed, resonant parent, and on the integers which 

enter into the resonance condition. They do not, however, depend on 

the functional form of the Hamiltonian or the perturbation. Our results 

are valid for any number of degrees of freedom. 

PACS numbers: 03.65.Sq, 33.10.Cs, 42.10.Dy, 02.40.+m. 

Semiclassical quantization schemes require a determination of the Maslov in

dices, integers which characterize the topology of the invariant tori of integrable and 

near-integrable classical Hamiltonian systems. According to the Einstein-Brillouin

Keller rule, the Maslov indices determine whether the quantized values of the clas

sical actions are integral or half-integral: 
'. 

(1) 



Here Ik is the k-th action, and nk and J.Lk represent the corresponding quantum 

number and Maslov index, respectively. 

In recent years, many workers have applied semiclassical quantization tech

niques to regions of phase space surrounding a classical resonance.
1
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Such regions 

are populated by satellite tori which wind around the resonant parent tori. The 

quantum mechanical states associated with the satellite tori are of physical interest, 

but the resonance complicates the computation ofthe Maslov indices. In particular, 

caustic counts become difficult because of the distorted appearance of the satellite 

tori in the standard (q, p) coordinates. (Caustic counts are difficult in any case in 

more than two degrees of freedom.) 

In this Letter, we present a general formula for the Maslov indices of satellite 

tori surrounding an isolated, nonlinear resonance in a near-integrable system of any 

number N of degrees of freedom. These turn out to be simply related to the Maslov 

indices of the resonant parent torus. Moreover, the relation between the old and 

new indices depends only on the integers entering the resonance condition, and not 

on the functional form of the Hamiltonian or perturbation. Our results confirm 

formulas that have been proposed for systems of two degrees of freedom. 1,2 

Our calculation relies on a novel formula for the Maslov index, Eq. (2) below, 

which does not involve counting caustics. The ideas behind this formula originated 

in some topological observations of Arnold4 and Voros,s which one of us (R.G.L.) 

has applied to wave packet evolution. The derivation of this formula is based on 

wave packet ideas and is discussed elsewhere6
; here we merely explain what the 

formula means and how it may be used. 

We let (0, J) be a set of proper action-angle variables in ,some region of interest 

in phase space. (The designation "proper" is due to Born,7 and will be explained 

below.) We consider a closed contour r(.\) in phase space, where .\ is a parameter 

in the range 0 ~ .\ < 21r. The points of this contour have coordinates (0 (.\), J (.\)) ; 

we do not assume that r(.\) necessarily lies on a torus (a surface of constant J). For 

each point on r(.\), we construct the 2Nx2N matrix S(.\) = a(q,p)/a(O,J), which, 

being the Jacobian matrix of a canonical transformation, is a symplectic matrix. 

We only consider loops r(.\) for which S(.\) is defined; this excludes loops which 
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cross separatrices (where some Jk is discontinuous) or the surfaces of vanishing 

action (where some (h is undefined). The set of matrices S(.\), 0 ~ .\ < 271", can 

be thought of as a closed path in the space of symplectic matrices (Le. the group 

manifold Sp(2N)). This group manifold has a "hole" in it (its fundamental group 

is Z(l)), so every closed path is characterized by a winding number, representing 

the number of times the path goes around the hole. Then the Maslov index Jl, 

corresponding to the matrix loop S(.\), and thereby to the loop in phase space 

r(.\), is simply twice this winding number. We designate this relation by writing 

Jl, = 2 wn ( S ( .\ ) ) . 

In applications to quantization, the path r(.\) is usually obtained by letting 

some fh vary between 0 and 27r, while holding all other O's and all the J's fixed. 

(One can then set .\ = Ok.) The Maslev index obtained thereby is the Jl,k appearing 

in Eq. (1). We shall refer to this contour and Maslov index as being "generated 

by" the action Jk , since r(.\) in this case is the orbit in phase space generated by 

tr-eating J k as a Hamiltonian. As we shall see, however, it is sometimes convenient 

to consider more general paths r(.\), which are allowed by the definition above. 

We will actually compute the winding numbers of symplectic matrix loops 

by the following method. Consider a symplectic matrix loop of the form S(.\) = 
o(q(HPa)/O(qb,Pb), where (qa,Pa) and (qb,Pb) are any two sets ef canonical vari

ables (not just those used above). Define a complex NxN matrix M('\) by 

M(.\) = oqa (.\) _ i oPa (.\). 
oqb oqb 

(2) 

M(.\) is nonsingular whenever S(.\) is defined, so det M('\) is a nonzero complex 

number which executes a closed loop in the complex plane as .\ varies between 0 

and 271". Then it turns out that the winding number of S(.\) is the same as the 

winding number of this loop about the origin in the complex plane. The latter can 

be written as an integral via Cauchy's theorem: 

1 f d wn(S(.\)) = wn(detM('\)) = 271"i d.\ In detM(.\) d.\. (3) 

We require our action-angle variables to be "proper," which means that as the 

angles vary independently between 0 and 27r, every point on the torus J = const. is 

... ~. 
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accessed precisely once. This is an important issue, because the Einstein-BriIlouin

Keller quantization conditions are only valid for proper action-angle variables, and 

there are many instances in the literature where improper variables are used. How

ever, as was already known to Born,7 proper action-angle variables are not unique; 

they may always be subjected to a canonical transformation of the form J' = A -1.J, 

0' = A· 0, where A is an NxN matrix of integers with determinant ±1, and the 

tilde represents the, transpose. T.his is the same degree of indeterminacy in the 

choice of the basis contours on the tori, and therefore also in the Maslov indices. 

The topological definition of the Maslov index, as given above, has two conse

quences of importance to us. First, since the Maslov index is a topological feature, 

it is invariant under continuous deformations of the path f(A) in phase space, so 

long as the conditions of the construction are met. This means that f(A) cannot 

be allowed to cross points of phase space. where S(A) is not defined. Second, if 

SdA) and S2(A) are two loops of symplectic matrices, then the matrix product 

S(A) == Sl(>,)S2(A) is another such loop, and the corresponding winding numbers 

are related by 

(4) 

That is, when we multiply symplectic matrix loops, the winding numbers simply 

add. This is a standard result from the homotopy theory of topological groups, 

as applied to the symplectic group; and is easy to prove. These two theorems 

are examples of the kinds of manipulations one can carry out with the topological 

definition of the Maslov index, which would be difficult to apply to caustic counts. 

Let us now ·consider a near-integrable Hamiltonian H· = H 0 (J') + EH 1 (0', J'), 
expressed in terms of proper action.,.angte variables (O', J'), which has.an isolated res

onance at action values J' = J~. (The prime will be explained momentarily.) Thus, 

n' 'w~ = 0, where n' is a relatively prime integer vector, and w~ = aHo(J~)/aJ'. 

(A relatively prime integer vector is one which collectively has no common divisor.) 

Under a canonical transformation to new proper action-angle variables, J = A· J', 

o = A - 1,0', the frequency and integer vectors transform according to Wr = A - I·W~, 
n = A . n'. We claim it is always possible to find a unimodular matrix of integers 

A such that the new integer vector n has the form (1,0, ... ,0). 

(; 
01 

J 
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We prove this by induction on the number of degrees of freedom, N. The 

statement is trivial for N = 1. We assume it is true for N - 1. Let g be the 

greatest common divisor of (n~, ... , n},,). Then (l/g)(n~, ... , n},,) is a relatively 

prime (N - I)-vector of integers, so by the induction hypothesis, there exists an 

(N - 1) x (N - 1) unimodular matrix B which maps this (N - I)-vector of integers 

into the (N -I)-vector (1,0, ... ,0). Now define the NxN matrix A2 by its partition 

according to N = 1 + (N - 1): 

Then A2 ·n' = (n~,g,O, ... ,O). But n~ and g are relatively prime, since n' overall 

has no common divisors. It follows by an elementary theorem of number theorl 

that there exist integers rand s (which can be calculated by Euclid's algorithm) 

such that rn~ + sg = 1. ·We use these integers to define another NxN matrix Al 

by its partition according to N = 2 + (N - 2), 

and we set A = A I A2. Then A is unimodular and A·n' = (1,0, ... ,0), as claimed. 

Thus, if we begin with variables (6', J'), we can always switch to new variables 

( 6, J) such that at the resonant values of the actions for the un perturbed Hamil

tonian, J = I n the first component of Wr vanishes, Wri = 0. Furthermore, the 

Wrk, for 2 ~ k ~ N, are rationally independent, because we assume the resonance 

is isolated. (Otherwise, we would have chaos, and no tori.) The invariant tori of 

the unperturbed Hamiltonian are given by either J' = const. or J = const.; we 

denote the Maslov indices generated by these actions by 1" and 1', respectively. As 

is apparent from Eq. (1), the Maslov indices transform like the actions, so we have 

I' = A . 1" 

We now consider the effect of the perturbation. First, using standard resonant 

perturbation theory,O we average over the variables (02 , ••• , ON) to get a Hamilto

nian of the form H = Ho(J) +€Kl(J, 01), in which only the angle 01 is not ignorable. 

.; .~ 
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In the usual way in the analysis of resonances,!> we treat J - J r as 0(10 1/ 2 ) and 

expand H through 0(10), dropping constant terms, to get a Hamiltonian of the form 

where U(Ot} = K 1 (Jr ,Od and Dkl = 8 2 Ho(Jr)/8Jk8J,. This is an integrable 

Hamiltonian, and its action-angle variables describe the satellite tori whose Maslov 

indices we seek. However, since the Maslov indices are constant inside separatrices, 

it suffices to examine only, those tori very close to the stable fixed points of the 

(0 1 , Jd motion, where U'(Od = o. Usually there is only one such stable fixed 

point (since the resonance integers are n = (1,0, ... ,0)) and we take it to occur at 

01 = O. We expand U(Od about this point to get the harmonic oscillator potential, 

EU"(O)0I/2. 

It is then easy to transform this Hamiltonian to action-angle variables. We 

denote the canonical transformation by (0, J) -4-(4), I); it is generated by 

F(O,I) = 0· (I + J r ) + ie1 
da h/20I1 - 02a2 - d· II Du], (5) 

where 0 2 = EU"(O)/ Dl1 and dk = D1k. It is straightforward to show, by using 

Arnold's construction,lO that the variables (4), I) are indeed proper. The satellite 

tori are given by 1= const., and we denote the corresponding Maslov indices by v. 
The Hamiltonian is a function only of I in the new coordinates, but, since we do 

not need it for subsequent work, we will not display it. 

It turns out, for k #1, that the new Maslov indices l/k are the same as the old 

ones, J.Lk. To see this, note first that the contours generated by the Jk are the same 

as those generated by the h, since Eq. (5) gives us Jk = 8F/80k = h + Jrk for 

k =1= L (That is, Jk and ,h, treated as Hamiltonians, have the same orbits in phase 

space.) This does not mean that the loops of symplectic matrices are the same, 

for we have J.Lk = 2wn(8(q,p)/8(O,J)) and l/k = 2wn(8(q,p)/8(4>,I)). (Different 

sets of action-angle variables are used in the two cases, even if the phase space loops 

along which the Jacobians are evaluated are the same.) However, by using the chain 

rule and Eq. (4), we can write 

[
8(q,P) 8(0,J)] [8(q,P)] [8(O,J)] 

l/k = 2wn 8(O,J)· 8(4),1) = 2wn 8(0,J) + 2wn 8(4),1) . (6) 

l 
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The first term on the right is simply J1.k. As for the second term, we apply Eqs. (2,3) 

to the canonical transformation generated by Eq. (5), and find, after a short calcu

lation, 

d ( 
ao 0 aJ) (2i; ( A.. on· A..) 

et a<jJ- t a<jJ = V n cos 0/1 + t sm 0/1 • (7) 

But <Pl and 11 are constant along the orbit generated by h or Jk for k i= 1, so the 

second winding number is zero. Thus we obtain 1/k = J1.k, as claimed. 

As for 1/1, Eq. (6) is still valid with k = 1, but the loop in phase space along 

which the Jacobians are evaluated is now an orbit generated by 11 • This is no 

longer one of the basis contours on the parent torus (it does not coincide with the 

orbits generated by any of the Jk ), so the first winding number on the right can 

no longer be related to any of the J1.k. In fact, it vanishes. To see this, express the 

orbit generated by 11 in the (<p, I) coordinates (which is easy, since only <Pl is not 

constant), and use the canonical transformation generated by Eq. (5) to convert to 

the (0,.1) coordinates. One can then easily show that this loop can be contracted 

to a point without crossing any point where a(q,p)/a(O,.1) is undefined. Therefore 

the first winding number is zero. The second winding number on the right in 

Eq. (6) can be computed, again, by appeal to Eqs. (2,3,7). Now, however, <P1 is 

not constant, but rather ranges from 0 to 21r. As it does so, the indicated complex 

number encircles the origin once. Therefore the second term in Eq. (6) is 2, and, 

altogether, we have 1/1 = 2. 

To summarize, we have shown that in the appropriate coordinates, one of the 

Maslov indices of the satellite tori is 2, and the others are the same as those of the 

resonant parent. We have also shown explicitly how to find these special coordinates. 

To illustrate these results, we consider the 1 : 1 resonance in the water molecule, 

in the model which has been studied by Sibert et al. 11 and others. In this model, 

the water molecule consists of two coupled one-dimensional oscillators, which, if the 

coupling can be ignored, have Maslov indices 1-" = (2,2). Near the 1 : 1 resonance, 

however, there are satellite tori. The integer vector for this resonance is n ' = (1, -1), 

which is mapped into n = (1,0) by the unimodular matrix, A = (~ ~) , so that 

I-' = (2,4). Therefore the Maslov indices of the satellite tori are v = (2,4). More 
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generally, it is easy to show that an n : m resonance in such a system gives satellite 

Maslov indices of 11 = (2, 2(n+m)). This confirms the suggestions made by DeLeon, 

Davis, and Heller l and Ezra and Martens.2 
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