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Description of Beam Position Monitor Signals with 
Harmonic Functions and their Taylor Series Expansions 

Klaus Halbach 
Lawrence Berkeley Laboratory 

University of California 
Berkeley, CA 94720 

Abstract 

LBL-22840 

Under most circumstances, appropriately processed signals from electric or 

magnetic beam sensing systems can be described by the real or imaginary part 

of the Taylor series expansion of an analytical function of a complex 

variable. This description can provide very good understanding of such 

signals and can be used to great advantage for the design of beam position 

monitor systems. 

1) Introduction 

Proper functioning and use of beam position monitors CBPM) are clearly of 

c.rucial importance for a number' of acce·lerator systems·, and the 1-2 GeV 

Synchrotron Radiation Source to be> built at lBl is· no exception. Trying to 

understand the consequences of tolerances on the beam location derived from 

signals obtained from the BPM that we intend to use on that machine, it 

developed that in addition to ideas developed for BPM analysis by other 

workers (see, for instance, References 1 through 3), methods that are 

regularly used in other fields (for instance, accelerator magnet technology) 

can be used very successfully in work on BPM. This paper represents an 

attempt to describe the application of these methods to the design and 

performance analysis of BPM. Trying to provide information to readers with a 

wide range of interests, both magnetostatic (MS) and electrostatic (ES) 

sensors will be discussed, but emphasis is on the latter type since that is 

the type of sensor we intend to use 1n our machine. Since it is the main 

purpose of this paper to explain the basic concepts, the details of the ES BPM 

system are explained only to the extent necessary to illuminate the 
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application of the general theory to a non-trivial system and to demonstrate 

some useful techniques for the design of BPM. In order not to get lost in 

careful formulations of all possible generalities, I restrict the detailed 

discussions in this first paper intentionally to the treatment of a fairly 

simple beam: all particles in the bunch' have straight trajectories that are 

parallel to each other and parallel to the BPM symmetry axis, if such a 

symmetry axis exists. Signals from skew trajectories and other 

generalizations will be described in a follow-up paper. 

2) Properties of BPM Signals 

2.1) Motivation for Development of Stationary Signal Description 

In many cases, BPM are used to diagnose highly relativistic beams of 

electrons. For the purposes of this discussion, I assume that I am dealing 

with a filamentary beam of electrons of uniform particle density in the 

longitudinal direction and of length L. Understanding the signals induced in 

the ES or EM sensors seems to be made very difficult by the radio frequency 

(RF) fields that are produced in the duct by the two ends of the bunch. One 

particular property of these fields is· easy to understand if one represents 

the bunch of length l by linear superposition of a semi-infinite bunch of 

electrons, followed. by a semi-infinite bunch of positrons that is axially 

displaced by L Looking separately at the. fields produced by the two' 

semi-infinite bunches, the.front'end:of the electron beam produces RF fields 

first. After the front end1s well past the BPM section and the-RF fields 

have decayed, what is left are the DC fields associated with the charge and 

current of the electron beam. It is clear that the positron beam produces 

exactly the same fields, except the polarity is reversed and the positron 

fields are delayed by L/c. If one integrates over time the charge induced on 

• 



-3-

the electrode of an ES sensor, or the flux induced in the pick-up coil of an 

MS sensor, and integrates until all fields in the BPM section have 

disappeared, one will obtain the difference in the "static" signals due to the 

displacement between the electron and positron beam. From this discussion it 

is clear that it is true, in general, that integration over the signals 

produced by any beam from the time before the fields "arrive" at the sensor 

until the bunch is well past the sensor and all fields have decayed, contain 

the ·static" contributions and nothing else. By performing this integration 

one obviously gives up all information about the particle distribution in the 

axial direction. If that information is of great importance, one could get it 

preferably by a monitor that is optimized for this particular use or by using 

the BPM sensors with different processing of the primary signals. I assume 

here, and throughout this paper, that I need lnformation about an individual 

bunch. If averaging over many bunches gives adequate information, the signal 

processing is obviously greatly simplified. 

The signal seen by the MS system is the magnetic flux intercepted by the 

magnetic pick-up system. Since this flux itself has to be obtained by 

integration over the induced voltage, the MS system actually requires two 

integrations over time, while the ES system requires only one integration of 

the open circuit voltage over time. More details about implementation of 

these integrations will be given in Section 5. 

2.2) Stationary Signal Prope·rties Produced by a Filamentary Bunch 

Equations (1) and (2) are the Maxwell equations that, together with the .. 
• boundary conditions and the current density j(x, y, Z, t)4 and charge 

density p(x. y, Z, t) of the bunch, determine the signals induced in the 

sensors. 
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-+ -t> -t> -t> 

curl H = j + &O/&t div H = 0 (1 ) 

-+ ~ ~ 

curl D = -~o£o&H/&t div D = p (2) 

Since I am interested in the time· integrated flux or charge "seen" by the 

sensor, and:since I amrdealing with a~linear system-of differential equations. 

I can integrate Equations (1) and (2) over time before I solve them. Doing 

this, starting the integration' before the fields arise and continuing until 

they have decayed. I get 

-+ ~ -+: 
curl H = ~ . 

• dh H = 0 

~ ~ 

curl D = 0, : div D = e" 

with the underlined symbols indicating quantities that have been integrated 

-t> 

over time. This means in particular that 1 and e are now non-zero over the 

(3) 

(4) 

whole t'rajectory of the bunch. The simplification due to the integration over 

time ;s very significant. One is dealing now with time independent equations, 

and to get the signal induced in the MS sensor, one has to solve 

only Equations (3), while the ES sensor signal is obtained from the solution 
~ 

of Equations (4). It is assumed throughout that on the surface of the duct. 0 
~ , 

is perpendicular to that surface, and H is parallel to it. Instead of solving 

Equations"(3) and (4) directly for thetime~integrals over the~induced· 

.' 

• 

• 
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flux/charge, I prefer to get that information by using reciprocity 

relationships, since that gives much more insight. 

Dealing first with the magnetic pick up, one can show that the time 
... 

integrated flux! induced by a filamentary 1 into a pick-up coil is given by 

the following volume integral: 

... ... 
• = fAJ . 1 dv/loo (5.1) 

... 
In this equation, AJ is the vector potential produced if the current 100 flows 

through the pick-up coil, and this nreciprocityA interpretation of the Green's 

... 
function AJ is of great advantage both for understanding this equation as well 

... 
as manipulating and using it. The generalization to non-filamentary j will be 

... 
discussed in Section 2.3. Realizing that j integrated over time and (infinitesimal) 

cross section equals the charge Q in the bunch, and indicating by AJ the 
... 

Z-component of A
J

, the volume integral in Equation (5.1) yields 

(5.2) 

For the ES sensor, one obtains a similar expression, with an equivalent 

reciprocity interpretation: If one puts the pick-up electrode on the scalar 

potential Voo ' with the rest of the duct surface being on zero potential, 

one can calculate the scalar potential V3 everywhere inside the duct. The 

time integrated charge ~ on the electrode is then given by 

(6.1) 
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Realizing that p integrated over time and infinitesimal cross section equals 

the charge Q in the bunch divided by the velocity c with which the bunch 

moves, gives 

(6.2) 

That equations. (5) and-(6) are'va~id f6r-a relativistic beam"is a very 

remarkable fact: While V3 (x. y, Z) describes indeed the signal "seen'l by 

the sensor when a stationary or slowly moving electron is at location Z. this 

is not so for a relativistically moving electron or bunch: Because of the 

Lorentz contraction. the region of the duct that experiences first hand fields 

(as distinguished from excited RF oscillations) produced by a' bunch is 

essentially not longer-than the bunch itself. Considering the fact that" these 

RF fields can·be incredibly complex even for simple changes in duct 

crossection._ Equations (5) and (6) cantbe~viewed as rather- remarkable. 

conservation laws. 

In Equations (5) and (6) the subscript 3 has been used to indicate 

explicitly that the potentials A3 and V3 are functions of the three space 

coordinates x, y, Z. Since one can assume without loss of generality that 

... 
div A~ = 0, not only V3-but also A3 satisfies the--three-dimensional (30) 

Laplace equation~ Since the-integrals over Z go from a field-free region to a 

field-free region. these integrals are functions of the locations x, y of the 

bunch only and satisfy the two-dimensional (20) Laplace equation and. as a 

consequence. ! and g satisfy the 20 Laplace equation as well. Therefore, 

the study of the Z-integrals of A3 and V3 contain the whole information 

.' 
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required for! or g, except for obvious amplitude multipliers like Q, Q/c. 

For that reason, below I deal with the integrated potentials, making the 

description of the· needed information easier. 

Turning again first to the MS case, I call the integrated vector potential 

A3, normalized in any convenient way, A{x,y}. Since it is invariably much 

easier to work with a harmonic function when one adds to it, with the 

appropriate factor +i or -i, the harmonically conjugate function, we do that 

here also. If V is the harmonically conjugate function to A. I define as the 

complex potential 

F{z} = A + i V . , z = x + i y 

Looking, at the 20 field components Bx' By associated with A and also 

inspecting the expressions when Bx' By are derived from a 20 scalar 

potential, it turns out that V in Equation {7.1} is that scalar potential. 

Representing the 20 magnetic field vector B by the complex number 

B = Bx + i By' it also follows that 

B* = 1 dF/dz 

Throughout this paper, the * indicates the complex conjugate of a complex 

quantity. 

{7.l} 

(7.2) 
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Proceeding similarly in the ES case. but making for that case the 

potential V the imaginary part of the complex potential. we get again Equation 

(7.1). and E = Ex + i Ey is obtained from 

E* = i dF/dz 

By describing the potentials of interest in this way, we need to study 

only one function F(z). but know that for the signal received by the MS 

sensor. we deal with the real part of F(z). Re F(z), and for the ES sensor 

signal. we have to look at the imaginary part of F(z). 1m F(z). 

(7.3) 

Since the real/imaginary part of F(z) describes the signal received by a 

sensor. but can also be. looked upo.n as the potential p.roduced by the sensor if 

excited as described above. in. the formulation of the reciprocity principle. I 

use these two ways of interpretation interchangeably despite the fact that the 

actual excitation of the electrodes never takes place (except possibl~ for 

model measurements). 

The determination of the location z of the beam is obviously simplified if 

the F(z) produced by a particular sensor is a nearly linear function of z. 

implying nearly homogenous fields in the region of interest. For that reason. 

I use the same .. mathematicaJ technique that has proven to be so useful in 

similar circumstances, namely the· analysis/design of 20 magnets: 

F(z) in a Taylor-series 

F(z) = LC zn 
o n 

I expand 

(7.4) 

;i') 
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2.3) Effects of Finite Transverse Beam Size 

So far, it has been assumed that the beam has an infinitesimally small 

cross section. The generalization to a transverse charge/current distribution 

p(x,y) (normalized so that fp(x.y) dxdy = 1) is clear from the content of 

Section 2.2 and Figure 1: One has to replace F(z) by 

G(z) = jF(z + w) p (u, v) du dV, with w = u + i v ( 8) 

In this expression. z indicates the location of the center of an appropriately 

defined coordinate origin of the distribution function p. Using Equation 

(7.4) for F in Equation (8), one obtains after some manipulation 

G(z) = Ean zn (9.') 

Pm = fp(u.v) wm du dv (9.3) 

The origin of the w-system is chosen such that P, = O. In Section 2.4 the 

expression for the moments Pm of a number of distributions p are given. In 

all cases, it is assumed that the u-axis is parallel to the x-axis. If the 

p-distribution is rotated by the angle y. each Pm has to be multiplied by 

exp(imy). 

Trivial as it may seem. I want to emphasize that Equations (9) apply also 

to ·signals" that are weighted sums of signals from different sensors. As 

mentioned at the end of Section 3.2. this can lead to terms in G(z) that are 

absent when one is dealing with a filamentary beam. 
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2.4) Moments Pm of Specific Distribution Functions p 

Since 1 want to point out only a few somewhat surprising properties of 

distribution functions, 1 restrict myself to distribution functions that 

satisfy the condition p(-u. -v) = p(u, v). Therefore, all p = 0 when m 1s m 

odd. Conversely. whenever for odd m ~ 3. Pm rA 0 are found, the 

distribution function is not invariant under rotation by •. 

2.4.1) P2m for p = const Within a Rectangle, p = 0 Outside Rectangle 

With the notation of Figure 2, one obtains 

r2m 
P2m ... 1 

(m + 1)(2m + 1) 

• sin (m+l )"1) 
5in(0,1 ) 

l.4~2) P2m' for p = canst-Within an- Ellipse; p =-0 Outside Ellipse 

With the" notation of' Figu~e 3 p one~ obtains, 

(10) 

(11 ) 

The second expression in Equation (11) is quite accurate for m ~ 3, and is 

given only to make (somewhat academic) comparisons easier. 

2.4.3) P2m for p = Bi-Gaussian Distribution Inside an Ellipse, p=O Outside 

that Ellipse 

In this case, the distribution function is given by 

p = 0 222 for (u + v Ie ) 

< x2 
1 

2 
> X 1 

(12.1) 
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one obtains 

(12.2) 

(12.3) 

with 

(m, xl)! 

x 

= / ' e-x xm dx 
o 

(12.4) 

2.4.4) Discussion of the'Distribution Moments P2m 

A) Of the moments give.n above, only the ones for the rectangle provide 

information about both major dimensions of the beam cross section. For the 

other two, only one quantity, namely x~(l-c2), can be extracted. 

B) P2m = 0 in Equations (11) and (12) for c = 1. These are special 

cases of the general theorem, following directly from Equation (9.3). that for 

any axisymmetric distribution, all Pm = 0 for m > O. One should notice 

that both this statement, and the ones made above (A), are independent of the 

method one chooses to describe the sensor signals. 

C) letting (X1/Xo)2 in Equations (12) be reasonably large. it is 

interesting to note that until m is of order (X1/Xo)2. P2m grows with 

m likelln (m-l)! for the bi-Gaussian distribution. while it goes down like 

11 m (m+1) for the elliptical hard edge distribution, showing the great 
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importance'of the tails of the bi-Gaussian distribution. When m gets large 

enough, the hard edge cut off of the bi-Gaussian makes itself felt and 

ultimately its P2m behaves similarly to P2m for the elliptical hard edge 

distribution. While all of this is somewhat academic, considering the 

difficulty to measure P2m for large m, it still gives some insight, into what 

might happen under extreme circumstances, and it allows one to estimate the 

value'of higher'order P2m if'onlY'P2' or P2 and P4' have been measured. 

3) Some<Guidelines·for the Design of Ducts and Sensors 

The main information one wants to obtain from a BPM are the coordinates 

x,y of the beam centroid. In addition, one usually does not know the charge Q 

in the bunch, so that one needs at least three sensors to determine x. Y, Q. 

While these three sensors are sufficient in principle to get the desired 

information when the beam size effects are small enough or known, one usually 

employs four sensors. This provides some redundancy. and I assume below that 

at least four sensors are used. 

3.1) Consequences of Sensor Geometry Errors 

Figure 4 shows schematically a pick-up electrode for an ES sensor system. 

The solidly drawn line shows the electro~e as it is supposed to be located. 

The dashed line shows the actual surface of the electrode due to an 

installation error, and I want to know how that affects the performance of the 

sensor. To get that information, I use the reciprocity principle and 

determine the errors in the potentials produced by the electrode when it is 

put on a potential. In order to get an understanding of the changes in 

potentials in the duct, I imagine the surface charges on the electrode to be 

separated from the metal and remove the metal down to the dashed line. Since 

the charges were kept 1n place, no change in potentials occurred. As the last 

step. I remove the charges that were "left behind" (or put charges of opposite, 
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polarity there), and the resulting changes in potential are exactly the 

potential changes due to the movement of the electrode. It is clear that 

there will be, as a consequence, also mirror charges on the electrode surface, 

so that the net effect is essentially the same as an electric dipole located 

on the surface of the electrode, and one can show that this is essentially 

equivalent to a change in sensor sensitivity. Since the associated dipole 

moment is proportional to the charge on the moved surface, it is clearly 

advantageous to not make that charge larger than necessary. Figure 5 shows 

the charge on the surface of the circular electrode as a function of the ratio 

of the dimensions r2 and r1 shown in Figure 4. It is clear from that 

graph that one should not make r2/rl much smaller than 1.1, and that 

conditions do not improve sign1fic.antly if one makes r 2/r1 substantially 

larger. One can draw from this consideration also two other conclusions: A) 

One may reduce the sensitivity to the uf1ushness· of the electrode with the 

duct wall significantly if one breaks up the electrode into a number of rods 

so that most electric field lines end on surfaces that are perpendicular to 

the wall surface; and B) Sensitivity to deformation of the wall is greatest 

where, upon excitation of a sensor, the wall has the largest electric field. 

The same logic can be applied to a magnetic pick-up strip. Figure 6 shows 

schematically a cross section of a duct and a magnetic pick-up conductor. The 

conductor has no sharp edges to avoid large magnetic fields on the surface. 

It is interesting to note that most of the region of the largest surface field 

is close to the wall and, in a sense, shielded from "view· of the beam. 

: .. ~ 
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3.2) General Symmetry Properties of BPM Systems 

Symmetry properties of BPM systems have the consequence that simple 

relations exist between the expansion coefficients associated with the 

individual sensors. Because of these relations, certain combinations of 

signals (for instance the·sum of all signals, needed to find the charge in the 

bunch) are described by Taylor series expansions with some expansion 

coefficients being exactly zero and/or'coefficients having distinct and 

predictable phase angles. Two kinds of symmetry are possible: 1) invariance 

of the geometry of the system to rotation by an angle 2~/M (M usually equals 

an even integer; the lowest nontrivial order with M=2 in the case of the 

system shown in Figure 1), and 2) mirror symmetry with respect to one or more 

axes (namelY,the x-axis and y-axis of the system shown in Figure 1). Systems 

often have both symmetry properties simultaneously, but anyone of the two 

conditions may be satisfied alone, i.e. without the other being valid. 

In case of rotational symmetry, it is easy to show that if Cn are the 

expansion coefficients associated with the reference sensor, then the 

coefficients Cn(m) associated with a sensor at the location rotated by 

m-2./M relative to the reference sensor are given by: 

(13) 

As a consequence, the sum of all sensor signals- is then given by the real or 

imaginary part of 

F(z) = M· E C zM" 
n=O Mn 

(14.1) 
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If M is even and one takes the sum with alternating signs. one gets 

F(z) = M· 1: C • zMn+M12 
n=O Mn+M/2 

Equations (23.1) and (23.2) in Section 4.3.1 are a direct consequence of 

Equation (l3). Equation (23.3) describes the relationship between the 

(14.2) 

expansion coefficients of an ES sensor system that has mirror symmetry with 

respect to the x-axis. 

The fact that the complex potentials given by Equations (14) have a much 

smaller number of terms than normal is, as such, not a strong motivation for 

wanting a high degree of rotational symmetry: Having this mathematical 

description of BPM signals, it is fairly easy to obtain values for all 

relevant coefficients Cn• Reducing the number of relevant coefficients 

therefore reduces under most circumstances only the computational effort 

needed to obtain the values for the desired quantities (such as x, y, Q). 

That reduction of computational effort is not important unless one has to 

obtain the final answers very fast in order to perform tasks like applying 

real time corrections. However it is clear that the absence of certain 

harmonics or the exact phase of the coefficients is disturbed when one is 

dealing with a non-filamentary beam that does not have the same symmetry 

characteristics as the sensor system, thus leading to easily identifiable 

signal properties from which one can draw conclusions about beam 

characteristics. In fact, this is often the only reasonable way to get 

specific pieces of information. 
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While it is therefore true that in many cases it is advantageous to have a 

sensor system with the highest possible degree of symmetry. one has to be 

careful not to accept this principle without a very careful examination of all 

details of a specific system. In Section 4.3.3 a detailed set of 

circumstances is discussed where one needs to deliberately destroy symmetry 

properties in order to be able to determine x. y. 

The reason for this cautionary note is the fact that BPM have to meet a 

bewildering variety of conditions and requirements, as the following 

incomplete list of double choices indicates: 

o Distribution function moments Pm have (no) effect on the determination 

of x, y, Q. 

o Q is (not) known from other diagnostic devices. 

o. The phases of the Pm' i.e. the orientation of the density distribution, 

are (not) known. 

o Pm=O (~O) for odd m. 

o Knowledge of Pm is (not) required. 

o Other overall system requirements (e.g. vacuum system) do (not) impose 

severe restrictions on duct geometry. 

o Moving the beam from one known z to another is (not) permitted. 

o (No) more than 4 sensors can be placed in duct. 

o 2D geometry, as defined in Section (4.1), can (not) be implemented. 

o Averaging over many bunches is (not) adequate. 

To complicate matters a little more, the set of restrictions and 

requirements will be different during primary machine use than during machine 

improvement time. 
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3.3) The Importance of Correct Gains 

The sensor location error discussed in Section 3.1 is equivalent to an 

overall gain error in that channel. To show how important correct overall 

gains are. I take the difference between two signals coming from two sensors 

whose angular positions are ~ apart in a four-fold symmetry system, and I 

take only the dominant. namely linear, term. I get 

AS ~ 2 a, z 

The consequence of having one gain being off by the relative error c is 

equivalent to adding to the right side of Equation (16) cao' which cannot 

be distinguished from a small beam displacement of order c ao/(2al ). 

3.4) Preferred Location of ES Sensors 

(16) 

Systems that do not have a high order of symmetry have to satisfy, aside 

from orientation. some sensor location requirements to function properly. 

Figure 1 shows a cross section of a duct with a geometry that is invariant to 

rotation by the angle •• and has two symmetry planes. Shown is also the 

location of ES sensor 1. and the other three sensors that I always assume to 

be located symmetrically as shown. It is qualitatively clear that if sensor 1 

is placed close to the right corner of the duct (and the other sensors placed 

accordingly). one will get very poor information about the y coordinate of the 

beam center. Similarly. if sensor 1 is placed close to the toP. the x 

coordinate of the beam center will be poorly known. To give a good , 

understanding of these matters, I want to formulate these facts quantitatively 

for this simple case. 

, , 
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If I take the difference 5, between the signals from sensors 1 and 39 I 

clearly get no signal if the beam center is at x = y = O. Taking only the 

dominant linear term into account p I get 

... ... 
51 = a· ~ . r ( 17) 

when the beam center is at location (x, y). if I call the Z-integral over the 

.. 
"reciprocity· field ~, and if I absorb all other factors in a. 

magnitude Eop and forms the angle l' with the x-axis p I get 

5, = a E (x cos- y + y sin- y)' o 

Because of 'symetry, I get from sensors 4 and 2 

54 = a Eo (x cos y - y sin y) 

If E has the -

(lB.l) 

(18.2) 

I assume now p for simplicity's sake, that I know the charge Q in the bunch, 

either from suming all four signals, or some other source. Consequently. the 

constant a is known in addition to 5, Eo and y, and I get for x and y 

x = 5, + 54 
2a Eo cos l' 

y = 5, - 54 (19 ) 
2a Eo sin y 
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Because in Equation (19) the sums and differences of measured quantities occur 

that are "afflicted· with statistically independent measurement errors 

AS1, AS4, the errors of the so determined values of x and yare 

proportional to l/cos y and l/sin y. If the required accuracy of the x 

and y determination is about equal, y should therefore not deviate 

significantly from ~/4. 

4) 20 Systems 

4.1) Advantages of 20 System Geometry 

Everything discussed in the above sections is valid for 3D geometry, 

including the statements (and consequences) that the integrals in the axial 

direction of the 3D potentials satisfy the 20 Laplace equation. 

Unfortunately, calculating these 3D potentials and/or these integrals is not 

easy in 3D geometry. If, however, one is dealing with 20 geometry in the 

sensor region and its immediate vicinity. these integrals can be obtained 

directly by solving the laplace equation in 20 geometry either with conformal 

mapping techniques (as shown below) or 20 computer codes such as POISSON. By 

"immediate vicinity" is meant that the duct cross section should not change 

(i.e., should be 20) over a total axial length that is not less than about 

three times the characteristic transverse dimension. The reason for this is 

the fact that "reciprocity" potentials produced by excited sensors decay in 

the axial direction by at least about a factor 100 every time one advances 

axially by a distance equal to the transverse dimension. 

The simplifications associated with 20 geometry are so enormous both for 

thinking about the sensors as well as performing computations that it is 

worthwhile to go to great lengths in order to achieve 20 conditions with 

reasonable validity. While 20 conditions require only that non-protruding 

pick-up electrodes are flush with the duct surface, conditions are more 
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difficult for magnetic pick-up loops or protruding pick-up electrodes. For 

instance, since one usually prefers not to have pick-up loops protruding into 

the essential duct volume, one often increases the duct cross section to 

accommodate the sensor. In order to achieve 20 conditions, one should extend 

this enlarged cross section over a sufficient axial length. If the pick-up 

conductor has such a cross section and orientation to modify significantly the 

field produced. by the beam to be used, one should have identical dummy 

conductors adjacent to both axial ends of the sensor, and they should extend 

over the whole length of the 20 cross section. 

4G2) Relationship Between 20 Potentials and line Integrals over Potentials 

Produced by a Short Sensor 

·In .the followi,ng.dls.cussl,on _1 keep.x" y fixed, .but the res.ult . .holds· for 

every value of x, y, with appropriate values for Vo derived from the complex 

potential for every x, y. 

In 20 geometry, let the value of the potential at location Z. dv(Z). 

produced by a sensor of length dZo at location Zo' be given by 

I then get for an infinitely long sensor 

GO 

ff(Z -Zo) dZo -GO 
(20) 
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and this is, of course, the potential Vo obtained from a 20 calculation. 

For a sensor extended from Zl' to Z2' I get 

l1li 

(21 ) 

The value of v = fv(Z) dZ is obtained from Equation (21), and one gets after 
-l1li 

exchanging the order of integration: 

}2 l1li 

v = '- Jf(Z - Zo) dZ dZo Z -l1li . 1 

With Equation (20), this becomes 

(22) 

.:i. •. e4,.,the line integral over the,potential .equals the 20 potential produced by 

an infinitely long sensor, multiplied by the actual length of the sensor. The 

effects of sensors like round electrodes mounted flush in the wall of a duct 

can be obtained by linear superposition of the effects caused by electrodes of 

appropriate lengths at appropriate locations in the 20 cross section of the 

duct. 

4.3) Design and Properties of a Specific ES System 

Figure 1 shows schematically a system that is somewhat simpler but similar 

to the one we may use on the LBL 1-2 GeV Synchrotron Radiation Source, and I 
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want to use that system as an example to demonstrate the application of the 

formulae and procedures developed here. 

The duct geometry shown in Figure 7 is not freely chosen but imposed by 

vacuum system requirements. To design and analyze that system without getting 

lost in basically uninteresting details, I calculate first the expansion 

coefficients for the complex potentials produced by excitation of very short 

electrodes. This will demonstrate both some conventional but useful 

techniques and provide the basis to discuss some properties and options of 

this type of system. 

4.3.1) Relationship Between Expansion Coefficients Describing the Complex 

Potentials Associated with Different ES Sensors 

Since the geometry is invariant. to rotation b,y the ang.1e.1f, the 

expansion'coefficients Cn(3) associated w1th sensor 3 are related to the 

expansion coefficients Cn = Cn(l) associated, with the reference sensor 1 

and are g~ven by 

'n t( 3} ,=( -1 ),t," n {23.1) 

Realizing that the scalar potential V4(x, -y) produced by sensor 4 at 

location (x, -y) ;s the same as the scalar potential Vl(x. y) produced by 

sensor 1 at location (x, y) leads to 

'It.' 

= -c n 

(~3.2) 

(23.3) 



giving with Equation (23.2): 

= _(_l)n c· 
n 
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(23.4) 

For MS sensors, the right hand sides of Equations (23.3), (23.4) have to be 

multiplied by -1. 

4.3.2) Calculation of Expansion Coefficients Cn for Sensor 1 

In order to calculate F(z)'and the expansion coefficients en' I map the 

interior of the duct in Figure 7 onto a circular disk with radius 1 in an 

auxiliary w-plane, shown in Figure 8 with the location of the maps of points 

1, 1', 2', 3', 4'. This transformation is governed by the 

Schwartz-Christoffel formula 

-n1 -n2 
dz/dw = (1 + w2) • (1 - w2) 

A freely choosab1e mult1pl1cat1ve constant on the rig~t side of Equation (24) 

has been set equal one, to get dz/dw = 1 for w = 0 ~--+ z = O. This means 

that all ·real u dimensional transverse lengths have to be multiplied by a 

constant k to convert to the dimensionless lengths of this theory, and 

k = (dimensionless distance in the geometry mapped with Equation (24) 
onto the circular disk)/(dimensioned length of same distance in 
real geometry). 

A convenient length for this conversion is the dimensionless distance 0" which 

can be obtained by integrating Equation (24) along the imaginary w-axis. After 

introduction of a new variable to remove the singularity'of the integrand at 

w = i. one obtains 

(25) 



1 
= -1. f dv 

n2 0 1+w 
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1/n2 w = 1 - v (26) 

The general solution of the Dirichlet problem in a circular disk is given by 

F(w) =.' i.· ! I V('¥) d'¥ +w . / V(~J . d¥ 

( 

211' 2... J 
.. 2. . e.'¥-w 

o 0 

For simplicity, 1 assume a sensor of infinitesimal width 6'¥1 at '¥1 where 

V = 1. V being zero elsewhere on the duct surface. This gives for the 

multipole expansion in the w plane 

A fonnula similarly useful for MS sensors is the expressi.on for the 

complex potential within a circular disk with radius one that has a 

filamentary current 100 at location Wo and has A = 0 on its boundary: 

F(w) =. -100 • 1n 
2 .. 

Wo - w .. 
• • 

1 - w w o. 

Equation (24) contains all needed information to expand w in a Taylor 

series in z, to be then used in Equation (28) to get the expansion 

coefficients Cn. For more complicated systems than this one p all of this 

(27) 

(28) 
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can easily be executed (with the help of a Taylor series coefficient 

manipulation subroutine package) with a computer. In the case of the simple 

mapping function involved here, an explicit expression for Co - C6 is 

easily derived and these coefficients are given by Equations (30) with the 

following abbreviations: 

d3 = (2n1 - ')/3 

Except for the scaling factor g" common to all coefficients Cn• the 

duct geometry enters through the parameters d3 and ds in Equations (30). 

(29) 

(30.0) 

(30. , ) 

(30.2) 

(30.3) 

(30.4) 

(30.5) 

It is interesting to note that d3 enters into these equations for the first 
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time in Equation (30.3), and ds enters for the first time in Equation 

(30.5). This is a general behavior of these equations when the duct geometry 

is invariant to rotation by the angle~. More details of this nature will 

be described in a forthcoming paper. 

The relationship between the length 6'll of the sensor in w geometry 

and the length 14Z 1 in z - geometry follows directly from Equation (24): 

n n 
11 ... 1611 ·2 sin 2'¥1 cos 1'¥1 (31 ) 

It should be noted that the absolute values of all en shown above are of 

the same order, namely of order gl. While this changes somewhat for higher 

order coefficients when the width of the sensors becomes large (the en 

become smaller), it still makes the assessment of the relative size of 

contributions from different sources to F easy. The magnitudes of 

contributions are determined (when one ignores phases) by powers of normalized 

distance from z =0 and the JJm, which are controlled, crudely speaking, by 

aSYflllletry and beams he. 

Inspecti~9 Equation (30.1 ).It is clear that the angle '¥ 1 .should equal 

approximately .. /4 to. satisfy the.requirements stated in Section 3.4. It is 

a simple matter of integrating dz/dw to get the corresponding location of the 

sensor in the z-plane. 
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4.3.3) Use and Discussion of a Specific ES Sensor System 

When one has measured the time' integrated charges at the four sensors shown 

in Figure 1, one has to calculate from these four values the location of the 

beam center (x, y), the charge in the beam (Q), and P2 if it is large 

. enough. Instead of looking directly at the complex potentials representing 

the four different sensors, it is advantageous to inspect the sums and 

differences as shown symbolically in Equations (32). These expressions 

represent the same total information as the complex potentials for the 

individual sensors, but show it in a form ,that is much easier to understand 

and use. 

If sensor 1 is characterized by the coefficients Cn with real and 

imaginary parts Rn, I n; 

(32.0) 

one gets for the sums and differences symbolically indicated to the left of 

.the equations 

- + 
- + 

+ + 

- + 
+ -

" 2n+1 = 4 LJ iJ2n+l z 
n=O 

(32. 1 ) 

4 " 2n+1 = LJ R2n+1 z 
n=O 

(32.3) 

= 4 L (32.2) 
n=l 



+ + 
+ + 

F
4

(Z) = 4 ~ iJ z2n 
n=O 2n 
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(32.4) 

The equivalent formulae for a MS system are obtained from Equations (32.1) -

(32.4) by replacing everywhere Rm by'iJm, and iJm by Rm' To obtain 

the functions G(z) that describe finite size beams, one has to calculate from 

the coefficients appearing in Equations (32) the coefficients am with 

Equation (9), and the first few of these are given explicitly in 

Equations (33). 

(33.0) 

(33.1) 

(33.2), 

(33.3) 

To obtain the actual signal amplitudes, one has to multiply the imaginary 

part of G with the charge in the bunch and a number of known factors (gains, 

l/c, length of sensors; etc.). However; since these simple steps are-needed 

only to get the bunch charge from 1m G4, I do not carry them out in detail, 

but work directly with the F and G functions. 
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With the length normalization used here, all \cn\are of order one, and 

the IPm I are of order (X~/duct dimension}m. With duct 

dimensions of the order 10mm, and fully damped beam dimensions of the order 

of 10 pm, the Pm can be ignored for that case, and I want to discuss that 

simple case first. 

To obtain x and y, one simply looks at the ratio of signal 

Sl /S4 = 1m Fl /lm F4, and similarly S3/S4 = 1m F3/Im F4. Since 

the ratios of the known signals are ratios of known functions, it is an easy 

matter to solve these two equ~tions for the two unknowns x, y. While the 

non-linear term coming from J2 in Equation (32.4) can be made to vanish by 

choosing '1'1 = ./4 in Equation (30.2), doing that is not a matter of high 

priority for two reasons: 1) There are also non-linear terms coming from 

1m F1, 1m F3 which are practically unavoidable. 2} Non-linear terms are 

not of great concern since their structure (Le. harmonic polynomials) and 

coefficients are well understood and known, resulting therefore only in a 

slight computational inconvenience without incurring errors. 

Solving for x and y is easi ly done by applying the 20 Newton's method.. In 

most cases it is proba:blyevensuff1c;·ent to proceed as follows: Take y as a 

factor out of 1m F3 and solve trivjally for that y, i.e. express y in terms 

of S3/S4 and terms that are non-linear in x, y. Solve similarly for x. 

Solve then for (x, y) iteratively by computing new values (x, y) from old 

values in the non-linear terms, starting there with x=y=O. Unless Iz lis 

quite large, this process will converge very rapidly. One should notice that 

S2 - 1m F2 has not been used for this procedure. One can use this 

signal to check for errors and self consistency. Should one of the sensors be 

disabled •. one clearly has still enough information to determine x. y. 
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The case of non-ignorable Pm is much more complex. These circumstances 

may arise during injection into a ring, and it is therefore more than an 

interesting hypothetical case. 

If P3~0, Equations (32) and (33) show that terms appear 1n Gl~ 63, 

G2, 64 that are normally absent. In particular, depending on the phase of 

P3' constant (i.e. z-independent) terms appear in G, and G3 that can be 

misinterpreted as a displacement of the beam. To determine the, generally 

complex, value of P3 one needs to measure the sensor signals when the beam 

is at several known values of z. 

To demonstrate another specific and very important point. I discuss next 

the case where only P2 is noticeable, P3 being absent because of symmetry. 

and higher order moments being much too small to be seen,. Furthermore,.. P2 

is r.eal as it is in-the -normal" case where the mirror symmetry axes of the 

beam and the BPM system are the same. namely the x and y axes. Unde-r these 

cj rcumstances, it can occur that an accurate determination of the' beam center 

is impossible despite the fact that one has four signals to determine the four 

unknowns x"y p Q. 'P2' fhi s is most easily demonstrated ''by assuming that 

y=O. Equations (32) and (33) show that in that 'case 1m G2 = 1m G3 = O. 

leavlngbh1ylf1l 'G, and '1m G4~todetermine x, Q and P2' Equations (32.1) 

and (33.') show that the term linear in z in G, has the coefficient 

a, = 4'i(J, + 3J3 P2)' i.e. P2 has a significant effect on 1m 6,. One can show 

furthermore that in 1m G4, the constant term is modified in a different 

manner by P2 than the linear term in G" thus making it impossible to 

determine any of the wanted quantities accurately. The case x=O leads to the 

same conclusion. 
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If one is restricted to four sensors this problem can be avoided only if 

the mirror symmetry axes of the beam and BPM system form a known angle 6 

between 0 and ./2, P2 thus given by Ip21 exp(-2i6). As is easily seen 

from Equations (32.2) and (33.0), G2 then has a term ao = 4 R· p with a 
2 2 

non-vanishing imaginary part, allowing now solving for all four unknowns. In 

the case of the storage ring that serves as the. example here it is impossible 

to rotate the whole duct, leaving as the only option the movement of sensors 1 

and 4 in opposite directions on their respective duct walls, with sensors two 

and three moving correspondingly to still maintain invariance of the system 

geometry to rotation by.. In reality, vacuum system requirements require 

an opening of the duct on one side, so that the need to determine (x, y) in 

the presence of a noticeable P2 requires abandonment of the only symmetry 

that the original system possessed. 

If it is possible to have BPM with six (or more) sensors, the problems 

arising from noticeable P2 values can be solved without destroying symmetry 

'properties, clearly a riluchmore desirable solution. Without going into 

details, the reader is also reminded that during machine improvement peri od of 

such a ring, a lot of valuable information can be gathered if one measures 

sensor signals with the beam at known locations. A particularly useful 

procedure would be observation of the beam when it is being moved to and 

measured at equidistant locations on the circumference of as large a circle as 

possible. This allows determination of all complex coefficients an in G 

that contribute to the signals, from which one can then determine the Pm up 

to the highest contributing order. 
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5) Integrators 

Having integrators with exactly the right properties is very important. 

The reasons are simple: If the analog signal processjng is done incorrectly. 

the RF field can contribute to the system output in a way to falsify the 

results, the results will be erroneous if the bunch length changes, etc. 

Since neither the ES pick-up electrodes nor the MS pick-up loop look into 

an infinitely large- external impedance. the .. following signal processing system 

has to accomnodate that and will therefore be slightly different from a single 

or double integrator. However. to understand what such a system should do. 

one has to understand what the overall signal processing system has to look 

like, including the impedances that the sensors "see". 

It. is convenient to use the·. response function H(t) to a 6- function at 

t,= O'to describe the overall system properties. It is clear that the ideal 

response functions for the single and double integrator shown in Figure 9 are 

not realizable. On the other hand. one really needs verYugood integrators if· 

one wants to make good beam position measurements. The more difficult of the 

two integrators is the double integrator. It will be shown that a nearly 

perfect double integrator may have a response function H(t) that is very 

different from the one shown in Figure 9. In order to arrive at that 

conclusion, one has·to discuss first the-single integrator in considerable 

detail. 
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5.1) The Single Integrator 

5.1.1) General Properties of the Single Integrator 

I describe the input signal by So(t). It consists of the "static" part 

shown in Figure 10, preceded, superimposed, and followed by the RF 

contamination that integrates out to zero. t = 0 is set such that So (t) = 

o for t < 0, and Tl is the time beyond which So (t) = O. One can express 

the purpose of the integrator in the following way: One wants to determine 

Tl 
"n =~ So(t) t

n 
dt (34) 

o 
for n = 0 with as little "contamination" by "n with n > O. In order to 

understand all aspects and properties of the integrator that are important for 

the design. I look at the integrator from several perspectives, and the 

starting point is the following: 

The output signal Sl (t) is given by 

Tl 
=/ (35) 

o 

Expanding H (t - ) about t, one gets 

Sl (t) = L H ( n ) ( t) (-1) n " In! 
n=O n 

(36) 

The basic philosophy for the design of a good integrator follows from 

Equations (35) and (36): If the Mn are sufficiently small for n > 0, 

Sl(t) - Mo H(t), and by measuring the maximum value of Sl(t). 

occurring at the time when H(t) has a maximum, I have determined Mo very 
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accurately, no matter what H(t) looks like before or after the time when 

Hmax has been reached. If, on the other hand, the Mn contribute 

significantly to 51, at the time 51 reaches it maximum value, I can change 

that by UdesigningR H(t) such that at the time of H = 0, Hand H are very 
. 

small or zero. In other words, I make H(t) in the vicinity of H = 0 very 

flat, and a specific mode) function that satisfies these conditions will be 

discussed below. How this works is also clear from Equation (35): If H(t) 

were completely flat for a time Tl , I could measure Mo exactly. 

Deviations from this flatness over that length of time simply have to be . . 

sufficiently small to not cause difficulties. 

To understand the importance of the time scale of the response function H. 

I now use 

H(t) = Hl (t/To) (37) 

and try to find out how 51 max depends on the time scale T~ of the' 

response function. Using Equation (37) in Equation (35), with c = l/T~. 

and the dimensionless time u = ct, I get 

T, 
Sl(t) =/ 5

0
(1') H, (u - c1') d1' 

o 

To evaluate how 5, max depends on c, I expand the (normalized) time u at 

which 5, = Oin a power series 1n c: 

Using that in 

(38) 

(39) 

(40) 
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yields immediately 

and using that in Equation (38) yields 

T, 
S, max =~ Soh) H, (uo + ,; (b, -T) +) d T 

Expanding H, in ,; and observing again that H,'(U
O

} = 0 gives. after 

collecting terms: 

(41) 

(42) 

(43) 

The important co'nsequence of this equation is that if one lengthens the time scale 

of H(t}, one reduces at least quadratically the contribution of unwanted higher 

~ents o'f S -toS . o , max 
If one takes this consideration one step further and makes not only 

H,'(U
O

} = O. but also H"(U } = 0 and H I I I(U ) = 0 ( H II I(U ) = 0 o , 0 , 0 

is necessary if H,(Uo) is to have a maximum when H'(U
O

) = HI I(U
O

} = 0 }, 

the dominant term containing higher moments of So than M is proportional to 
, 0 

,;4. This indicates that making the first three derivatives of H 

simultaneously zero and increasing the time scale for H(t) are very advantageous 

procedures. 

While simultaneously making the first three derivatives of H zero is a 

good starting point for a good design of H(t}, one can show that giving H a 

slightly positive value (where H = 0, H = O) increases the length of time 

during which H(t) is within a given small fraction of its peak value by about 

a factor two. While it is clearly advantageous to implement this in a real 

system, 1 will not discuss this for either the single or double integrator in 
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more detail since the implementation is clearly not difficult if one can 

design a system that satisfies the more basic condition that the first three 

derivatives of H are zero at the same time. 

In this whole section I have always assumed that Mo is obtained from 

S'max' In practice one may not want to do this because of the presence of 

the RF signals. Since one usually knows when a bunch comes. or since one can 

determine when S,(t) starts to rise, one might prefer to read S,(t) at a 

given appropriate time. 

5.1.2) H,(u) for a Specific Single Integrator 

In order to find out whether or not it is possible to design a 

ureasonable" function that satisfies H,'{U
O

) = H, II(U
O

) = 

H, II ICU
O

) = 0, I have tried to design such a function. In this context. 

reasonable means a function that does not violate. conditions that.all analog. 

systems must satisfy, like high frequency behavior. In addition. it should be 

easy to determine essential parameters with analytical methods. One such 

function is 

The laplace transform of this function is 

(44.1) 

2 ' 2 h,{s) = l/(s + 1) +ac/(s-+ c) (44.2) 

and clearly satisfies the· high frequency requirements. The logic behind the 

design of H1 is the fact that ue-u is, for these purposes, a well behaved 

function and has a maximum at u = 1. H, as given in Equation (44.') is a 

superposition of two such functions that have different maxima at different 

values of u, therefore making it likely that one can find values for uo' a, 



.' 

-31-

c such that H I(U ) = H I I(U ) = H I I I(U ) = 0 This is indeed 10 10 1 0 . 

so and the values for uo' a, and' c are obtained from 

u =m+1+l'm+l o 
c = ml (1(m + 1 + 1)2 

~ __ 2 (m + 1) 
a = (lffiii +11 + 11m) • exp (-2Ym + 1) 

by using m = 1, giving Uo = 3.41; c = .11; a = 2. Figure 11 shows a plot 

(45.1) 

(45.2) 

(45.3) 

of thi s function wi th the peak amp 11 tude norma 1 i zed to 1. The quant i ty Q, is 

the ratio of the decay times and. also the ratio of the cut off frequencies of 

the two contributo.rs to Equation (44) and is, somewhat surprisingly, quite 

small. a 1 s the rat 10 of the peak amp 11 tudes of the two contri butors to 

Equat10n (44.1) and a/c and a·c control the magnitude of the second term 

in Equation {44.2) at small and large frequencies. 

If the decay of H for large u is too slow to be acceptable, one could use 

procedures like mixing H subtractive1y with itself, but appropriately delayed 

and reduced in amplitude. 

5.2) The Double Integrator 

Before discussing double integrators that work, it is 1n order to describe 

at least one approach that in general does not work--using two identical 

single integrators in series. The reason is the following: While. during a 

certain length of time, the output of the first integrator gives a very good 

integral of the input, the second integrator integrates not only that part of 

the output signal, but also the part of the output that precedes the "good" 

part, thus giving erroneous signals. 

The task of the double integrator is to deliver an accurate value of Mo 

as defined by Equation (34) when not So but So(t) is the input signal. 

with So having the general properties ascribed to So in Section 5.1.1. 
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With the input signal thusly defined, the output signal is given by 

T] 

=! So ( T) H (t - T) d T 
o 

For t > T1, integration by parts gives 

T1 

S1 (t) = f So ( T) Ii (t -, T) d T 
o 

This means that the whole cont~nt of Section 5.1.1 is directly applicable 
. . 

(46) 

except one has to replace H by H. However, designing H with the procedures 

given in Section 501 forH and then obtaining H by explicit integration of H 

is not proper in this context since it involves a perfect integration that one 

cannot do. Instead, the requireme'nt that, for the same t, H(m) = 0 for 

in= r, 2,3 has now to be satisfied for m = 2, 3, 4. It turns out that that 

is not-more difficult than satisfying the conditions for the single 

integrator: A's a model function, Hand ho as given by Equations (44) satisfy 

these conditions for m =2 in Equations (45), yielding Uo = 4.1, ~ = .27; 

a = 106. Figure 12 shows, with no~11zed peak values, H, and -H, I 

according to this prescription. What 1s remarkable about this double 

integrator is the fact that one obtains the useful information from the part 

of H1 that has a negative, nearly constant, slope after the maximum value of 

H1. This response function is markedly different from the ideal function 

shown in Figure 9 and shows that it is the nearly constant slope of H, that 

counts, independent of what precedes it. 

.. 
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Figure Captions 

1) Coordinates Used to Describe Finite Size Beam 

2) Hard Edge Charge Distribution in Rectangle 

3) Hard Edge Distribution in Ellipse 

4) Pick-Up Electrode Geometry 

5) "Charge on P1ck-Up Electrode 

6) MS Pick-Up Conductor in Duct 

1) Geometry of Diamond-Shaped Duct with ES Pick-Up Electrodes 

8) 'Map:of 01amond-ShapedOh,konto Ctr.cula'r 01 sit 

9) Ideal Response Functions for Single and Double Integrators 

10) Static Part of Input Signal 

11) Response Function for Single Integrator Model 

12) Response function for Double Integrator Model 
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