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Data Management for 
High Energy Physics Experiments 

Preliminary Proposals * 

Frank Oiken, Stewart C. Loken, Doron Rotem, 
Arie Shoshani, Thomas G. Trippe 

Lawrence Berkeley Laboratory 
Berkeley, CA 94720 

Abstract 

Currently HEP experimental data are re
duced as they become available. We propose 
instead a "demand driven" approach to data 
analysis. Full analysis will be performed only 
as needed, in response to user queries which 
specify the subset of events for which reduced 
data is needed. 

To support this approach we propose to 
partition the datasets on the cross product of 
several trigger inputs, instead of storing the 
data in chronological order. Queries will be 
automatically decomposed into a set of re
quests against several partitions. Indexing, 
physically clustering the data on the logical 
partitions, and caching of partitions will be 
employed for efficiency. 

1 Introduction 

Current practice in the analysis of high en
ergy physics experimental data is to store the 
data in chronological order as they are pro
duced from the detectors on magnetic tapes. 

*Issued as LBL tech report LBL-22883, January 
1987. This work was supported by the Applied Math
ematical Sciences Research Program and by the Of
fice of High Energy and Nuclear Physics, High En
ergy Physics Division, both of the Office of Energy 
Research, U.S. Department of Energy under Con
tract DE-AC03-76SF00098. Electronic mail address: 
olken@lbl-csam.arpa 
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Track reconstruction is then performed on all 
of the recorded data. These reduced data 
are also kept in chronological order. Finally, 
users sequentially search this data set to ex
tract subsets of interest for further analysis. 
These subsets are typically specified in terms 
of ranges of several event parameters. 

We propose a different approach to the 
analysis and management of HEP data. Our 
efforts are motivated by several considera
tions. First, much of the present track recon
struction effort is wasted because many of the 
events are never used. It is estimated that ap
proximately 108 instructions will be required 
to reconstruct a single event for the D~ ex
periment. Second, the sequential searching of 
the entire dataset is very slow for such large 
datasets. Third, the emergence of optical disk 
technology as viable storage medium permits 
block random access to data. Fourth, there 
have been developments in database manage
ment techniques which are relevant to this 
problem. 

Our approach entails several ideas: 

1. "Demand driven" data analysis so that 
track reconstruction is only performed 
when needed. 

2. Indexing event attributes for faster query 
processing. 

3. Physical clustering of similar types of 



events to reduce volume mounts required 
to access target subsets. 

4. Automatic subset management: reuse re
sults of previous queries to answer new 
ones. 

5. Automatic storage hierarchy manage
ment: caching recently used data on mag
netic disk for faster access. 

6. Automatic query optimization, to exploit 
the various indices, subsets, etc. in for
mulating query procesing plans. 

Next, we briefly provide a schematic de
scription of the HEP datasets and give a sam
ple query. We then proceed to discuss the first 
four topics. The last two topics are omitted 
due to space constraints, see [3]. 

2 HEP Datasets 

We include here a brief discussion of the 
various types of HEP experimental data to 
facilitate the subsequent discussion of physical 
database design. 

There is a variety of HEP experimental 
data: raw detector data, level 2 trigger data 
(i.e., the results of real-time analysis), ana
lyzed data (e.g. track reconstruction), and 
summary data. The analyzed data consist of 
individual particle tracks, jets, and data con
cerning entire events. Summary data here 
refers to aggregations (e.g. histograms, X2 

values) over groups of events. In addition to 
the data concerning events, there are also cal
ibration data concerning the state of the D~ 
detector. Space limitations preclude any dis
cussion of summary data in this paper. 

The level 2 trigger data are precomputed 
and recorded with the raw data in the 
database. The results of the track reconstruc
tion (variously referred to as analyzed or de
rived attributes) will be computed only when 
needed, and then saved for reuse. 

Part of the database "schema" will be a de
pendency graph describing the relationships 
among various derived event attributes, the 
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software modules, and the input data required 
to compute each derived attribute. This will 
be used to support the demand driven compu
tation of derived event attributes as described 
in Section 3. 

The raw detector and level 2 trigger data 
comprise some 107 events per year of opera
tion for the D~ detector. Each event consists 
of about 105 bytes of raw and level 2 trigger 
data. Hence the raw data for a year occupy 
about 1012 bytes. The analyzed data are ex
pected to account for a similar volume of data. 

2.1 A Sample Query 

Following we show a query which we believe 
to be representative of the anticipated work
load: retrieve event attributes for events with 
at least one electromagnetic jet greater than 
a standard energy threshold and a total elec
trogmagnetic energy greater than 30 Ge V and 
an effective mass between 60 and 90 GeV / c2, 

or more formally, retrieve event attributes 
for events with nJEM ~ 1 and ET(EM) > 
30 GeV and 60 GeV/c2 < mT < 90 GeV/c2. 

Two of the simple predicates are half-range 
queries (a simple inequality), one is a ordinary 
range query (two sided inequality). This type 
of query is considered a partial range query 
since only 3 out of many possible attributes 
are specified. The first two attributes spec
ified, nJEM and ET(EM), are usually avail
able as level 2 trigger input data in an ex
periment like D~, i.e., at the time the event 
data are written to tape. The third attribute, 
mT, would typically only be available after 
the events are analyzed. Below we discuss the 
implications of this on query processing. 

3 Demand Driven Analysis 

Current practice consists of sequentially 
logging "interesting" event data on tape, and 
then fully analyzing (track reconstructing) the 
entire raw dataset. 

We envision "demand driven" analyses. 
The raw data will be physically partitioned 
onto various volumes so that "similar" types 
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of events are stored together on the same vol
ume (tape or optical disk). 

Users will then specify which set of events 
they want analyzed and which attributes are 
needed. 

The system will employ various indices to 
reduce the number of events which must be 
examined to determine if they qualify for se
lection. 

Once a set of candidate events has been 
identified, the system will check to see if the 
desired event attributes (and any further se
lection attributes) have been computed for 
these events. For those events which have not 
had all the required derived attributes com
puted, the raw data will be retrieved and the 
required attributes computed. 

Given an incompletely analyzed event, and 
a list of required derived attributes, the sys
tem will use the dependency schema to auto
matically determine which software modules 
must be invoked, what antecedent and inter
mediate data are required, and then construct 
a computation schedule for the event. Since 
many events will have similar analysis histo
ries, caching of computation plans will expe
dite this process. After the new data are com
puted, a bit vector describing which data have 
been computed for this event will be updated 
and the new data recorded in the event record. 

4 Indexing 

In order to avoid examining all of the 
recorded events for each query a variety of in
dices will be used. 

The primary index will dictate the physical 
layout of the data. We expect that the pri
mary index will consist of a multi-dimensional 
index built out of some of the level 2 trigger 
data inputs. This is discussed further in Sec
tion 5. 

Because it is impractical to construct a pri
mary index on all of the level 2 trigger at
tributes, we expect to construct secondary in
dices on some of the level 2 trigger data in
puts and perhaps trigger outputs. Since these 

3 

items are available for all events, these can be 
full indices. 

Both the primary index, and all of the sec
ondary indices will be event level indices (i.e., 
they will resolve down to the level of individ
ual events). 

Secondary indices on derived attributes will 
be partial indices and include entries only 
for those events for which the particular de
rived attributes have been computed (usually 
a small subset of the entire set of events). 

Such partial indices have two uses: to de
termine whether events qualify for selection, 
and to determine whether they have already 
been analyzed. 

5 Clustering 

As noted above, the primary index is the 
index which induces the actual physical lay
out of the data on the storage media. This 
will be a multi-dimensional index on some of 
the level 2 trigger data input terms [1]. Thus 
events will be partitioned by the primary in
dex into groups with some similar event at
tributes. Each such group of similar events 
will be stored together on a tape or optical 
disk. 

There has been considerable debate among 
the authors as to whether the primary index 
should be built from the trigger inputs or the 
trigger outputs. Candidate trigger input at
tributes are shown in Table 1. Trigger out
puts are boolean combinations of equality, or 
inequality predicates on discretized versions 
of these attributes. The rationale for using 
trigger data (either inputs or outputs) for the 
primary index is that it is available at the 
time the raw data are logged to tape, and 
that it is of interest for selecting events. Using 
the trigger outputs to partition the data pro
duces a partitioning that is quite well suited 
to answer queries which are similar to the trig
gers. However, using the trigger inputs pro
duces a more versatile index and data par
titioning, which while not as well suited to 
answer queries specified by the triggers, can 



Symbol Name Range Partitions 

/IT missing transverse momentum 0-255+ GeV Ic 4 
ET(EM) total energy of electromagnetic particles 0-255+ GeV 4 
ET(all) total energy of all particles 0-255+ GeV 4 
Zvtz vertex location 0-112 cm 2 

nJeM EM energy thresholded jet multiplicity 0,1,2,3,4+ 2 
nJ,ol total energy thesholded jet multiplicity 0,1,2,3,4+ 2 

n" muon count 0,1,2,3,4+ 2 

PTRD,JeM TRD-EM Jet spatial correlation boolean 2 
Total number of primary partitions 2TI 

Table 1: Table of Possible Primary Index Terms 

more readily answer other queries, in effect 
changing the triggers. 

Shown in Table 1 is are most likely candi
dates for the primary index terms. 

By grouping similar events together, we 
can reduce the number of volumes (disks, or 
tapes) which must be mounted (and scanned 
in the case of tapes) to retrieve a particular 
subset of data. 

Multi-dimensional indices (such as envi
sioned here for the primary index (and hence 
partitioning of the raw data» do not perform 
very well if the number of attributes specified 
in a query is much less than that specified in 
the index. For partial match queries on KD
trees, KD-tries, or grid files, the expected ac
cess cost is at least O(n(l-(s/k»), where n is 
the total number of records, 8 is the number 
of attributes specified in the query, and k is 
the number of attributes in the index [2J. 

Hence, in practice, preference must be given 
to some event attributes over others in clus
tering the data. Queries which select subsets 
on the basis of the clustering attributes will 
have much faster retrieval than those which 
specify nonclustered attributes. 

We believe that a KD-trie [4J offers a suit
able type of organization for the primary in
dex. We begin by decomposing our search key 
into digits of radix r. The key will be used 
to specify a path through a tree composed of 
nodes, each of which contains r pointers (or 
nulls). The k'th digit of the key is used to de-
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termine the corresponding pointer in the k'th 
level node. This trie structure is simple and 
offers high fan-out and fast addressing. A KD
trie is a multi-dimensional trie in which digits 
of several attributes are interleaved to con
struct the trie. KD-tries are well suited to 
multi-dimensional range queries. 

6 Data Reorganization 

The events come out of the detector in 
chronological order, not clustered on event at
tributes. Hence it will be necessary to reor
ganize the data according to the desired clus
tering. This is basically equivalent to sorting 
the data into bins. 

In the case of tapes the number of passes 
will equal to 10gb(T), where T is the number 
of tapes (approximately 104 for D~) and b is 
the number of tapes which can be buffered 
on disk. Thus if we can hold 10 tapes on disk 
(about 109 bytes), four passes will be required 
to reorganize the data. The first pass can be 
done as the data are produced from the de
tector. 

Because optical disks permit random ac
cess, we can reorganize the data in one pass 
provided that we have adequate disk buffer
ing. This is desirable since the optical me
dia are not reusable and are fairly expensive. 
The required disk buffering (assuming two op
tical disk drives) is Dtw(tmount} where D is 
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the number of optical disks to store the data 
(about lOs for D~), tw is the transfer rate at 
which data is being written (i.e., the output 
rate from the detector) (approx. 105 bytes/sec 
for D~), and tmount is the time to spin down a 
platter, unmount it, return it to the jukebox, 
retrieve a new platter, and spin it up - approx. 
10 seconds. This amounts to 109 bytes of disk 
buffers for D~. 

7 Automatic Subset Man
agement 

Present practice typically consists of storing 
user specified subsets as separate datasets on 
tape. Usually both raw and analyzed data 
are stored together .. Subset management is 
entirely manual, and subsequent reuse of the 
subset is dependent on human interaction and 
intervention. 

We envision that much of the subset 
management will be automated, with ma
chine processable specification of subset selec
tion criteria, subset indexing, and automatic 
searching for relevant subsets when queries 
are processed. Such seraching can be done 
by employing theorem proving techniques to 
identify subsets whose selection predicates 
cover (include) the target selection predicate. 
This will permit commonly used subsets to be 
reused automatically. There has been some 
research (theory and small prototypes) on this 
in the data management community, but no 
practical experience as yet. 

We plan to store analyzed data separately 
from raw data. Subsets will variously be 
stored as event ID lists, bit vectors over 
event ID domains, or physically instantiated 
as either complete analyzed records or partial 
records on either magnetic disk, tape or op
tical disk. Subsets will automatically be con
verted to more compact forms if they are un
used for a period of time. Users will be per
mitted to advise the system of special storage 
preferences. 

Data management research has suggested 
that not only the final results of user queries, 
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but also intermediate results may be useful for 
subsequent query processing. 

8 Conclusions 

We believe that our approach offers signifi
cant reduction in the processing time and ef
fort required to analyze HEP datasets. This 
approach is most appropriate when optical 
disks are employed as the storage media for 
the major datasets. For a more extensive dis
cussion and bibliography of the data manage
ment techniques see [3]. 
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