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Abstract 

The problem of linear mode conversion is solved for general geometry, in that the 

dispersion functions Da(k,x), Db(k,x) of the two, orthogonally polarized, coupled 

modes a,b have spatial gradients aDa/axil, aDb/axll which need not be parallel. The 

transmission ratio is exp (-21t 11112/ IBI), where 11 is the coupling coefficient, and B is the 

Poisson Bracket {D ,Db} = (aD lax~) (aDb/ak ) - (aD /ak ) (aD /ax~). The further 
a a ~ a ~ a 

generalization to weak dissipation and ray divergence is included. 
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The propagation of waves in an anisotropic weakly-nonuniform medium has 

been successfully treated by eikonal theory.1 a The medium supports a set of N 

modes, with mutually orthogonal polarizations ea, each mode having its own 

dispersion function Da(k,x), which is one of the N local eigenvalues of the dispersion 

matrix Dij(k,x). It is assumed that the variation of D and of Da with respect to xll = (x,t) 

is slow, and with respect to kll = (k, - ro) is smooth. The rays of each mode are 

generated independently in the 8-dimensional phase space (k,x), by the respective ray 
" 

Hamiltonians Da(k,x): dxll/d<Ja = - aDa/akll' dk~d<Ja = aDa'axll; the ray-orbit 

parameter <Ja is related to time by dtld<Ja = a Da/aro. For a coherent wave of mode a, 

its rays form a 4-dimensional surface, imbedded in the 7-dimensional dispersion 

surface Da(k,x) = O. 

This conventional eikonal analysis breaks down when two of the eigenvalues 

(D+ and D _, say) are near-degenerate near zero (D+ ,., D_ ,., 0) in some (k,x) region, 

causing these eigenvalues and theireigenvectors to become rapidly varying; 

wave-action can then be effectively transferred between the two corresponding modes. 

The geometrical picture is explained in Fig. 1. 

Almost all studies of this linear mode conversion process have been limited to the 

one-dimensional case; i.e., it has been assumed that the components of the dispersion 

matrix vary in only one direction locally. 1 b,2,3 In general, however, the two interacting 

modes, with polarizations ea, eb' have non-parallel dispersion gradients aDa/axil, 

aDb/axll in the conversion region. In that case, we conclude that an effectively 

two-dimensional treatment is required, which is presented in this letter. Our approach 

generalizes previous work4 by one of us (LF) on the one-dimensional case; that work 

was inspired by the unifying local analyses of Cairns and Lashmore-Davies2 and of 

Fuchs, Ko, and Bers.3 

Before presenting our analysis, let us summarize our results, for the case that the 
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dispersion matrix is Hermitian. In the mode-conversion region, centered at (ko'xo)' its 

two relevant eigenvalues D±(k,x) can be expressed as 

D (k,x) = ~ (0 + Db) ± ~[(O - Db)2 + 4111il ~ , (1) ± a a 

where Da, Db are locally linear functions on phase space: 

o (k x) = (k - k ) V~ + (x - x )~Ra 
a ' o~ a o~' 

(2) 

and 11 is a small constant, representing one-half the minimum eigenvalue separation 

ID+ - DJ The ± signs in (1) are to be chosen so that [see Fig. 1] D+ -7 Da on the 

incident ray, D+ -7 Db on the converted ray, and D_ -7 Da on the transmitted ray. Thus 

Da, Db are eigenvalues of D in the asymptotic region ID+ - D_I »1111. The vector 

coefficients in (2) are the group 4-velocity VaJ! = aDa/akJ! and spatial gradient 

(or 4-refraction) RJ! a = aDa/axJ!, evaluated at (ko'xo); similarly for mode b. 

The transmission ratio T is defined as the absolute square of the ratio of the 

amplitudes of the transmitted and incident rays, at equal distances from xo' in the 

asymptotic region. We derive the result 

2 
T = exp[-21t 1111 IIBI] , (3) 

where B is the Poisson Bracket 

(4) 

of the dispersion functions of the two modes. In the one-dimensional case, (3) reduces 

3 



to the results of Refs. 2 and 4. 

Our starting point is the linear integral equation 

... 
f d\2 Dij (X1,X2) Zj(X2) = 0 (5) 

for the N-component field Z(x) on space-time. The two-point N x N kernel matrix .. 
Dij (X1,X2) is considered given; its local Fourier transform 

O(k,x) = f d\ [j (x+ ~s, x- ~s) exp(-ik ·s) (6) 

was referred to above. We allow 0 = OH + OA to have a small anti-Hermitian part 

OA, representing dissipation. The eikonal form Z(x) = A(x) exp i\{,(x), with 

slowly-varying amplitude A(x) and wave-vector kll(x) = a\{'/axll, leads, to first order, to 

Expanding A(x) = A(O)(x) + A(1 )(x) + ... , we have, to zero order, 

OH (k,x)oA(O) (x) = o. (8) 

In the non-degenerate region, we would conclude that the N-vector A(o) (x) is a scalar 

multiple of a local eigenvector ea(k(x) ,x) of OH(k,x) with zero eigenvalue Da(k,x). 

However, in the mode-conversion region, the eigenvectors vary rapidly, so we use the 

method of Ref. (4). At a point (x.,k.) where an incident ray enters the conversion 
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region, we construct the constant basis pair rna =. ea(x.), rnb = eb(x.). Setting 

. A 
DaAa+l1Ab = i[(aD/ak)·(aA/ax) +~(d/dx)·(aD/ak)Aa]-ma·D ·A, 

(9) 

• H • H 
where Da(k,x) = rna 0 D (k,x) 0 rna' similarly for b, and l1(k,x) = rna. D (k,x) 0 mb. 

We note that at (x.,k.), Da = 0 = 11 and Db * O. We now continue on the ray a 

generated by Da(k,x) [see Fig. 1], to locate the point (xo,ko) where Db = o. (The 

distance along ray a is found to be L\O"a = -Db(k*, x*)/B.) We set 11 = l1(ko,xo) (to lowest 

order). The left side of (9) now yields Eq. (1). Further, we use the underdeterminacy of 

our system to set k = ko throughout the conversion region. 4 After some algebra, we 

obtain 

(10) 

(real) coefficients C incorporate dissipation and divergence due to nonuniform group 

. velocity, and are evaluated at (ko, xo). These equations yield the conservation law 

for total wave-action: 

(a/ax~)[V~(x)IAaI2(x) + V~(x)IAbI2(X)] = iA *oDAoA; 
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for each mode, V~(x)IAnI2(X) is the action flux four-vector. 

With the coefficients V, R, C, Tl in (10) all constants, we proceed to the solution. 

The change of dependent variable: Yn(x) = An(x) exp{-[i(x'.R
n
)2/2 + Cn x'.Rn]/(Vn,Rnn, 

and of coordinates x --+ a in the conversion plane: x'll = V~ aa + ~ ab, yields 

v 

o 

(11 ) 

By separation of variables, the solution of (12) is 

" 

(13) 
v 

with P = TlabTlba/B, and f(~) arbitrary. To determine f(~), we return to (10), and 
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consider the initial state (aa ~ -00), with no excitation of mode b; we obtain 

-ip ( . \I Rb 2 g ~ o.aa exp -I vb' abf2) , (14) 

with a. a constant. Obtaining f(f3) as the Fourier transform of (14) with respect to ab: 

f(f3) = a.' exp [if32f(2Vb·R
b
)] , we passto the transmission ratio: 

T = 

With (-1) = exp(± 1ti), we choose the causal sign, and obtain 

(16) 

* In the case of zero dissipation and no divergence (Tlab = Tlba ' Ca = 0), this is the 

result (3). 

In summary, we have derived an expression for the transmission ratio in linear 

mode conversion, for general geometry, on the basis of a local analysis. We plan to 

report on applications of this result in future publications. 

This research was supported by the U.S. Department of Energy under Contract 

No. DE-AC03-76SF00098, and by a grant from the U.S. - Israel Binational Science 

Foundation. 
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Figure Caption 

Figure 1: 

Geometry of the linear mode conversion process in 4-dimensional space-time. 

The incident and transmitted modes, with polarization ea, have group 4-velocity 

V~ and dispersion gradient R: = aDa(k,x)/ax~. The converted mode, with polarization 

eb (orthogonal to ea) has group velocity V~ and dispersion gradient R~ = aDb(k,x)/ax~. 

Note that the four 4-vectors are not co-planar, in general. The curved ray is generated 

by the eigenvalue D+(k,x) of the dispersion matrix O(k,x). The two dispersion functions 

Da,Db are the asymptotic limits of D+. 
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