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STATISTICAL DESCRIPTION OF DEFORMATION IN EXCITED NUCLEI AND DISAPPEARANCE
. OF SHELL EFFECTS WITH. EXCITATION ENERGY
L. G._Morettq
Lawrence Berkeley Laboratory
University of California

'Berkeley, California 94720

August 1971

Thé'déformatiOn of excited nuclei‘is_studied on the basis of the methods
of stéfisticaiEmeéhanics; 'The'staﬁisﬁicél coupling between a éyéfém.with many
ihternal'degreeé ofbfreedom.ahd.é-one-dimenSional or multidimensional-hérmoﬁic
oscillator is considered. The felévahce of the phase;éﬁace volume is discussed
in'the.semicléésicai limit. The éonclﬁsidns:éfe employéd to de#eiop a general
. theory of‘nuéleéf deformation for actual nuclei. ‘Calcuiétions for five nuclei
are performed on the basis of'the Nilésbn diagram and :of the BCSvHamiltonian.
The potential energies of nuélei as a function of déformafion are calculated
by means of the Strutinski procedure. The:leﬁel densities are also calculated
airectly frbm single parficle ieveis and include pairing and its energy depéndence.
The.defqrﬁation probability.as a fuhgﬁion of eicitation energy are derived. The
nuclear fl#ctugtioﬁs in shape are considerea and in partipular the”disappearance of
the ground state deformations VithiinCreasing excitation energy isEdes§ribed. The
calculatiéﬁs acéoﬁht in a _natﬁral’wéyEfbr\the washing out of shellbeffeéts'with
excitation energy. Appiications of the theory are diScussea. |
Work performed under the auspices of the U. S. Atomic Energy Commission, and

supported in part by Céntro di Radiochimica e Analisi per Attivazione, Universita

di Pavia, Italy.
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1. lntroduction._

| The‘shell:model has heen successful in_explaining the’mainr:
features of ground state nuclei and of nuclei'atflou excitation |
energlesf. ln particular"phe ground state‘deformation of a'nucleus can nou.be
calculafed with a reasonablebdegree:of accuracy; In fact fhe leading

quadrupole term can be predicted-as well as higher multipole moments ). The

. ‘ . ' o . . e 2
simplest procedure makes use of the so-called Strutinski normalization™); on

the basis of .£hi§ method the*potenﬁial energy of a nucleus as a function of
deformation is obtained as a sum of a smooth liquid drop term and of the
"Wiggles"‘derired“from the shell model. The minimum in £hé’ pofential energy
deférminesﬂthe ground.statebdeformation. While such a s1mple approach yields‘
rel1able values for the deformation parameters in nuclei very near closed
shells or well between two major shells, the study of the potentlal energy
alone ‘may be 1nadequate for transition nuclei which are characterlzed by
shallow minima in potential energy and whlch are not qulte spherlcal nor
deformed. The reason for:this fact.lies in the quantumfmechanical.fluctuations
in deformation associated with the zero—polnt motion. Nonetheless we‘can state
that,_aside from quantum-mechanical fluctuations;va nucleus in.its ground

state has a well definedAdeformaflon. A similar statenent holds for a nucleus
at a low excitation energy.level and its deformation can be obtained,vin
principle, in the same way'as.for a ground state nucleus._‘A neu'problem arises
when we consider a'nucleus'excited in”the'statistical reélonfwhere the energy
d1spers10n 1s large compared.w1th the level spa01ng and where the level widths

are comparable or larger than the level spac1ng» For such a nucleus the

:definition of deformation is more complicated. On one hand we should not expect
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unique values for the deformaﬁion‘perameters,'beceuse of the large numbers’of
levels ooosidereo at the‘éame’time;.on the otherfhand we mey expect a coupling
'betWeen coilecﬁive and_intrinsic degfees of‘freedom because ofotheroVerlapping
vlevels. These'cifoumstanoes eeeﬁ to justify the assumption of statistical
equiiibrium betweeo:ellvthe-degreee of freedomj'fherefore#the nucleus is
expecoedvto explore all ﬁﬂe deformatione accessible to it.oﬁ the basis of its
exéitation energy. 'Thﬁe,'es the statemenfiof tﬁe problemvsuggeets, we should
expeoﬁ a‘dietribution:iﬁ:fﬁe_defofﬁation pefametere fof;an‘exoited nucleus
instead of_e unique set. Such a disﬁribution.ean be obtained on the basis of
sﬁatieticalimechanics cooeideretions. For an ordinafy ﬁécfoscooical system,
the standard procedure consists'in determinihg the average or the most
probable values-fof the releVEnt.vaf¥eblesL in the ﬁreseht case,-ﬁhe system-
we arevdealing'with is composed of a“smell number ofvparticles: conse@uenﬁly
' e rather lerge probability of reiativeﬁfluctuatioﬁs ie expected in the various
dyneﬁioei Qariables,tamong:which the deformafion'coordihatee are included.v
The possibilityvof‘very largevfluctuatione in shepe is provea without question
by the fission process where; et low excitation energies, a lerge fraction of‘
the excitation energy is concentrated.in one single degree of freedom. From
such considerations the necessity arises of deﬁermihihg'ﬁhe whole probability
distfibutionein the deformation coordinate(s).
| The nuclear'deformefion ie alfeafure which depende uﬁon'fhe'details of

- the shell structure aﬁd not upon @hevsmooth nuciear propertiee. Thefeforeuit is
of the utmostvimportence'f0r4theesolu£ion'of the present problem.fo-develop a
sfaﬁisticei pfocedufe Which:iﬁcorﬁorates ali.the relevant features of tﬁe'

'shell model. 1In this regard, the problem of the level densities assumes two

{»

@
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aspects' On one hand we must be able to evaluate the level dens1ty for an
arbltrary, fixed deformation. On the other hand the outcome of the statistlcal
calculation should allow one to define the actual overall level den81ty,

accounting also for the deformation degrees of freedom. Preliminary results

have been presented in a prev1ous paper3)‘ -In.the present paper»we shall deal
first w1th the case of a many—partlcle system coupled with one or more harmonic

'osc1llators. Then we shall consider the case of an actual excited nucleus

coupled with its collective degrees of freedom (which do.not need to be
harmonic oscillatorS). In'all_these cases the statistical problem is_solyed
in the;microcanonicalvensemble and the canonical enSemble expansion will be

considered. The models involved in the actual calculations are presented and

" the results for six nuclei ‘ranging from Yb to Pb are discussed. In the

appendices we present an analytical formulation of the Strutinski—llke potential

energy normalization and a general formalism for the level density calculatlon

‘on the basis of an arbitrary set of single—particle levels including pairing.
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R 2. Genersl Theory

We are intérestéd here in determining the properties of a system with
'a'lérge number of intefnél degrees of freedom, statistically coupled to one or -
more collécti#e'modes of motion. The simplest case is perhaps that in which

thevcollectiVe modes ofgmotion'arevfepresented by harmonic oscillsators.

2.1. COUPLiNG BETWEEN A~MAN?*PARTICLE.SYSTEM AND ONE OR MORE HARMONIC OSCILLATORS '
o ?éf.us é§nsiaef a sysféﬁ with ﬁﬁﬁy internai.degreéé of freede, whose

,denéifjvof states at an excitation ene£gj x is p(x). A harmonic oscillator

whose enérgj quantum ié hv is étatiétiéallchoupled.to such'system.v We

further éssume that ﬁhe total.energyfis E agd‘we plén to.ﬁork within the
micrdéanoniéal'ehéemblé;.'The prbbabiiiﬁy of findingbﬁhe oscillator at the

elongation g is:

P(E, q) dq = Z_p(E ~o) p o) aa (1)

where the quantities wn(q),represenf the horﬁalized harmonic oscillator_wavev
fﬁncfions. Such an'expression hqlds fo all the excitation energies; however,
if the excitation energy is Sufficiéntly high, on the average we;éhall be
déaling wiﬁh éuffigiegtl& high oscillatbr quantum numbers. For a high guantum

Lo . L L a2
number n, we. obtain the classical expression for wn :

v

Wz(q) * Fa) : - (2)

where v(q) is the vélocity\aﬂ.the elongation q. Now, we can substitute eq,.(é)

in eq. (1) and transform the summation into an integral:
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‘-_p<E,,_q>"aq=_.aq-‘_/g‘ p(E-§) ghy €5 (3)

hv

where g = l—-is' the oséillator'level”density and & 1is the energy of: the
oscillator. By changing the integration variable from the energy & to the

osciilatdr‘momentum p we obtain:

S . 5 2
P"(E,‘_c;) dq = dq/gg p(E - V(q)’—gl—l;) h\)% B & (L)
or- ., RN ‘ | -' ’ .
P oes [of-vw-E) BE o

ﬁhere V(é).is the oscillatqr ﬁéféﬁtial and”m_is thevinertial‘paramefer §f the
oscillator. ) | o |

. " SBuch an el.ementax;y .cal¢ula.tio:n' ‘sh_o_ws _thaﬁ the coht‘ributiqn of the
osci.ll.ator‘to the.s_sfa.‘t'e, denéity is 9_'9.1;1__‘.13. or, 'a.jls we . could have exp.éc_:'ted,...
propdrtioﬁai to the .‘cla.ssbic‘al i)hasé-'spa_ce volume. | /

The vgeneralizé.t'ion to an r—d_ime_ns_idnal 'osci_llato'r;is immediate;

P(E, 45 dp» ---_c_;T) = E - p(E - ? nivh\)i) xpE(ql, Qs - e q_r) dq,, da, ... dq -

(6)
' Wh'ere_‘v_ri :Ls 'a vector with _cqmponents jrii_. Aga,iﬁ for high quar_ii:um numb'érs rwe v
" obtain:
- v -1 : = i i .
P Yy ee =" . . - -
P(E, 25 Py P) r -_.p<E ey, ap ee a) Zan.)‘ﬂv.(q y Tile)
) v : h.]'[\)i. o i ite’ o

dpys 4Py, +ee dp s daps dPys b-e da
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dpl, dpg, .o dpr, dql, dq2, ‘o dqr

. . . | 2
. . P. ‘
= / p(E - V(q_19 q29 LRCIEY qr) - 22111-1‘ > : hr

y .

(7)
where agéih.wé can-observé the'reievahce'of the phase-space volume in the
density of states of the.systém.‘

All.thrée>results reporfed above have been obtained in the microcanonical
ensemble framework. 'The célculétions fof fhe.same éystem, performed within
the canonical ensemble are reported, for instanée, by Landau-and,LifChitZ ).
2.2. STATISTiCAL PROPERTIES OF A NUCLEUS WITH ONE OR MORE COLLECTIVE DEGREES

OF FREEDOM : :

The pfesent case is more.complicafed'than those considered abéve; in
fact the eXcitétion ehefgy disrupts the nucleon configurations which are
respéﬁsible for the actual form of the potentiai energyf: However, it is still
possible to séive{fhe_éroblém approXimately. |

- Ve considef a nucleusvwith total énérgy E, free to move along the
collective coofdinafe €. Let V(¢) be the potentiél energy and ET =E ~ V(e)
be the local excitation energy (fig. 1).

At fixed deformét;on €, the available excitation energy ET can
>distribute itself between the internal and the collé¢tive degrees of freedom.
The contribution of the collective degree of freedom to the statistical
probability can be taken fo be proporfional'to the collective phase~space
volume, as we have seen for ﬁhe harmonic oscillator case. Therefore the
probability that the évailabIE'excifationvenergy will distribuﬁe itself in
any»arbiﬁrary way among the internai and the collective degrees of freedom can

be written as follows:
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B, €) ae ap = plx) S22 ()
2
where x is the. energy taken—up by the 1nternal degrees of freedom, EE is the
energy taken—up by the collective degree of freedom, p(x) is the state density
der1v1ng from the internal-degrees of freedom, p is the conjugate momentum of
€ ahd m is:the inertial mess associaﬁed with the collective:mofion.
:In order.fo ootain ﬁhe.ﬁotei‘probability ofvfinding the nucleue at the

deformatioh é,.one‘must integrate over all thewpossible-energy'partitions:

. ) . t_ o . ) v o _
'?T(ET"S)’d€ =}§? }[ p(ET.~ %E).dp: S (9)

In such an ihtegral.the ihtegration limits are * 2mET. The evaluation of the

integral.inveq. (9)'oan be sdmplified on the basis of the following consideraiions.

a) The integrand presents a sharp meximum for.p = 0 and decreases rapidly
‘with increasing Ipl: therefore the main contribution to the integral comes
from low lpl values. Asva consequence, we can substitute the integration

limits with +

'b) For the same reasons mentioned above, we can attempt to perform a sultable

expan51on of the integrand about p = = 0. It turns out that a more rapid,

convergence is obtalned by expandlng the logarlthm of the 1ntegrand

. 2 .- .
lnp = Am —A%E)&+ANE %(%)d*”' (20
cor A’(E )'EE. A"(E ) lf 'EE .2'
' T om T/ 2 \2m

) e - e . _ . _(11)
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where

‘ o | . - : .
A"(E"I')_é (i_l;n_ﬂ_ﬁ) x=ET s | A"(_ET) = (d 11'12 (x )X=E o | (12)

dx

If we employ the approximate expression p(E) o exp 2 VaE, then A' =& / /E
e y . - ,

. 2 g2 7 | o |

given by eq. (10) is clearly small and can be dropped. By means of the two

and A" = - For anvordinary nucleus the third term in'thevexpansion

approximations which we have made, the integral of eq. (9) becomes the integral
of a gaussian and can be given explicity:

/2ﬂm -1/2

P (B e)‘d€:= = o(5y) e | (13)

Since the integrand decreases approximately by a factor of e for %%-AE = i,

about 85% of the integral cbmes from the energy interval

, KET - _ VE v ' . v
ET~>’E Q’ET —.;:f . The gquantity — for an ordinary éxcited,nucleus is very
' a . _ -8 '

sméll'compared to ET’ and therefore.the approximatidn givén by eq. (13) is good.
In this regard it is deeply significant to notice that the term A'
"as given by eq. (12) is equal to the inverse of the local nuclear temperature

at the deformation €=

x=E_

T

Al _ (si._lzl_&(_x_))

N R - .
= . : )-I-

L Caw
Therefore the expansion given in eq. (10) is. just the expansion which allows
passage_frbm the'energy-preserving microcanohicél ensemble to the constant~
'température canonical ensemble. In simpler words, such an approximation physically

means that the nucleus at ﬁhe deformation € actsvas an infinite heat reservoir
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at‘éonstﬁht.temperature T with.ﬁhi¢h the:cdliectivé‘mgde of:ﬁotion along ¢ is
in equilibriﬁm, It is equaiiy iﬁfortdn£ ta ngtice'thét.eQQ (13) is the -
édhonicéiﬂfesuitnasvfaf as thé.enérgj paftition’at fixed deformatidn is concerned
and it is the micfocaﬁonical result as'far'as the defbrmation parameter € is
éoncéfned.v-it'is indeed. essential - _to“conserve-energy aS‘thevSystem moves

along\é;'sinéé the Vaiiatioﬁs in p6téntial enefgy‘may be very large and more -

than one mihimum may be present.

In conclusion wé may éxpectfthat eq. (13) represénfs a good approximation
to the deformation'pfdbability'of an excited nuéléus; Such'an:expression can
be employed if a realistic potential energy V(e) and state density p(E, €) can

be obtained on the basis of the shell model, theory. This point will be

. discussed in the following sections.

The érgument that wé have'developed céh b¢ extended‘tq.thevcase of
a larger number of collective degrees of freédom. We shall now treat the case
of two collectivé degrges Qf freedom apd thgp WeHShall generalizé the result
for ah_érbitfary numbér of_ﬁhém.v | o | |

'Let us éSsume that the shape of ﬁhe nucleus is deséribed by.fwo
Itfis.always'pbssible to change to a new

collective coordinates a.

12 @

o

system of generalized coordinates 475 9y such thatkthe inertia tensor mi K is -

diagonal. In this way the kinetic energy of the collective motion can be

written as:

. P2 p2 .
1 2 ‘
E . = 5—+ = : (15)
kin .2m.l 2m2 , . : ‘

where pi and pg.are the,conjugate momenta‘cf,the;new coordinates and my, .,
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are the . elements of the dlagonallzed inertia matrlx.':The'prohability of

finding the nucleus,at the-defbrmations ;s q, will be:

| P - .
Pr(E, ajs q2) dql dq2 j[/ - 5=~ -2;.;;) dp; dp, dql dg, | (16)

After the usual approximations the integral can be evaluated:

o _om - o
Po(E, a;, a,) dql dq2 2 A /a m o p(Ep) do; dg, - (17)

Coming back to the original coordinates o, o we obtain the final result:.

2.

o eeer——— ! .
PT(E, a. , az) do, da, = A p(ET) J(ql, qe/u,, az).dul da,

(18)

:where J(ql,:qé/ql, az)_is the Jaeobiantdeterminant.
_Snch_avreSult can be further generalized'for n colleetiye,coordinates:
. /s
(on )

ve. 0 ) do. Ao, A0. ... do =Tl (mmm ...

‘PT(E,-a , O N 18

22 O30 vrv Op/ G0 G0y A0
(B J(ql’192’="f-9n(91?-u s oeee an)_nql-qa2 da3 .
(19)

It is somewhat 1nterest1ng to notlce that the collectlve klnetlc energy

/2

'contrlbutlon to the probablllty is proportlonal to AY n/ or to T where T
is the.local‘temperature,' Thls is'a ‘small effect when compared with that of
.the collectlve potentlal energy whlch enters in- the argument of the state

den51ty, the leadlng factor in eqs. (13)5 (lB),;and (19).

Ty

-mn>;|-/2A;_n/2 :

,da .
n

o -



-«

a1 . LBL-228

Also the'inerfiallmasses do,nof appear ih eq. (19) in'a_very relevant
way. The few microscopical calculatlons of the collective inertial values which have

1 5 6)

been carrled out s show that,lat very low excitation‘energy, there are
fluctuations‘of'such duanfities about.avsmeoth trend as a function of
deformatidu; Such_fluctuatlons ma& be ofithe'order of a factor of'twe,at the
lowest'ehergies‘aud are duiekly smoothed'oup_with increasing ehergy; FUrther;
more the inertlas appear in eq (19) as square roots and fhelr fluctuations,
are smaller than those which appear in ‘the logarlthm of the leadlng term p(E ).
The present formalism.also gives an answer concernlng-how_one should

account'forpphe nuelear defermation‘in tﬁe_evaluation“of the overall leuel
density of a nucleus..flhe anSﬁer is straightforWard: the'overall nuclear

state den51ty (or level density) is obtalned by 1ntegrat1ng eq. (13) or eq. (18)

or eq. OVGI‘ e e orma on COOI' 1na es:
(19) the 4 £ ti dinat
p(E) = “/. PT(E al, g ,‘..._dnl da, do, ... do . (20)

Unfortuuately this shows again how the task of evaluating a realistic level

~density on the basis of the shell model theory is indeed rather involved. ~We

shall come back to this problem in the discussion of the calculations. A

final peint_which should be mentioned is the redundance of the number of

ldegrees of freedom. It is'quite,clear'that.the'collective degrees of freedom
‘inia nucléus.are ﬁot independent because the overall number of'degrees-of

'freedom is flxed by the number of nucleous. HoWever the sﬁortcbmings of'sucﬁ
8 redundance are well balanced by the advantages deriv1ng from the 51mpllc1ty '

of -the treatment;
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3. Calculations

v Actual,calcﬁlations have beenvperforﬁed for some typical nuclei in

the reéion between the heavy-fare earths and the doubly magic number 82—126;
in this way nuclear deformations from zero up to the_maximum‘vglue found in
the raré earths have been considered, The sequence of. the calculations is the
following: 1) calculations §f the single particle energies_énd spins; .

2) calculation of the»potenfiél'enérgy-by.means_of a modified Strutinski
procedure; 3) evélugtioh of the lével densities:as a functioﬁ»of excitétion
-energy and of deformation; h)'evaluafion of the'defprmétioh-probabilities as

a function of excitation energy.

N

3.1. THE SHELL MODEL
Thé calculations have been basedrbn the modified harmpnic oscillator
potential-introduced by ﬁilssdnl’7): -sﬁch'éingle;particle poténtial is a
function of a set of deformation paraméters. A single defofmation barémeter,
€, has been considered in order to simplify the calculations to-somevextent.i

1/3 Mey.  The

(o] : . . : -
The oscillator quantum hwovhas been assigned the value 41 A
quantities k and Y which enter in the Nilsson potential have been considered

"constant in the range of mass numbers between 170 and 208 and have been

assigned the following values:

xou
~ ' - ‘protons  .0620 614
gg@trogs }Q636v' .393

3.2. THE POTENTIAL ENERGY

It has been recognized that the potential energy obtained by summation

over the single particlé levels; even including the coulémbvand pairing effects,
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is incorrect ‘and unsatisfactory, especially at iarge'defdrmétioﬁs8).“ The

possibility of a prbper'usé Qf"the shell modéluﬁaiculationé avoidingvthéir

;lafge erroxs in the evaluation'of the bulk of the poiential energy has been

shoWh.by Myers and Swiatecki9) and b&‘étfutiﬁgkig)giThese authorS-péiﬁtéd out
that the'pbtential eneféy ésbavfﬁﬁctfén,of defdrmation, galculated by'meaﬁs

of the shell model, may prédiqt'the fluctuations or wiggles aboutvthe average
value quite Well,‘whilé'the”éveragé‘bﬁlk of thé potenfial energy may bé -

grossly in error. - Therefore it is poSsible to calculate sﬁch wiggles by

subtracting & smoothed-out potentiai enérgy'to the potenﬁial-eﬁergy'calculated

with'éhe shelivmodel.'vThé'Wiggles can be added to thé;liqﬁid drop potential
energy wﬁich isvknown to‘be an accurate average of»the.nuciéar potential
energy. ‘. _ | h _ |

| ‘Let'us fifét calculéte the shell model enefgy'by means of the B.C.S,

Haﬁiltohianloj to account’for.pairingi'
gy = 2258, Vp = 5= G };vk -fk: 1 - (21)

In this-expfessioﬁ e, are the single particle energies, G is the pairing

strength,.Aiié the gap parameter, Vi is*given'by the expréssidn:
. e = 1/2 _ 7
. 1 Lk - . :
Vk T = - T TR ) v (22).
B o= [le, -N+8%1 (23)
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. o | BRI , o .
The symbol ? ‘refers to a summation over the single particle levels below the
Fermi surfacé. The quantities A and A are the_solution'of the system formed

by the gap eQuatioﬁ and the particle equation:

| Z%k_=% - o (2w)
- Z('l ~E =y  (25)
o Rea N T o

In such calculation we:have uséd'the.followingféxpreSSions for the pairing

strengthsl):

®
n

19.2 Mgv;'gl = 7.4 Mev

(In'the'suﬁmation we'haVe‘inclﬁaed./igz-Or /f?ﬁ levels above and below fbe
Fermiisurfaces,v Such a brescriptionl) isfchosen in ofder to reproduce
approxiﬁately the experimenﬁal even—odd.ﬁass differences; In order to obtain
the wigglévorvthe fluctuation we must subtract a'smootﬁ shell énérgy and a

- smooth pairing energy:

EW = ESM’- EStr. - Epair v L , ' (26)

Thé quantity E is the smoothed—out shell model energy,vwithout_pairihg,

Str.
“obtained with a modified Strﬁfinskixprocédure; Such'a'procéduré is illustraﬁed
in Appendix A. The quantity Epair is'theiaveragé'pairing energy, which we take
to be indepeﬁdent of A and to which we assign the valﬁe_2.3'MeV inclusive of

neutrons and protons.
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The overall potential ehergy can now be caléulated
V(N, 2, €) = E, +E, . (27)

In the present calculation we have used the_parametefs.of the liquid drop
9), Exam?les of calculations of
potential energies as‘a'function'of;defdrmatidn, tdgether,with fhe.liquid drop

potential energies are shown in fig. 2 thrqugh fig. 7.

3.3. THE LEVEL DENSITTES

Tﬁis repfesents ﬁhé crucial ?oiht'of tﬁe whole calculation. A level
densitybsuitabie for thé preseht Qalculafibﬁ should accoﬁnt for the shell effects
as a functidn of the defdrmatibn; it shguld‘include tﬁe pairing in a-consistént
way and feprodﬁée thé.washingkout of the éairing énd'thevShéll effects Wiﬁh
increaéiﬁg:excifationAenergy.' Caléﬁlétidhs of level densities on the basis
ofva'shell;mddei set of singlévparticlé lévéls/withoﬁt pairing havé Béeﬁ

presented eléewhéreB). Also a formalism for the level density ca1culatidﬁ on

‘the basis of the shell‘model'with ihclusion of pairing has been presented by

Sano and Yamasakill) and by Décowski gﬁ;gl,lQ). The derivation of our dwn'
formalism, similar, to some exteht to fhatbof Decowski is,presented in Appendix
B. Such formalism predicts that the péiring‘effects decrease with incfeasing
energy unfil, at a critical energy, the syéﬁem reverts back to a.normal .
uncorrelated Fermi gas. In fig; 8 the energy depehdence of the neutron and
proton gap parameters is shpwn for the nucleusIlYQYb at a defqrmation:é = 0.

In the'éame_figuré‘the level.dénsity;dénominator- is presented:"this quantity

is a.smooth_function‘of the speéific]heat of the’éystem}: The discontihuitiesf
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aésociéted witﬁ the secohd-érder phaée—fransition afe viéible. AIn fig. 9 and
fig..lo the levelidensity énd the épin cutoff parametéfs‘are ﬁresented as a
function of excitation .energy for thevtwo-deformations € = 0 and € = .250.
The latter quantity, which determines the angular momentum_distribution, is
calculated assuming that the gap'parameterLA does not depend upon the angular
momentun. This is not avvery satisfactory assumption for large angular momenta.
The correct angular momentum dependence of A and the level density formalism
including angular momentum and pairing ha&e been presented elsewherel3).

The éhell model used in the level density evaluation is that described
in sectidn 3.1. The neutron and proton pairing strengths are calculated |

following the prescriptions given in Section 3.2.

3.4, CALCULATION Of THE DEFORMATION PROBABILITIES

The deformation probabilities are evaluated by means of eq. (13). At
any given excifation.enérgy‘E, the local excitation energy ET at the deformation
€ is evaluated. Since the lé&el dénSifies are generated in tabular form, their
légarifhmic vélue is interpolated Sy means éf a three point Lagrange's method
which gives the derivative of the function with respect to the energy at the
same time. In this way aléo the gquantity A' in eq. (13) is obtained. Since,
as discﬁssed above, the relevénce-of the inertial parameters 1s rather small,

Em-altogether. Therefore the quantity

we have chosen to drop the factor

which we have calculated is the folloﬁing:

P (E , €)
ln_l-__'.l’___= 1n [A'-
‘2Trm ¢

h

12, o(ET)J
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Exampléé'of such calculations are shown in fig. 11 fhrqugh fig. 16 for the

nuclei 172Yb, l8h0s, 190Pt, 192Pt; gong; 298Pb. ‘Suﬁh caiculatibns range from

~.5 to +.5 in deformation € in steps'qf .05, and from 6 MeV to 60 MeV in

éxcitation energy. E - . , : . A
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‘h.' Discussion of the Results

Theﬁnuclei for,which the calculations‘have been performeddwere chosen
in such a way as to explore the behav1our of shell effects from a mid-shell
‘region to a maglc region. In fig. 2 through flg T the nuclear potentlal
eneréies,hcalculated\by means of the Strutinski procedure, are shown, together
withkthe corresbonding liquid drop energies. The 172Yb nncleus presents a
sharp minimnm in'the potential eneréy at & deformation € = +.250 and &
Secondary;minimnm (not'necessarlly-a minimnm when more than one collectime
coordinate is“used!) at the oblate deformation € = —.200. Such minima are
separated by a very hlgh barrier w1th 1ts maximum at spherlcity Slmilar
features are observed in the other nucle1 of 1ncrea51ng mass number. however
the difference in deformation between the two minlma decreases.as well as does their
difference in energy and the height of the intermediate barrier. When the
'nnclel are close to the doubly maglc number Z = 82 N = 126 the two minima tend
to merge into_one 51ngle minimum centered at spherlcity while another small
minlmum begins to appear at large prolate deformations. Such potentilal
energies show the'relevance of the shell effects in cold nucleil in the most -
plctorial'way.: |

The relevance of the shell effects in excited nuclei can bevSeen
instead in flg. 11 through flg 16 where the logarlthms of the deformation
probabllltles for dlfferent excitatlon energies are plotted agalnst the
deformation parameter €.

At the lowest excitation energies the variations in deformation
probability asva,function of deformation-are quite‘impressive, being in the

most dramatic case of the order of many powers of 10, as for example in the cases of
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shell effects let us consider the potentlal energy curve of
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172Yb, epng, and 298Pb,- Suchivariations tend‘to followothe.potential energy

variations quite closely when the excitation energy is very low. Very sharp

maxima occur in"correspondence'of the minima in the potentialvenergy and vice

versa.' The compound nuclei are characterized by one or two peaks in deformation
which account for nearly all the probability With 1ncreasing’excitation
energy a rather dramatic Washing out of such structures tekes place. In the
case of a ground state deformed nucleus, the two probability peaks, the oblate
and the’ prolate ones, tend to become brOader, to equalize their height and to

move,closer to sphericity, while the minimum in between becomes shallower. At

excitation energies close to 60 MeV the two prohability peaks have merged

' together completely, éifing'risebto a broad peak centered at sphericity and very

little residual‘influence remains of,the‘shell effects'visible in‘the potential
energy and in the low‘energyiprobability curyes. Actually the 60 MeV probability
curve reflects the smooth liquid drop potential energy quite well. Similar
con51derations can’ be nade for the nuclei Which are spherical in their ground
states,‘such as 2OOHg and 2OB_Pb:.IWIn thls_Case a prominent sharp probability peak
is present'at sphericity and & small‘peak is visible at'large deformations;
with-increasing excitation energy the peak at spheriCity broadens and'the
small peak at large deformations disappears altogether

In order to better apprec1ate the extent of the smearing-out of the
Tng. The energy

difference between the deepest minimum of the potential energy and the top of y

" the 1ntermediate maximum at spherlclty is larger than 7.MeV. While the effect
" of such energy difference is quite remarkable at low energles, at 60 MeV it is -

. non existent, since at this energy the deformation probebility is essentially

L
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constant.in such'a range of’deformafions. ‘This is to be compared with the fact
‘that the ratio of the level densities at 60 MeV and at 53 MeV for & = .250 is
eh'l.' Thisfimpliés also fhdﬁlthe level densiﬁy at 53 MeV for‘e = 0 is equal
to the léiél dénsity at 60 MeV for € = .250. (fig. 9). | A .
The smearing of the shell effects is an oBvious effect of the excitation ‘
energy, although‘some sméaring 6f the shell éffecfs already:exists for a cold
nucieus because of péiriﬁg. 'Formally we may ébnsider the shell-effects to be
at their maximum for a cold nucleus without pairing. The palring interaction
smears-out thé Fermi surface ih an ehergylintérval of ~ 2A and this implies
an'averaging of the single particle features which extend over such an energy -
range. The excitation eneréy ac#s as‘a muchvmore-powerfui smearing agentfby
spreadingwout'hucieonsxabove and below the Fermi. surface. The rate at which
the‘washing—out of shell effects'takés piace:depends upon the range of the
perturbation of the single particle level density which:gives riée ﬁo such
effeéts. The l;rgestvshell effecté ha&e,a rahge of the 6rder of one méjorv

oscillator shell and consequently they are the last to be washed out. This

can be observed in the case of 2OBPb where the shell effects are still quite

72

visible at 60 MeV in comparison with ; Yb where at the same excitation
energy a strong smoothing has taken place.

. As far as the evaluation of level densities is concerned, there are
a few difficulties left. As mentioned in section 2, the overall level denéity
should be.obtained byfintegréting tﬁe defofmation probabilify_over the
collective coofdinate spéce. This pre;ents two kinds of difficultiés: the

first has to do with the extremély lafge amount of calculations necessary in

order to explore the whole deformation space suitably, the secdnd, of more
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_bf freedom multiplies the deformation probability by a factor
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basic'ﬁéture‘has to‘do wiﬁh tﬁe necessity of trUﬁcating the number 6f collective
chrdinaﬁes:‘ ﬁeéaﬁsé Qf.£he afbitrafyhess‘of éuch anfunéatiQn, it follows that
the.leVel denéitieé Willvdepend sdmewhat upoh ﬁhe parémetfization. xAn
inspectioﬁ bffeq. (19) Shdws:h6V fhé iﬁtroduction Qf'a,neﬁ céllecti#e_degree

Y omm /2
- X

Such
éﬁ éfféct is the néqessary'fésult of the redundance of'the degrees of freedém
emplbyed in.desCfiBinglfhe_syétém.

v Many abplicationé can bé‘found for the presént'fdrmaiism. Perhaps a v
ﬁost intéresting dne‘could be a cqnsispent evalﬁation of the fission probabilities;
this involvesbthe calculation of the defofmation probabilify:fqr very large
deformations, the‘idgntification Qf the transition stéte_at.each excitation
energy, and the calculation ofib6th'the fiSsion and neutron,emission widths.
In‘partiéglar‘such.caléuiations 5écome’rélevaﬁt for vefy.heavy or~superheavy

nugléi where the shell effects meke a substantial contribution as far as the

fissioﬁ.barrief héight and the saddle point deformastions are concerned. An

example of such calculations for superheavy nuclei has been reported by the

author™ ) and more extensive calculations are in progress.
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Appendix A

The Strutinski smoothing procedure.

1,2,15)

Although such procedure has been described elsewhere we report “

here the entire formalism which we have obtained in a complete analytical form.
. . >

The gaussian-smoothed single particle level density can be written as:

1 2 | '
gle) = = | Zk: £, §xp(-uk) - (A1)

wheré_
u S % ;\ek_ BN | (A2)

ey areathe'single.particle levels, and Y is the width of the smoothingvfunction.

The function fk

long range variations up to a fixed‘oraer. For our purpose we shall retain

15):

is chosen in sﬁchva way that the aveféged function retains the

7

the terms up to the 6 order. The function f, has been shown to be

cr (/2D B3 @y (BB 2,50 16
U A LR i R T R A
(A3)
we notice that sﬁéh function can be'rewritten in a much simpler way: *
3 ( n .y
= {=1) .
) = Z 220, Bon . V(VAL‘)
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where H2nvare the Hermite'pdlynomials of even order. ‘The smoothed~out shell
model energy is
A ' . _ : '
E =/ 2 e gle) de - ' (a5)
The Fermi ievel A is defined by the equation:
) N=/ 2 g (o) de | e
oo V .
For technical reasqhs the lower limits in the last two integrals is to be
chosen equal to -m'instead of zero: this depends upon the choice of the
gaussian‘smOOthing funCtion‘which spreads—dut the strength of a . level over an
infinite interval.

" In order to. perform the‘abdve iﬁﬁegrals anaiytically,'the_following

_relations are needed;

2 o 2

dn ~X n -X ‘
— e = (~1) H, (x) e (AT)
ax A
2 2 . :
../fg Hn(x) e ax = -e (x Bn_l(x) + Hn—E(X) ) (A8)
Let us now evaluate the intégfal in”Aé;f
N ‘ . , o ' ) B 2
o Xme o, 30 A (A -e)
LD VA D D= Dl B T -
ok S v. om0 . -
. | (A9)
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The integral in;AS is

o N _Y_ v ek)2 211 | 3. (-1)® (A - e}'{)2
E= fy - = Yexp - —5=— -~ | - exp - ——5—— X
Z Xk uw Z y2 /m E z_: n12?® Y2
k- . kK - : . -k n=l o , .
()\ - e ) : )\ - e }\ - e :
MUT 8y , Kk k|| | .
ol | .Y2‘ 'H2n—1. ( Y . * H2n—2 \ ' (A10)

The eq. (A9) is numerically solved for the chemical potential A; which

LA

is then introduced'in the expression Al10 in order to obtain the smoothed-out

shell model energy. ,Such a procedure allows a rather wide choicevfor‘the

smoothing parameter Y. »Aetuélly the value which has been used here was 1 MeV.

' The'summations'dvervthe»single particle levels should be carried out
up to a very high energy ih such a way that the Fermi ehérgy will result to be

independent upon the upper limit of the sum.

g
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Appéndix B

Level den51ty formallsm for an arbitrary segquence of single particle levels

with inclus1on of pairing.

Let us assume that the nucleus can be descrlbed in terms of the B.C.S.

Hamiltonlan.b
:E: K a 8, *+ a ak) - G :E: a;,.gz, a# & | . | (B1)

o : : : o+
where ek'is the energy of the kth doubly degenerate energy level, fk and ik
are the creation and annihilation operators for'partiCles with opposite spin -
projections. The. grand parﬁition,fu‘nc‘tion:eQ of such a system can be defined

according to Sano and Yamasékill) as:

2

v S . o
Q= -B }E: ‘- A - E ) + 2 :E: ln[l + exp (-3 E )] - 6-75 (B2)
- where A is the gap parameter
i/2
E = [(e - A)2 + A2J

B-=l%-(T being the temperafure) is. the Lagrange multiplier which fixes -
the amount of eXcitation.energy
A =<§ is the chemical potential of the systém,_

The relation BQ represents the grand partitlon function prOV1ded that

the quantitles B, K A be related by the following equation;
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| tgh (1/2 B E ) . .

}E: :, - ;. (B3)

k.

th

The level dens1ty, which is the inverse Laplace transform of the grand

partltion function, can be. written as"
| (E N, Z) - ;54 ? a8 Pa d'. S (BL)
9 > e T o\omi /. RO Oy »oth> .

=yt o Wm0 2+ BE

where

and N and 2 are the aeutron and proton numbers and E the tbtal ehergy. The
infégralrin (BL) can'be evaluated by means of‘thevsaddlé point technique. The

quantity S presenﬁs,a saddle point at:

Q

S
te)
@

_28 _38. U T
R
The level density is approximately:
. N eS' : . ,

where
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where

N
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aosta,Z 8-2 8@6
| o
%0 3% 3%
P8 dapk  5g2
E=E +E,
s =8, +8,
2 o
D-L%v%+f%-%
9 oy doy "
o 2
'a.QN : a'QN
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2 2
R
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(BT)

(B8)

ww

and DZ_ié similarly defined. Let us write dowm explicity'thé eq. (B5): with

some algebra we obtain: -
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2

+ :E: .[lfh EEE;_—

'.tgh (1/2 B E )] :
k , k

LBL-228

(BlO):

because of the gap equation (B3) the quantity within brackets in the first term is

equal to zero, therefore,

‘ ‘ ek —; A :
= E f [1._._ -——E-}:— tgh (1/2 B Ek.)] .

k

A similar relation holds for Z. The total energy can be calculated in a similar

way:

=
'oJo)
' m

= IH

“Ey =5t “A(Zitgh(l/ae}z:)--(;;) (Z_
: AR Mk , L N/ ol

‘ . 'ek - A A2
_Zek 1 - —=5— tgh 1/2 B B, +51;

Because of the gap equatlon the flrst two terms are equal to zZero.

wrlte then: -

E_= e ®x A
N :E:. k (l - -—ir—-"tsh (1/2 B'Ek)) - o

N .

' (B11) |

tgh 1/2 @ E. -
g /.B k

(B12)

We can

(B13)

A similar relation holds for EZ. It . is gquite interesting to notice that,

although in the abovéfcalculations we have properly differentiated A with

=l
e
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respect to O{N and B, the resulting expressions for the number of particles and
for the energies are independent of such derivatives.
For the entropy we can write:

Sy = g :E: 1h[1‘+ exp (;5 Ek)] + zfg.jz: -1}+ exzk(B_Ek) s | F<Blh)
” , _ , ” . , .

and simiiarly for SZ. 'Thé secé‘nd 'derivatilves of the grand partition function

which appear in the determinants D

~

y» Dy can be written down explicitly:

Z k e )\)eak+ Azkvz ekbk+A2 Ze};(’ek—mvak‘

__9__
2 -
" ' ' 7 R o )
ko . .k ' ) ‘ '
3 °q

£

D ICACIERSEENETS S SR NEY D DECEES ESEE 3 Sl CHER S CHER
x0Tk ko f . |
| o (mm)

In these equations we ‘h'ave set;:v

a = -t— gsech? (/2B E); b = L tgh 1/2 B E
k 2 kY Tk 3 k
28 © , BE, £



-30- o .. LBL-228

A -

@
>
@

K=BA3-7§., M=BA5"&;\T" for_. .A>_.0_
Kv= 0 - ,._M =0 for A=0

The gap parameter A is a decfea,sing function of eiccii:ation‘e_he_i‘g; it goes to
‘zero at a critical temperature Tc that, together wit_hlthe critical chemical
potential ')"c can be obté.in'ed'by solving eq. (B3) and eq. (Bll) after setting

A= 0.
We need to calculate g—% and i in order to-calculate such derivatives

°°N

we observe that eq. (3), which we rewrite:

tgh (1/2 8 E)
k. T Ek_.

defines A as an implicit funCtio_n of B and O+ We can write:

£(A, aﬁ, 3) = 0
the »-total differential is:
ar CESE S O Ve VN ]
) dB*auN doy *+3 -’(88d8+80eN d“N) =0
or o
ar 3 aAY o far afas ) Lo
(as 3 -ae_) d_B*(acyN*a 3 ) Qo = 0

Such equation is sa"cis'fied 1f and only if:
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@
s

3f 9A _, . 3f ,3f 34 _
56 58 380 5 da *ok s 0
_ n j
It followsifhen:.>iv

B 3f

af =
3A_ 38 . aA _. 2%
AR Af RS

By using the above formulae we obtain: - (

:E: e (e - A) + A% :E: x }E: (ek s X) bk
e E

aa__% - k ) . (B18)
_ _BA Z = bk)
k : '
:E:(ék *LX)(ak - by)
, 3 A k 1 ,
. = (B19)
3U-N BAE (ak_b.k) ) i

=
The angular_momentum'dependent level density.is giﬁen by the expression:

(27 + 1) J(J + 1)

o(E, J) = o(E) exp - (B20)
_ (2ﬂ)1/2 3 T R | |
‘where  '-
o o _ . L
T =yt S _ ) (B21)
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‘and

| 2

o m
eosh? 1/2 8 Ek

o° = 1/2 Z (B22)

In the'development'ef:thie7fefﬁaiism we agree with Seno and Yamasaki

" and Decowski gE_gl;.inithe quentities-Q;'E; N,YS. - The leuei.densitj.denominator

derived here diffefs ffqmtthet 6f Sahbtehd'Yamasaki beeauee while we searched

for the saddlevtoiﬂt %ith’feeﬁect'te.B; &N;xeﬁa.az,the& séerehéd fof'the

saddle p01nt with respect to 3] only Qur level deneity denominatdr differs

‘from that derlved by Decowski et al. in the values of the quantltles K and M..

"We have no explanatlon-for the dlsagreement.

The actual calculatlensvare executed in the foliow1ng way

a) .the ground state energy is calculated bysettlng T = 0 and by
solving eqgs. (3) and (ll) for A and A

b) the critical quantitles T and k are evalusted by solving egs. (3)
and (ll) aftersettlng A= - .

c). the nuclear temperature T is taken as the independent varlable

the quantities A(T) and A(T) are evaluated by solving again egs. (3)

v_(ll) for a given value of T and used tc evaluate E, S, D and

finally p.
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. Figure Captions

Fig., i. Scﬁémaﬁid repreSentatiOn gf the potential energy V of a nucleus as
a funcfion ofjé deformétiOn paremeter €. The total energy of the‘Systém o
) E; meaéuﬁéd frém‘the déepést mi@imum in the potential energy can be divided;
at any‘deformation in two portions; a potential energy part,V‘and_a 16cal
, excit;tidp eneggy Ei.v Tﬁe lattef is shared by the intgrnalvand collective

degrees of freedom.

172Yb

Fig. 2. Potential éhefgy'as évfuhctibn of the_deformatiqh parameter £ for
calculated from the Nilsson diagram by means of the Strutinski procedure

(black'circiés). The coﬁtinuoﬁé line réprééénts the liquid drop energy.

Fig. 3. Same as fig, 2 for 18k,
FiS? h; Samefasbfig;VEHfor lgOPt,v‘
Fig. 5. Same as fig. 2 for “2%p¢.
Fig. 6. Same as'fig. 2-for-20QHg;
Fig. 7. Same as fig. 2 for 208p,,,

1T2yp at € = 0 from the Nilsson

Fig. 8. »Statiétical qﬁanﬁitiés calculated for
'diéérém,énd-the B.C.S. Hamiltonian. Neutron and proton gap parameters as
a‘functioﬁ of excitation:enefgy (left scale).k Levei density aenominator
as é.funétion of excitation énergy (right écale) showing thé fwo discon~
.tinuties»associated‘with the-secondeorder-phése transitibns.

Fig. 9. Naﬁﬁral logariﬁhm of level densities as a fﬁnction of excitation

172

energy fo? Yb at sphéricity and at the ground staté.deforﬁation. It
cahvbé notiéed how thé_different rafé of growth of ﬁhe two_curves'cdmpensates, -
at”“’hO:MéVFfdf the T MeV difference in ground state'potenfial energies.

Fig. 10.  Spin’cuteoff parameté;svférul72Ybicalculated at SPhericityiand at the

ground state deformation.
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Fig. 11. Naturai logafithmiof the deformation probébilities (see'text for.

.details) for different excitation enérgies for

- each curve is in MeV.
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LEGAL NOTICE -

United States Government. Neither the United States nor the United

~ States Atomic Energy Commission, nor any of their employees, nor

any of their contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal liability or

* responsibility for the accuracy, completeness or usefulness of any

information, apparatus, product or process disclosed, or represents
that its use would not infringe privately owned rights.

" This report was prepared as an account of work sponsored by the
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