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Abstract- It is known that when the Maximum Likelihood Estimator (MLE) 

algorithm passes a certain point, it produces. images that begin to dete

riorate. We propose a quantitative criterion with a simple probabilistic 

interpretation that allows the user to stop the algorithm just before this 

effect begins. 

The MLE algorithm searches for the image that has the maximum pro" 

ability to generate the projection data. The underlying assumption of the 

algorithm is a Poisson distribution of the data. Therefore, the best im

age, according to the MLE algorithm, is the one that results in projection 

means which are as close to the data as possible. It is shown that this goal 

conflicts with the assumption that the data is Poisson-distributed. 

We test a statistical hypothesis whereby the projection data could have 

been generated by the image produced after each iteration. The acceptance 

or rejection of the hypothesis is based on a parameter that decreases as 

the images improve and increases as they deteriorate. We show that the 

'best' MLE images, which pass the test, result in somewhat lower noise in 

regions of high activity than the filtered back-projection results and much 
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improved images in low activity regions. 

The applicability of the proposed stopping rule to other iterative schemes 

is discussed. 

1. INTRODUCTION 

The Maximum Likelihood Estimator (MLE) algorithm has at

tracted considerable interest in the field of positron emission to

mography. It produces superior images in addition to being flexi

ble, simple and allowing a physical interpretation. The use of the 

maximum likelihood criterion in emission tomography was origi

nally proposed by Rockmore and Macovski [1]. Shepp and Vardi 

[2] developed and investigated the MLE algorithm. They offered 

an approximate but efficient algorithm for computing the transi

tion matrix, proposed an algorithm for maximizing the likelihood, 

and proved some properties of the algorithm. It is a gradient-type 

algorithm, although [2] provided a physical interpretation of its 

steps. 

Our notation is based on [2]. Let n*(d), (d = 1, ... , D) be the 

projection data or the number of coincidences detected in tube d. 

The problem is to estimate the emission density >.(b), (b = 1, ... , B), 

where B is the number of pixels making up the image. We will 

assume that the following B by D matrix known as the transition 

matrix is precomputed: 
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pCb, d) =Prob( detected in d I emitted in b) 

and 

Let A-(d) be 
B 

A-(d) = 2: A(b)p(b, d) 
&=1 

The goal of the algorithm is to maximize the likelihood function 

L(A) which is the probability that the image A generates the given 

projection data and is defined as follows: . 

D '-(d)nO(d) 
L(A) = II e->'O(d) A (1) 

d=1 n-(d)! 
In order to maxiniize (1), an iterative algorithm was proposed in 

[2]. It increases L(A) at each step and converges to its maximum 

value. However, it has been reported that when the algorithm 

passes a certain point, it produces images that begin to deterio

rate. This has been observed and explained by Snyder, et al [3]. 

This phenomenon was further investigated in [4] and [5]. In partic

ular, it was noticed there that the process of image deterioration 

starts at a point which depends on the total number of counts in 

the projection data - the more counts, the later it begins. Once 

this process has begun, it progresses more rapidly when the total 

number of counts in the projection data is small. 

Some authors (see e.g. [3] and [6]) have proposed to tackle 

this problem by replacing the likelihood criterion by· other crite

ria designed in such a way that they prevent the deterioration, or 
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by maximizing the likelihood criteria subject to some constraints. 

We feel that although their approaches are able to prevent the de

terioration, the authors had to include some new elements (func

tions, parameters, matrices or a priori distributions) which affect 

the reconstructed images, while selection of specific values of these 

elements has yet to be justified. 

That is why we have opted for another approach. We analyze 

the original MLE algorithm without introducing any new elements 

and find the stopping point on the basis of intrinsic properties 

of the algorithm. It is shown that maximization of (1) and the 

underlying assumption that the data is Poisson-distributed sooner 

or later become contradictory to each other. Then we propose a 

quantitative criterion that allows the user to catch the moment 

when they are least contradictory. 

We have chosen to work on the non-accelerated MLE algorithm 

first. The applicability of the stopping rule to accelerated schemes 

(see e.g. Kaufman [7], Lewitt and Muehllehner [8], Tanaka [9]) will 

be studied in the future. 
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2. RATIONALE 

It was noticed by Snyder, Lewis and Ter-Pogossian [10] that 

n*(d) are independent and Poisson random variables and A*(d) are 

their means. Therefore, the image maximizing (1) must be such 

that A*(d) are as close to n*(d) as possible. (This is also seen from 

(1) directly). Although it cannot be guaranteed that all A*(d) may 

be made equal to corresponding n*(d), one can expect that if B is 

large, the two may be made very close for almost all d. This was 

observed in [4] and [5]. 

This fact leads to a paradoxical situation. The closer A*(d) be

come to n*(d), the higher the probability that the image generates 

the projection data. However, if the two get too close for all or 

almost all projections d, it becomes statistically unlikely that the 

image could have generated the data. The chance that a source 

distribution emits a number of ,-rays very close to its mean for all 

directions where detectors are placed is very small. 

After each iteration of the MLE algorithm, we propose to test 

the hypothesis that n*( d) for all d = 1, ... , D are jointly statistically 

valid realizations of Poisson-distributed random variables with the 

means A *( d) for corresponding arguments. In other words, we test 

the hypothesis that n*(1) is a realization of a Poiss~n variable 

with the mean A*(1), n*(2) was drawn from a Poisson distribution 

with the mean A*(2), etc. It is reasonable to require that only 

5 



images passing the test (for which the hypothesis is not rejected) 

be declared acceptable. 

3. SOLUTION 

We want to test the hypothesis whereby n*(1),n*(2), ... ,n*(D) 

are realizations of Poisson random variables with the means A*(l), 

A*(2), ... ,A*(D), respectively. This is done by deriving a version of 

Pearson's X2 statistic (see e.g. [11]) suitable for our case. 

Let us imagine for a moment that all A * (d) are identical. Then, 

according to Pearson's scheme, we would break all possible values 

ofn*(d) (that is, 0, 1,2, etc.) into arbitrary N classes (say [0,1], [2, 

3, 4], etc.) and compare the observed number of projections falling 

into the i-th class with the expected number. The expected number 

would simply be the sum of the Poisson terms corresponding to 

the i-th class, Pi, times D. (In our example, Pl. = e->' + e->' . A, 

P2 = e->"A2 /2!+e->"A3 /3!+e->"A4/4!, etc.). Pearson's test allows 

the user to judge whether the observed and expected numbers are 

close enough or not. 

However, A * (d) are not identical. For any given A * , we can again 

break all possible values of n* into N classes. Let Pl., P2, ... , PN 

again be the theoretical probabilities of the N classes. Then, let 

us take another value of A * and try to come up with the same 
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probabilities. If we dealt with a continuous distribution, we would 

simply scale n*(d). In our case, unfortunately, we may be unable to 

break all possible values of n* into classes with the same theoretical 

probabilities, . whatever classes we choose, because of the discrete 

nature of the Poisson distribution. That is why we have to resort 

to the following procedure which, in effect, breaks the discreteness 

of the Poisson distribution. 

We shall do everything in the reverse order. First we shall 

choose the theoretical probabilities P1, 112, ... , PN arbitrarily. We 

may assume,for simplicity, that all Pi = 1/ N. Then we shall define 

N classes in such a way that, regardless of the value of A*(d), any 

observed number n*(d) will be assigned to the i-th class with the 

probability 1/ N if the Poisson assumption is correct. The following 

algorithm will do the job. 

For every projection d, compute two probabilities, 

n·(d)-l • A*(d)i 
P1 = I: e->' (d) ., 

i=O ~. 

and 
n·(d) • A *( d)i 

112 = I: e->' (d) ., 
i=O ~. 

Then generate a random number, :z:, uniformly distributed between 

P1 and 112. It is easy to prove that, if n*(d) is Poisson-distributed 

with the mean A*(d), :z: is uniformly distributed between 0 and 

1. (This is the discrete equivalent of the well-known fact that if 

:z: is a continuous random variable with an arbitrary distribution 
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function, F, then F(z) is uniformly distributed between 0 and 1.) 

Let j be the smallest integer that is equal to or greater than zN. 

Then this projection is assigned to the j-th class. 

Therefore, testing the original hypothesis is reduced to testing 

that z is uniformly distributed between 0 and 1. Then we can 

easily follow Pearson's procedure. Let hi, (i = 1, ... , N) be the 

number of projections falling into the i-th class of the histogram. 

If the hypothesis is true and D is sufficiently large, which is always 

the case in imaging, then 

H = E (hi - D I N)2 
i=1 DIN 

(2) 

is approximately X2 distributed with N - 1 degrees of freedom. 

This follows from the fact that the distribution of each 

J(D IN)(l - liN) 
(3) 

is approximately the standard normal. Therefore, the hypothesis 

should be rejected if the value of H exceeds the critical value based 

on the number of degrees of freedom (N - 1) and the significance 

level. 

. The significance level is the probability of rejecting the hypoth-

esis, given that it is true. In our examples we generated histograms 

with 20 classes and used the significance levels of 0.2, 0.1, 0.05 and 

0.01 which are common. The corresponding critical values taken 

from a table of quantile values of the X2 distribution (see e.g. [11]) 
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are 23.9, 27.2,30.1 and 36.2. 

Viewing the histogram of:c is rather instructive in itself. After 

the first iterations, most of the projections concentrate in the ex

tremely left and extremely right bins and the histogram is convex. 

This is another way of saying that n*(d) are too far away from 

corresponding ).*(d). Gradually, the projections spread out and 

the histogram becomes more and more uniform. Then, however, 

the projections tend to move on towards the central bins of the 

histogram and the histogram becomes concave, which is a way of 

saying that now n*(d) are too close to ).*(d). 

4. EXPERIMENTS 

We used a source image with 2 million counts obtained by a ran

dom process described in [4], based on the activity distribution 

shown in Fig. 1. The high and low activity regions of the source 

image are shown in Fig. 2, in which 16 levels of grey have been 

compressed into the upper quarter of the color scale and the same 

number of levels have been compressed into the lower eighth the 

color scale. The parameter H of the X2 test obtained at the end of 

each MLE iteration is plotted as curve a in Fig. 3. It reaches its 

minimum around iteration 30 after which it gradually increases. 

The two horizontal lines depict the critical values corresponding 
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to significance levels of 0.1 and 0.01. It follows that the window of 

acceptable images lies around iteration 30 and has a width of ± 5 

to 10 iterations depending on the significance level. It is important 

that the window is not too sensitive to the significance level within 

a reasonable range of the latter. 

The image obtained after iteration 30 is shown in Fig 4. Fig. 

5 shows the image reconstructed by the filtered back-projection 

(FBP) method, using the Shepp-Logan filter, after setting negative 

values to o. All images are separated into high activity and low 

activity parts, as was the source image. Fig. 6, a) through e), 

depicts cuts through the source image, through the MLE images 

(after 15, 30 and 60 iterations) and through the FBP image. 

Examination of the images shows that the 'best' MLE image 

(after 30 iterations, according the criterion H) has somewhat lower 

noise in regions of high activity than the FBP image and is by far 

less noisy than the FBP image in regions of low activity. 

Comparison of the three MLE images shows that while the 'best' 

one already manifests some signs of deterioration in the high activ

ity region, it depicts the small circular low activity region (beside 

the big ~llipse) with higher sharpness than after 15 iterations. The 

image after 60 iterations is even sharper in the low activity region 

but is excessively noisy in the high activity region. In other words, 

the 'best' MLE image is a reasonable compromise between two 

contradictory trends. 
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It is interesting to observe the behavior of H when the total 

number of counts increases. Curves band c in Fig. 3 show the 

behavior of H with 8 million and 32 million counts, respectively. 

It is evident that the higher the total number of counts, the more 

iterations it takes to reach the 'best' image. Additionally, the 

'best' images in cases of higher numbers of counts are even more 

compatible with the hypothesis (the curves dip lower) and -the 

windows of acceptable images become wider (the curves are flatter 

around the minima). These results are consistent with our earlier 

observations in [4] and [5]. 

5. DISCUSSION OF RESULTS AND APPLICABILITY TO 

OTHER ITERATIVE SCHEMES 

There are many objective functions which can be used to recon

struct images in emission tomography. The likelihood L defined 

in equation (1) is one of them, another is the sum of the squares 

of the differences between n* (d) and A * (d). The parameter·H prcr 

posed in this paper is yet another possible candidate. What is the 

best objective function? We realize that there is no single answer 

to this question. 

We have demonstrated that the goals of maximizing L and min

imizing H may contradict each other. As usual, one can try to 

combine the two contradictory goals by using a weighted sum of L 
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and H. Another standard approach is to maximize L provided that 

H does not exceed a given value or to minimize H provided that L 

is greater than a given value. We intend to continue investigating 

these approaches in the future. 

However, we believe the approach described here is a viable 

alternative. It reconciles the two goals rather well. As the MLE 

progresses, it passes though a narrow window of acceptable images, 

provided that we restrict ourselves to a commonly used range of 

values of a, and we have observed that the window is not very 

sensitive within this range. In all our experiments, this window 

corresponded to the visually best images produced by the MLE 

and these images were superior to those produced by the filtered 

back-projection methods. 

We believe the reason for this success can be expressed as a 

general principle: the best images are those for which n*(d) and 

A*(d) are 'close but not too close'. There are several ways to quan

tify the notion of being 'close', L and the quadratic criterion being 

just two examples, while H quantifies the notion of being 'not too 

close'. For this reason, H can be combined with other objective 

functions as well. 

One of them is a 'weighted' L introduced in [5]: 

D [ A*(d)n*(d)]sn*(d)+t 
W L(A) = II e->'*(d)---,--,---

d=1 n*(d)! 
(4) 

where sand t are constants. The objective function (2) allows the 
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user to emphasize projections with large numbers of counts at the 

expense of those with small numbers or vice versa. An iterative 

scheme maximizing WL(A) was presented in [5]. 

We should also note that although the parameter H quanti

fies the notion of being 'not too close', it is not the only possible 

parameter suitable for this purpose. We began this investigation 

by experimenting with the following stopping rule: 'stop as soon 

as a certain part of the projections, say 95%, are reconciled'. A 

projection is said to be reconciled if the difference between n* (d) 

and A*(d) is less than CJA*(d), where C is a constant. We believe 

that this stopping rule is rather empirical, whereas the rule based 

on the hypothesis testing is more objective, easier to justify and it 

more accurately takes into account all available information. 

The added computation time to generate the parameter H after 

each iteration is small compared to the iterative process itself. 

6. APPENDIX 

This algorithm has been implemented in the following three 

functions in the C language. 
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.include <stdio.h> 
'include <math.h> 
'define N COINC 30000 
.define N-BINS 20 

histogram (n,lambda,hist) 
double n[], lambda[]; 
int hist[]; 

/*generates histogram h*/ 

{ 

} 

int i, j, bin; 
double sum; 
double term; 
double upper; 

/*accumulated sum of Poisson terms*/ 
/*Poisson terms*/ 
/* 2 to the power of 31 minus 1*/ 

chi ( ) : float r, y, h_value, 

srand(l): /*initialize rand generator*/ 
upper = pow«double) 2.0, (double) 31.0) - 1.0; 
for (i = 0; i < N_BINS; i++) 

hist[i] = 0; /*initialize histogram*/ 
for (i = 0; i < N_COINC; i++) /*main loop for each projection*/ 
{ 

} 

if (lambda[i] 1= 0.0) 
{ 

} 

if (lambda[i] < 300.0) 
{ 

/*direct computations*/ 

sum = 0.0: 
term = exp(-lambda[i]): 
for (j=l: j<=n[i] && sum<l-l/N BINS: j++) 
{ -

sum = sum + term; 
term = term * lambda[i] / j; 

} 

} 

r = rand() / upper; /*get random number in [0,1]*/ 
bin = (r * term + sum) * N_BINS; 

else /*use normal approximation*/ 
{ 

} 

y = (n[i] - lambda[i]) / sqrt{lambda[i]): 
bin = normal (y); 

hist[bin] = hist[bin] + 1: 

h value = chi(hist); 
printf("\n The value of H is %f",h_value): 
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float chi(hist) /*computes the value of a*/ 
int hist[]: 

{ 
int j, sum: 
float answer: 

sum = 0: 
for (j = 0: j < N BINS: j++) 

sum = sum + hist[j]: 
answer = 0.0: 
for (j = 0: j < N BINS: j++) 

answer = answer-+ pow( (hist[ j] - sum / N_BINS), 2): 
return(answer * N BINS /sum): 

} 

normalCy) /*area under standard normal curve is divided into 
20 equal regions: normal returns region number of y*/ 

float y: 
{ 
static float x[N_BINS] = {-1.645, 

-0.525, 
0.125, 
0.841, 

int i: 

for (i = 0: i < N BINS - 1: i++) 
if (y < x[i]) 

return(i): 
return(N BINS - 1): 
} -
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-1.282, 
-0.385, 

0.253, 
1.037, 

-1. 037, 
-0.253, 

0.385, 
1.282, 

-0.841, -0.675, 
-0.125, -0.000, 

0.525, 0.675, 
1.645}: 
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XBB 860-10391-A 

Fig. 1 Activity distribution for the generation of the source image. 
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Fig. 2: Top 

XBC 872-11 47 

Fig. 2: Bottom 

XBC 872-1150 

Fig. 2 High (top) and low (bottom) regions of the source image with 2 million counts. 
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RESULTS OF HYPOTHESIS TESTING 
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Fig. 4: Top 

XBC 872-1 148 

Fig. 4: Bottom 

XBC 872-1151 

Fig. 4 MLE image after 30 iterations : high activity part (top) and low activity 
part (bottom) 
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Fig. 5: Top 

XBC 872-1146 

Fig. 5: Bottom 

XBC 872-1149 

Fig. 5 Image reconstructed by the FBP method: high (top) and low (bottom) activity parts 
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Fig. 6 Cuts through: (a) the source image, 

(b) HLE-15 image, (c) MLE-30 image 
(d) MLE-60 image, (e) FBP image 
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