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Pulsed Zero Field NHR of Solids and Liquid Crystals

Ann M. Thayer

Abstract

This work describes the development and applications to solids and

liquid crystals of zero field nuclear magnetic resonance (NMR)

experiments with pUlsed dc magnetic fields. Zero field NMR experiments

are one approach for obtaining high resolution spectra of amorphous and

polycrystalline materials which normally (in high field) display broad

featureless spectra. The behavior of the spin system can be coherently

manipulated and probed in zero field with dc magnetic field pulses which

are employed in a similar manner to radiofrequency pUlses in high field

NMR experiments.

In Chapter I, the fundamental nuclear spin interactions and

formalism used throughout are introduced. The field cycling scheme is

explained theoretically and practically in Chapter II, including

calculations of the signal function for a few illustrative experimental

examples. Technical details are relegated to the appendix. Chapter III

introduces how experimental dc pulse sequences can be exploited to

improve pulsed field homogeneity with composite pulses. Such sequences

are also used for the detection of NMR and NQR spectra with increased

sensitivity via level crossings, for isotope selective pulses, and for

two dimensional extensions of the experiment. Theoretical consider-

ations of the initial zero field state after demagnetization are also

included.

The study of liquid crystalline systems by zero field NMR methods
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is the topic of Chapter IV. Nematic phases are studied in order to

observe the effects of the removal of an applied magnetic field on

sample alignment and molecular order parameters. In nematic phases with

positive and negative magnetic susceptibility anisotropies, a comparison

between the forms of the spin interactions in high and low fields is

made. High resolution zero field NMR spectra of unaligned smectic

samples are also obtained and reflect the symmetry of the liquid

crystalline environment. These experiments are a sensitive measure of

the motionally induced asymmetry in biaxial phases. Homonuclear and

heteronuclear solute spin systems are compared in the nematic and

smectic phases. In Chapter V, nonaxially symmetric dipolar couplings

are reported for several systems. The effects of residual fields in the

presence of a non-zero asymmetry parameter are discussed theoretically

and presented experimentally. Computer programs for simulations of

these and other experimental results are found in Chapter VI.
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I. INTRODUCTION

A. Introduction

Nuclear Magnetic Resonance (NMR) involves the interaction of

nuclear spins with static and time dependent magnetic fields. It can be

used to obtain information on chemical identity, structure and dynamics.

This information is contained in the nuclear spin Hamiltonians which may

be probed as perturbations in the presence of an applied static magnetic

field or, as will be discussed in this thesis, in the absence of such a

field. In this first chapter, the formalism and basic interactions are

introduced. Later chapters describe the theory and implementation of

zero field NMR techniques and their applications to polycrystalline

solids and liquid crystalline mesophases. In the experiments presented,

the similarity between the uses of pulsed dc magnetic fields in zero

field and the high field radiofrequency pulses of "normal" NMR methods

is considered.

B. The Density Matrix

A pure quantum mechanical state can be represented by a single

1

The coefficients, cn ' may be time dependent and often contain arbitrary

phase factors. In NMR, one is generally concerned with measuring the

ket, Iw>, which when expanded in a complete orthonormal basis set, lun>,

is written

Iw(t» = E c (t)lu >n n
n

(1.1)



average expectation value for an ensemble of identical systems, rather

than observing a single state. In such cases, it is convenient to

employ the density matrix.'

The elements of the density matrix, p, are defined in the

expression for the ensemble averaged expectation value of an operator,

0, as

--*
<0> = E E cmcn <unlolum>

n m

2

I

= E E p <u lolu >mn n mn m
(1. 2)

The quantities cmc~ can be thought of as the matrix elements of the

Hermitian operator, p, where

From Equations (1.2) and (1.3), it is evident that the expectation value

of any operator is quite easily calculated from

<0> = Tr{pO} = Tr{Op} (1. 4)
. 1

I

The diagonal elements of the density matrix, Pnn' correspond to the

ensemble averaged populations of the states un and the elements Pnm

correspond to coherences between states un and tim. The essence of the

random phase approximation2 is that the off-diagonal elements are equal

to zero at thermal equilibrium. The diagonal elements, or populations,

are expressed in terms of the Boltzmann distribution

in which the partition function Z=Enexp(iEn/kT). Writing Equation (1.5)

I
1

~.j

J .

1
~j

J



in terms of the Hamiltonian of the system yields an expression for the

density operator

3

p = ~ exp(iH/kT) (1. 6)

n.. I
J

The Hamiltonian for a nuclear spin system at thermal equilibrium in a

large applied magnetic field is dominated by the Zeeman Hamiltonian

(Hz=-wol z where wo=YBo ) since this interaction is orders of magnitude

larger than the internal spin interactions. Expanding the exponential

in Equation (1.6) and truncating to the first two terms (since kT»Hz in

the high temperature limit3), the density operator becomes

p = 1.( 1 - !L.)
Z kT

w I
= 1.( 1 + .-£2.)

Z kT (1. 7)

In order to interpret and predict the behavior of an ensemble of

nuclear spins with time, the evolution of the density operator must be

understood. The evolution of the density operator is given by the

Liouville-Von Neumann equation4

~~ = iCp,H] (1. 8)

r-J
~

U

U

For a time independent Hamiltonian, H, the solution of Equation (1.8) is

pet) = exp(-iHt)p(O)exp(iHt) (1.9)

in which exp(-iHt) is termed the propagator of the system. The

Hamiltonian, H, appearing in the exponential terms can include the

effects of local spin interactions or the transformation of the density

matrix by application of a pUlsed field. The first term of the density

operator in Equation (1.7) is unchanged by the unitary transformation of

Equation (1.9) and the reduced density operator is then defined as



p (1.10)

4

representing the high field equilibrium state of the system.

c. Nuclear Spin Hamiltonians

In this section, the nuclear spin Hamiltonians are presented and

discussed. Since most of the experiments to be described occur in the

absence of an applied magnetic field, the usual rotating frame

transformation3,5 is not used. Instead, general forms of the

Hamiltonians are presented and specific frames of reference are

indicated for individual examples. The secular or truncated6,7 form of

the Hamiltonians in large magnetic fields (i.e. that part which commutes

with I z) is presented for comparison in some instances. The actual

mechanics of the truncation are covered in many texts which can be

consulted for reference3,6-8.

The Hamiltonians can be written as a product of a second rank

(3x3) Cartesian tensor and two vectors,7

Cl
I
i

x,y,z
H = X·A·Y = r Ai.X.Y.

i . J 1 J,J
(1.11)

The tensor, !, describes the coupling between the vector components, X

and Y, which can correspond to spin vectors of the same or different

nuclei, or a magnetic field vector. The matrix representation of the

Cartesian tensor depends upon the choice of reference frame. Transfor-

mations between different frames is discussed in a later section. The

principal axis system (PAS) of A is that which renders A diagonal.
I
1

U -

J



qu 1. Zeeman Interaction

The basis of nuclear magnetic resonance lies in the intrinsic spin

angular momentum, I, of most nuclear species. The spin angular momentum

is proportional to the magnetic moment, p, which intera~ts with an

applied magnetic field, B. The interaction is expressed as

5

H = - p·S
Z

- Y
I

(h/21T) B Io z
(I.12)

r \

where the field, Bo ' is chosen as the laboratory frame z axis and I z is

the component of spin angular momentum in this direction. The

gyromagnetic ratio, YI , is a constant for a particular nuclear species

and plays an important role in magnetic resonance. For example, the

above interaction may be expressed in terms of the resonance frequency,

wo=YIBo ' of a nucleus in an applied field

i
c ~
,--__ J

U
J

in angula~ frequency units of radians/sec. This is by far the largest

interaction as it is on the order of megahertz (V=W/21T). For a given

field, this frequency Wo is characteristic of a nuclear spin due to its

dependence on YI. Therefore, in an applied field, one gains a handle on

different nuclei allowing them to be distinguished and manipulated on

the basis of resonance frequency. While this may seem a trivial fact

for most students of NMR, this property is later shown to be an

important experimental factor.

The eigenstates of the Zeeman Hamiltonian are the usual angular

momentum states, 1m>, upon which the angular momentum operators act



according to

11m> = mlm>z
(1.14)

6

and defining 1+ = Ix+iIy and 1_ = IX-iIy as the raising and lowering

operators, respectively

I+lm> = [I(I+1)-m(m+1)]1/2 Im+1>

I_1m> = [I(I+1)-m(m-1)]1/2/ m- 1>
(1.15)

where m=-I, -1+1, ••• ,1-1, I for the (21+1) eigenstates of a single

nucleus, spin I.

2. Chemical Shift· Interaction

In the presence of a magnetic field, a nucleus is shielded by

surrounding electrons. The chemical shift is a measure of the degree of

this shielding effect and takes the form

and is proportional to the applied field. In the absence of a field,

the chemical shift vanishes. The chemical shift tensor is a

characteristic of different chemical sites and is therefore frequently

used for their identification.

3. Radiofrequency Interaction

The interaction of the nuclear spins with an applied radio-

frequency (rf) field can be described by the Hamiltonian

J

j
- I
- J
~J



(1.17)

7

"-1
i

: I

in which the irradiation is applied in a direction perpendicular (x) to

the static field (z). The applied field is characterized by an

amplitude w1 = YIB" a frequency w of the irradiation and a phase ~.

These experimental variables provide for a complex and varied approach

to the manipulation of nuclear spins. The treatment of a pulsed rf or

dc field on the density operator is discussed in later sections.

4. Quadrupolar Hamiltonian

Certain nuclear spin interactions exist even in the absence of an

applied magnetic field and it is these which are of interest in zero

field NMR and NQR experiments. One is the quadrupolar interaction8

which, in analogy to the chemical shift in high field, acts as a site

specific chemical label. For nuclei with spin 121, the nucleus has a

nonspherical distribution of electric charge, i.e. a quadrupole moment,

eQ. This quadrupole moment is a property of a particular nuclear

species and interacts with electric field gradients arising in the local

environment of the nucleus (e.g. bonding, crystal structure, etc.). The

coupling of the nucleus and electric fields for a single spin is given

by

(1.18)

where V is the electric field gradient (EFG) tensor. As stated

previously, in the principal axis frame of the interaction the tensor is
\

diagonal with three components Vzz ' Vyy and Vxx • These are defined such

that



and

8

(1.19)

the latter in accordance with the Laplace's Equation. The largest

component of the electric field gradient is often defined as Vzz=eq, and

the asymmetry parameter n, which describes the deviation from axial

symmetry of the electric field gradient, is defined by

1

n =
v - Vyy xx

Vzz
(1. 20)

The Hamiltonian written in the principal axis frame of the interaction,

in terms of angular momentum operators, becomes

( 1. 21 )

Note that in the principal axis frame there is no angular dependence.

Two characteristic features of this interaction are the value of

e 2qQ/h, the quadrupole coupling constant, and the asymmetry parameter,

n, which are very sensitive measures of different sites in a molecule,

motions or bonding. Molecular motions produce an averaging effect of

the quadrupolar interaction making it a sensitive measure of these

effects. The quadrupolar interaction can be quite large (kilohertz to

many megahertz) but, in the cases relevant to this work, is often on the

order of 100-200 kHz. In high field, an interaction of this magnitude

would be truncated with respect to the applied field and the secular

form is

- I
- j

~
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Ho= e qQ [( 2) 2 J( 2 2)Q - 8I(21-1)(h/2~) 3cos 8-1 + nsin 8cos2~ 3Iz - I (1. 22)

9

~ ,
!

The orientation dependence arises from the relation of the principal

axis frame to the laboratory/field frame. For a powder distribution of

crystallites, the angular dependence differs for each orientation and

results in a broad range of quadrupolar frequencies and hence a broad

spectrum.

5. Dipolar Hamiltonian

Another such field independent interaction is the direct, through

space coupling of nuclear magnetic moments as described by the dipolar

Hamiltonian. 8 The Hamiltonian may be written as a sum over the

couplings of many spins, or for just two spins as

I
~ J

H =
D -I.I]1 2

(1.23)

~ !

i

,,)

where r 12 is the internuclear distance between nuclei 1 and 2 and r is

the unit vector. The dipolar interaction is a traceless, second rank

tensor and is generally considered to have axial symmetry. The ·dipolar

Hamiltonian is similar in form to the quadrupolar Hamiltonian (n=O) with

products of two spin, rather than single spin, operators. The

Hamiltonian may be expanded into a sum of six terms



in which

Y1 Y2h
---~3- [A + 8 + C + D + E + FJ
2'1Tl" 12

2A = (3cos S-1)I Z1 I Z2

1 28 = 2 (3cos S-1)(Iz1 I z2- 11.12)

C i sinScosSexp(-ia) (Iz1 I+2+ I+1I z2 )

D C* = iSinScossexP(ia) (Iz1 I_2+ I_ 1I z2 )

E = tSin2SexP(-2ia)I+1I+2

F = E* = tSin2SexP(2ia)I_1I_2

(1.24)

(1. 25)

10

r I

I
, i

I

expressed in an arbitrary frame. The angles, a and S, relate this frame

to the principal axis frame with the PAS z axis generally chosen to be

the internuclear vector. When the reference frame is determined by An

applied field (z axis), the Hamiltonian reduces to the secular terms A

and 8

(1. 26)

As in the case of the quadrupolar interaction, the angular dependence on

S (relating the orientation of the internuclear vector and the field

direction) produces a broad range of spectral frequencies for

polycrystalline samples. If structure in a spectrum due to dipolar

couplings can be deciphered, then the geometry of the spins can be



determined from the r dependence of the interaction.

For a heteronuclear pair of spins, the dipolar coupling is written

in the same form as Equation (1.23) replacing the vector operator of the

second spin 12 by S such that

11

H = - I-D·So - (1. 27)

where S is generally used to denote a rare spin species and I an

abundant one. The Hamiltonian can be expanded in the same manner as

Equations (1.24)-(1.25). In contrast, the 1+1_ "flip-flop" term in

Equation (1'-26), describing a simultaneous Lim=1 flip of one spin and a

Lim=-1 flip of the other, is no longer energy conserving for a

heteronuclear spin pair in high field due to the different I and S

resonance frequencies. The secular form of the heteronuclear dipolar

coupling is then

2[21 S J(3cos B-1)z z (1. 28)

i
.. j

J
U

In the absence of a field, when (wOS-woI)~O, the form of the Hamiltonian

changes as will be shown in later discussions.

6. Indirect Coupling

The indirect spin-spin coupling, or J-coupling, is an interaction

which is mediated by the electrons of a molecule. The coupling

constant, J, is generally considered isotropic (although in some cases

anisotropic components which have the same form as the dipolar coupling

contribute), and the Hamiltonian may be written for two spins as



- I 'J'I
1 - 2 (I. 29)

12

If the chemical shift difference between spins 1 and 2 is large compared

to J, the secular term is no longer given by Equation (1.29) but rather l
(I. 30)

For heteronuclear spins, the Hamiltonian has the same form

(I.31 )

except that this always reduces in high field to the secular form

(I. 32)

as the 1+8_ and 1_8+ terms· are not energy conserving.

D. Rotations and Spherical Tensors

1. Rotations

Rotations include the effects of rf pulses (rotations on the spin

degrees of freedom), averaging of tensor interactions (rotations

relating spin and/or spatial degrees of freedom), and the represen-

tation of tensors in different coordinate frames. A vector, X, or

tensor, T, in a coordinate system (x,y,z) can be expressed in another

coordinate system (x',y',z') t?rough the use of a rotation operator, R,

where

J
J

f
J
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X' R X

T' R T R- 1

The rotation operator, R, is defined as9

13

R(aay) (1.34)

and is composed of three successive rotation operators, or in matrix

form, three rotation matrices. The R(aay) term describes the rotation

in Cartesian space by the angles a, a, y, commonly referred to as the

Euler angles. These angles relate the two coordinate systems as

illustrated in Figure 1.1. 10 Equation (1.34) describes the rotation by

the angle a (0 ~ a ~ 2~) about the original z axis of the system,

followed by a (0 ~ a ~ ~) about the new y' axis and lastly, by Y (0 ~ y

~ 2~) about the final z" axis. These rotations may also take p~ace

about a set of fixed axes (x,y,z) for which R is redefined as

(1. 35)

The rotation operators can be expressed in terms of the angular momentum

operators9 and Equation (1.35) becomes

(1. 36)

The effects of rotations on spherical tensors is covered in the

following section.

A pulsed radiofrequency or dc magnetic field, 81 , acts as a

rotation on a spin system if the pulse is strong, so that the Zeeman
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Figure 1.1: The relation of coordinate frames by the Euler angles

(a,B,Y) in which the frame of reference moves with the rotated body (as

defined in Reference 10). Rotation about the z axis by the angle a (0

~ a ~ 2~) takes the axes from the original frame (x,y,z) to the frame

labelled (x',y' ,z'). In this frame, rotatIon about the y' axis by the

angle B (0 ~ B ~~) results in the position labelled by (x' ',y" ,z").

Rotation into the final frame (x"',y"',z"') occurs with a rotation

by the angle Y (0 ~ Y~ 2~) about the z" axis. When there is

cylindrical symmetry about the z" axis, the rotation by the angle Y is

no longer necessary to make the frames coincident. In such cases the

angles a and B can be related to the more common polar coordinates, ~

and a, of the z" axis in the original frame. Rotations can also be

conducted about the original fixed axes (x,y,z) as mentioned in the

text.

14
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interaction with the applied field dominates and internal interactions

can be neglected. The Hamiltonian for a field in the x direction (in

the rotating frame for an rf field 3, or in the laboratory frame for a dc

field) is H = YIB,Ix and the propagator in Equation (1.9) becomes

(1.37)

This is readily recognizable as a rotation operator with a pulse angle,

6=YB,t. As an example, consider a pulse applied to the initial state of

a spin system in a large field where pea) a I z '

15

pet) = exp(-i61 )1 exp(i61 )
x z x

(1. 38)

- 1

, J

which corresponds to the rotation of a vector, (O,O,Iz ). The rf pUlse

thereby produces a transverse component of magnetization which may be

detected by the voltage it induces in a coil of a tuned circuit.

2. Spherical Tensors

Spherical tensor notation7,9-" is introduced in the following

section as an alternative representation of the Hamiltonians. This

representation is convenient when considering the effect of

transformations of tensors under rotations. The elements of a second

rank Cartesian tensor, Tij (i,j = x,y,z), may be combined to form

irreducible tensors of

\

J

J

zero rank:

first rank: (1. 39)



The irreducible tensor Tl of rank 1 has 21+1 components TIm and can be

represented in a new frame by

(I.40)

where R(a6Y) is the rotation operator defined in the previous section.

The rotation operation does not alter the rank of the tensor, nor does

it change the measured observables associated with the tensor if only a

16
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change of coordinate frame is made.

the Wigner rotation matrices

1The 0m'm terms are the elements of

01 , (a6Y) = <lm'lexp(-iaI )exp(-i61 )exp(-iYI )Ilm>
m m z y z

= exp(-im'a) dl , (6) exp(-imY)
m m

(1.41)

The O~'m elements are tabulated in many books as are-descriptions of

their symmetry and orthogonality properties. 7 ,9,10

The Hamiltonians are conveniently expressed as a product of

tensors which is written as

(1. 42)

For example, using Equation (1.11) from Section C.l, the express-ion for

the NMR Hamiltonian in Cartesian tensor and vector notation

H = X·A·Y J
I

J



can now be written in spherical tensor notation as

17

c.... ·1.I:
I

where the dyadic product of spin vectors forms the tensor T and the

tensor A describes the spatial terms. The NMR interactions are composed

of tensors of rank 0,1,2, thus the limits of the index I are determined

in Equation (I.43). The truncation of the Hamiltonians is easily seen

from the commutation properties of the spherical tensors 12

(1. 44)

thus only those elements with m=O commute with the high field state.

The tensor elements, TIm' are given by6,7

1
+ T + T JTOO = - - [T13 xx yy zz

T10 = - 1 [T - T J12 xy yx

J
U

1- 2 [Tzx - Txz ± i(TZY - Tyz)J

1 [3T - (T + T + T )J16 zz xx yy zz

T2±1= + 1 [T + T ± i(T + T )J2 xz zx yz zy

in terms of their Cartesian components.

(1. 45)
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II. EXPERIMENTS IN ZERO FIELD

A. Motivation

It is customary in the NMR experiment to observe the nuclear spin

interactions as a perturbation on the much larger Zeeman interaction of

the nuclear moments in a large magnetic field. The magnetic field makes

two very important contributions; firstly, it produces an observable

magnetization or polarization of the nuclear spins proportional to the

field strength and secondly, it provides for increased sensitivity in

detection due to the dependence of the induced signal voltage on

resonance frequency. Thus experimentalists often strive for higher and

higher fields for sensitivity enhancement and the increased resolution

of the field proportional chemical shifts. This is understandable when

studying liquid samples, as the anisotropic components of the nuclear

spin interactions are averaged away, but complications arise when

applying the same principles to polycrystalline solids or amorphous

materials.

The resulting problems are directly attributable to the angular

terms arising in the secular forms of the Hamiltonians in a magnetic

field. For a given molecular orientation in an applied field, the

observed frequency is shifted from its unperturbed value by an amount

related to the angular term and the size of the interaction. In

liquids, this angular dependence is averaged to zero due to the fast,

random isotropic motions of the molecules. When a static distribution

of all possible orientations is present, as in a polycrystalline powder,

the resulting spectrum is a superposition of spectra from the individual

19
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crystallites. The result is a broad powder spectrum 1 covering a range

~f frequencies. J
- J

)

For a small number of spins, the powder spectrum retains enough

distinctive structure, as shown in Figure 11.1, to determine inter-

nuclear distances, or quadrupolar coupling constants and asymmetry

parameters. As the number of spins increases, so does the complexity of

the spectrum making fine structure in the spectrum difficult to

interpret. Geometrical information concerning a number of dipolar

coupled spins becomes intractable, and equally difficult is the

distinction of similar yet inequivalent quadrupolar sites with small

asymmetry parameters. Similarly, dynamical effects often produce only

subtle changes in a powder spectrum which may not be pronounced enough

to interpret. Much experimental time is devoted to unravelling complex

spectra and developing approaches to obtain high resolution spectra in

sOlids. 2,3 Often this involves selectively averaging or removing the

effects of the orientation dependent interactions while., unfortunately,

simultaneously ridding the spectrum of some of its most valuable

information. The orientational broadening is avoidable through the use

of oriented samples such as single crystals or liquid crystals; although

to gain a complete analysis from a single crystal study, the system must

be measured as a function of many orientations3 and the data must then

be disentangled.

Ideally, one would like to remove the anisotropy of the

interactions in high field while maintaining the information content.

Consider then, that the only difference between the crystallites in a

powder sample is their orientation dependence with respect to a field

direction; in the absence of a field, with no preferential direction in

I
\

c.J

I
1u

J
I

- 1 -- -
- j
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Figure 11.1: Theoretical powder pattern ~epresentative of either two

dipolar coupled spin 1=1/2 nuclei or a single spin 1=1 quadrupolar

nucleus with n=O. The distribution in frequency is a function of the

angle, e, which relates the z axis of the principal axis system (PAS) of

the spin interaction to the field direction. In the former, the

separation in the singularities is given by the dipolar coupling

~w=3y2h/4~r3 (tens of kHz) from which the internuclear distance can be

calculated. For a spin 1=1, with n=O, the powder spectrum has the same

characteristic shape with the separation equal to ~w=2~·(3e2qQ/4h) (tens

to hundreds of kHz).

21



space, every orientation is identical. Thus the energies corresponding

to the untruncated zero field Hamiltonian are finite in number and

should yield discrete, well-resolved spectral lines. Although the

Zeeman, chemical shift and radiofrequency interactions will have

vanished, the information rich dipolar and quadrupolar interactions

remain. The frequencies corresponding to the dipolar and quadrupolar

Hamiltonians can be extremely low on an NMR scale «200 kHz) and

therefore direct detection in zero field is difficult. The conflicting

desires to use high field sensitivity and zero field resolution are

overcome by using field cycling techniques. Field cycling methods

employ an applied field in the preparation and detection periods of the

experiment, with the field removed during the evolution period of the

spins under the zero field Hamiltonian.

Zero field and field cycling techniques have existed for many

years as there has long been interest in the behavior of spin systems 1n

low and zero fields,4,5 either for measuring relaxation6 and demagne

tization effects,7-9 or for measuring quadrupolar frequencies. 10 ,ll

There are several review articles and texts 5,9-1l which cover the field

in depth and only a brief discussion of a few related experiments

follows. The most common experiment is pure Nuclear Quadrupole

Resonance (NQR)10,11 in which the isotopic abundance and differences in

quadrupolar energy levels in zero field are large enough (>few MHz) so

that the population differences produce an observable polarization. The

NQR resonances are detected directly in zero field after perturbing the

system with either an rf pulse and Fourier transforming a time domain

signal, or with continuous irradiation and detection of the frequency

domain signal. l1 Quadrupolar nuclei with small quadrupolar coupling
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constants are unaccessible by such experiments. In these cases, field

cycling techniques and double resonance NQR methods utilizing sensi

tivity enhancement via level crossings are employed. 12- 14 Most NQR

experiments are frequency domain experiments which means that the system

is irradiated in zero field. Often this leads to power broadening of

the resonance lines,13 and in double resonance experiments, the

undesirable absorption of energy by a second spin species. 13 The

experiment to be described in the following sections is a time domain

Fourier transform adaptation of previous methods of field cycling

developed by Ramsey and pound,15 Hahn,4,16 Redfield17 and others. 18

B. Field Cycling Schemes

The field cycle is used to prepare the initial state, induce

evolution in zero field, and detect the signal. The basic concept

behind the ideal time domain sequence, as depicted in Figure 11.2, is as

follows. If the sample is prepared in an equilibrium high field state,

a magnetization, Mz , proportional to the field, Bz , develops. Sudden

removal (in the quantum mechanical sense) of the field leaves the system

in a nonequilibrium state and evolution for a given time, t 1, occurs

under the zero field Hamiltonian. Terminating the evolution by

reapplying the field traps a component of the magnetization9 , and the

signal is then detected in high field for that value of t 1• As in a two

dimensional experiment,19 the evolution in zero field is monitored at a

later time in successive field cycles as a function of the incremented

time, t 1• Fourier transforming this signal produces the frequency

domain spectrum. Practically, it is difficult to quickly remove a field

23



24

Bz
On~-----......

o..~
C
0>
~.

Off L-..------t-----~----~

9
I

t

to
Ot--------+---+--+--+---lf--l------....

co
~
as
N
~
Q)
C
0>
as
~

Preparation Evolution Detection

XBL 854·10156

Figure 11.2: Idealized version of the field cycle to zero field. At

top, the field, Bz ' as a function of time and below the magnetization,

Mz ' as a function of time are illustrated. In the preparation stage, a

magnetization Mz ' proportional to Bz ' develops. Sudden removal of the

field to zero at time t,~O causes the magnetization to oscillate in the

presence of the dipolar or quadrupolar local fields. Evolution in zero

field continues for a time, t" until it is halted by rapidly reapplying

the z field. This traps a component of the magnetization which is then

detected in the presence of Bz • Sampling the magnetization, point by

point, as a function of t, indirectly maps out the oscillations in zero

field.
I

J

J
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... J of the magnitude desired for preparation and detection, therefore a

stepwise field cycle is used. The experimental field cycle is illu-

strated schematically in Figure 11.3, and is explained step by step in

the following sections. A variation of this field cycle using pUlsed dc

magnetic fields, as an ~lternative means of inducing evolution in zero

field, is also presented. Applications and variations of the experiment

are explored in later chapters.

1. The Initial State

Any experiment must begin with an observable, and in NMR it is the

behavior of the magnetization of the spin system which is usually

examined. In an applied field, the equilibrium state of the system is

described by the Zeeman interaction which means that for a spin I there

are 21+1 energy levels separated in energy by ~E=YhBo/2~. For N spins,

an unequal population of the energy levels, as given by the Boltzmann

distribution gives rise to a net macroscopic magnetization in the field

direction proportiona1 8 to

25

. ;

NYh ~ mexp(YhmBo/2~kT)

Mo = 2~ r exp(YhmB /2~kT)
m 0

(II.1)

where m = -I to I. The Boltzmann distribution can also be expanded in

the high temperature limit,8 Equation (11.1) takes the form

by the Curie Law. The magnitude of the magnetization is proportional to

where Xo ' the bulk susceptibility of the system, is proportional to 1/T

J
J
U
~-!
~" f
d

Ny2h2I( 1+1 )
12~2kT Bo (II.2)
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Figure 11.3: Schematic representation of "the experimental field cycle.

The sample originates in a large applied field magnetic field, Bo '

during which time an equilibrium magnetization is produced. The field

is then adiabatically reduced by removal of the sample to a field level

Bint>Bloc' Two magnet coils are used to produce the zero field region

and provide a sudden transition in the field which leaves the sample in

zero field and initiates evolution for t,. Reapplying the field,

terminates evolution and preserves the z component of magnetization.

The sample is adiabatically remagnetized to Bo and the signal is

detected by standard NMR methods. Sampling the signal as a function of

t, produces S(t,), the time domain signal, which when Fourier

transformed yields the zero field frequency domain spectrum.
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the inverse temperature, the number of spins, N, the isotopic abundance

of the resonant nucleus and the gyromagnetic ratio, Y, which determines

the energy level separation for a given field. Examples of these

factors have been tabulated for a few nuclei of interest. 20

The net magnetization in the field direction, Mz ' approaches its

equilibrium value, Mo ' roughly exponentially from a unmagnetized state

wi th a time constant, Tl' known as the spin latti'ce relaxation time. 21

When allowed to equilibrate and develop a net magnetization, the high

field state of a system of many spins, N, is described by the density

operator at time t=O,

27

a I Lz,
N

= I: I
i=1 zi,L

(11.3)

1
; J

, J

H
d

where the sUbscript, L, indicates that this operator is expressed in the

laboratory frame with the z axis defined by the field direction.

(Operators in the zero field representation will not have subscripts in

order to simplify the notation). The initial density operator contains

only spin angular momentum terms and is independent of molecular

orientation. The eigenstates of the system correspond to the eigenbasis

of the high field Hamiltonian. Since the magnetization is proportional

to the field strength, the initial preparation stage of the experiment

occurs in a field of approximately 4 Tesla.

2. Demagnetization

The next stage of the field cycle is demagnetization to an

intermediate field level, Bint , as shown in Figure 11.3. The notation

Bint and Bi will be used interchangeably for the intermediate field



level. The demagnetization is accomplished by mechanically moving the

sample out of the center of the large magnetic field through the fringe

field of the magnet. The fringe field is aligned in the same direction

as the main field over the entire transit, thus the shuttling process is

simply adiabatic demagnetization in the laboratory frame (ADLF).9 This

process is described by defining two concepts, spin temperature and

adiabatic demagnetization.

a. Spin Temperature. The idea of spin temperature originates in a

discussion8 ,9 of the thermodynamic properties of nuclear spin systems.

A macroscopic quantity such as temperature becomes useful in describing

the establishment of equilibrium states, cross-relaxation effects and

adiabatic demagnetization. A system can be considered to contain at

least two reservoirs, namely the spins and the lattice, each with its

own thermodynamic properties such as heat capacity and temperature. The

lattice is composed of the quasi-continuous distribution of energy

levels corresponding to the other degrees of freedom of the system, such

as vibrational or phonon modes in the solid. Therefore, the lattice has

a much greater heat capacity than the nuclear spin reservoir, and

generally is considered to be in a state of thermal equilibrium. The

lattice and spins exchange energy through spin-lattice relaxation

mechanisms, and the time constant which describes the rate at which the

spins come into thermal equilibrium with the lattice is known as T1• At

equilibrium, the lattice has a temperature, TL•

A temperature, Ts ' different from TL, may be defined for the

nuclear spin system if a few conditions exist. 9 If the spin-spin

couplings are greater than the coupling to the lattice, then the spin

system may be considered isolated from the lattice with its own

28
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temperature. This is often the case in solids with abundant magnetic

nuclei, such as protons, among which the dipolar couplings are strong.

These couplings rapidly bring the spin system into a state of internal

29

equilibrium with the ratio of the populations of any two of its energy

levels is given by the Boltzmann term,9n
I

-YhBo
exp(~)

s
(n.4)

- 1

J
J
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with a corresponding spin temperature, Ts ' for a two level system. The

equilibrium is reached rapidly through the "flip-flop" terms of the

secular dipolar Hamiltonian in a time roughly on the order of T2• This

is an energy conserving process for spin 1=1/2 nuclei with their equi-

distant energy levels in an applied field. After a time comparable to

the spin-lattice relaxation time, T1, the spin system will come into

thermal equilibrium with the lattice such that Ts=TV This corresponds

to the establishment of a new Boltzmann distribution at the temperature,

TL• If the system is to remain isolated such that Ts~TL' then the

condition of T2«T1 must exist and is generally the case in solids.

Some states are not describable by a spin temperature. 9 For

example, since a spin temperature is defined by the populations of

states, the density operator must be proportional to the diagonal form

of the Hamiltonian. Anything which alters this, such as a sudden change

in field or an rf pUlse, produces off-diagonal elements of the density

matrix corresponding to coherences. These coherences, according to the

random phase approximation,22 decay with a time constant T2• Thus a

minimum time T2 must pass before one can reasonably talk about the

establishment of a new spin temperature.



b. Adiabatic Demagnetization. The demagnetization step can be

defined as adiabatic if a few conditions are met. 21 An adiabatic

process is reversible and occurs with constant entropy, therefore no

heat flows in or out of the system. For a nuclear spin system, this

indicates that the change in field must be fast compared to T1 as

otherwise energy is exchanged with the lattice thereby producing new

Boltzmann populations. Additionally, after each small decrease in the

field, a new state of internal equilibrium must be reached. For a

system of spin I=1/2 nuclei, this equilibrium is established through the

flip-flop terms of the dipolar coupling which conserve the populations

of the energy levels. This requires that the change must be slow on a

timescale compared to the precession period of the nuclei in the local

fields (t<l/YBloc ) which is generally on the order of tenths of milli

seconds and roughly proportional to T2•8,21 In solids, a rate of

demagnetization can usually be chosen which meets these requirements

since T2«T1 thereby making the system always describable by a spin

temperature.

Since the changes are made adiabatically, fast compared to T1 (the

time required to establish a new equilibrium Mo ) and the flip-flop terms

conserve Mo ' the magnetization remains constant with decreasing field

and the spin temperature must therefore decrease. This can be seen by

rewriting the Curie Law (Equation II.2) in the high temperature limit
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as,
(II.5)

J
where C is the Curie constant containing several nuclear constants and

TS is the spin temperature of the system. The final spin temperature is

approximated 13 by

1
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for Bf greater than the local fields and where, i, corresponds to the

initial values and, f, the final.

The adiabatic changes in the state of the system and reestab-

lishment of equilibrium with each field step means that the density

operator is always proportional to the instantaneous Hamiltonian. 8

Therefore, if the demagnetization proceeds to an intermediate field

level, Bi (~here Bi»Bloc)' the state of the system is still described

by the high field Zeeman Hamiltonian as given by Equation (11.3) and

retains the polarization of the high field state. If the field is

allowed to reach a level where Bi<Bloc ' it no longer is easy to describe

the system as being in a purely high field or zero field state unless

3. Evolution in Zero Field

The spin system, demagnetized to an intermediate field, Bi , chosen

such that the Zeeman interaction in this field dominates over any local

spin interactions, is in a state proportional to the Zeeman Hamiltonian.

The system remains in the eigenstates quantized with respect to the

field direction and retains the full high field magnetization, Mz if no

relaxation occurs. Two electromagnetic coils of manageable (i.e.

sWitchable) field strengths are used to maintain this state and provide

the transition to zero field (see Appendix A). Evolution under the zero

field Hamiltonian can be initiated with the sudden removal of Bi as

illustrated in Figure 11.3 by the sharp transition in field. Sudden is

defined in the quantum mechanical sense,23 whereby the change in the



Hamiltonian (i.e. field) is too rapid for the system to follow, in

contrast to the adiabatic transitions described earlier. The state of

the system is unable to change instantaneously, thus the density

operator immediately before and after the transition in field is

proportional to Iz,L'

Once the field is removed, the system is in zero field. With the

discontinuous change in the field, there has also been a discontinuous

change in the Hamiltonian describing the spin system. The high field

and zero field Hamiltonians do not commute. In fact, the zero field

Hamiltonian is now in an untruncated form and is best represented in a

molecular based frame of reference. Because the system is not in the

eigenstates of the zero field Hamiltonian, evolution occurs at

frequencies corresponding to the local interactions. Evolution

continues for a time, t 1 , and is described by the time evolution of the

density operator (See Section 1.1). Evolution is terminated after the

t 1 interval by the sudden reapplication of the intermediate field in the

laboratory z direction (with 's«T2, to avoid the decay of the evolved

state). This traps components of the magnetization in the field

direction (i.e. those proportional to Iz,L) while transverse components,

(i.e. those perpendicular to the longitudinal field direction) decay.9

4. Remagnetization and High Field Detection

The last step of the field cycle illustrated in Figure 11.3 is the

detection of the evolution of the nuclear spin system in zero field.

After terminating evolution and preserving the laboratory frame z

component of the zero field state, the sample is adiabatically

remagnetized. As in the case of the demagnetization, the state of the
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system is conserved while increasing the field under the same adiabatic

constraints. Upon return to the high field, the magnitude of the z

component is detected (see Appendix A). The measured signal is a single

data point in the period of the zero field oscillations for a given

value of t 1• After waiting a delay to allow for relaxation of the

nuclear spins, the field cycle is repeated for the next value of t 1•

The detected signal, S(t1), is modulated as a function of t 1 at the

frequencies corresponding to the zero field interactions. Fourier

transforming this time domain signal produces the frequency domain

spectrum.

5. Field Cycling with Demagnetization to Zero Field

Other approaches to field cycling are possible and one which is

frequently used involves complete demagnetization to zero field. 12- 14

Once demagnetized, the spin system can be probed with r"f pulses 24 or

continuous rf irradiation as is common in frequency domain

experiments,12-14 or, as developed in the time domain experiments

described in Chapter 111,25,26 with pulsed dc magnetic fields. A

schematic representation of two such time domain field cycles are

illustrated in Figure 11.4. In the following sections, the features of

these field cycles which differ from the one described previously are

discussed.

a. Demagnetization to Zero Field. Many years ago in"an experiment

conducted by Pound27 it was found that after adiabatically demagnetizing

a system to zero field, such that when 8
0

=0 so does Mo=O, the full

magnetization was recovered with reapplication of the field. Remagne-

tization occurred in a time much less than T1 which indicated that, by

33
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Figure 11.4: Field cycles utilizing demagnetization to zero field and

pUlsed dc magnetic fields. The sample is demagnetized to an

intermediate field level then to zero field in two steps. In both (a)

and (b), the equilibrium state of the spin system is caused to evolve

for t, by applying a pUlsed dc magnetic field. Evolution can be stopped

by either, (a) suddenly applying a field in the z direction thereby

trapping a component of magnetization before remagnetization and

detection, or (b) applying a second dc pulsed field, remagnetizing the

sample from zero field and detecting the signal as a function of t,.
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some means, the order of the spin system, once corresponding to a magne-

tization, was preserved even in the absence of a field. A demagnetized

state is therefore intrinsically different than an unmagnetized state.

The order is maintained by the nuclear moments aligning with the local

fields. Due to the random distribution of local fields, there is no net

magnetization. The order in the local fields decays with a time

constant different than T1 and characteristic of the type of order

present (e.g. T1D for dipolar order, T1Q for quadrupolar order).

A remaining question is: What is the nature of the demagnetized

state and how might it be described? Previously it was stated that

during demagnetization the density operator is always proportional to

the instantaneous Hamiltonian. This is true for large numbers of

coupled spins which are describable by a spin temperature. The

transition by adiabatic demagnetization from high to zero field consists

of the Hamiltonian, and the eigenstates, going smoothly over to that

which describes the system in zero field. 9 The density operator is then

proportional to an equilibrium condition in zero field such that
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For example, as the Zeeman order is transferred to dipolar order, the

Hamiltonian of the system changes from being proportional to HZ to

proportional to HD (which is also HZF).

For isolated spins or spin 1=1 systems, the demagnetization can

not be described by the spin temperature approximation. 8 ,9 In such

cases, it is more difficult to simply describe the initial condition in

zero field. Equally as difficult is a simple description of the initial

state in those instances where spin systems, isolated in high field,



come into contact via the equalization of their energy levels as a

consequence of demagnetization. These circumstances and their bearing

on the zero field experiment are discussed in more detail in Chapter

III.

b. Initiating Evolution with Pulsed DC Magnetic Fields. Without

explici tly specifying the form of the ini tial zero field state, it can

be safely assumed that after demagnetization the spin system is in an

equilibrium (non-evolving) state in zero field9 and evolution must be

initiated. Previously, this was accomplished by a sudden change in the

Hamiltonian. Since the system is already in a state related to the zero

field Hamiltonian, instead of a change in the Hamiltonian, a pulsed

field can be used to bring about a change in the state of the system.

Two such schemes are illustrated in Figure 11.4 using pUlsed dc magnetic

fields. As described in section I.D.7, if 8i »8loc ' the pulsed field

acts as a rotation (6) on the density operator causing part, but not

all, of the original diagonal elements to be rotated into off-diagonal

elements. These off-diagonal elements correspond to coherences between

zero field eigenstates and thus the system, no longer in an equilibrium

state, begins to evolve under the zero field Hamiltonian.

Evolution continues for t 1 in a manner identical to that described

before and can be terminated in two ways. In Figure II.4a, a field is

reapplied suddenly in the laboratory z direction to trap those

components proportional to Iz,L. This state is then remagnetized and

detected as before measuring the change in Iz,L with time. An alter

native method in Figure II.4b is to apply a second pulse (6') which

rotates the off-diagonal elements of the density matrix back into

diagonal population differences. Remagnetization of this state
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preserves the populations and transforms it back into high field for

detection in much the reverse of the demagnetization step.

The Zeeman interaction with the pulsed field should dominate over

local interactions so that the pulses act like rotations and no

evolution occurs during their application. For quadrupolar nuclei with

large quadrupole coupling constants and low gyromagnetic ratios, a field

on the order of several hundred Gauss to a kGauss is then required.

This is much more easily produced as a short intense pulse than for the

longer time required of the intermediate field in the sudden transition

field cycle. Thus pUlsed field cycles have some distinct practical

advantages. Additionally, the second field cycle of Figure II.4 allows

pulses to be used selectively in exciting different nuclei and the

exploitation of the naturally occurring level crossings in the

demagnetization step.

C. Calculation ot the Signal

1. General Approach

In this section, an approach to calculating the analytical form of

the zero field signal is presented for the field cycle shown in Figure

II. 3. These calculations are based almost entirely on the principles

introduced in Chapter I for the density operator and transformations

between reference frames. The signal after the zero field t, period is

calculated as the expectation value of the detected high field operator.

This operator is generally Iz,L' such that the normalized signal is

given by Equation I.4
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in which PL(t1) is the time evolved state of the initial density

operator under the zero field Hamiltonian, HZF • As given by Equation

(1.9), the time evolution is written in the zero field frame as

(11.9)

in which p(O) is the initial density operator prepared in high field and

through demagnetization. One characteristic of the field cycle with a

sudden transition to zero field (Figure 11.3) is that the prepared and

detected operators are identical. The initial state has thus far always

been expressed in the laboratory frame as

(II. 10)

and Equation (11.8) w9uld then represent the correlation function of

Iz,L with its time evolved counterpart.

For convenience in the calculation of the propagator, the zero

field Hamiltonian is best expressed in its eigenbasis referenced to a

frame descriptive of the zero field state. This frame is most often

chosen to be some molecular based frame in which the Hamiltonian is

identical (homogeneous) for all orientations. When working in a zero

field/molecular frame, the properties of rotation operators must be used

to express the laboratory based operators in the zero field frame. The

normalized signal function, reexpressed by substituting Equation (11.9)

into Equation (11.8) and including the proper transformations into the

zero field frame, is

J
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The subscript, 0, indicates that this expression contains an angular

dependence relating the laboratory frame to the crystallite molecular

frames by the rotation elements, R(O)=R(a~Y). The angular terms differ

for each orientation and since there is a random distribution of

orientations of crystallites in a polycrystalline sample, each equally

probable, the signal must be integrated over all possible orientations

to yield a powder average where

S(t1) = f So(t, )P(O)dO

o
(II.12)

;
" J

and for an isotropic distribution P(O)dO = sin~d~dadYover the limits of

the Euler angles. 3

A few important points can be illustrated by discussing the

relationship between laboratory and zero field/molecular frames. For

the sudden transition field cycle, immediately before and after the

removal of the field, PL(O)=Iz,L. It was stated previously that this

corresponds to a non-equilibrium (evolving) state under the zero field

Hamiltonian and is easily demonstrated by expressing the density

operator in the zero field frame through

I cos~ + I sin~sina + I sin~cosaz y x

H
U

where the angular momentum operators in the final line are in the

molecular/zero field frame. Note that there is no dependence on the



angle, Y, which may be attributed to the axial symmetry of the initial

condition. The matrix representation in the zero field basis of

Equation (11.13) contains off-diagonal terms corresponding to coherences

which describe the evolution of the system. Thus Equation (11.13) does

not represent an equilibrium state of the zero field Hamiltonian, which

is to say

40

(11.14)

indicating from the Liouville-von Neumann equation that evolution occurs

since dp
dt l' 0 (II. 15)

Equations (11.14) and (11.15) are a concise general statement about the

conditons required for evolution in zero field.

The general approach to calculating the zero field signal can be

stated in a few words. First, choose a convenient basis set in which

the zero field Hamiltonian is diagonal and calculate the eigenvalues (or

as is more often the case, diagonalize HZF to find the eigenbasis and

eigenvalues). The eigenstates and eigenvalues in a molecular based/zero

field frame should contain no dependence on crystallite orientation.

The initial condition, if proportional to a lab based operator, must be

expressed in the zero field frame. For initial and detected operators

equal to Iz,L' substituting Equation (11.13) into Equation (11.11)

yields

1- .

. \

j

Iu



41

x (1 cos~ + 1 sin~sina + 1 sin~cosa)}
z y x

(IL16b)

The explicit form of I n(t 1 ) consists of terms which are, products of spin

operators and frequency containing terms. 28 Only certain combinations

of operators will survive the trace operation since

Tr {I j I k} = &j k

Tr{IjIkIl } = 0

Taking the trace and powder average yields

(II.17)

(11.18)

1
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where, for example, I Xjk is the (jk)th matrix element of Ix' the

molecular frame operator, and Wjk = Ej-Ek/(h/2~), the frequencies of the

zero field Hamiltonian. Positive and negative frequencies are indistin-

gUishable and therefore the spectrum is symmetric around zero. Fourier

transforming S(t 1 ) yields the frequency domain spectrum.

In spite of the fact that the detected operator was chosen to be

Iz,L' the calculation discussed thus far can easily incorporate

different initial conditions or detected operators or both. One must be

consistent in expressing the operators or propagators in a common basis

set or frame. Often careful selection, via symmetry arguments, leads to

a choice of molecular frame which simplifies the calculation. In later

chapters, more explicit calculations including features such as dc

pUlses, different initial and detected conditions, and transformations

between molecular and liquid crystalline frames are covered. Having



demonstrated the general approach, a few specific examples of simple

spin systems follow.

2. Two Homonuclear Spin 1=1/2 Nuclei (I-I)

For two dipolar coupled spin I=1/2 nuclei, such as the two protons

in a water molecule, the initial density operator is

42

PL(O) = I = I + Iz,L z1,L z2,L
(II.19)

The protons are assumed to be identical with respect to exchange,

consequently, the constants preceding the operators have been dropped to

facilitate the following calculations. In zero field, the Hamiltonian

is the full untruncated form of the dipolar coupling as given by

Equation (I.24) and will be expressed in a molecular based frame. If

the z axis of this frame is chosen to be the internuclear vector (which

is also the z axis of the PAS), the angle B equals zero and the

Hamiltonian reduces to the aXially symmetric form

(II. 20)

Written in the zero field basis set, the eigenstates are given by

11> -1/2
= 2 (Iaa> + IBB»

12>
-112

= -i(2 )(Iaa> - IBB»

2-1/2(laB> +
(II.21)

13> = IBa»

and
2-1/2(/aB>14> IBa»

where a is defined as m=1/2 and B is m=-1/2 (from <I z> in the zero field

frame for the state II 1I 2». The first three states are commonly

i,_ J

J
J
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referred to as the triplet manifold and the latter as the singlet state.

The eigenvalues corresponding to these states are

43

(I1.22)

with Wo = y2h/2'1rr 3 and contain no orientation dependence, unlike the

dipolar energies in high field. The energy levels and allowed trans-

i tions are illustrated in Figure II. 5. The angular momentum operators

do not couple the singlet and triplet manifolds, and the allowed

transitions occurring only among the triplet energy levels are

)

I
. I

The signal, calculated as for the sudden transition field cycle,

is given by Eql,lation (II. 16). The matrix representations of the

operators in the zero field basis28 are left as an exercise, as is

solving for the trace of their products. Calculating the trace yields

01.24)

, I
U

Note that only the intensities of the transitions are affected by the

angular terms and not the frequencies which correspond to those above.

This indicates that each relative orientation of the initial state and a

molecular frame, as described by a pair of values of the angles a and a,
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Figure 11.5: Energy levels and allowed transitions for two identical

dipolar coupled spin I=1/2 nuclei. The eigenstates and energies are

given in the text. Allowed transitions occurring between the triplet

energy levels are w13=w23 and w12. The resulting spectrum consists of

three peaks of equal intensity at ±3Wo/2 (wD=y2h/2~r3. the dipolar

coupling) and zero frequency. The internuclear distance can be

calculated from the separation in peaks.

, J



contributes differently to the intensity of the zero field signal but

not to the frequency. This is in direct contrast to the high field case

in which the frequencies depend upon the values of the angular terms

(~quation 1.26). Integrating over the powder to include contributions

from all crystallites and combining terms, the normalized signal is
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(11.25)
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where S(t1)=1 at t 1=O. The spectrum for two identical dipolar coupled

spin 1=1/2 nuclei is a triplet of three lines of equal intensity; one at

zero frequency and two at ±3wn/2, as illustrated in Figure 11.5. An

example of an experimental spectrum is shown in Figure 11.6 for the

protons of the water molecules in an inorganic hydrate, Ba(CI03)2·H20.

The spectrum appears as predicted by Equation (11.25) and from the

frequency separation, the internuclear distance can be calculated. 29

Calculatrons'and experiments such.as these can easily be extended

to larger spin systems allowing one to determine the geometry of a group

of spins from the characteristic pattern of dipolar couplings in the

zero field NMR spectrum. This area is not covered specifically in this

thesis but has been dealt with extensively in other work. 28 ,30 The

experiment has been successfully applied in determining internuclear

distances in other inorganic hYdrates,30 and in determining structures

of four spin systems28 ,31 in good agreement with crystallographic data •

The more complex systems are not deciphered by direct calculation but

rather interpretation is aided by computer simulations. An additional

experiment should also be mentioned in Which, instead of detecting only

the magnitude of the signal in high field, the full high field evolution
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Figure 11.6: Experimental proton zero field spectrum.of polycrystalline

Ba(CI03)·H20. Three lines of nearly equal intensity are observed at

approximately %40 kHz and zero frequency. The distortion in the

intensity of the center line may be attributed to experimental factors.

The lines appearing at two and three times the dipolar frequencies are

not completely understood but may possibly be attributed to couplings'

between more than two spins or other types of order present in the

demagnetized state.
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is allowed to occur for a time, t 2 • Fourier transforming with respect

to both the zero field t, domain and the high field t 2 domain produces a

two-dimensional spectrum showing correlations between the high field and

zero field signals. 28 The time domain zero field NMR experiment is the

only technique generally applicable for the observation of dipolar

frequencies in zero field.

3. Two Heteronuclear Spin 1=1/2 Nuclei (1-5)

Generally nuclear spins with different gyromagnetic ratios are

differentiated on the basis of resonance frequency. In contrast, the

sUdden transition in field or dc pulses in the zero field NMR experiment

excites the evolution of all spin species present since resonance

frequency no longer has a bearing. The following discussion focuses on

the simplest example of an isolated 1-8 dipolar coupled pair of spins.

The initial state prepared in high field and preserved through demagne-

tization is presumed proportional to the Zeeman Hamiltonian for each

nucleus. The polarization produced in high field must be considered

independently for each nucleus such that

47

PL(O) = aI L + bS Lz, z, (II. 26)

in which a and b are constants describing the relative polarizations of

I and 8 spins. These constants depend upon the gyromagnetic ratios, YI

and YS' and are therefore unequal for the two spin types (see Equation

1.10) •

In zero field, chemical shift and resonance frequency differences

vanish and the acting Hamiltonian is the mutual dipolar coupling (and

probably J coupling) of the two spins. The result is that the hetero-



nuclear spin Hamiltonian is indistinguishable with respect to exchange.

The form of the zero field Hamiltonian now includes all additional

terms, such as the flip-flop term, as these become energy conserving.

The Hamiltonian, written in the molecular/zero field frame with the z

axis along the internuclear vector becomes
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c 1

(11.27)

in direct contrast to the high field case, but in analogy to the homo-

nuclear case (Section I.C.5). The eigenstates and energies are

illustrated in Figure 11.7 and are identical in form to the homonuclear

case given in Equation (11.21) except that the states here refer to lIs>

spin combinations. The energies corresponding to these states are

(II. 28)

where wo=Y1Ysh/2mr3 and depends upon the product of the gyromagnetic

ratios of the 1 and S spins. Unlike the homonuclear case, matrix

elements now connect transitions between the singlet and triplet

manifolds with the frequencies given by

W12 = 0

3w13 = w23 '2 Wo
1

(II. 29)
w14 = w24 = '2 Wo
w34 = Wo

This effect can be attributed to the differences in magnetogyric ratios
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Figure 11.7: Energy levels and allowed transitions for two

heteronuclear dipolar coupled nuclei (I-S). Energies and eigenstates

are given in the text. Transitions are allowed between the triplet and

singlet energy levels for certain initial conditions in the

heteronuclear spin system. Peak positions in the spectrum occur at

multiples of the dipolar coupling frequency (WO=Yr Ysh/2nr 3) with the

intensities dependent on the initial polarization of the rand S spins.



which result in unequal initial populations of the I and S spin states

as shown later in this section.

The signal can be calculated as before using Equations (11.10) and

(11.11) with the detected operator corresponding to either the I or S

spins. Since the former has the larger gyromagnetic ratio and higher

natural abundance, sensitivity is expected to be higher. Calculating

the signal for the sudden transition field cycle with the detection of

Iz,L is carried out by solving
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and taking the trace, Sg(t1 ) equals

223Sg(t 1) = 2(a+b)cos a + 2(a+b)sin acos(~Dtl) +

2(a-b)cos2acos(wntl) + 2(a-b)sin2acos(~Dtl) (11.31)

Averaging over the powder distribution yields for the normalized signal
- j

1 1S(t1) = 6i{(a+b) + 2(a-b)cos(~Dtl) + (a-b)cos(wDt 1) +

2(a+b)cos(~Dtl)} (II. 32)

The intensities of the lines in the spectrum depend upon a and b, the

relative polarizations. The positions of the predicted transitions are

shown in Figure 11.7.

Since the nuclei can be manipUlated independently with rf pulses

in high field to change the relative values of a and b, the appearance

of the zero field spectrum can be altered. For the usual equilibrium

state with a=l, b=0.25 and lines appear at all four frequencies. By

applying pulses which equalize the populations, the signal reduces to

: 1
. 1
o J
~~j
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which is identical to the homonuclear case. This is reasonable since

the initial density operator for an I-S pair will be indistinguishable

with respect to exchange when a=b as for the homonuclear case. The

singlet to triplet transitions (w34' w14=w24) no longer occur and are

directly attributable to the differences in populations. Experiments

illustrating the selection of spectral transitions through the altering

of a and b have been presented elsewhere. 32 Spectra characteristic of

more complicated heteronuclear spin systems such as CH, CH2 and CH 3 have

also been discussed theoretically.28,30 Additionally, heteronuclear J

couplings have also been observed. 32 In later chapters, specific cases

of heteronuclear spin systems (1 H,2H), ('H,14N) and (1H,13C) are

explored. Although, in general, for an arbitrary dc pulse angle all

spins are excited in zero field, this is not rigorously correct. Some

of the experiments to be presented involve the selectivity of spin

species in zero field with pUlsed dc fields and the behavior of

heteronuclear spin systems in liquid crystals.

4. Single Spin 1..1 Quadrupolar Nucleus

The final case is the quadrupolar spin 1=1. Interest in nuclei

such as deuterium frequently arises due to the ease of its substitution

for protons, and its sensitivity as a chemical and structural probe.

The signal for a spin 1=1 nucleus in the sudden transition field cycle

of Figure 11.3 is calculated from Equation (11.11)



(II. 34)

52

~- ,
j

_ 3

in much the same manner as before and evolution occurs under the full

untruncated quadrupolar Hamiltonian (Equation (I.21)). The eigenstates

in the zero field basis set, shown in Figure II.8, are

and

11> = 2-1/2(1+1> + 1-1»

12> = _i2-
1/2

(1+1> - 1-1»

13> = 10>

(II. 35)

and are very similar to the triplet manifold of the two dipolar coupled

spin I=1/2 nuclei when n=O. In contrast, the quadrupolar interaction is

generally not axially symmetric (nFO) and the lowest energy levels are

no longer degenerate. The similarity of these Hamiltonians is discussed

later in Chapter V.

The energies depend upon the quadrupole coupling constant e 2qQ/h

and the asymmetry parameter, n,

E1 = -K(1+n)

E
2

= -K( 1-n)

E
3

= 2K

(II. 36)

in which K=2~.(e2qQ)/4h for I=1. The signal function, integrated over

all orientations in a powder becomes

1S(t 1) = 3 {cos(2n)Kt1 + cos(3-n)Kt 1 + cos(3+n)Kt 1} (II. 37)

and the spectrum consists of six lines of equal intensity as illustrated

in Figure II.8 at ± the frequencies (in kHz)
j

J
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Figure 11.8: Energy levels and allowed transitions for a single spin

1=1 quadrupolar nucleus with n~O. The energies and eigenstates are

described in the text. Transitions occur between all three levels at

frequencies corresponding to v+. v_ and vo=v+-v_. When n=O. the lowest

two energy levels are degenerate and the system reduces to three lines;

one at zero frequency and two at ±(3e2qQ/4h). This spin 1=1 case is

very similar to the triplet manifold of two dipolar coupled spin 1=1/2

nuclei.



(II.38a)
\) = (3-n)K

and the difference frequency
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2nK \) - \)
+ -

(II.38b)

From the high frequency lines one may determine K and n, which charac-

terize a quadrupolar site. When two inequivalent sites are present, the

spectrum will consist of two sets of overlapping lines and only through

the difference frequencies can the separate lines be assigned to

calculate the quadrupolar parameters for a given site. When n=O, the

two lowest energy levels are degenerate and the spectrum reduces to

three lines of equal intensity (not unlike the I-I case, Section C.2).

An example is shown in Figure II.9 for perdeuterated diethyl-

terephthalate. In Figure II.9a, the high field powder spectrum consists

of three overlapping powder patterns corresponding to the methyl,

methylene and aromatic sites. In the zero field NQR spectrum of Figure

II.9b, four distinct regions are observed corresponding to the low

frequency vo lines, methyl, methylene and aromatic sites in increasing

order of frequency. Note that unlike the high field spectrum, the

signal intensity is concentrated in a few sharp lines rather than

distributed across a broad frequency range. Five distinct sites on the

molecule are resolved with e 2qQ/h and n values presented in the

following Table.
1u
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Figure 11.9: a). Deuterium high field NMR spectrum of polycrystalline

perdeuterated diethylterephthalate. From the overlapping powder

lineshapes, three separate quadrupolar sites can be discerned

corresponding to the methyl, methylene and aromatic sites on the

molecule (although only the singularities are evident for the latter

two). b). Zero field deuterium NQR spectrum of the same polycrystalline

sample showing only the positive frequencies. Four distinct regions

with well-resolved peaks are evident and correspond to the aromatic,

methylene, methyl and Vo lines in order of decreasing frequency.

Quadrupolar coupling constants and small asymmetry parameters can be

assigned to five inequivalent sites on the molecule (as given in Table

11.1 in the text),
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Table 1: Diethylterephthalate 2H Quadrupole Coupling Parameters

~l

Site 2 (kHz)j e qQ/h n--
methyl 48.9 0

c. l
i methylene 149.53 0.042' .
)

152.76 0.049

~l aromatic 178.33 0.015

180.53 0.022

These sites could not be determined from the powder spectrum but can

from the well-resolved zero field spectrum. The differentiation of such

similar sites is unusual as the differences in quadrupole coupling

constants is small and the very small asymmetry parameters are often

difficult to measure even in the high field powder spectrum of only one

site.

Although expected to bea very small effect, dipole-dipole

couplings between deuterons have been detected. 33 ,34 In the zero field

deuterium NQR spectrum, this manifests itself as extra lines and/or

structure in the CD2 region of the spectrum and the corresponding Vo

lines. Since these couplings depend on many features such as the

internuclear distance, relative tensor orientations and bond angle,

through computer simulation of the zero field spectrum estimates of the
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EFG tensor or ientations can be determined without requiring the use of a

single crystal. 34 More extensive examples and details of quadrupolar

spectra are also presented elsewhere,30,34,54 including the observation

of half-integer quadrupolar nuclei. Quadrupolar nuclei which have been

studied by zero field NQR methods include 2-Hydrogen, 14-Nitrogen, 27

Aluminum35 and 7-Lithium36 • Some extensions of these experiments for



increased sensitivity and selectivity as applied to the observation of

2H and 14N are discussed in the following chapter.
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D. Appendix: Technical and Experimental Details

This appendix includes brief descriptions of the experimental

design, apparatus and implementation of the field cycling techniques

presented in the first part of this chapter. This reflects only one

possible method of field cycling, examples of other approaches and

equipment can be found in a review articles by Noack5, and in the series

Advances In NQR, and others. 10- 13 In practice, the steps of the field

cycle involve the simultaneous timing and functioning of many separate

pieces of apparatus as illustrated in Figure II.l0. In Figure II. lOa,

the placement of the probe, shuttling system and low field coils rel-

ative to the superconducting magnet are shown. Each of these components

is described separately in the sections below and after which an outline

of the overall field cycle is given.

1. High Field Magnet

The polarization of the sample occurs in a 4.2 Tesla persistant

superconducting magnet of reasonable homogeneity with three super-

conducting shims. The fringe field of the magnet is roughly cylin-

drically symmetrical and drops off approximately exponentially as shown

in Figure II.ll. At a distance of -45 cm below the base of the magnet,

the fringe field reaches a value of 100 Gauss. It is in this region

that the electromagnetic coils are positioned. The room temperature

bore of the superconducting magnet is 89 mm in diameter (without room

temperature shim coils) and generally allows ample room to house a room

temperature probe and shuttling system.
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Figure 11.10: Schematic of the different components of the field

cycling apparatus. In (a), an overview of the entire system showing the

placement of the rf probe, shuttling system and low field coils relative

to the high field magnet is illustrated. Expanded views of each of

these regions are shown in (b)-(d) and are described in separate

sections in the text.
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Figure 11.11: Magnetic field Bo vs. distance. The fringe field was

measured axially below the magnet. The distance scale corresponds to
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opening of the bore. The high field center of the magnet is -35 cm

above this where the field reaches a maximum value of -42 kGauss.
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2. sample Shuttling

a. Container. The sample is packed into a cylindrical nylon or

Kel-F shuttle (Figure II.10b) with a tight fitting cap sealing either by

a pressure tight fit or an a-ring. The typical sample volume is approx

imately 0.20 cm3 although smaller volumes are often used for better zero

field or dc pulsed field homogeneity, or when limited amounts of sample

are available.

It was discovered empirically that liquid crystal samples are most

easily prepared directly in the shuttle to avoid evaporation of the

solute. For liquid crystal samples which contained CH2CI 2 , a specially

inert a-ring is required as the usual Viton or Buna varieties absorb the

solute. The most successful a-rings found are Kalrez, manufactured by

Dupont Co. (Finishes and Fabricated Froduct Dept., Tralee Park, Wilming-

ton, DE. 19898; size 1/8 x 1/4 x 1/16 inches). The translucent

material of the shuttle allows for the determination of the clearing

points upon heating. aften an excess of material is added and discarded

upon sealing the shuttle to insure the absence of bubbles in the

samples. The shuttles very seldom leak and samples remain intact for

many months •

b. Shuttle System. The sample shuttles fit closely into a

standard walled 10 mm o.d. (-8 mm i.d.) glass tube (Figure 11.10).

Transporting the shuttles at room temperature is easily accomplished

using air, nitrogen and/or vacuum. Gas can be applied to both ends of

the shuttle tube or, switching between air for the upward shuttle and

vacuum for the downward one, only on the lower end. switching between

the upward and downward transits is conducted with a logic controlled

circuit37 switching -60 V and driving a commercially available three-way
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solenoid valve. (Most reproducible switching results when using a dc

activated valve.) The sample travels a distance of approximately 75 cm

between the high field rf helmholtz coil and the zero field switching

coils. Transit one way takes approximately 200 msec using a gas

pressure of 5 psi. The movement of the sample must meet at least two

criteria for a successful experiment; one, the time to travel to zero

field (including the switching of the coils, -5-50 msec) must be shorter

than T1 to maintain the polarization, and two, the change in the field

with time must meet the conditions for adiabatic demagnetization. Short

relaxation times are the more serious problem as these are not under the

experimentalist's control (at a given temperature) whereas regulating

the shuttling speed more easily controls the demagnetization. Relax

ation times are generally field dependent21 which adds an additional

level of complication in deciding which samples will work. The sample

is positioned and stopped at either end of its trip by plastic stops

which also help to support the shuttle tube. The shuttling procedure is

reasonably reproducible in terms of time and impact. Irregularities in

the shuttling introduce noise in the t 1 domain of the experiment. 38

3. zero and Intermediate Field Coils

Specific design features of the coils and electronics are

described elsewhere37 ,39, and only a brief description is given here.

Two requirements exist for the switching electromagnets. The first is

that a homogeneous region of zero field is produced over the sample, and

the second is that the change in the intermediate field occurs on· the

order of a microsecond. The homogeneity of the field scales with the

volume of the coil, as does its inductance. Unfortunately though, the
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rise time, 1, of the turn on of the coil is directly proportional to the

inductance and inversely proportional to the series resistance (1=L/R).

Additionally, the available current for producing the field in the coil

is inversely related to this resistance. Thus, although theoretically

the shut off of the field and the zero field region could be controlled

with one coil, conflicting requirements of homogeneity and speed make

two more practical. As shown in Figure II.10a and 10c, the region under

the magnet is occupied by two coils labelled the-auxiliary coil and the

shielding coil used to perform the field step in the experimental

sequence. These are also referred to as the B1 and B2 coils, respec-

tively, in Figure 11.12 where the profiles of the fields from the coils

during the field cycle are shown.

a. Zero Field Coil. The larger, more homogeneous coil B1 cancels

the field over the volume of the sample. The cylindrical coil is wound

in two sections (as shown in Figure II.10c) to produce a gradient

designed to match the gradient of the fringe field, Bf , around 100 G. 39

To first order in the field gradients, this effectively matches and

cancels the field. The B1 coil, due to its size, has a much slower

sWitching time on the order of a few milliseconds to a few tens of

milliseconds depending on the inductance placed in series with the coil.

The coil operates with a logic controlled feedback network to produce a

regulated current of -7-10 amps with a voltage of 20-30 volts. 39

The coil is aligned and shimmed using a Hall effect Gaussmeter

(F.W. Bell, Inc., Model 811A). Routinely fields of <0.1 G and generally

as low as 0.025 G or better are obtained by careful shimming. To cancel

inhomogeneities in the zero field region or misalignment of the coil, a

set of three static orthogonal shim coils (one gradient z, two trans-
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Figure 11.12: Schematic of the coil apparatus and graphs of field vs.

time for the switching electromagnetic coils. The field, Bo,

corresponds to the high field magnet used to polarize and detect the

nuclear spins. The coils B, and B2 correspond to the zero field (or

shielding) coil and the intermediate field (or auxiliary) coil,

respectively. At right, the field profiles of the different coils are

illustrated. At top, the fringe field of the Bo coil experienced by the

sample when shuttled to the low field region. The next two graphs

represent the switching of the homogeneous zero field coil, B" and the

rapid sWitching intermediate field coil, B2• When combined into the

field cycle, the field profile appears as shown at bottom. The steps 1

6 are described in the text (Section 0.4).
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verse) are mounted'on the coil. These operate with a power supply

producing in the
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z direction:

over a volume of approximately a

0.8 G/amp (1 amp full)

0.4 G/cm per amp (4 amps full)

cm 3. For solids, the homogeneity
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limitations are not as stringent as those for liquids or liquid crystals

in which the natural 1inewidths are very narrow and the couplings

relatively small.

b. Inte~mediate Field Coil. While the slower, more homogeneous

bucking coil is turning on, the sample must remain polarized before the

sudden transition in field. This is accomplished with the second

intermediate or auxiliary field coil, B2, producing a field, Bi , which

reinforces the fringe field, Bf , of the magnet. The B2 coil is on when

the sample reaches the low field region and the nuclear spins see a

field of Bi+Bf • After the bucking coil has turned on completely to

cancel Bf , the sample remains in a field Bi »B10c • The field, Bi , must

be greater than the local fields in order to maintain and detect high

field states. If B1<B10c ' the spin system may disorder to some extent

depending on the relative sizes of the fields and result in a loss or

distortion in signal. It is the sudden SWitching off of this field

which initiates the zero field period. Since this coil need not produce

as homogeneous a field and must be switched rapidly, it is much smaller

in size. In fact, the intermediate field coil is usually wound directly

on the glass shuttle tube and a typical coil consists of -20 turns of 28

AWG wire with a length of -1 cm and an i.d. of 1 cm.

For the transition to be sudden requires that the SWitching time



Ls «l/Wmax' where Wmax is the maximum frequency in the zero field

spectrum. This generally dictates that L s is on the order of 1 ~sec

which is obtainable using a small inductor and large series resistance

such that L/R=Ls is small. The series resistance limits the current to

the coil and therefore the maximum field, but working with R=5-25 nand

a coil of the size described, fields of -400-100 G can be produced and

switched in a few hundred nanoseconds. For proton dipolar coupled

systems in solids, 100 G is usually a more than adequate field strength

and for samples such as liquid crystals the field can be much lower.

For quadrupolar nuclei or nuclei with low gyromagnetic ratios, fields of

300-400 G are beginning to only marginally meet the required magnitudes.

The field is governed by a logic controlled high power current

pulser for which there are limitations in the accessible power and

electronics to switch and produce high fields. 39 rhe power supplies

used are generally not regulated as the field level, if greater than

Bloc' need not be absolutely constant. In fact, there is often a

noticeable droop of -5-10% in the output voltage with pulses longer than

a few milliseconds. The pulsers generally operate at 180 V sWitching

between 7-30 amps. Excessive duty cycles which. result in resistive

heating can damage the coils and/or pulsers and must be avoided. The

intermediate field coil is reqUired to be on for both the turn on and

off of the B1 coil which requires that a fairly large field is produced

for a few to several tens of mil1iseconds.

4. The Basic Field Cycle

A composite of the field switching is illustrated in the last

diagram of Figure 11.12 in which the numbers refer to the steps of the
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basic field cycle as follows:

1. The samples originates in the high field magnet for a time

greater than T1 to polarize the nuclear spins. Downward gas pressure

(from the top) or vacuum (from the bottom) is applied to move the sample

from high field through the fringe field to the intermediate field level

(-100-200 msec).

2. Both the B1 and B2 coils are turned on. B2 turns on quickly

(few tenths of ~sec) producing a field, Bi , at least as large as the

local fields and in the same direction as the fringe field. The B2

field maintains the spin magnetization, while simultaneously, the slower

B1 coil (tens of msec) turns on to its regulated level cancelling the

fringe field.

3. After B1 is completely on (field level = Bi ), the B2 coil is

turned off rapidly. As the sample is now in zero field, evolution.of

the spin system is allowed to proceed for a time t 1•

4. The evolution is terminated by rapidly reapplying B2•

5. The B1 coil is turned off producing a field Bi+Bf , then B2 is

shut off.

6. The sample is adiabatically remagnetized to high field by

applying upward air pressure. The shuttle back to high field may occur

anytime after step 4 as there is no neccessity in waiting for the coils

to switch off as the sample can just as easily be remagnetized from any

field level as from Bf • The signal is detected using one of the rf

pUlse schemes described in Section 5 of this appendix and recorded.

The cycle is then repeated beginning with step 1 and incrementing

the time period t 1 for a second point in the time domain signal.
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5. Pulsed DC Magnetic Fields

The use of pulsed dc magnetic fields avoids many of the problems

associated with controlling large fields for relatively long periods of

time. A brief, intense dc pulsed field can be much larger in amplitude

and can be produced using a larger current. In addition, a certain

amount of flexibility is added to the experiment in the choice of pulse

direction, amplitude (Bi ) and duration (,), i.e. pulse angle 6=YBi ,.

The same pulsers and coils described earlier can be used for the pulsed

experiments. To produce the field cycle of Figure II.4b the sequence of

the basic field cycle is slightly altered. After completing step "

removing the sample to the fringe field, steps 2-5 are replaced by:

2. The bucking coil, B" is turned on slowly to adiabatically

demagnetize the sample to zero field. The rise and fall times of this

coil may be tailored to meet adiabatic constraints through the series

inductance. used.

3. The B2 coil is turned on for a brief dc pulse (few ~sec) of the

desired features mentioned above. The zero field period lasts for t,.

4. A second dc pulse is applied at the end of the t, period.

5. The B, coil is then turned off, adiabatically remagnetizing the

sample to Bf •

Step 7 occurs as before. With added pUlsers, coils and alterna-

tive sequences of events, more complicated dc pulsed field schemes can

be imagined

The rise and fall times of the dc pUlsed fields should also be

sudden as described previously. For many experiments using dc pulses in

zero field, a compromise between field strength (related to current and
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resistance), coil homogeneity (related to coil size and inductance) and

rise times (related to inductance and resistance) is met to obtain the

correct behavior. Homogeneity plays an important role in the dc pUlsed

field experiments since, in order for the pulse to act as a uniform

rotation over the entire sample, the pulsed field must be reasonably

homogeneous over the sample volume. This is often accomplished by using

larger coils (longer solenoids or helmholtz's) to increase homogeneity.

The increased inductance requires a larger series resistance for a rapid

rise time. This resistance of course decreases the available current

and field but, for homonuclear proton dipolar coupled or liquid crystal

samples, quite useable fields are produced. To avoid droop of the dc

pulses over long sequences, regulated power supplies are used for

increased stability of the pulse amplitudes.

To obtain a desired pulse angle, either the length of the pulse or

its amplitude can be altered. For large fields, the available 0.1 ~sec

setability in length corresponds to a large change in rotation angle.

Fine tuning of the pulses is instead easily accomplished through alter-

ing the voltage level. If the power supply does not have a variable

output, a variac can be inserted between the ac source and the supply to

adjust the output voltage of the power supply. This allows one to

establish a given pulse angle accurately, but may not allow simultaneous

setting of many different pulse angles.

To change the "phase" of the pulsed field (e.g. to give an x or y

pulse), as is required in some experiments, coils must be placed in

different directions in space as dc fields have no variable phase as do

rf fields. The design of a set of three orthogonal coils is shown in

Figure II.13. The form for supporting the wires was machined from 1"
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Three Orthogonal Coil Design
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Figure 11.13: Design for three orthogonal intermediate field coils. A

nylon form is machined to hold two transverse saddle shaped coils on the

four sections and an internal solenoid coil. The solenoid produces a

field colinear to the main field of the magnet. The solenoid and coil

form fit snugly about the 10 mm shuttle tube. The characteristics of

these coils are described in the text.



nylon. The two helmholtz coils are 13 mm long by 1,3 mm in diameter at

the center. They consist of 20 turns (10 on each side) of 28 AWG wire

spaced radially from the center of the coil form. The angle of the

helmholtz was chosen to be the maximum possible (900 ) to increase field

hOmOgeneity40 yet avoid overlap and coupling of the coils. The center

solenoid is 10 mm i.d. by 12 mm in length. These coils have reasonable

homogeneity over the usual sample volume of 0.2 cm3 (1'=0.3 em, h=0.7 em)

and even better over a 0.1 cm3 volume (1'=0.25 em, h=0.5 em) which was

often used for liquid crystal samples. The fields produced with these

coils using 180 V, 25 n in series (-7 amps) were -40 G. The rise and

fall times were -0.2-0.4 ~sec from the beginning of the pulse. (Note

that the pulsers have a "deadtime" of -0. 5 ~sec before a pUlse is

produced.) The individual helmholtz coils were found to behave essen-

tially identically. The pulses could be timed and applied immediately

after one an?ther with no overlap. To produce six phases of pulsed

fields in the three orthogonal coils, six directions of current must be

controlled. A bidirectional current pulser was designed to switch

between two directions of current in a single coil and a circuit diagram

and description can be found in reference 37.

6. High Field Detection

To measure the magnitude of the signal in high field, a component

of transverse magnetization which is detectable by standard NMR means

must be created. To do this, an rf pulse or series of pulses is

applied. Four examples of detection sequences are given in Figure

II.14. In the first, a 900 pulse is applied to the spin system and the

signal is detected. Generally only the magnitude of this signal is of
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Figure II.14: High field detection sequences. a). A 90~ pulse is

applied and the transverse component of magnetization is detected.

Often only the magnitude of the signal is required, thus only the first

point of the free induction decay (FlO) is sampled. b). Solid echo

sequence used to avoid probe and receiver recovery by echoing the signal

at a later time. In solids, 9y generally equals 900 and the height of

the echoed signal is detected. The full FlO signal can be detected in

(a) and (b). A pulsed spin-locking or multiple echo sequence, (c) and

(d), may be used to prolong the decay of the magnetization and allow for

repeated sampling of the signal. The 9y pulses are generally <900 often

obtaining maximum signal with 9y.45°. The echo amplitudes are averaged

as a single t 1 data point for increased signal-to-noise. The difference

between (c) and (d) is in the first echo pulse and delay. The sequence

in (c) is generally used for a single component system. The sequence in

(d) uses a Hahn echo to separate out the long and short lived signals on

the basis of T2.



interest (see Section B:4) and thus only the first point is recorded.

For solids, the use of a solid ech0 41 as shown in Figure II.14tT-aids in

detecting the quickly decaying (because of short T2) signal. This

avoids losing the signal, while the probe and receiver electronics are

recovering, by echoing it at a later time.

Since one is generally interested only in the magnitude .of the

signal, there is no need to allow evolution of the signal during the

high field time t 2• To increase signal-to-noise, a "pulsed spin

locking" or multiple echo train may be used to extend the decay of the

magnetization. 42 This type of pulse sequence is illustrated in Figure

I1.14c where the echo amplitudes are detected between pulses. Thus one

repeatedly samples the signal with its decay governed by a time constant

approaching T1p rather than T2• The averaged data recorded as a single

t 1 point in the zero field time domain signal. Sample heating is not

found to be a problem with these detection sequences as the duty cycle

is low.

When wishing to observe only the solute signal in liquid crystal

samples, the signal from the liquid crystal solvent must be removed.

This is possible due to the very different T2 relaxation times of the

two components. A similar multiple echo sequence, shown in Figure

II.14d, is used. In the initial stages, a 90~ pulse is applied. This

produces transverse components of the liquid crystal and solute magneti-

zations which decay with time constants, T2,lq and T2,s' respectively.

Since in general T2,lq«T2,s' waiting a time T»T2,lq results in the

liquid crystal signal decaying to zero. By applying a 1800 pulse (Hahn

ECh043 ), the solute signal alone refocuses at 2T and is repeatedly

echoed and sampled.
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For stability in the experiment, the first pulse of any of the

sequences is cycled between the phases x and x. This inverts the sign

of the signal while spectrometer artifacts and dc drift are unaffected.

Subtraction of the phase cycled signals should rid the time domain

signals of these instabilities. This is an important feature as the

experiment can require many hours of signal averaging, especially in

those samples with long relaxation times. Drift can occur over time in

therf electronics, amplifier output, or in such areas as the probe

tuning (due to mechanical shock), and temperature fluctuations (liquid

crystals are especially sensitive)~ A discussion of the probe

electronics can be found in reference 54~

One field cycle produces a single t, data point in the time domain

cycle. The field cycle is repeated after waiting a few times T, to

allow for relaxation of the nuclear spins and is repeated for a new

value of t,. The increment in time, At" is directly related to the

range of spectral frequencies as '/At,=full bandwidth (kHz). According

to the Nyquist theorem 44 , a signal must be sampled at least two times a

period to avoid "folding in" or aliasing of the signal to lower

frequency. For example, if the highest frequency in the spectrum is 100

kHz, the signal must be sampled at least with At,=5 llsec as this gives a

bandwidth of %'00 kHz. (Recall that the zero field spectra are

symmetric around zero frequency).

The high field detection sequences should be optimized to excite

as much of the signal as possible. Due to the broad lines of many

powders or quadrupolar nuclei this is often difficult. Thus the high

field part of the experiment includes many of the rigors of any typical

NMR experiment in SOlids. 44 Additionally, if one desires to detect the
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evolution of the sample under the high field Hamiltonian in t 2, there

are a wide variety of pulse sequences other than those presented here

which can be applied to correlate specific high field information with

the zero field spectrum. 2

1. NMR Spectrometer

A solid state NMR spectrometer has been modified for the field

cycling experiments and required no alterations from the basic NMR

instrument except for the addition of the coils, shuttling system and

coil electronics which are all external to the basic spectrometer

electronics. Additionally, the computer capabilities to control the

various aspects of the experiments must be available. The spectrometer

is a homebuilt instrument based on a 4.2 Tesla magnet and operating at a

frequency of 185.03 MHz for protons. A complete description of this

spectrometer is given elsewhere45 and only those aspects which have been

altered or adapted are discussed. The data collection and manipulation

is controlled by software written specifically for the spectrometer

systems in this laboratory46 and works in conjunction with the pulse

programmer unit. The pulse sequences and timing of the zero field and

high field instrumentation is controlled by a homebuilt pUlse programmer

based on its own independent microprocessor and microcode. 47 This unit

generates the timing and gate words controlling the sequence of

experimental events. Timing is based on a 10 MHz clock therefore the

smallest timing increment is 100 nsec. There are -16 independent logic

output gates divided among the tasks as follows: four rf gates, five dc

pUlsed field controls, one zero field coil logic control line, one

shuttling trigger, one temperature controller blank, one deblanking of
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the receiver pUlse, one data sampling trigger and one scope trigger.

The basic limitations of this pulse programmer unit arises when

attempting to output many short timing words which causes the unit to

"clock-out" its memory. These difficulties often arise with complicated

rf or zero field pulse sequences and caution should be exercised as the

resultant behavior is not to be trusted. For the basic field cycle,

delays for shuttling and coil turn on are often long enough to avoid

clocking out of the memory.

Two alterations have been made to the pUlse programmer for use on

this particular spectrometer. The pulse programmer contains two types

of memory units; a RAM and a FIFO. The RAM is generally used for long

repetitive sequences such as the pulsed spin-locking and signal

detection. In order to facilitate the operation of more complex

sequences, the RAM has been "split". Splitting the RAM memory merely

allows the one physical memory unit to be accessed at independent

starting locations allowing it to act as two RAM memories each half the
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size. ' But, since there is only the one RAM memory present, all RAM
~1

i

J output statements shOUld begin with 01. To access the split RAM, the

"flag" statements in the FIFO which call the RAM into action should be

either PA 01 00 or PA 03 00. The former executes the statements in the

first 128 steps, and the latter in the following 128 steps. Note that

the RAM is loaded sequentially and that the first half must be filled

(even with dummy statements that are never executed) in order that the

J
second half begins being loaded at the proper memory location. The

split in the RAM need not be 50:50 as was chosen here and can be divided

differently with the proper hardware changes. Of course, the full 256

steps of the total RAM memory can be accessed for a single execution by



calling the RAM from the FIFO with only the PA 01 00 statement. The

second change consists in the size of the FIFO memory. The basic pulse

programmer deSign47 incorporates FIFO memories which can hold 16

executable steps. These chips (Fairchild 9403's) were replaced with

Fairchild 9423 memory chips which hold 64 steps. Hopefully this will

aid in execution and timing problems. Unfortunately, precise

information on th~ loading and emptying times of this FIFO memories is

not available but can easily be found experimentally.

8. Variations in the Experiment

Alternatives to sample shuttling, field control and field pulsing

are all possible. In the following sections, a few al ternati ve

approaches to the zero field experiment are very briefly discussed.

These changes mayor may not be technically more difficult, but for one

reason or another have features which make them attractive.

a. Direct Observation in zero Field. Extremely high sensitivity

detectors would be required to directly observe the oscillating magneti-

zation in zero field. Recently in experiments by other groups, such a

device has been used to detect spin nOise48 , quadrupolar signals49 and

other low frequency signals50 • These devices, known as superconducting

quantum interference devices (SQUIDs), are flux to voltage transducers

and can be frequency independent. 51 Experiments with direct detection

would be extremely advantageous as the two dimensional point-by-point

field cycle would be reduced to a one dimensional experiment with a

great reduction in time. The high sensitivity might be expected to

allow for the detection of very small amplitude signals such as those

due to the polarization produced in small dipolar or quadrupolar local
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fields. If possible, this reduces the necessity of using a large

polarizing field. Experiments along these lines are being developed and

are discussed elsewhere in more detail. 37 ,39

b. Removal or the Polarizing Field. Another experimental approach

is to cycle the field by removing the polarizing field through sWitching

the high field coil. Switchable coils with reasonably large fields (up

to 1.5 Tesla) are·often used in field dependent relaxation studies5,52

and can be switched on a timescale of a few milliseconds. 5 Although the

switch off is not sudden, it'is more rapid than mechanical shuttling.

Combined with an intermediate field coil to maintain the polarization,

the range of samples could be greatly extended to those with short

relaxation times for which Mo would not survive the field cycle. Some

of the highfield sensitivity would be sacrificed for the ability to

switch the field in using a lower field level. In addition, homo-

geneity and reproducibility of the field level might not be as stable as

with a persistent field.

c. Variable Temperature zero Field Experiments. The integration

of a variable temperature field cycling system has numerous applications

to zero field NMR experiments. Low temperature field cycling apparatus

are in use for many zero field NQR experiments 13 generally operating at

77 K to insure the long relaxation time required for the frequency

domain field cycle. Many of the low temperature systems in use involve

either the transport of an entire sample cryostat13 or the mechanical

transport of the sample. 53 Many such apparatus are designed around

electromagnets whereas here, the system would have to be incorporated

into a superconducting solenoid system.

The ability to control the temperature provides a means of
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effecting the relaxation times of different samples making their obser-

vation possible. Even more interesting is the prospect of measuring the

dynamics of molecular systems. The zero field NMR and NQR spectra of

solids have narrow lines, unlike powder spectra in large magnetic

fields. The changes due to motional averaging should then be more

easily observed in the changes in frequencies and lineshapes in the zero

field spectra. 55 Observing the spectra as a function of temperature

should lead to a great deal of information on the molecular dynamics.

Previously, a design for a low temperature shuttling system was

presented. 54 This design was a direct adaptation of the eXisting zero

field set up, since the gas transporting the sample was simply temper-

ature regulated, and the shuttling tube was replaced by a dewared glass

tube. This design posed many problems as the temperature control and

the shuttling gas were one and the same. Often to control the tempera-

ture accurately required that a lower gas pressure be used. This of

course detrimentally affected the shuttling of the sample. Special low

temperature valves were also required to switch the gas. The rf probe

was designed with the helmholtz rf and intermediate field coils outside

of the dewar which lead to problems with signal-to-noise and probe

arcing.

A new design was developed during the course of this work which

hopefully improves upon many 9f these problems. It was decided that the

most efficient way in which to move the sample and control the temper-

ature was to do these independently. Therefore a piston with a stroke

-.};.. ...- length of -60 cm (ajustable to -±5 cm) was designed to move the sample

in approximately 300-500 msec. The piston operates using room temper-

ature compressed air at pressures from 20-50 psi. The high pressure gas
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is controlled by the switching of electronically controlled solenoid

valves. The sample is fixed on the end of a rigid fiberglass rod of

3/16" diameter ~ A glass dewar, supported by mounting to the probe,

encloses a region between the rf coil and the zero field coils in which

the sample travels. The temperature controlled nitrogen gas impinges on

the sample from the lower end making either high or low temperature

regulation possible. With this arrangement the temperature can be more

easily controlled and is independent of the movement of the sample. The

rf coil and intermediate field coils are housed inside the dewar system

allowing for increased signal-to-noise, lower rf power requirements and

larger pulsed dc fields. Leads from the coils pass through the dewar

allowing all rf and zero field electronics to remain at room temper-

ature. The ideal combination for a variable temperature experiment

which can be invisioned consists of a switchable high field coil or a

zero field detector and a temperature controlled sample region. This

requires no movement of the sample and can be designed for temperature

regulation of a limited sample region.
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III. PULSED ZERO FIELD NMR AND NQR

A. Introduction

In the previous chapter, the basic outline of time domain field

cycling methods was presented. These approaches, although extremely

useful for observing simple dipolar coupled or quadrupolar spin systems,

are not at all selective in either the excitation of the nuclear spins

or in determining the subsequent course of evolution of the spin system,

since a sudden transition in field or an arbitrarily chosen pulsed field

simultaneously excites all nuclear species in zero field. It is

desirable to gain a degree of control over these aspects of the

experiment and, in analogy with high field NMR with radiofrequency (rf)

pUlses, pulsed dc fields applied in zero field are one such approach.

DC pulses can be used in field cycles with demagnetization to an

intermediate field (i.e. after the sudden removal of the field) or after

demagnetization to zero field. Incorporating pulsed fields into the

latter has technical advantages already enumerated in the preceding

chapter. An additional advantage of the pulsed fields is the

experimental flexibility allowed in their duration, magnitude and'

direction. With these variable parameters, the uses of pulsed fields

can go much beyond simple pulsing to initiate evolution into the realm

of coherently manipulating the nuclear spin system in zero field.

Numerous reasons for applying pulses in zero field are imaginable. Many

of these are identical to the uses of rf pulses in high field

experiments 1; among them, to alter the state of the magnetization before

evolution and observe its behavior, to select spectral transitions, as
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mixing pUlses in two dimensional correlation experiments, decoupling of

heteronuclear spin systems, refocussing pUlses, composite pulses and

isotope selectivity.

In this and following chapters, experiments on polycrystalline

solids which explore the use of pulsed dc fields in zero field are

presented. In the first section, the basic behavior of nuclear spins

under such fields is discussed. From this foundation, the uses of

pulses in observing zero field NMR and NQR spectra, in two dimensional

pulsed correlation experiments, for increasing pulsed field homogeneity

and for isotope selectivity are examined. Pulsed fields are also

combined with sensitivity enhancement via level crossings for the

detection of quadrupolar nuclei.

B. Pulsed DC Fields in zero Field

Before incorporating dc field pulses into the field cycling

schemes of zero field NMR and NQR, an introduction to the

characteristics of the pUlsed fields and to the behavior of the spin

system is given. Much of what is described is analogous to the

application of rf pulses in the typical high field NMR experiment and

may not seem surprising. Often though, the differences which arise

between working in high and zero field or with rf vs. dc pulses require

creative approaches to succesfully manipulate the nuclear spins.

Stepped dc fields, those turned on continuously to a fixed level, have

been frequently used in many experiments to study the relaxation

behavior in low field or to test the predictions of spin temperature

theories. 2,3 While the applications of brief dc field pulses are
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relatively unexPlored. 4,5

1. Ef'tects ot Single Pulses

A pulsed field acts as a rotation on the nuclear spin system as

first described in Chapter I.D. For an effective pUlse, this requires

that the field, Bi , of the pUlse is much larger than the local fields of

the dipolar or quadrupolar spin interactions. When working in the limit

of the Zeeman interaction of the spins with Bi being greater than the

local fields, the dc pulse is formally described as
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(III.l)

acting on the state of the spin system as described by the operator p

expressed in the laboratory frame. The operator for the pUlsed field is

given by

(III. 2)

where n-x,y or z, corresponds to the direction in the laboratory frame

of the pulsed field. A pulse angle, a, is defined by

and thus Equation (III.l) becomes

(III. 4)

For example, if a sample is demagnetized to an intermediate field

level, B1 , applied in the laboratory z direction and then suddenly

demagnetized as illustrated in Figure III.1, the initial condition for

all crystallite orientations in zero field 1s given by Iz,L. Applying a
\
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Figure 111.1: Field cycle employing pulsed dc magnetic fields after a

sudden transition in the intermediate field. Demagnetization from a

large field. Bz • to an intermediate z field. Bi (>~oc). results in a

zero field state proportional to I Z •L immediately after the sudden

transition in field. A single dc field pulse. p. or several pulses

repeated n times can be applied in any direction in space immediately

after the removal of the field. The effect of the coherent manipulation

of the magnetization in zero field can be monitored by reapplying the

field in the z direction. and remagnetizing to Bz where the magneti

zation is sampled. Field cycling and pulsed dc field times are not

drawn to scale and no evolution of the spin system is allowed before or

after the pulse.



pulsed field, P, in the laboratory z direction oauses no change in the

initial state since a torque is not applied by the field to the initial

magnetization. This can be shown by solving Equation (III.4) to find

that PL(T)=PL(O). If, though, the field is applied in either the

laboratory x or y directions, the result is to rotate the magnetization

such that

PL(S) = exp(-iSI L)I Lexp(iSI L)x, z, x,

• -I sinS + I LCOSS (III.5)y,L z,

producing components proportional to Iy and I z• If the intermediate z

field is suddenly reapplied immediately after the pulse, the z component

of magnetization is trapped and can be detected in high field.

Measuring the amplitude of the magnetization results in an oscillating

function, SeT), proportional to cosS as can be calculated from
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(III.6)

seT) represents the projection of the final state on the initial state

which, in this case, can be considered the scalar product of two

magnetization vectors. The theoretical curve and an experimentally

obtained example are shown in Figure III.2. The pronounced decay of the

signal with time is not predicted and may be attributed to several

factors which are discussed later.

The above situation is identical to that in high field where rf

pulses cause the nutation of the magnetization, Iz,L. Unlike high field

NMR where the frequency of the irradiation (YBo) affects only one

nuclear species, in zero field all nuclear spin species are
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Figure 111.2: Theoretical and experimental curves of the longitudinal

magnetization vs. single pulse applied in zero fi~ld. The pulsed field

is applied in a direction transverse to an initial state proportional to

Iz,LJ which is also the detected component (see Figure 1). The signal

oscillates according to IIzlcose as shown in (a) for ideal pUlse

conditions in the absence of relaxation. In (b), an experimental curve

of the signal from a sample of CH2Cl2 in a nematic liquid crystal shows

the same general behavior, but decays due to field inhomogeneity and

other effects.
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simUltaneously irradiated by a dc field and the effective pulse angle

(S-YBit) varies with Y. DC fields are used since the resonance

frequency is zero for all nuclei. As for an rf pUlse, a dc pUlse will

still excite over a range of frequency given by sinwt/wt. In Figure

III.2 the behavior of one spin species (here, 'H) is shown as only this

nucleus is detected in high field.

If the sample is instead demagnetized completely to zero field,

the situation is different as the pulses are now applied to an

equilibrium zero field state for which
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in which p is proportional to the components of a second rank tensor.

The effect of a single dc pulse on such a system can also be observed.

The pUlse, referenced to a laboratory based frame, must be reexpressed

in the molecUlar/zero field frame of p and Equation (III.4) becomes

(III.8)
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where R-R(aBY), the rotation operator. As a simple test of these ideas,

consider the following experiment illustrated in Figure III.3. The

sample, initially in high field, is shuttled down to zero field where it

is sUbjected to a single dc pUlse of varying length, then shuttled back

to high field where its proton pulsed spin locking signal is recorded.

The high field signal for a pUlse of length t using Equation (III.6) is

(III.9)

Because of the powder distribution of crystallites, R(aBY) differs for
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Figure 111.3: Field cycle for the application of a single dc magnetic

field pulse after demagnetization to zero field. The sample is shuttled

adiabatically from the large magnetic field to zero field. The pulsed

field is applied for a time ~ (few ~sec) with a corresponding pUlse

angle gi ven by a-YBi T. The direction. duration and amplitude of the

pulse is variable. After remagnetization. the signal is detected as a

function of ~.
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each orientation as does the orientation of the rotation axis in the

crystallite molecular frame. The pUlses correspond to rotations by the

angle e·YB~ about an axis oriented at some values of a and B in the

molecular frame. The expression for the signal is the correlation

function of the initial zero field state and its ~otated counterpart.

Simulations in Figure 111.4 illustrate the effects of a pulse applied in

the laboratory z direction on different crystallite orientations. The

periodicity of the signal can be found by solving Equation (111.9) for a

given orientation.

For a pOWder sample, Equation (III~9) must be averaged over all

possible orientations, i.e. over all a, Band Y. Figure III.5a shows

that the average behavior over a powder is periodic as a function of t

and that the signal magnitude for e·2~ is nearly equal to that for 8-0.

This experimental result is for the protons in polycrystalline

Ba(CI03)2'H20, a dipolar system consisting of strongly coupled pairs of

protons within the water molecules, and similar behavior has been

observed in other systems. Assuming that a single spin temperature

describes the demagnetized state3 as discussed in Chapter II,
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p(O) - Ii> (III. 10)

for the pairs of protons. Performing the integration over the powder

distribution, the signal function calculated by substituting Equation

(111.10) into Equation (III. 9) is

Iu (III.11)

This agrees with the experimental results showing local maxima at n~ as

illustrated in Figure III.5b, but predicts no signal decay.



1.0.--------

0°

o

98

", '\ '".'-'

1.0

60°
o

. 1.0

70°
o

1.0 1.0

30° 80°
0 0

1.0

90°
o

o
Pulse angle

n 2n

XBL 8611-6474

J
~ J
J



J
q
H

U

J
U

Figure III~4: Simulations of the signal amplitude as a function of dc

pulse angle in the field cycle of Figure 111.3, for different

crystallite orientations. The initial condition is assumed to be equal

to HO' Because of the axial symmetry of the initial condition only the

angle B, between the z axis of the PAS/molecular frame and the direction

of the pulsed field (laboratory z axis), is necessary. For the

orientation shown at top left, where the pulsed field is along the

direction of the local field (B-O), no change is seen to occur. For

orientations close to B-45°, the signal goes through a single period

over the range 0-2~ whereas for the orientation perpendicular to the

field direction, B-900 , the signal goes through two periods in 2~. Note

that for all crystallite orientations shown the signal returns to its

initial value with a 2~ dc pulse.
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Figure 111.5: Signal as a function of a single dc field pulse applied

in the laboratory z direction after demagnetization to zero field

(Figure III. 3) • The pulse angle is given by e",YHBi t where or is on the

order of a few microseconds, and Bi»Bloc • The magnitude of the proton

magnetization from a sample of Ba(C103)2·H20 is detected and shown in

(a). For comparison, the theoretically predicted signal function

(Equation 111.9) is plotted in (b) for an initial condition equal to Ho.
The detected signal shows the predicted periodicity and after a nx2~

pulse, the magnetization is nearly equal to its initial value. The

damping effect may be attributed to imperfections in the pulsed field

homogeneity and amplitude.
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Experimental curves such as those shown in Figures III.2 and 5 are used

as a means of calibrating the pulsed field.

A component of the dipolar ordered state in zero field is not

effected by the pUlse as seen by the constant term in Equation (III.11).

This corresponds to a projection along the field direction of a

component of the zero field state from each orientation. The actual

direction of the applied field in the laboratory frame does not affect

the behavior of the spin system as a whole when p(O)aHZF ' This is due

the isotropy of space and a random distribution of all crystallite

orientations. The direction of the pulsed field has some significance

when the initial condition or detected operator still bears a

"direction", that is to say, it is proportional to a laboratory based

operator.

2. Field HOIIlogeneity

The decay of the experimental signals can be partly explained by

the inhomogeneity of the pulsed fields together with evolution and

relaxation which occurs during the dc pUlse. 1 Ultimately, even under

ideal pUlse conditions, the signal loses coherence and decays due to T1

and T2 processes. Evidence for evolution under the internal Hamiltonian

during the dc pulse has been seen in quadrupolar systems in which the

damping effect is more pronounced as the condition Bi>Bloc is only

marginally met. A formal description of this effect will not be given

explicitly although evidence of its presence is seen in some of the

experimental results. Certainly, this is not a regime in which one

would chose to work and although one remedy is obvious (use larger

fields), it is not always obtainable practically.6
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Inhomogeneous pulsed fields result in a more severe damping of the

observed signal and the efficiency of the pulsed field has great bearing

on the experiment. Empirically, it was found that changing either the

size or form of the coil or sample greatly altered the homogeneity as is

expected.7 Of course, there are drawbacks to larger coils (see Chapter

II) and reducing the sample size is not desirable due to the loss in

signal. The decay evident in the previous signals and its dependence on

experimental parameters can be illustrated by plotting the signal

magnitude at specific pulse angles such as 1800, 3600, ••• ,nx~ as shown

in Figure 111.6. A completely undistorted signal (no relaxation,

evolution or inhomogeneity during the pulse) would show no change in the

level of the signal. For a given dc field strength (-40 G) and a small

dipolar coupling (-0.5 G), the decay increases for larger sample

volumes, indicating the presence of field inhomogeneity over the sample

(Figure III.6a). This Can be attributed primarily to field inhomo-

geneities by measuring the signal from a small sample volume at two

different dc field levels (-40 G and -100 G in Figure III.6b).

Comparison of these signals shows that there is no change with a change

in field, and one can assume that the lower field is already in the

limit, 8i »8loc ' as expected since the ratio of the lower field to the

dipolar coupling is already -80:1. Finally, the effect of the relative

field strength and dipolar coupling is made by using different samples

(Figure III.6c), one with a large dipolar coupling (-10 G), and a second

smaller one (-0.5 G) with a pUlsed field of -40 G. The decay is seen to

be more pronounced with the larger coupling. (Note that in this latter

case both samples are large, thus inhomogeneity is also a factor,

although it shOUld be equal for the two samples volumes.) The zero
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Figure III~6: Comparison of different experimental factors on the

behavior of the signal as a function of a single de pulse in zero field.

An undistorted signal, one that is only affected by relaxation, would be

expected to show little decay from the initial value. In (a) with a

small dipolar coupling, a change in sample volume shows the effect of

decreased field homogeneity over a larger sample. The field is

approximately 40 G unless stated otherwise. Increasing the field to

-100G as shown in (b) for the same size dipolar coupling, illustrates

that the decay in (a) is not due to evolution under a weak pulse. A

weak field will however not act as effectively over large samples with a

large dipolar coupling as compared to a small coupling as in (c) •.

105



field relaxation times are all substantially longer than the pulse

lengths used.

Minor differences in coil designs can be significant in their

behavior in pulsed experiments. Two examples are discussed, that of a

solenoid and a helmholtz of approximately the same size. Both coils

produce fields in the laboratory z direction, but the helmholtz is less

efficient as the field per amp produced is smaller. The field from a

finite length solenoid (a helmholtz coil is modelled as two solenoids

contributing to a field centered between them) is calculated by solving

the equation8
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2'1l'k'NI( 1/2 - z + 1/2 + z ]
Bz(Tesla). 1 I 2 2 I

~r + (1/2-z) ~r2+ (1/2+z)2
(III.12)

where 2'1l'k'- 6.3x10~7 TA-1m- 1, r equals the coil radius, z the distance

from the coil center, 1 the,coil length, I the current and N the number

of turns. The calculated profiles of the fields over the length of the

two coils are shown in Figure 111.7. For the same length coils, the

field from the helmholtz does not drop off as rapidly as does the field

for the solenoid. As the coils increase in length, the curves are

expected to flatten out and the fields become more uniform. 8

Experimentally, the coils are seen to behave quite differently.

In Figure 111.8, the signal as a function of pulse angle is shown for

the two coils. The helmholtz is more homogeneous as predicted from

Figure 111.7 and its effect is improved when the sample size is reduced.

A computer program, INHOM.FOR, was written to simulate the behavior of

the coils. The signal is calculated numerically according to Equations

(111.9) and (111.10), and due to the rather complex function of z, as
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Figure 111.1: Calculated profiles of the field produced by a solenoid

or helmholtz pulsed dc field coll. Each coll is approximately 1 cm long

by 1.2 cm in diameter producing a field in the laboratory z direction.

The field is calculated over the length of the coll, and is assumed to

be cylindrically symmetric. The field produced by the solenoid,

although larger per amp of current, drops off more rapidly over the

length of the sample than that of the helmholtz. The dashed lines in

the representative sample length indicate the length of a smaller sample

often used for improved homogeneity. The predicted field droop over the

solenoid is -16% and -8% for the helmholtz.
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Figure 111.8: Experimental curves of proton signal vs. pulse angle for

a single z field pulse in the field cycle of Figure III.3. The sample

for all three is Ba(C103)2·H20. A solenoid coil with a field of -125 G

and a large sample results in the curve seen in (a) where there is a

pronounced decay of the signal due to pulsed field inhomogeneity. In

(b), a field of -250 G from a helmholtz coil over the same large sample

volume shows some improvement. The best behavior is seen in (c) for the

helmholtz coil with a small sample and a field of -155 G. Most direct

comparison can be made between (a) and (c) due to the comparable field

strengths. Fourier transforming these signals and measuring the line

widths predicts a distribution in field of -20% for the solenoid and -7%

for the helmholtz. Note that due to the much larger field in (b), the

0.1 ~secincrement in ~ produces a large change in e as in evidence by

the fewer data points and jagged appearance of the signal.
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given by Equation (III~12), a linear or quadratic approximation to the

field homogeneity over the sample was incorporated. The latter is

generally found to more closely model the experimental situation and

therefore is used in the simulations. The simulations include only the

effect of inhomogeneity, calculated by assuming different pUlse angles

over different regions of the sample. The sample is also assumed to be

centered in the field. Misalignment of the relative positions of the

coil and sample will greatly exacerbate any effects.

The resulting simulations shown in Figure III.9 model the

experimental results reasonably well. The percent variations in the

fields used were obtained by Fourier transforming the experimental

signal and assuming that the distribution in Bi is related to the

linewidth. The percent inhomogeneities found by this method are

actually very close to those predicted by calculation in Figure IlI.7

The performance of the helmholtz is slightly better than predicted and

the solenoid slightly worse and may be due to exeperimental factors not

accounted for in the simulations.

3. Caaposi te Pulses

The design and implementation of radiofrequency pulse sequences is

a well explored area in NMR. Pulse sequences which take advantage of

the phase, amplitude and duration of the radiofrequency irradiation can

be devised to produce a desired response from a nuclear spin system.

Composite pUlses9 have been used in NMR for spin decouPling10 ,

broadband, narrowband and bandpass excitation11 , spatial selectivity12,

multiple quantum excitation13 and more14 • Composite pUlses generally

consist of a sequence of closely spaced pulses whose net effect is the
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Figure 111.9: Simulations of the behavior of the solenoid and helmholtz

coils using the program INHOM.FOR. The contribution of the field

inhomogeneity is included by calc.ulating different pulse angles over

different portions of the sample. Using a quadratic approximation to

the field profile over the sample and percent inhomogeneities predicted

from Figure III.Ba and Be, the simulations are shown for the solenoid

and helmholtz in (a) and (b), respectively. The theoretical data

matches the experimentally obtained data reasonably well, especially in

the latter case.
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same as that from a single pulse of a given rotation angle. These can

be used to correct for resonance offsets and/or pulsed field

inhomogeneity which would otherwise distort the desired response from a

single pulse. In specific cases, the desired behavior in exciting the

nuclear spins can be tailored to be broadband or narrowband in some

characteristic of the irradiation (i.e~ amplitude, bandwidth, etc).

Broadband behavior is required, for' example, to overcome the

inhomogeneity of the dc pUlses. Narrowband excitation is important in

the selectivity between spins and isotopes; for example, if one wishes

to apply a zero field pulse to carbon-13 spins without affecting protons

or deuterium (a feat easily accomplished in high field NMR because of

the frequency differences). The ability to use pulses selectively is

discussed later in Section D of this chapter.

As in high field NMR, one hopes that the excitation of the nuclear

spins is uniform across the sample, that is to say, the spatial

inhomogeneity of the field is a minimum. As an alternative to using

larger more homogeneous coils, composite pulses can be implemented in

the dc pulsed zero field experiment as in high field NMR experiments.

In this section, composite n pulses, which are not sensitive to pUlsed

field inhomgenei ty, are produced by applying dc fields in different

directions in the laboratory frame. Unlike high field NMR, a pulsed dc

field does not have the feature of a variable phase, although the

amplitude and duration of the field can be easily altered. Producing

the analog of a phase shifted pulse sequence in zero field, requires a

cross coil configuration. In this case, a system composed of three

orthogonal coils with uniform characteristics such as inductance,

homogeneity and field strength was designed. High power current pulsers

113



which provide for rapid reversal of the direction of current flow were

designed to provide the complementary 1800 phase shifts to the x, y and

z coils. Thus, six basic directions ("phases") and their linear

combinations of pulses can be manipulated in the composite pulse

sequence. Technical details on the coils and current pulsers appear in

Chapter II.

The composite pulse sequence used is a very simple 90x180y90x

first suggested by Levitt and Freeman for inversion of nuclear spins in

the presence of resonance offset and rf inhomogeneity.lla-c The

combination of these pUlses more effectively acts as a 1800 pulse while

compensating for field inhomogeneities. The behavior of the spin system

in zero field is identical to that in high field if the field cycle

produces an initial condition proportional to Iz,L. It is fair to

assume for a homonuclear spin system with small dipolar couplings, as

will be used, that resonance offset effects are minimal as there are no

chemical shifts in zero field, yet the spins must be excited over a

range of dipolar or quadrupolar couplings (the zero field analog of

resonance offset). One can simply picture the compensation of the on

resonance 90x180y90x pulse by observing the trajectory of the

magnetization as shown in Figure III.l0. In addition to the 1800

inversion pUlse, multiples of 1800 also prove useful in the zero field

experiment, thus the simple three pulse sequence is extended in the most

straightforward manner by concatenating the composite 180's.

A sample of CH2Cl2 in a nematic liqUid crystal, a system which

when demagnetized in the field cycle shown in Figure III.1 has an

initial state proportional to Iz,L (see Chapter IV). Instead of only a

single pulse in zero field, the pulse P in Figure III.1 represents the
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Figure 111.10: Trajectory of a magnetization vector under a single

purse of 180~ and a composite 90~180~80~ pulse. The final position of

the magnetization for a single (180~+6) pUlse is shown by the arrow for

one value of 6 corresponding to the error in the pulse angle. The

trajectory of the tip of the vector under the composite pulse is shown

by the bold line. The first nominal 90~ pulse places the magnetization

vector somewhere in the zy plane above the xy plane. The nominal 180~

rotates the magnetization about the y axis. The final nominal 90~ pulse

places the vector near the -z axis closer than the single 1800 pulse.

The error in the 900 pulses is compensated for by the 1800 pulse where

an exact rotation 1800 would place the magnetization vector at the -z

axis. Other errors in pulse lengths will show similar trajectories

corresponding to a distribution of final positions near the -z axis.

3600 composite pulses can be produced by applying a second 90~180~90~ or

90~180y90~ pulse which brings the magnetization up the other side of the

sphere toward the +z axis.



application of one or several dc pulses which can be repeated n times.

A comparison of single pulses of nominal pulse angles of nx1800 and

composite pUlses are shown in Figure III.11. The single nx1800 pulses

were extracted from an experimental curve of signal intensity vs. pulse

length such as that shown previously in Figure III.2. Single pulses are

seen to produce a curve which decays with increasing pulse length. This

is the case of 'a small coupling and small sample (see Figure III.6) and

the effect is therefore primarily due to the inhomogeneity.

Using composite pUlses, the nx180 and nx360 rotations of the

magnetization are seen to show some improvement as the result of

compensation. In both the single and composite pulse cases, cummulative

errors in the pulses result from long sequences. When larger pulse

angles are needed, the efficiency can be improved to some extent by

phase cycling the second pulse of the composite sequence. Figure

III.llc illustrates this effect by using (90x180y90x-90x180y90x)

sequences. The compensation is improved on subsequent pUlses and can be

understood by the fact that the reverse sense of rotation of the 180y

and 180y pulses corrects for some of the error due to the 180 pulse and

returns the magnetization more effectively to the +z axis.

These experiments illustrate simple applications of composite

pulses, originally designed for high field radiofrequency irradiation

but applied in zero field. Rotations of the magnetization by integer

multiples of 1800 , and the desire for other large angle rotations arises

from the fact that in zero field different nuclear species can be

selectively excited with the proper choice of dc pulses. The degree of

selectivity or successful excitation of the spins depends upon the

uniformity of the pulsed field over the sample. Other uses might be
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Figure 111.11: Experimental comparisons of single and composite dc

magnetic field pUlses. The sample is CH2C12 in a nematic liquid crystal

which has a prpton dipolar coupling of approximately 2 kHz. Pulsed

fields used were on the order of 45 G for all directions. In (a),

single pulses of nx1800 , chosen from a function of signal intensity vs.

pulse length, are shown to cause the magnetization to decay rapidly with

increasing pulse length. In (b), using concatenated composite pUlses of

90x180y90x the behavior is slightly improved. To reduce the cummulative

errors in repeated 1800 pUlses, a phase cycled pulse 90x180y90x was

alternated with 90x180y90x in (c) yielding an improvement in the

longterm behavior.
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found in better refocussing pulses to improve zero field homogeneity (as

in the echo experiments to be discussed in Chapter IV) and the use of

composite pulses in two dimensional zero field experiments. The use of

phase shifted pulsed dc fields might be combined with the wealth of

composite and spatially selective pulses already designed for rf

irradiation. 9,10 More sophisticated dc pulses and pulses sequences

which are zero field analogues of rf NMR experiments can easily be

imagined.

A number of applications of these ideas are envisaged such as the

selective excitation and evolution of protons in the presence of a

heteronucleus such as carbon. This would be a zero field analog of

observing a high field decoupled spectrum when only one nucleus is

excited, and the heteronuclear dipolar or quadrupolar couplings are

removed. Possible approaches involve the "quenching" of the coupling by

selectively averaging the Ix' Iy and I z components of spin angular

momentum of the heteronucleus. Hopefully higher order terms of the

dipolar coupling will also be removed. This is analogous to the

naturally occurring quenching of the coupling of spin I=1 nuclei in zero

field. 15 With dc pUlses, there is the added complication of irradiating

one spin species yet leaving the nucleus to be detected remains

untouched except for evolution under the desired Hamiltonian. Not all

high field pulses sequences are directly transferable to the realm of

pUlsed dc experiments, due the added terms of the zero field

Hamiltonians which must be dealt with (i.e. no high field truncation to

assist the experimentalist) and the fact that pUlsed fields do not

appear as uniform rotation axes in the molecular frame for all

orientations in zero field. These complexities make the problem much
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more challenging to approach and answers might best be sought via

computer simulations as the calculations of the signal under pUlsed

fields quickly becomes overwhelming.

Co Field Cycling with Pulsed DC Fields

10 Initial Conditions and Demagnetization

The preceding section introduced the behavior of nuclear spins

under dc pulses after.being demagnetized to low (p(O)alz,L) or zero

field (p(O)aHZF ) in field cycles such as those shown in Figures 111.1

and 111.3. Only in certain cases, used as experimental examples thus

far, can the initial state after complete demagnetization to zero field

be easily characterized. states which are simply described during

demagnetization are those of tightly coupled spin 1-1/2 nuclei for which

a spin temperature can be defined. 3 Since the development of the spin

system in time, its behavior under pulsed fields and the appearance of

the spectrum all depend upon the initial zero field state, the dynamics

of demagnetization to zero field are discussed in more detail. The

comments made are based upon more complete discussions found in several

excellent texts on the SUbject. 3,16,17 Related discussions can also be

found in another thesis. 18 At present, considerations are limited

primarily to systems of only one spin species. In later sections,

particularly Section D.1, a description of level crossings which occur

between the energy levels of heteronuclear systems is presented.

a. Coupled systems. When a nuclear spin system is tightly

coupled, that is to say mutual spin flips or spin diffusion through the

system can rapidly establish an equilibrium state, the system can be
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described by a spin temperature3,16 as described in Chapter II.B~5. An

appropriate spin system will be defined by a collection of single spins

with equidistant Zeeman energy levels in which the couplings to other

nuclei introducing a "width" to the levels. (This is not a rigorous

treatment as in reality the spins should be treated collectively and

Izi-mi of individual i spins is"not a good quantum number.) The

relative width and the separation in energy levels is a measure of the

degree of coupling in the system.

Energy and population conserving. flip-flop transitions occur

between the levels. The establishment of an equilibrium state

corresponds to the most probable distribution of the popUlations among

any two energy levels as given by Equation (II.4) and a single spin

temperature can be defined if the ratio is independent of m~3 When an

external parameter of the system, such as the field, is changed

adiabatically, the popUlations are conserved and the system reaches a

new spin temperature. For a tightly coupled, homonuclear system this

process is always reversible when conducted in a time, t, where

T2«t«T1• Throughout adiabatic demagnetization to zero field, the

density matrix describing the system is always proportional to the

instantaneous Hamiltonian. An example would be a dipolar coupled spin

system of spin I-1/2 nuclei, such as protons in a solid, in which the

Zeeman levels are equidistant and strong dipolar couplings exist. The

zero field demagnetized state would then be equal to the dipolar

Hamiltonian, HO' with its corresponding eigenstates and energies.

b. Isolated systems. Isolated spin systems are generally not

describable by a spin temperature. 3 Spin systems which are weakly

coupled, either due to proximity or low isotopic abundance, can be
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considered isolated. Also systems in which the energy levels are

unequally spaced, thereby preventing energy conserving transitions

involving all pairs of levels, behave as isolated systems. Hetero-

nuclear spin systems, in which the differences in resonance frequencies

are greater than the dipolar coupling, are effectively isolated since

cross relaxation or transitions between pairs of Zeeman levels are only

weakly allowed. Separately, the heteronuclear spin reservoirs mayor

may not be tightly coupled subsystems in and of themselves, thus

allowing independent spin temperatures to be defined for each. For

times greater than T2 of a separate subsystem and less than the time for

a mutual spin flip to occur, a separate spin temperature can be ascribed

to each. If the cross-relaxation time is greater than T1, the state of

the entire system can be described by a common spin temperature equal

only to the lattice temperature.

An example of an isolated spin system is that of a quadrupolar

spin I-l system such as deuterium. 3,16 A spin I-l system can not be

described by a single uniform spin temperature at all times. If the

system is allowed to reach equilibrium in a large applied magnetic

field, then the populations of the Zeeman energy levels correspond to

the most probable distribution of the spins among th~ levels as given by

a Boltzmann distribution. For nonzero quadrupolar coupling constants,

the three energy levels correspond to quadrupolar perturbed Zeeman

levels and are unequally spaced. Assigning a spin temperature to the

spin system imposes a condition on the populations. Only for equally

spaced levels (in a spin I-l system when e2qQ/h_O), a flip-flop exchange

of one spin by +1 and another by -1 does not change the populations of

the levels and a single uniform spin temperature can be defined. For
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unequal levels, a change in the populations of any two levels will alter

the relative populations of other pairs of levels, and a single uniform

spin temperature can not be assigned. It often becomes useful though to

assign a spin temperature for a limited time to a given pair of levels.

There exists no mechanism in isolated systems which will uniformly

reestablish equilibrium populations for all levels, as does the flip-

flop term of the dipolar Hamiltonian for equidistant levels, and rapidly

establish a new spin temperature. A new Boltzmann distribution can be

reached, but only in a time greater than T1, when the spin temperature

of the entire system corresponds to the lattice temperature. Since the

system cannot be described by a single spin temperature in times less

than T1, a simple description of adiabatic demagnetization does not

follow as before. If the field is changed adiabatically, the

populations prepared in high field can be expected, according to the

adiabatic theorem~6,21, to remain unchanged and transfer smoothly to the

zero field eigenstates. The trajectory of the energy levels from high

field to zero field must then be determined as accidental degeneracies

of the levels can alter the transfer of populations to the zero field

states. In high field, HZ»HZF ' the eigenstates correspond to those of

the high field Hamiltonian. Similarly in low fields, HZ«HzF , the

eigenstates approach those of the pure zero field Hamiltonian.

In intermediate field regions, the states are less well defined.

The behavior of the eigenstates for a spin 1-1 nucleus as a function of

field and orientation were calculated using the program DEMAG.FOR. The

analytical solution begins by setting up the high field state.

(III.13)

123



The Hamiltonian is most easily expressed in the zero field basis, given

in Chapter II.C, as

124

or in matrix form as

H (III. 14a)

H ..

-(1+n)K -iOz

-( 1-n)K

o
x

(III. 14b)

where the molecular frame components of the applied field, related by

the angles a and B, are given by 0x·OsinBcosa, 0y.sinBsina, Oz..OcosB

with O·YB. The eigenstates and eigenvalues can be solved for through

diagonalization of Equation (III.14b). There is an orientation

dependence and field dependence to the eigenstates and eigenvalues, such

that the demagnetization differs for each crystallite orientation.

Using analytical expressions for the eigenvalues,22 the program searches

for degeneracies in the eigenvalues which correspond to crossings of the

energy levels. If no level crossings are found, the states follow

smoothly from high field to zero field with the populations unchanged

and ordered the same with respect to energy level. When crossings

occur, the correlations between states before and after the crossing are

found by solving for the maximum overlap between eigenstates.

It was found that crossings only occur for particular

orientations; in fact, those in which the field direction is along one

of the principal axes of the quadrupolar tensor. These crossings are

illustrated in Figure III.12. The infrequent number of level crossings

is convenient as, when levels cross, no rate of demagnetization conforms

- !
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Figure 111.12: Illustrations of spin 1=1 energy levels as a function of

field and the allowed level crossings. (The zero field eigenbasis is

given in Chapter II.C.) Level crossings were found to occur only for

those orientations where the applied field is along one of the principal

axes of the quadrupolar tensor. In (a), the field is along the x axis

and no crossings occur. In (b) and (c), the field is along the z and y

axes, respectively. Energy level separations in high and zero field are

not shown to scale.
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to the adiabatic condition when aE=O. If the crossings do not occur, or

are avoided, adiabatic constraints still hold. The frequent occurrence

of avoided crossings is not surprising and a clear discussion of the

principles is presented in the book on quantum mechanics by Cohen

Tannoudji et al. 23 The two possible outcomes are shown in Figure 111.13

where the levels may either cross or avoid one another. When a coupling

or perturbation term is present in the Hamiltonian, an avoided crossing

occurs where the unperturbed energies would approach one another and

cross. Under the effect of the coupling, the energy levels are mixed,

the perturbation becomes more significant close to the crossing region

and the states repel one another. Thus over almost the entire powder

distribution, the demagnetization is independent of orientation. Only

populations survive the demagnetization and the state of the system in

zero field, written in the eigenbasis of the zero field quadrupolar

Hamiltonian, has the populations corresponding to those prepared in high

field such that
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-1

PZF • (III. 15a)

where the density operator is related to HQ
5,18

(III.15b)

Unfortunately, approaching the problem by computer simulation requires a

knowledge of the values of e2qQ/h and n, two parameters which are the

goal of the measurement, to correctly simulate the frequencies. Of

course, the simulations can always be used in retrospect to model the

zero field spectrum and is discussed in the following sections.
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Figure 111.13: Illustration of an avoided level crossing. The

unperturbed energy levels would follow the dashed lines as the field is

reduced through the level crossing region. In the presence of a

perturbation or coupling, the energy levels do not cross. The energies

of the perturbed levels approach those of the unperturbed

asymptotically.
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2. zero Field HMR and HQR with Pulsed Fields

To apply dc magnetic field pulses in obtaining zero field spectra,

many schemes are possible. Two simple examples of the field cycles and

pUlse sequences were shown in Figure 11.4. After demagnetization to

zero field, the reduced density matrix is diagonal in the zero field

basis set and is proportional to second rank tensor interactions. The

form of the initial state in zero field depends on the dynamics of the

demagnetization and the type of spin system. An initial dc z pulse

results in off-diagonal terms which evolve for a time t 1 under the zero

field Hamiltonian. Detection of the zero field evolution may be

accomplished by application of a suddenly switched field in the same

direction as the first pulse and remagnetization to high field where the

z component of the magnetization is sampled. This field cycle is

illustrated in Figure II. 4a and the high field signal is formally gi.ven

by
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Sn(t1) • Tr{Rlz,LRexP(-iHzFt1 )RexP(-i6Iz ,L)R

-1p(O)RexP(i6Iz ,L)R exp(iHzFt 1)}
(III.16)

J
J
j

U

For a homonuclear system of spins 1-1, the signal produced in this case

is analogous to directly detected magnetization in a pulsed NQR

experiment where the signal is sinusoidal and begins with zero

intensity.24 This is due to the orthogonality of second rank (the

initial density matrix) and first rank tensors (the detected operator).

That is to say, when pUlsing an equilibrium zero field state, a magneti-

zation develops in time along the direction of the pulsed field. This



can be seen by calculating the analytic form of Equation (III.,6) for

p(O) equal to Equation (III.'5) and is reproduced from reference '8,

S(t,) • ~ [(2sin26 + sin6)(sinw23t, + sinw3,t,)]
(III.'1)

+ ~5 [(2sin26+sin6)(sinw23t,+2sinw'2t ,) + (sin26+2sin6)sinw3,t,

The intensities as a function of the first pulse 6 are given in

reference '8 and maximum signal intensity is obtained for 6

approximately equal to n/4. PUlsing in the z direction and detecting in

this direction will show a time varying component of magnetization at

frequencies corresponding to sin(wt,), where w is any of the possible

quadrupolar frequencies of the system. Due to the sinusoidal dependence

of the signal, at t,.O no component proportional to Iz,L exists and the

maximum value for different transitions occurs at different times

corresponding to wt,.

Alternatively to detect zero field evolution, a second pulse

applied after the t, period returns a portion of the off-diagonal

elements to the diagonal as shown in Figure II~4b. Upon remagnetization

these population differences are measurable by standard high field pulse

sequences. The signal in high field is given by

, -, -,
Sn(t,) • Tr{p(O)Rexp(-i6 Iz,L)R eXP(-iHzrt,)RexP(-i6Iz,L)R

(III.,8)

where 6'-2n-6. The magnetization detected in high field is assumed to

be proportional to the remagnetized zero field state. Again, as for

other dc pulsed experiments with demagnetization and remagnetization to

and from zero field, the signal is calculated by taking the trace with
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respect to the initial state in zero field.

This field cycle can be used to detect evolution in zero field

under either the quadrupolar or dipolar Hamiltonians for the initial

conditions described previously in Section C.1. If the range of

couplings is broad and/or extends over many spins, the zero field

dipolar spectrum is expected to be structureless. 18 ,19 Yet when

structure is discernible in the zero field spectrum, the system may not

correspond to one describable by a spin temperature. As a test of these

ideas, a series of proton dipolar spectra taken as a function of pUlse

angles were compared to the calculated signal intensites for a system

corresponding to a dipolar ordered state in zero field. The sample was

Ba(Cl03)2~H20 whose spectrum, as shown in Figure 11.6, is a relatively

simple three line pattern corresponding to the principal intramolecular

coupling between the protons. Intermolecular coupling is evident in the

broad lines (-7 kHz), which reduce in width with dilution with

deuterium, and possibly by the presence of the 2v and 3v lines. The

experimental spectra in Figure 111.14 were obtained using the field

cycle shown in Figure 11.4b with pulse angles of (a, a'=2~-a). The

signal can be calculated for an initial state p(O)=HD by numerically

solving Equation (111.18) averaging over all crystallite orientations.

Numerical simulation, using the program PLTS1M.FOR, is generally the

easist approach to calculating the signal under dc pulses. The

dependence of the signal intensity for two dipolar coupled protons is

shown as a function of pulse angle in Figure 111.15. The signal is

symmetric around a 1800 pUlse angle such that either the a or 2~-a pulse

can be applied first.

Theoretical and experimental results are compared in Figure 111.16
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Figure III~14: Experimental zero field proton spectra of Ba (C103)2 'H20

using the field cycle of Figure II.4b. The pulse angle on the left

corresponds to the value of a in the two pulse sequence given by (a,2~

a). The spectra show the predicted three line pattern and all have the

same phase. The relative amplitude of the outer peak shows significant

changes with pulse angle. The integrated intensity of all the spectra

is identical and are not plotted to scale.
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Figure 111.15: Calculated signal intensity for two dipolar coupled spin

1-1/2 nuclei in the field cycle of Figure 1I.4b with the program

PLTSIM.FOR which assumes an initial condition equal to HD• The pulse

angle given corresponds to the first pulse in a (9,2~-9) two pulse

sequence. Both the evolving signal and the nonevolving signal oscillate

in amplitude and are symmetric about 180°. Maximum evolving signal is

produced when 9-45°.
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Figure III.16: Comparison of theoretical peak intensities and

experimental values from the spectra of Ba(C103)2·H20 as a function of a

in (a,2n-a) zero field pulse sequence of Figure II.4b. The experimental

intensities closely follow the theoretical values for an initial

condition equal to HO• The behavior is expected to be symmetric around

the 1800 pUlse, although with longer pUlses, the behavior of the

experimental signal begins to deviate slightly. This may be attributed

to imperfections in the pulses.



by plotting the integrated intensities of the outer peaks. The behavior

of the signal in the theoretical and experimental cases is very nearly

identical. This is also true for the comparisons of simulations and

experimental data of the coil characterization curves, presented in

section B.2, in which the initial condition was also assumed to be

proportional to HD• While these experimental spectra and simulations

support the idea that the demagnetized state of this particular sample

is equal to HD, no general conclusions can be reached as to what samples

will or will not behave similarly when demagnetized. Barium chlorate

monohydrate has often been used as a standard sample in characterization

of the coils, and as such, was chosen for these experiments to test

assumptions made as to the behavior of the spin system reported thusfar.

The experimental spectra shown in Figure III.14 where obtained

using a homogeneous zhelmholtz coil and small sample volume. All the

spectra were found to have the same relative phase. Apparent artifacts,

manifested as distortions in the relative phases of the peaks with pulse

angle, were found to occur when weak fields or inhomogeneous pulsed

fields are used. 20 Theoretically, no phase changes are predicted.

Additionally in deuterium spectra, unusual phase behavior in the peaks

has also been seen to occur. 18 In these cases the pulsed fields were

weak as Bi-Bloc and may contribute to the distortions. More comments

will be made on this subject in a later section.

The NQR spectra of a perdeuterated sample also demonstrates a few

aspects of the field cycles. In these pulsed experiments, it is not

possible to find pulses which excite evolution uniformly over the

powder. Thus the signal is necessarily somewhat reduced from the

previously described experiment with a sudden transition in field
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(Figure II.3)~ as only a portion of the total spin order evolves in zero

field. Figures III.17a and III.17b illustrate the results for the

sudden transition field cycle, and the demagnetization and pulsed direct

2H detection zero field experiments conducted on perdeuterated 1,4-

dimethoxybenzene. As expected, the frequencies obtained in both are

identical and the linewidths agree within experimental error. The

assignments to two inequivalent aromatic sites (those close to and far

from the methoxy groups) and the methoxy deuterons match previous

results. 25 As expected, the signal-to-noise is slightly lower in the

demagnetization experiment, due to the pUlse excitation over the powder

and possible contributions of relaxation in low fields.

The intensities differ in the experimental spectra shown in Figure

III.17. For the sudden transition field cycle (Figure III.17a), the

three lines of a given quadrupolar nucleus are expected to be of equal

intensity as described in Chapter 2, section C.4 and essentially is

found in the spectrum shown in Figure III.17a. The intensities in the

pulsed experiment can be modelled by computer simulation assuming an

initial state equal to that of Equation (III.15) used in Equation

(III.18). A computer program, QUAD.FOR, easily incorporates different

pulse angles and averages over a distribution of crystallite

orientations. The intensities are independent of e2qQ/h and n.

The signal intensity as a function of pulse angle for the three

transitions of a spin I-1 quadrupolar nucleus with n~O are shown in

Figure III.18. A similar figure appears in reference 18 as a result of

calculating the coefficients found analytically along with a series of

spectra as a function of pulse angle which roughly follow the predicted

behavior. A component of the signal which does not evolve, but
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Figure III.11: Zero field NQR spectra of 1,4-dimethoxybenzene

(CH30C6H40CH3). a). Sudden transition. zero field spectrum of

perdeuterated dimethoxybenzene obtained using the field cycle described

in Figure 11.3. Peaks at frequencies corresponding to the methyl and

aromatic deuterons are resolved. b). Pulsed direct detection zero field

spectrum of perdeuterated dimethoxybenzene obtained using the field

cycle of Figure II.4b. As the magnitUde of the observed signal is

dependent on the dc pulse lengths used (a-900), peak intensities are now

scaled differently with respect to (a). Relaxation effects occurring

during the different length field cycles in the sudden and pulsed

experiments are 'manifested in the different relative methyl and aromatic

signal intensities of (a) and (b). c). Indirect detection via protons

of the deuterium NQR spectrum in 60-70% aromatic deuterated 1;4

dimethoxybenzene. (Note that in this sample the methyl groups were not

deuterated.) Clearly resolved v+,v_ and Vo transitions are observed

with no evidence of proton signal. Signal-to-noise for the aromatic

deuterons is improved relative to the sudden and pUlsed zero field

methods.
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oscillates in magnitude, appears as zero frequency signal in the

spectrum. The most complete excitation over the powder occurs when this

component is at a minumum, although the intensity is not divided equally

among the remaining three transitions. Maximum signal is obtained for

different transitions with different pulse angles but overall excitation

is good for a_600 (a'.2~-a) as seen in Figure III.18. The calculated

intensities are seen to match the experimental spectra (Figure III.17b)

reasonably well for a_gOo. In spite of the altered intensities, the

frequency information obtainable from these spectra is still extremely

useful.

As a final comment, in previously reported deuterium experi

ments,18 the NQR lines in the pulsed experiments were seen to show

unusual phase behavior which is not predicted theoretically. The phase

changes were found to increase with increasing pUlse length (i.e. l.arger

a). The lines which were most strongly affected, those at higher

frequencies, correspond to e2qQ/h values of -150-180 kHz (or -200-300

Gauss). The pulsed fields used were only marginally larger than this

(1-2 times), if that large. Thus the pulses might be expected to act

not only as rotations, and some evolution during the pUlse might be

expected to occur. The effects of pulsed dc fields are a function of

many parameters; amplitude of the field, coil homogeneity and rise times

of the field. It would seem that the apparent frequency dependence,

pUlse length dependence, weak fields and inhomogeneity effects indicate

that the change is more likely due to experimental factors. Unfortun-

ately, at the time of these experiments, larger pulsed fields were not

available for deuterium studies. Weaker fields were seen to show a

different dependence of the phase on pulse angle. Experimental results
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Figure III.18: Calculated intensities of the spin 1-1 transitions under

the field cycle of Figure II.4b with the pulse angle corresponding to 6

in a (6,2~-6) dc pulse sequence. The intensities are not a function of

e2qQ/h and Tl based on an ini tial condi tion equal to the demagneti zed

high field populations. A large portion of the signal does not evolve.

The evolving components oscillate in intensity with the ~o and ~_

transitions having the same angular dependence (note this does not

correspond to their sum). The maximum evolving signal occurs at 6-600

where the nonevolving portion is near a minimum. The signals are

symmetric about 1800 •



discussed earlier on dipolar coupled systems, in which the field is

generally many times larger than the spin interactions, support this

suggestion.

_.
D. Indirect Detection and Selective Pulsing

In the previous section, it was shown that in a homonuclear system

one can initiate evolution under the zero field Hamiltonian by simply

pulsing a system which is initially in a stationary (diagonal) state in

zero field. For example, this allows one to observe the NQR spectrum of

a quadrupolar system. Consider a case in which the spin system consists

of two isotopic species. An experiment with a sudden transition in

field or pUlsed dc field initiates evolution for all spin species, as

long as the spin interaction with the switching field is large compared

with zero field interactions. Thus any evolution of the spin system

present in the detected signal produces a zero field spectrum containing

both dipolar and quadrupolar frequencies. It. is worth though

considering pulsed experiments on completely demagnetized states2b ,26

which are better suited for indirect detection experiments as level

crossings between heteronuclear spins occur during the field cycle. In

this section, a time domain variation and extension of experiments

developed by Hahn and others27 is described. This method relies on the

application of pulsed dc magnetic fields after demagnetization, as in

the field cycle of Figure II.4b, to initiate evolution and selectively

irradiate isotopic species (e.g. protons and deuterons) in zero field.
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1. Introduction to Level Crossing and Selective Pulse Experiments
..

a. Sensitivity Enhancement via Level Crossings. Double resonance

NQR methods have long utilized level crossings for enhanced detection of

quadrupolar nuclei with small quadrupolar coupling constants. These

techniques were first developed by Hahn and others27 for use in

frequency domain experiments. In this section, a description of the

demagnetization behavior of a system composed of two spin species and

its bearing on NQR measurements is presented. Much of the following

brief overview is the same as for the frequency domain experiments and

is based on review articles by Blinc28 and Edmonds 29 where more detailed

descriptions are given. Additionally, the demagnetization behavior of

heteronuclear spin systems is also extensively covered in Goldman's

book. 3

The basis of the approach is that, as a natural consequence of the

demagnetization of a heteronuclear I-S spin system, pairs of I and S

energy levels become equal at some finite value of the field. At this

level crossing field, the I and S systems can couple and transfer polar-

ization via mutual spin flips. The transfer of polarization increases

the sensi t1 vi ty of the experiment by increasing the S nuclear spin

polarization and by allowing for detection of the S spin evolution via

the more sensi tive I nuclei (Le. double resonance). These methods are

particularly applicable in NQR for nuclei which are unaccessible by

direct observation due to their low interaction frequencies 29 and are

difficult to study by NMR due to the broad lineshapes. While the NQR

experiment allows one to use a polycrystalline sample, NMR experiments

overcome the problems by using single crystals. Single crystals do

provide more complete information on the quadrupolar interaction and the

143



/

orientation of the quadrupolar tensor, but are not always obtainable for

all materials.

The system of interest consists of an abundant high Y spin I~1/2

nucleus such as protons (I) and a second, lower Y, spin S=l quadrupolar

nuclear species (S), such as deuterium or nitrogen, in reasonable

proximity. In high field, the separation of the Zeeman levels of the

protons is much greater than that of any of the quadrupolar perturbed

Zeeman levels of the spin S=l nucleus. The polarizations, as related to

the difference in popUlations, is much greater for the I spins than for

the S spins. If the differences in resonance frequencies are large

relative to any coupling, then the two systems can be considered as

uncoupled and may have separate spin temperatures. 3 It is assumed that

a spin temperature is always well defined for the proton system but not

so for the quadrupolar nuclei, unless enough time has elapsed for the

system to be in equilibrium with the lattice.

If the field is decreased, the energy level separations change

with the field and at some field level, B, the separation in the I

Zeeman levels becomes equal with the energy level separation of one pair

of the S levels. Level crossings generally do not occur in the sudden

transition field cycle as the level of the field never gets low enough.

The spin systems couple and via mutual spin flips come to a common spin

temperature. A common spin temperature is defined only for that pair of

quadrupolar levels which cross. Since the polarization of the I spins

is larger, with demagnetization the I spins become quite cold. When

contact is made wi th the S energy levels, the S system is "cooled down"

with a resulting increase in the polarization. Because the protons are

more abundant and tightly coupled, the I system has a larger heat
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J
'- , capacity and is assumed to have changed very little by a single contact

with the S spins. A new spin temperature is rapidly reestablished in

the I system.

The level crossing can be described by the change in the

populations of the energy levels (labelled + and _).29 The populations

before (I) and after (I') a single level crossing are given by
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(I + I )
+

, ,
(I + I )

+

, ,
(S+ + S )

(III.19)

which merely indicates that the total number of spins, Ni , of each type

are conserved. Through the mutual flip-flops, energy is also conserved

such that
S + I

, ,
S + I (III. 20)

I
• j

U
B

and follows similarly for the + states. Finally, since the two systems

have reached a common spin temperature at t'he same energy level

separation , ,
I S

= (III.21), ,
1+ S+

from Equation (11.4) whereas they were unequal before level crossing.

As the field is lowered further, the I levels become resonant wi th

other pairs of S levels and with each crossing a transfer of

polarization occurs. The order in which the pairs of levels cross

during the demagnetization is dependent on the energy levels and their

separation in the field which in turn is dependent on crystallite

orientation. The result of this irreversible process 3 is an increase in

the polarization of the S spins. The demagnetization of the I and S

systems is reversible up until the first level crossing occurs. When



the field, B, is decreased below the level crossing value, the systems

are no longer in contact. For spin S=1 nuclei, any spin-spin coupling

is quenched when B approaches zero. 15

In the NQR experiment, the spins would be irradiated in zero field

with rf to induce transitions (generally to saturate the transitions) in

the S system. 29 This corresponds to a heating of the S system.

Remagnetizing the sample results in the level crossings again between I

and S spins, but in the reverse order from before. Since the S spins

have been heated, they produce a rise in the I spin temperature. By

detecting a change in the I magnetization in high field as a function of

irradiation frequency in zero field, the evolution of the S spins is

detected indirectly. In order that the experiment succeed, the

demagnetized order of the I spins can not be destroyed by the

irradiation in zero field. Difficulties arise when trying to detect low

frequency NQR transitions «100 kHz), as the proton dipolar system

absorbs in this region. Often in frequency domain NQR experiments, low

frequency lines are obscured by the proton signa1 29 which may extend

from 0-50 kHz or more.

The time domain field cycle, such as that in Figure II.4b, is

nearly identical to the frequency domian version except for the

irradiation/evolution period in zero field. In the time domain

experiment, evolution is initiated by a pUlsed field and terminated

after t 1 by a second pulse before remagnetizing the sample. The I spin

signal, detected as a function of time in zero field, indirectly maps

out the evolution of the S spins. Because of the large heat capacity of

the I spins, multiple contacts between the S and I spins can be made by

cycling the field to above the level crossing value. 28 ,29 The effect of
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mUltiple contacts between the spin reservoirs is cumulative. The

cycling of the field must be adiabatic and the number of contacts

possible depends upon the T1D relaxation time of the I spins.

The theory presented thus far is a very simple depiction of the

actual dynamics of the situation. For a three level S spin system, the

populations of separate levels are involved in more than a single level

crossing. The I and S populations can be solved for from Equations

(111.19-21) throughout the field cycle taking into account each

sUbsequent change with a level crossing. Examples given by Blinc28 and

Edmonds 29 describe the theoretical increase in sensitivity and its

dependence on various experimental factors such as relative numbers of I

and S spins and relaxation times. These calculations are based on many

assumptions as to the dynamics of the demagnetization. The rate and

efficiency of the polarization transfer has great bearing on the

sensitivity of the experiment. One assumption that has been made is

that the transition rate through the level crossing field is slow

relative to the transfer rate of polarization. If the transfer rate is

given as 1/W (where W is the probability of a flip occurring), then the

crossover time where the energy level separations are within the

linewidths (6W=wI-wS<linewidth) must be slow compared to the transition

rate and fast compared to T1 or a new Boltzmann populations are

established.

Modelling the dynamics of the level crossing is a very complex

problem. Although it can be easily calculated theoretically for

individual orientations, in reality it depends upon the rate of

demagnetization, the coupling of the spins, relaxation times,

irradiation or evolution in zero field, and the reverse processes upon
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remagnetization. The order in which the crossings occur for each

crystallite may change due to the orientation dependence of the energies

in the S system and requires that the level crossing effects be averaged

over the powder. Additional level crossings are also possible when two

spin flips occur for one "flop", e.g. at twice the energy. The proba-

bilityof this occurring is low but would alter the final populations.

The more likely event is the simultaneous level crossing of two pairs of

S levels with one pair of I levels when there are near degeneracies of

the S levels and the I levels have some width due to dipolar couplings.

For example, when S=1 and n-1, then vo=v_=1/2v+. For low frequency

quadrupolar coupling constants, low frequency transitions or small

values of n (where v+=v_), one or more pairs of levels can cross

simul taneously.

It has been assumed that the relaxation times in low and zero

field are long enough to allow for the polarization transfer, the

irradiation/evolution period and the remagnetization step. The

experiment requires that the polarization of the I spins persists over

the entire field cycle, that is, that T1 and T1D of the I spins are

long. The limits on the relaxation times of the S spins are not quite

as stringent since the polarization and detection is through the I

spins. Different limiting cases are calculated by Blinc28 with

predicted intensities for each spin 1=1 NQR transition after level

crossing. A few comments on the measurement of pertinent relaxation

parameters. A rough measUre of the T1 in high field of the I spin

system determines the overall repetition rate of the field cycle. Since

the S polarization results from the level crossings, the T1 of the S

system is not as important, unless of course it is extremely short and
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cross relaxation effects will not persist. The relaxation time in zero

field of the demagnetized I spin order, T1D(I), can be measured by

cycling to zero field with no irradiation or pUlsing. A measure of the

signal as a function of time in zero field should yield a rough ~stimate

of the relaxation time from

where Mo is the initial magnetization. This measurement assumes that

the changes caused in the I polarization by the I-S level crossings are

negligible. A rough measure of T 1Q (S) is possible by field cycling to

zero field, followed by irradiation to saturate only the I spin system.

After remagnetizing, the detected signal reflects only what has occurred

in the S system as transmitted to the I spins during remagnetization. A

time domain version with dc pulses would consist of selectively pulsing

the spins to destroy the order in the I system while leaving the S spins

untouched.

b. Spin Selective DC Pulses. The selectivlty of dc pulsed fields

and the application to the indirect detection experiment has been hinted

at previously and now is presented in more detail. In a heteronuclear

system, by using a pulsed field which acts as an identity rotation for

one spin species, it is possible to effectively rotate that part of the

total density matrix corresponding to only one and not the other

species. An identity rotation is that which leaves the state of the

system unchanged after the pulse. By observing the signal as a function

of pUlse angle (Section 111.1), it is evident that this is corresponds

to a nx2n pulse for all crystallite orientations.

Neglecting the heteronuclear dipolar coupling between a system of
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protons and deuterons'5, the density operator for a system demagnetized

from high to zero field can be written in the molecular frame as

150

~ I
I
j

where

p(o) (III. 23a)

(III. 23b)

and HZF is the pure dipolar Hamiltonian for protons (I) and the

quadrupolar Hamiltonian for deuterons (3) in zero field. It will be

necessary to evaluate the effect of applied dc pulses in the laboratory

frame where the density operator p becomes

(III.24)

where R(aBY) is the rotation operator relating the lab to the molecular

axes in terms of the Euler angles a, Band Y. (Note that thi~ is just

the reverse of working in the zero field frame. Expressing operators in

the laboratory frame is chosen here for convenience in calculating the

effects of the pulses.) A similar expression transforms the zero field

Hamiltonian into the laboratory frame:

(III. 25)

Note that, from expanding the exponential, one finds that R- 1exp(iHt)R

exp(iR-'HRt). Computationally, the matrix representation of the

exponentiated operator is simpler if H or R-'HR is diagonal, thus

calculation of the left or right hand side is chosen accordingly.

time t=O, a dc pUlsed magnetic field is applied for a time 1. The

density operator PL(1) is written

I

I
At ~J

1
~J

~J
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(111.26)
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where Hdc = -[YII z + YSSzJBi and describes the dc pulsed field.

Choosing the laboratory z axis parallel to the pUlsed dc field, and

using the equality, exp(A+B)=exp(A)exp(B) if [A,BJ=O, to calculate the

effects of the pulse separately on the I and S components of p, Equation

(111.26) becomes

(111.27)

Since the effective pulse angle depends on the gyromagnetic

ratios, and is therefore different for the protons 'and deuterons, it

allows a selective means for their manipUlation. Thus in a system of

deuterons and protons one should be able to selectively excite and

induce evolution of only the deuterons. In general, the effect of a

pulse depends on the relative orientation of the spin system and field;

however, for any particUlar species a 2~ pulse given by 8=YBi , leaves

the density operator unchanged for all orientations and makes selective

pulses possible.

2. Experimental Results

By combining the principles of level crossings and the field cycle

to zero field with pUlsed dc magnetic fields, a selective indirect

detection experiment is possible. Using dc pUlses that are multiples of

2~ for the protons in the field cycle of Figure 11.4b (i.e., 8S=YSBdc '

or 8S=(YS/Y I )81 for the deuterons), the zero field spectrum of 60-70%



ring deuterated 1,4-dimethoxybenzene-d4 (CH30C6040CH3) shown in Figure

III.17c was obtained. No signal is observed due to the protons, only

the characteristic v+' v_ and V o lines due to the two crystallograph

ically inequivalent aromatic deuterons. The experimental results for

the dimethoxybenzene samples shown in Figure 111.17 allow for comparison

of the signal-to-noise obtained in each of the different versions of the

experiment. The length of each FlO is roughly equal and the dwell time

is equal for these three experiments. The pulsed direct 2H detection

(Figure III.17b) and the sudden (Figure III.17a) versions used 4 and 3

times as many signal averages, respectively, as the indirect detection

version (Figure III.17c). Thus the aromatic signal-to-noise obtained

via the indirect detection method is at least twice as good as in the

others. Studies of partially deuterated diethylterephthalate and its

perdeuterated analog provide further agreem~nt with this result.

Arbitrary pulse lengths produce proton signal in heteronuclear

systems which can obscure low frequency «50 kHz) 2H lines. Figure

111.19 demonstrates this point in a series of indirectly detected zero

obtained by the method outlined above. proton signal is clearly visible

in those spectra where the nx2~ condition is not met for the protons,

but is eliminated with two nx2~ dc pulses. Oiethylterephthalate

contains two crystallographically inequivalent methylene deuterons since

the methyl-methylene bond is tilted out of the plane of the -C02C6H4C02

moiety30 thus producing the six line spectra for two uncoupled

quadrupolar nuclei with nonzero n. The magnitude of the observed signal

depends upon the demagnetization and upon the pulse lengths used,

therefore the relative peak intensities are scaled differently in the
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Figure 111.19: Indirect detection zero field NQR spectra of diethyl

terephthalate-d4 (CH3CD2C02C6H4C02CD2CH3) (98% d4). a). DC pulses used

which do not satisfy the nx2~ criterion for the protons, thus signal due

to both proton and deuteron evolution is observed. The proton signal

appears as a broad hump below 50 kHz. b). Same as (a) except that dc

pulses now used cause the proton signal to appear inverted relative to

the deuteron signal. c). DC pulses equal to nx2TI allow for selective

detection of only the deuterium NQR spectrum. Low frequency lines can

be clearly resolved with no interfering signal from proton evolution or

absorption. Three lines may be assigned to each of two crystallo

graphically inequivalent methylene deuterons. Calculated values of

(e 2qQ)/h and n from the observed frequencies are: A: (e 2qQ)/h=153.1 kHZ,

n=O.051 8:(e 2qQ)/h=149.8 kHZ, n=0.039.
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spectra of Figure III.19. A further advantage of the initial selective

2~ pulse on the protons is that the density operator PI undergoes no t 1

dependent evolution; therefore, the dynamics of the level crossing

should be sensitiYe only to deuterium evolution.

Although the use of selective pulses and indirect detection has

been presented as a method of obtaining deuterium NQR spectra, the

principles are entirely general and can be applied to any system in

which there is sufficient contact between the observed and detected

nuclei. As an example, the 14N zero field NQR spectrum obtained from a

sample of polycrystalline ammonium sulfate is shown in Figure III.20,

obtained by the sequence in Figure II.4b with indirect detection by the

protons. All six lines are resolved for the v+, v_ and Vo transitions

of the two inequivalent 14N sites and yield values of (e2qQ)/h and n in

agreement with single crystal results 31 and other field cycling experi

ments in which the Vo lines do not appear. 32 Under other conditions the

proton signal would obscure the low frequency lines but here the use of

the selective 2~ pulses for the protons greatly reduces their contri-

bution to the signal. Compensation for pulse imperfections of the dc

pUlsed fields should provide increased discrimination against the proton

signal.

A few comments on the differences between selective excitation and

decoupling shoul~ be made for clarification. In the previously

described experiments, onl1 the quadrupolar nuclei are excited and

caused to evolve as nx2~ pulses are used for the protons. The initial

state of the proton system in zero field is assumed to be unchanged from

its equilibrium state and therefore no evolution under the homonuclear

dipolar Hamiltonian occurs. The quadrupolar nuclei meanwhile evolve
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Figure 111.20: Indirectly detected pulsed zero field 14N NQR spectrum

of (NH4)2S04 with selective 2n pulses for the protons. Peaks

corresponding to two inequivalent sites are labelled A and B. Residual

proton signal appears below 40 kHz but has been reduced enough to allow

for resolution of the 14N NQR lines. From the frequencies observed at

room temperature, (e2qQ)/h and ~ can be calculated. Site A:

(e2qQ)/h.154.5 kHz, ~.0.688, Site B: (e2qQ)/h-115.9 kHz, ~.0.747. (At

296.1 K, Batchelder and Ragle give values of I: (e2qQ)/h.154.53 kHz,

~.0.684, II: (e2qQ)/h.115.71 kHz, ~.0.749.)
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under the quadrupolar Hamiltonian. Thus there are two separate and

distinct systems which are excited independently and evolve indepen-

dently in zero field. Only because the dipolar coupling between 3=1 and

I=1/2 spins is already quenched in zero field, does no evolution under

the heteronuclear dipolar Hamiltonian occur. This is fortuitous since

the NQR spectrum would be complicated by the added couplings and the

proton system would be altered by contact with the deuterons.

The selectivity in the zero field experiment is an important

feature in field cycling experiments. Unlike double resonance NQR

experiments, the spectrum of a quadrupolar spin system can be obtained

wi thout the interference of low frequency proton signal. The time

domain version of the field cycle offers the same sensitivity advantage

obtainable by indirect detection without the loss of information due to

proton background. Quadrupolar nuclei with small quadrupolar coupling

constants are readily observed and resolution of vo lines for spin 3=1

systems permits spectral interpretation without resorting to double

transition frequencies 33 or double irradiation34 techniques. In

addition, the indirect detection experiment depends more on the

relaxation times of the protons than those of the deuterons. This can

be of utility when the deuteron T1 is inconveniently long, or when T1Q

is inconveniently short. As long as the 2H T1Q is on the same order as

the zero field time period, one can conceivably obtain the deuterium

spectrum via the protons. Many double resonance NQR experiments are

conducted at very low temperatures to provide the long relaxation times

required for the irradiation period in zero field. 29 Irradiation in

zero field can cause power broadening of the resonance lines 29 which is

not a concern in the time domain experiment.
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3. Isotope Selectivity with Canposite Pulses

Selectivity between isotopic species in NMR is generally based on

differences in Larmor frequency, wo=YBo ' or by rf amplitude w1=YB

selective pUlses. 12 Variations in rf amplitude can be used to .

selectively invert or irradiate specific nuclear species. In NMR

imaging experiments, it is often desirable to spatially select a region

based on the inhomogeneities of the Bo or B1 field. For example, for a

given nucleus and Y, the nuclear spins in a particular volume may be

selectively inverted by using a field strength which varies with

distance such that YB1T.~ for only that volume. Similarly, by applying

a static field gradient, a region may be selected by the distribution of

resonance frequencies. For best isolation of the spins of interest, the

excitation should occur over a narrow range and many composite pulses

which are narrowband in w1-YB1 are being developed. 12 These spatially

selective composite pulses can be directly adapted for spin isotope

selectivity in zero field experiments.

Any pUlse which is designed to be narrowband in YBi' acts as an

isotope selective pulse in zero field on the basis of the magnetogyric

ratio for a constant field. The analogy between spatially selective and

isotopically selective pulses is easily seen and is illustrated in

Figure III.21. Previously, the selectivity by zero field pulses was

based on the particular rotation angle used for a given spin species.

Both species were always irradiated and the resulting pulse angle on the

second spin is determined by the ratio of magnetogyric constants. This

of course does not allow a choice of the pulse angle which initiates

zero field evolution and may not provide optimal excitation. Nor does
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Figure 111.21: Nuclear spin excitation in high field and zero field.

In high field NMR experiments, spin species may be selectively

irradiated on the basis of Larmor frequency wo·YBo ' or as shown at top,

by irradiation which is narrowband in w,.YB, (i.e. over a range of B,

fields). In zero field, the differences in magnetogyric ratio provide a

handle for selective irradiation through the relationship, wi-YBi.

Excitation of a single spin type by narrowband irradiation in zero field

provides for manipulation of initial states and their subsequent

evolution in zero field.



it allow much flexibility in the excitation scheme. In selective

excitation experiments with dc fields, when both spin species are

pUlsed, the desired result for one of the spins is that it is

unaffected. By using a composite pUlse which is narrowband in YBt , this

result can be obtained by actually doing nothing to one isotope, that

is, not irradiating the second species at all.

Before discussing experimental examples, a brief review of the

features of l H_13C spin pairs~ originally presented in Chapter II.C, is

covered. The appearance of the zero field spectrum for such an I-S

dipolar coupled pair of spins depends upon the initial polarizations.

For equilibrium polarizations of -4Iz+Sz , the spectrum consists of seven

lines. By altering the relative polarizations with rf pulses in high

field before demagnetization, it has been demonstrated that lines

corresponding to only certain transitions in the I-S manifold are

observed.36 Examples of these results are shown f~r a sample of 13CHCl3

in a smectic liquid crystal phase, described in Chapter IV, in Figure

III. 22a-c.

Selective dc pulses can be used to alter the initial condition of

a heteronuclear spin system in zero field prior to evolution and thereby

discriminate against specific spectral frequencies. Examples of zero

field selective pUlses are show in Figure III.22d-f acting on an initial

condition, Iz+Sz , prepared in high field by an rf pulse. Since this

state is proportional to longitudinal magnetization (populations) it

survives the field cycle unchanged. The resulting zero field spectrum

for this initial condition is that of Figure III.22c. By applying an

isotope selective pulse of 1800 to either the I or S spins, transitions

corresponding to an initial zero field state of ±(-Iz+Sz) are produced,
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Figure III.22: Spectra of 13CHCl3 (I.1H, S=13C) in an unaligned smectic

B liquid crystalline phase with different zero field initial conditions

produced in high field and zero field. In (a) the characteristic seven

line spectrum results with the initial condition equal to the

equilibrium populations, 4Iz+Sz • A change in initial condition to Iz+Sz
can be produced by applying a 750 pulse to the I spins in high field as

shown in (b). Similarly the populations of one spin species can be

inverted relative to the other (-Iz+Sz) by applying a 1050 pulse to the

I spins in high field before demagnetization. Zero field analogs using

composite dc pulses can'also be used to selectively invert one spin

species. The initial condition for (d-f) produced in high field before

demagnetization is Iz+Sz• In zero field only one spin is inverted

before zero field evolution with (d) a 1800 13C pulse (7200 1H pUlse

which leaves the protons unchanged), (e) a narrowband 1800 composite

pulse (180x180y180x) applied to the protons, and (f) a narrowband

composite pulse (180x180y180x) applied to the carbons. The resulting

spectra all show the spectral frequencies indicative of ~n initial state

proportional to %(-Iz+Sz).

162
-~

:.::J

I

<-\
;

- ,
_ 1
- -CJ

, ,
I

- f
- I

~j

I
~ 1
w



Au

. 1

~ J

. !

respectively. Because the carbon and proton magnetogyric ratios

conveniently differ by a factor of -4, the simplest selective pulse is a

7200 1H pulse which is approximately a 1800 13c pulse. The spectrum for

-(Iz-Sz) is shown in Figure III.22d. As mentioned before, not all

combinations of YI and YS produce pulse angles which are useful or

integer multiples. In this first example, both species are irradiated

when it is advantageous to irradiate only a single spin species. Since

the pUlses are not without their imperfections, the desired behavior may

not be obtained in a longer pulse sequence. For example, narrowband

selective pulses would be ideal for saturating the I spins to determine

T1Q of the S spins.

Experimental results using the zero field dc analog of Shaka and

Freeman's 180x180y180x spatially (YB1) selective inversion pulse37 are

presented in Figure III.22e-f. Tpe pulses can be applied to either the

carbon or proton nuclei and are seen to be more efficient at exciting

only the desired transitions than the single 7200 1H pulse.

Unfortunately, not all useful pulse angles for zero field excitation are

available in narrowband composite sequences, but the design of such

pUlse sequences is growing. S~milar composite pulses are available to

produce 900 narrowband behavior 14b and might also be useful. The

simplest composite pulses to implement are those of easily determined

pulse angles such as 900 , 1800 , 2700 and 3600 , with 900 relative phase

shifts (i.e. pulse directions) in zero field.

E. Two Dimensional Zero Field Experiments

Two dimensional NMR methods involve recording the NMR signal as a
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function of two time variables with sUbsequent transformation to produce

a spectrum described by two frequency variables. 38 Applications of

these experiments are generally to weakly coupled liquids, and the fre-

quencies observed depend upon the specific excitation pulse sequence

used. Common examples are those which show correlations between chemi

cal shifts and scalar couPlings,38 between different chemical

shifts38 ,40 exchanging or cross relaxing dipolar coupled nuclei,41 and

multiple quantum transitions. 39b By measuring the connectivities

between spectral transitions, a determination of structure, conforma-

tion, dynamics or assignment of an otherwise intractable one dimensional

spectrum is possible.

In Zero Field NMR and NQR, well-resolved, sharp line spectra are

observed in polycrystalline solids. In zero field, quadrupolar fre-

quencies label specific chemical sites while dipolar couplings should

induce connectivities between zero field transitions of neighboring

spins. In this section, the principles of two-dimensional NMR are

applied to the detection of quadrupolar nuclei in zero applied magnetic

field. The two dimensional experiments are possible through the use of

pulsed field cycling methods. Through a combination of these

techniques, the connectivities in the NQR transitions of a spin I = 1

nucleus are shown.

1. One Dimensional Zero Field RQR Spectra

The characteristics of a zero field NQR spectrum for a spin 1=1

nucleus were described in Chapter II. Values of nand e2qQ/h, which are

descriptive of a quadrupolar system, may be calculated for a given

chemical site assuming that the pair of corresponding v and v+ lines is
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distinguishable. If there are two or more inequivalent sites, the NQR

spectrum will consist of a superposition of six or more lines.

Therefore, resolution of the difference frequency Vo lines at very low

frequencies is essential in assigning the one dimensional spectrum.

The one dimensional zero field NQR spectrum of the methylene group

of polycrystalline diethylterephthalate was shown in Figure III.19c.

The spectrum was obtained using the selective indirect detection method

which has been described previously. The low frequency lines are re-

solved and allow for calculation of quadrupole coupling constants and

asymmetry parameters for the inequivalent sites as reported in Chapter

II.C.4. If more sites were present, it becomes evident that overlapping

lines would make assignment difficult.

2. Two Dimensional zero Field· Experiment

The correlations between the NQR frequencies can also be observed

by probing the connectivities in the spin I • 1 manifold through a two

dimensional version of the field cycle. The simplest form of the field

cycle, in which the zero field interval is divided in half, is shown in

Figure 111.23. The sample is demagnetized to an intermediate field,

Bint , which is switched off suddenly to initiate evolution. The system

evolves under the quadrupolar Hamiltonian for the time t 1• Application

of a short dc pUlsed field transfers coherence between the energy levels

of the spin 1 system. Evolution in zero field continues after the pulse

for a time, t 2• Reapplication of the field and remagnetization provides

for sampling of the magnetization in high field. In successive field

cycles, the zero field periods are incremented independently to produce

a time domain signal as a function of t 1 and t 2 which when Fourier
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Figure 111.23: Field cycles for two dimensional zero field experiments.

a). The sample is demagnetized to an intermediate field, Bint , which is

switched off suddenly to initiate evolution in zero field. The

evolution period is divided into two time periods, t 1 and t 2, by

reapplication of the field. If the dc field is applied as a brief

pUlse, it will act as a rotation on the spin system and mix coherences.

EVolution then continues for t 2 and is terminated with a sudden

reapplication of the intermediate field and remagnetization to high

field. The signal is sampled as a function. of the independently

incremented time variables. If the applied field is longer in duration,

-0.5-1 msec correlations between dipolar coupled groups of spins should

develop. b). Using demagnetization to zero field, indirect detection of

the zero field NQR spectrum is possible. The short pulsed dc magnetic

fields are used to initiate zero field evolution for t 1, to mix

coherences as in (a), and to terminate evolution after t2.

Remagnetization after the zero field period again provides for the 'H-2H

level crossings and the detection of the signal in high field. c). The

preparation of the spin system and t 1 evolution period are identical to

that shown in (a). Applying a brief dc pulsed field will effectively

store the magnetization, and prevent the decay of coherences under the

applied field. Cycling the field slowly to an intermediate level show

provide for cross relaxation between groups of spins. Evolution is

reinitiated for t 2 by a second dc pulse then halted and detected in the

same manner as in (a) and (b).
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transformed produces the two dimensional zero field spectrum. An

approach to the formal analytical calculation of the signal is presented

elsewhere18 by solving

168

(III.28)

for the field cycle of Figure III.23a and where e is the mixing pulse.

The task of calculating the signal analytically is extremely time

consuming and might best be handled numerically for variable zero field

pUlse angles and other initial conditions.

other initial conditions are also possible in this experiment. In

actual practice, for the increase in sensitivity and potentially shorter

1H T1 relaxation times, the signal can be ,detected indirectly via the

protons as described previously. The field cycle of Figure III.23b uses

demagnetization to zero field followed by pulsed dc magnetic fields to

initiate and terminate zero field evolution. Of course, the behavior of

the spin system has the same dependence on the natural quadrupolar fre-

quencies, as in the version with sudden transitions in the intermediate

field, although now the intensities of the spectrum will also be a func-

tion of the initial and final dc pUlse angles and the dynamics of the

level crossings. A short dc pulsed field can be applied to mix

coherences in the same manner as in Figure III.23a.

In addition to observing quadrupolar frequencies, connectivities

between dipolar coupled groups of spins might be established by 'altering

the mixing period of the experimental field cycle. Assuming a deuteron-

deuteron dipolar coupling of vO-1 kHz, application of an intermediate
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field, as in Figure III.23c, for -1 msec (-1/vD) or longer should allow

a coherence transfer between dipolar coupled spins. Thus correlations

based on spatial proximity can also be developed. In cases where the

coherences do not persist for longer than a few milliseconds, signal

might be conserved if the evolving magnetization is stored as popula-

tions by application of a dc pulse as shown in Figure III.23c. The

decay is now described by a time constant related to T1z which is ex-

pected to be longer than the decay of the coherences in solids. By

slowly cycling the field to an intermediate value, the energy levels of

inequivalent deuterons may be brought into contact. This is similar to

the signal enhancement approach via repeated level crossings used in

frequency domain double resonance NQR experiments. 29

3. Experimental Reau!ts

~s an experimental verification of the. applicability of these

field cycles, the two-dimensional zero field spectrum of the high fre-

quency v_ and v+ lines of the same methylene sites in polycrystalline

diethylterephthalate-d4 is shown in Figure III.24. The field cycle of

Figure III .23b was employed to indirectly and selectively detect only

the deuterium NQR signal with all dc pulse angles equal to mUltiples of

2~ for the protons. A mixing pulse of 3x2~ radians in the laboratory z

direction for the protons is approximately a 1650 deuteron pulse which

is close to the 1800 pulse predicted from Equation (III.28) to give

maximum intensity in the crosspeaks. 18 The diagonal peaks fall along

the v1=v2 line and reproduce the one dimensional spectrum. Off-diagonal

peaks correspond to the v_/v+ connectivities in the spin I = 1 manifold

and are illustrated by the connecting lines. One connected pair of
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Figure 111.24: Two dimensional zero field- NQR spectrum of the high fr

quency v_/v+ transitions of polycrystalline diethylterephthalate-d4•

The spectrum was obtained through the field cycle described in Figure

III.23b.By using pulses which were multiples of 21T for the protons.,

selective excitation of only the quadrupolar transitions is possible.

The transfer of coherence between states in the spin I • 1 manifold was

produced with a short dc pulsed field. Diagonal peaks along the vl • v2

line correspond to the one dimensional spectra as shown in the

projections. The peak positions of the one dimensional spectrum are

indicated by the stick spectra. Cross peaks indicate correlations

between the v+ and v transition of an individual deuteron site. The

connectivities are illustrated by the connecting lines.
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lines belongs to one deuteron of the CD 2 group and the second pair

belongs to the other inequivalent deuteron.

NQR transitions in frequency domain experiments are often assigned

on the basis of weakly allowed double transition peaks,33 double

irradiation of two NQR lines 29 , or by the shift in frequencies due to

application of a low field34 since the low frequency lines are often

obscured or unobserved. 29 Time domain techniques have the low frequency

detection capabilities, resolution and selectivity to assign transitions

on the basis of Vo lines. All of these approaches are plagued by the

problem of increased complexity of the spectrum with increasing numbers

of quadrupolar sites. Two dimensional zero field NMR experiments can

address many of these problems by utilizing the cross-peak correlations

to determine connectivities. A large variety of experimental

conditions, produced with different field cycles, can be envisioned with

the use of pUlsed magnetic fields to manipulate the spins in zero field.

The greatest increase in sensitivity and experimental expediency would

result by directly detecting the zero field oscillations via an

extremely sensitive detection apparatus such as a SQUID. ThUS, the

experiment presented here would no longer .have the third time period of

high field detection and as such would be two-dimensional in the truest

sense.
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IV. ZERO FIELD NHR.OF LIQUID CRYSTALS

A. Introduction

1. Liquid Crystalline Phases

Many pure organic substances exist in phases, or rather

"mesophases", intermediate between the solid and liquid states. Whereas

a crystal has a regular packing in a three dimensional lattice and a

liquid shows no correlation between the centers of gravity of the

molecules, a liquid crystalline system displays some orientational (and

possibly some low dimensional positional) ordering of the elongated

molecules. Local ordering is generally brought on by collective

interactions between the molecules, and uniform alignment of the sample

may be induced by the application of a magnetic or electric field.

There are two basic categories of liquid cr·ystals: thermotropic, in

which the mesophase formation and behavior are temperature dependent,

and lyotropic, in which the resulting phases are dependent on

concentration. The former class of compounds is explored in the

following experiments.

The study of the liquid crystalline phases, their characteristics

and behaVior, is an extremely extensive area of research involving many

disciplines and approaches. It is inconceivable that one chapter could

accomplish a complete introduction to the amount of information

available. Thus several relevant texts should be mentioned which

introduce the physics of liquid crystals and their study by NMR. Among

these are books by de Gennes', Emsley and Lindon2, Emsley3, Gray4,
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Chandrasekhar5~ Luckhurst and Gray6 and review articles by Diehl and

Khetrapa1 7, Khetrapal and Kunwar 8, and Doane9. An exhaustive review of

many areas of liquid crystal research with extensive lists of references

can be found in the Handbook by Kelker and Hatz. 10 These are only a few

among many references, which can be consulted for more detailed

information on the areas briefly described in the following sections, in

addition to the wealth of published scientific articles.

A particular liquid crystal may display one or many phases with

variations in temperature. The major classes of thermotropic liquid

crystals are nematic, cholesteric and smectic each of which, especially

the smectics, can have many subclasses. Each subclass is distinguished

by the degree and type of order present. In describing the liquid

crystalline phase, discussions will focus on a local domain of the

sample. A domain is considered a region of the liquid crystal sample in

which there is some short-lived coherence in the alignment of the

molecules. These domains mayor may not align uniformly over the entire

sample in the presence of a field. This field dependent behavior is

covered in Section 2, while a discussion of the phases of interest

follows.

a. Hematic. These are the· lowest ordering phases and always occur

before the isotropic phase. Nematic phases are the most liquid-like as

there is no positional order of the centers of mass of the molecules,

but rather a preferred parallel alignment of the long molecular axes as

shown in Figure IV.1. The average alignment can be described by an

axis, n, called the director. There is rapid, random diffusion (-10-6

cm2 s-1) of the molecules, rapid fluctuation (10-8-10-9 s) about the
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Nematic Phase

. XBL 8611-9257

Figure IV.1: Nematic liquid crystalline phase. The elongated molecules

are aligned on average with respect to the director as indicated by the

arrow. There is no positional order on a local scale, only a preferred

orientational order.
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director, and rotation (10-10~10-12 s) about the long molecular axes. 1

This leads to a cylindrical symmetry about n, where n and -n are

equivalent. In most common nematics, the uniformly aligned phase is

uniaxial and can be described as a monodomain with a single director

axis.

b. Cholesteric. Cholesterics are potentially interesting for

study by zero field NMR and are only briefly described. Cholesterics'

are a chiral form of the nematic phase. A cholesteric phase has a

helical distortion which consists of the director axes of regions of the

sample changing orientation with distance about a given axis. This

changing orientation of the directors occurs regularly and continously

about this axis such that a helix is swept out by the directors. 1,2 The

pitch of the helix is generally many times greater (-few 1000 A) than

the molecular dimensions. Within the planes still described by the

local directors, the phase has nematic properties. Such phases can be

produced from either a pure optically active material, or by the

addition·of this material as an impurity to a non-optically active

nematic phase; the helical pitch is a function of either the molecular

structure of the pure compound or the relative concentrations of a

mixture. In the presence of a magnetic field, cholesteric phases may

have their twist axes either perpendicular (negative cholesteric) or

parallel (positive cholesteric) to the field direction.

c. smectic. These phases generally occur in a lower temperature

range than the nematic. Smectic phases are the most ordered but, even

among the different smectics, the type of ordering changes

substantially. A feature common to all smectics, as shown in Figure
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IV.2, is that the molecules form layers which are generally not

positionally correlated. The layers are -20-30 A in thickness with a

well-defined interlayer spacing and the molecules diffuse more freely

within, than between, layers. The molecules within the layers mayor

may be translationally ordered which distinguishes some of the more

common smectic phases. These are:

Smectic A: Inside the layers there is no long range order of the

molecules, which orient perpendicular to the layer plane, as shown in

Figure IV.3. Thus this phase is like a two dimensionalliquiq. The

phase is uniaxial as the molecules are free to rotate about their long

axes, the director axes and layer normal are nearly parallel and, nand

-n are equivalent. Except for the layer structure, smectic A phases and

nematic phases are nearly identical. Often smectic A samples align in

an applied magnetic field.

Smectic C: Here the molecular axes are tilted with respect to the

layer normal. In the presence of a field upon cooling from the nematic

or smectic A phases, the molecules align with the field and the layer

planes will be tilted. A random distribution of the planes in the

azimuthal angle about the field direction forms a cone shaped domain.

The tilt angle, ~, is characteristic of a particular sample and is

constant for a given temperature. The tilt can be attributed to the

fact that the layer spacing (d.lcos~) is less than the molecular length

(1) and the molecules must therefore tip to fit within the layers.'

Rotation about the long molecular axes might be expected to be hindered.

The phase is considered biaxial in that the molecular orientation can

not be described by a single uniaxial director. 9 A director axis which
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Figure IY.2: Smectic phases are characterized by the arrangement of the

liquid crystal molecules in layers which are generally not positionally

correlated. The preferred direction of the molecular long axes can be

either parallel or tilted with respect to the layer normal. Trans

lational diffusion occurs freely wi thin the layers and to a lesser

extent between them. As shown here for a smectic A type phase, the

molecules are randomly ordered within the layer and align perpendicular

to the layer plane thus the director and layer normal are colinear.
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Figure IV.3: Schematic drawing of the molecular ordering wi thin the

layer for three different smectic .liquid crystalline phases in which the

molecules all align perpendicular to the layer plane. The smectic A

phase at left shows no positional ordering of the molecules. The

molecules are free to rotate about their long axes; the area swept out

by this rotation is shown by the circles •. In the smectic B phase, at

center, the molecules are also free to rotate about their long molecular

axes although there is a hexagonal positional order within the plane.

The smectic A and B phases are both uniaxial. The smectic E phase shows

a molecular packing in which the molecules oscillate between one of two

positions (represented by the ellipses) within the layers. There no

longer is the freedom of rotation about the long molecular axes which

leads to a biaxiality of the phase. The CH2C12 probe molecules are

expected to reside between the liquid crystal molecules and exhibit the

local symmetry.
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describes the direction of the tilt is generally uniform except in

certain smectic C* phases. *In the smectic C , formed from a mixture

with a chiral component, the tilt directors follow a helical

distortion. 1

Smectic B: This is one of the smectic phases with a greater

degree of order within the· layers. The ordering within the layers is

often considered more "solid-like" as there is a rigid periodici ty in

two dimensions as shown in Figure IV.3. In the smectic B phase studied,

the molecules pack parallel to t~e layer normal in a hexagonal lattice.

The molecules are free to rotate about their long axes so, in spite of

the increased order, the phase is still uniaxial.

Smectic E: The smectic E phase is very similar to the B phase

except that the molecules pack in an orthorhombic arrangement in the

layers as shown in Figure IV.3. The molecules are also aligned parallel

to the layer normal. One major difference between Band E phases is,

that in the latter, the molecules can no longer freely rotate about

their long axes but instead oscillate about their long axes by angles

less than 1800 • This produces a herringbone-like pattern in the packing

and is expected to produce a biaxiality of the phase.

All of the above mentioned phases can consist of a single pure

compound or a mixture of two or more components. Mixtures can be formed

only when the components are misicible which generally is dependent on

: 1
1
I

the similarities in chemical composition and molecular sYmmetry. Other

small organic molecules also dissolve quite readily in the liquid I
~J

crystalline system which acts as an orienting solvent. When mixed with

another liquid crystal or solute, the melting point and temperatures of
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the phase transitions are usually depressed and not necessarily by a

constant amount. Often by mixing components, one can produce a specific

phase which exists over a desired temperature range (see Appendix).

2. Magnetic Field Dependent Behavior

Measurements of molecular ordering in liquid crystalline systems

are often conducted in large applied magnetic or electric fields. The

mode of alignment depends upon many features such as: the strength,

direction and duration of the applied field, the magnetic

susceptibility, concentration, dimensions and temperature of the

sample.'O Large dc fields cause the liquid crystal molecules to orient,

on average, at a fixed angle with respect to the field direction. In

the presence of a magnetic field, the individual molecules feel a torque

and attempt to align to minimize the free energy. This is due to the

anisotropic magnetic susceptibility of the molecules which determines

the direction and degree of alignment in a magnetic field. The magnetic

susceptibility, X, relates the molecular diamagnetic moment, M, to the

applied field B by'
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where i,j=x,y,z. For uniaxial nematics, the magnetic susceptibility can

be represented by a symmetric tensor with elements equal to XII and Xl.
relative to the long axis of the molecule. An anisotropy of the

magnetic susceptibility, 6X = XII - ~ results when these two components

(Which are usually negative) are unequal, and its sign is determined by

their relative magnitudes. For liquid crystal systems in which there

are strong molecular correlations and cooperative effects, the



contribution to the free energy of many molecules overrides thermal

energies (which is not the case in a liquid) and they align. The long

range order leads to a reduction in the free energy given by2

184

2 2G = -axB (3cos 6-1)/6

where 6 is the angle between the director and the field.

(IV.2)

Examples of the alignment in the nematic phase for the two

possibilities ofaX>O and aX<o are shown in Figure IV.4. For molecules

with a positive value of aX, the domain directors align with the

magnetic field (6=0 to minimize G in Equation (IV.2» as shown in Figure

IV.4a. In contrast, the molecules with a negative value of aX align on

average perpendicular (6=900 ) to the field direction, as illustrated for

a single domain in Figure IV.4b. The molecules have the same rotational

and translational freedom in both cases although in the latter the

domain director axis can have any direction in the plane perpendicUlar

to the external field. Other phases such as smectics behave differently

in the presence of a field. Whereas nematics readily align, an aligned

smectic phase is often only produced if the temperature is reduced from

an isotropic or nematic phase in the presence of the field. 3 Uniform

alignment is not always obtainable as there is a dependence on factors

such as the preparation and the rate of cooling of the sample. Easily

aligned samples, such as nematics, are frequently used as NMR SOlvents,

and aligned smectic phases are frequently studied by NMR analogously to

single crystals as they will not reorient with rotation. Some smectics,

such as A and C, may align in a magnetic field thereby leaving the

experimentalist with no option of an orientation dependent study for

these phases. Similarly, large enough fields have also been found to
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Figure IY.4: Alignment of nematic liquid crystal molecules with

positive and negative magnetic susceptibil~ty anisotropies in high and

zero fields. The molecules align on average in a single direction

described by a director axis. The molecules fluctuate rapidly about the

director axis and rotate about their long axes. In the presence of a

large field, the director axis of a domain of the system with 6X>O is

aligned with the field as in (a) while it is perpendicular for a system

with 6X<O as shown in (b). The arrows indicate the quantization axes of

the spin interactions in high field. In the absence of a magnetic

field, the director axes of a domain determine the quantization axes (as

shown by the arrows in (c) and (d» of the spin interactions in zero

field. Note that while the molecules remain aligned in both cases, the

direction of the quantization axis does not change between high and zero

field in the 6X>O case, while for 6X<O it does.



"untwist" a cholesteric phase. 2,"

In the absence of a magnetic field, the average orientation of the

director is determined by convection and interactions with walls and

surfaces of the container of the sample.' The degree of order, in or

out of the field, is also concentration and temperature dependent. In a

macroscopic sample, n is a function of position throughout the sample

owing to these effects. In the bulk sample, order on a local scale

persists over some distance known as the coherence length. This

distance is generally a few microns, and in the presence of a field can

be used to describe the length of the transition region between

competing anchoring effects and orientation by the field.' The magnetic

field strength dependence of the alignment on a macroscopic scale is

studied by light scattering'3, optical,4 and magnetic' 5 birefringence

and magnetic susceptibility,6 measurements. On a molecular scale, NMR

can be used to measure the ordering.2 ,3,7

In a strong enough applied field, regardless of the ordering of

the liquid crystal molecules, the field direction determines the

relevant NMR spin interaction frame as illustrated by the axes in Figure

IV.4a and 4b. After the removal of the field, the relevant axis system

is determined by the motional and symmetry properties of the liquid

crystal molecules. This is illustrated for single sample domains in

Figure IV.4c and 4d, and would describe the entire system as a
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monodomain in the former if it had been aligned in a magnetic field.

contrast, although the director axes in Figure IV.4d are all

perpendicular to the original field direction (z), they are randomly

distributed in the xy plane as shown in Figure IV.5 and therefore, a
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Figure IY.5: Cross section perpendicular to the field direction for a

liquid crystal sample with 6X<O. The separate domains are characterized

by director axes, all perpendicular to the field direction, with a

random distribution of director orientations in the xy plane.



single director axis does not describe the entire system. Thus between
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high field and zero field, or 6X>O and 6X<O, the interaction frames

which aptly describe the spin systems may differ. In the absence of a

field, the orientational, motional and symmetry characteristics of the

thermotropic liquid crystalline phase determine the magnitude and form

of the zero field NMR Hamiltonian. Thus through the observed spin

interactions in the NMR experiment, one can gain an understanding of the

molecular ordering.

3. NMR ot Liquid Crystals

a. Order Parameters. The next obvious question is: How does one

describe the ordering of the liquid crystal molecules? The molecules

are fluctuating rapidly and randomly in position and orientation yet on

average are aligned in a given direction. If the molecular system can

be related to the director axes, which mayor may not be aligned with

the laboratory/field frame, then the angular terms which relate these

frames will be descriptive of the ordering of the system. In all cases

that follow, the molecules are assumed to be rigid and therefore the

ordering can be described by a probability function, P(a,a), of the

director axis having some average orientation, given by the polar angles

a and a, in the molecular frame. 2 The parameters describing the order

must reflect the physical realities of the situation, to begin with they

must be continuous functions of the angles and vanish in isotropic

phases.

Since the interactions to be studied are generally second rank

tensor interactions, an order matrix or tensor can be used to express
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the director frame quantities in terms of the molecular fixed axis

system.,,2 For a nematic phase with a uniaxial director frame, this is

expressed as

x,y,z

Tii - LSij ~ij
i ,j

and the elements of S are given by
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(IV.4)

where e is the angle between the uniaxial director frame z axis and the

molecular axes i and j. In this case, the S matrix is a 3x3 cartesian

matrix which is symmetric, such that Sij-Sji' and traceless, Le.

£Sii-O. Thus there are a maximum of five independent elements. The

elements of this matrix are generally called the Saupe order

parameters'7 and can 'be related to motional constants or averages of the

Wigner rotation matrix elements7,8 (see Chapter I). The latter will

become most useful in the calculations to follow and the relationships

between the five S and the Wigner 0m,m' elements are given below. 6

S 2 , 2
- , >... <000> - ~3cos Bzz

H 2
+ <0~_2» ~sin2Bcos2a>S - S ... «002> -xx yy

II 2 2 ~sin2Bsin2a> (IV.5)s - «00- 2> - <002» -xy

H 2 2 ~sinBcosBcosa>Sxz «00-,> - <DO,» ..



=
2

<DO- 1» ~Sin(3COS(3Sina>
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where (3 and a are the angles relating the uniaxial director to the

molecular frame. The order parameters range in value from 1 to -1/2.

The symmetry of both the molecular system and the phase determines the

number of order parameters necessary to describe the situation. Some

examples of the effect of molecular symmetry operations are given

below. 7

Tab1e IVD1: Molecular Symmetry and Required Order Parameters

Symmetry No. of Independent S Elements S Elements

3 fold or Sgreater axis zz

2 perpendicular 2 Szz' Sxx- Splanes yy

1 plane 3 Sxx' Syy' Sxy

none 5 Sxx' Syy' Sxy

Sxz' Syz

bD Nuclear Spin Interactions in Liquid Crystals. As stated

previously, the order parameters can be extracted from a measure of the

second rank tensor nuclear spin interactions such as dipolar and

quadrupolar couplings. Unlike isotropic liquids in which these

interactions are averaged to zero, the anisotropic liquid crystalline

environment merely scales the interaction and, due to fast random

molecular motions, removes the intermolecular dipolar couplings thereby

:I



producing narrow line spectra for small spin systems. The behavior of

the liquid crystal system in NMR experiments can be understood if one

considers the form of the Hamiltonian in an applied field which aligns

the sample. For example, the dipolar Hamiltonian in the average

director frame may be written in spherical tensor notation as
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here T2,m and A2,m' represent director frame spin operators and

principal axis system (PAS) spatial variables18 , respectively, and the

0m',m(Q) (Q=a,a,Y) term effects the transformation between the two

frames. For two dipolar coupled spins, the internuclear vector which is

the z axis of the PAS frame is taken to be coincident with the z axis of

the molecular frame. If the molecular frame is not chosen as coincident

with the PAS frame, for rigid molecules, there still is a fixed relative

orientation of the PAS and molecular frames. Thus an additional angular

term relates the order parameter of the molecular frame to the PAS

frame. The brackets in Equation (IV.6) indicate a time average over the

0m',m terms which accounts for fluctuations of the alignment of the

molecular frame with respect to the director frame. Assuming that the

field aligns the sample in the field direction (6X>0), the director axis

will be coincident with the laboratory z axis. Truncation of the spin

part of the Hamiltonian by a large magnetic field leaves only the T20

term nonzero. Furthermore, only the m'=O term of the traceless second

rank tensor A2,m' is nonzero since the dipolar interaction is axially

symmetric in the molecular/PAS frame. 18 Therefore, the effective high



field laboratory frame dipolar Hamiltonian for a proton pair is given by
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1
(IV.7a)

(IV.7b)

where the uniaxial order parameter Szz is given by

(IV.8)

and B is the instantaneous angle between the director and the proton-

proton internuclear vector. Thus by measuring the dipolar coupling for

a rigid proton pair, the value of Szz can be determined. If the proton

pair is on the liquid crystal molecule, then the order parameter

corresponds to the ordering of the liquid crystal molecules.

As has become obvious, relating many interaction frames is a

necessary part of the calculation. For example, descriptions of the

system can easily include a few, if not more, transformations from the

PAS frame + Molecular frame + Director frame + Lab Frame

depending on the phase and the selection of frames. The number of

transformations is often simplified as in the case above in which the

first and second frames are chosen to be coincident as were the third

and fourth. Only those transformations which reflect rapid molecular

motions on the timescale of the experiment are expressed as an average.

In Chapter III, high field and zero field spin operators were

distinguished by subscripts. Because of the number of reference frames
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required here, and their frequent coincidences, sUbscripts will not

always be used but the relevant frames should be clear based on context.

Apologies are made in advance for any confusion.

The spin system can consist of either the liquid crystal molecules

themselves or a probe molecule dissolved in the liquid crystal which is

constrained to the symmetry of the phase by dispersive and steric

forces. 7,8,19 This aids one in studying the liquid crystalline phase

via simpler spin systems (without requiring selective isotopic

labelling) and greatly aids in spectral simplification and inter

pretation.7 ,8 For example, in Figure IV.6, the high field spectrum of a

fully protonated liquid crystal is shown. The broad featureless

lineshape provides little information. The ordering of a rigid solute

molecule (or part of the molecule) can be described by an order tensor,

s, which describes the average alignment of the solute spin system

molecular frame with respect to the director axis. The S parameters

corresponding to the solute differ from those of the solvent, yet

reflect the local sYmmetry and type of ordering in the phase.

Unfortunately, there is no simple relationship between the two S

matrices. The allowed motions of the solute reflect the anisotropic

molecular tumbling in the liquid crystal medium by characteristically

averaging the dipolar interaction. 1,2 The Hamiltonian of a two spin

solute molecule dissolved in an aligned nematic (~X>O) has the same form

as that in Equation (IV.7) and the spectrum consists of two lines due to

the scaled dipolar coupling. The order parameter of the solute, S, may

be calculated from the observed splitting 0 by Szz=4~~3/3y2ho.
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Figure IY.6: High field NMR spectrum (180 MHz l H) 'of a fully protonated

nematic liquid crystal sample. Due to the large number of dipolar

coupled spins, no structure is resolved in the spectrum and little

information on the molecular ordering is available.
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B. Hematic Phases in Zero Field Experiments

Until recently, the behavior of a liquid crystalline system in the

absence of an applied magnetic field could not be studied by NMR. Field

cycling time domain zero field NMR techniques now provide a means to

measure both the bulk. ordering and molecular order parameter without the

influence of an applied field. Descriptions of the zero field NMR field

cycling experiments were presented previously and require little change

when applied to liquid crystal samples. The field cycling schemes used

in these experiments are presented with each case as there are differing

requirements for the application of dc pulsed fields.

1. Observations or the Ali8l1lllent in Zero Field

Several features of liquid crystalline systems make their study by

zero field NMR of interest. Because the molecules are aligned by a

magnetic field, one wonders what will occur with the removal of the

field. Does the bulk ordering of the sample change, as shown in Figure

IV.7, and does any change occur in the local molecular ordering as

characterized by the order parameter? It has been suggested that the

degree of ordering may differ on a macroscopic and molecular level in

spite of the small energies of the order director fluctuations. 20 The

order parameter and fluctuations are important parameters in describing

relaxation measurements 21 , which give an indication of dynamics in

liquid crystal systems, and it is thus instructive to directly measure

the ordering in high and low fields.

The system chosen for study was composed of a CH 2Cl 2 probe
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Figure IV.1: Ordering in nematic liquid crystals. (a) In the presence

of a magnetic field, a, the average orientation of the director (shown

by the arrow) is aligned along the magnetic field direction and the

dipolar coupling corresponds to the truncated high field terms. (b)

Order in the nematic remaining immediately after removal of the field.

The sample maintains its uniform average alignment along the laboratory

z axis. Due to the rotational motions and symmetry of the liquid

crystals, the dipolar Hamiltonian is also truncated with respect to the

z axis in the absence of a magnetic field. (c) Disordered system where

the alignment of the directors is no longer in the laboratory z

direction. The average orientation of the molecules on a local scale is

described by the local director. The dipolar Hamiltonian of a domain is

now truncated with respect to this director axis.
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molecule dissolved in p-pentyl phenyl 2~chloro-4~(p~pentylQenzoYloxy)-

benzoate (Eastman Kodak 11650, ~X>o). The high field NMR spectrum of

this nematic system was obtained using a 90X-T-180y-T echo sequence22 to

reduce the effects of high field inhomogeneities where the signal

intensity is measured as a function of T. The minimum time for the

incremented variable T was selected, based on the T2 relaxation times of

the two components, to echo only the solute signal and not that of the

liquid crystal itself. The resulting dipolar spectrum is shown in

Figure IV.8. The alignment of the proton-proton internuclear vector

with respect to the director, 0, may be described by a single order

parameter Szz=0.055 ± 0.001 as calculated from the observed splitting in

accordance with Equation (IV.7) using a value of r=1.771 A for CH2Cl2•

Previous work (section II.C.2) has shown that polycrystalline

samples of isolated proton pairs yield a three line frequency spectrum

when subjected to t~e sudden transition experimental sequence of Figure

IV.9. The three lines are of equal intensity and occur at zero

frequency and ±VD=3y2h/8~2r3. If this sudden transition experiment is

applied to the CH 2Cl 2/11650 system, using a high field echo as above to

detect only the solute signal, one obtains the one line spectrum shown

in Figure IV.10. This line at zero frequency corresponds to the central

line of the triplet found in the polycrystalline case and yields no

dipolar information on the solute. Contained in the seemingly

uninformative spectrum is, however, a great deal of information on the

ordering of the nematic liquid crystal. This can be understood by

remembering that the spectrum reflects the Hamiltonian of the system in

zero field which is in turn determined by the liquid crystalline
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Figure IV.8: High field lH NMR spectrum of CH2Cl2 in Eastman 11650

(6X>O) taken as a function of T with the pulse sequence shown at upper

right. The molecular order parameter of the solute is calculated to be

Szz.O.055 ± 0.001 from the observed splitting.
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Figure IV.9: Schematics of zero field experimental field cycles. (a)

This basic field cycle with a sudden transition in field has been

described previously in Chapter II. (b) Sudden z/pulsed y field cycle.

This field cycle is identical to (a) except for the application of

pulsed dc magnetic fields (P and P') corresponding to rotation angles

given by a-YBdctp ' For 90~ pUlses the density operator at the start of

the t, period is now proportional to Ix in the lab frame. Detection of

this transverse component is completed by the final pulse and

application of a field in the z direction to preserve the magnetization

before remagnetization to high field.
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Figure IV.10: Spectrum of CH2Cl2 in Eastman "650 (6X>0) using the

field cycle of Figure IV.9a. The single line at zero frequency

indicates that no zero field evolution occurred during the time t,. The

spectrum appears as expected for an ordered nematic in which the axis of

quantization is the same in high as in low field.



environment.

a. Spin Hamiltonian in Zero Field. Consider the case of a liquid

crystal system which remains aligned along the original field direction

(AX>O) in zero field. The zero field director frame dipolar Hamiltonian

for a molecule of the nematic phase, Equation (IV.6), is unchanged from

that in high field and is equal to H8 of Equation (IV.7). This is due

to motional averaging about the director oriented along the laboratory z

axis as in Figure IV.7b. Rotation about the long molecular axes and the

uniaxial nature of the liquid crystal require that the terms in Equation

(IV.6) with mt and m not equal to zero vanish (i.e. no dependence on a

and y). In contrast to the high field case, the truncation can be

accomplished solely through the spatial terms of the Hamiltonian.

Again, the solute Hamiltonian has the same form as that above since the

nematic environment imposes a preferred orientation and motion on the

solute molecules.

The sudden transition experimental results reported above can now

be interpreted. Even in the absence of an applied field, a uniformly

aligned sample with n along the laboratory z direction, Figure IV.7, has

a zero field Hamiltonian equal to the truncated laboratory frame dipolar

Hamiltonian. The sudden switch-off of the intermediate field in the

zero field experiment of Figure IV.9a initiates zero field evolution

only if [p,HZF]~O. Since p(O) is proportional to Iz,L before the

transition, this condition is not met. Calculating the signal from
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for an ordered sample in zero field is simply a line at zero frequency.

The zero field dipolar spectrum of an aligned sample should still

be obtainable by the use of a pulsed dc magnetic field to change the

initial condition from p(O)=Iz,L to some other operator that does not

commute with Hg. In this case, as shown in Figure IV.9b, a pulse can be

used to rotate the initial magnetization to the xy plane of the

laboratory frame. If the direction of the dc field is defined as the

laboratory frame y axis and a 900 pulse is applied, then the density

operator after the pulse is equal to Ix. Since [Hg,Ix]10 evolution is

initiated. Exact calcUlation of the zero field signal is quite easy as

the initial state, dc pulses and zero field Hamiltonian are all

referenced to a common frame for an aligned sample, and
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S(t,) = TrU exp(-i6'I )exP(-iHODt, )exp(-i6I)Iz y y z

eXP(i~Iy)exP(iH~t,)exP(i6'Iy)} (IV. '0)
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A second pUlse, 6'=3600 -6, is required to transform the evolving state

back into one proportional to Iz before remagnetization. For example,

rearranging terms and taking into account that 6=900 , Equation (IV.l0)

becomes

which is identical to applying rf pUlses in high field. Unlike previous

calculations, this requires no transformation between frames (other than

that already ascribed to the order parameter), nor is there any average

taken over director orientations as only one is present in an aligned

sample. This is analogous to a single crystal in zero field except that



the Hamiltonian is truncated.

A two proton spin system, in an oriented liquid crystal with ~X>O,

is expected to yield the following normalized signal for an arbitrary dc

pulse angle from Equation (IV.10) as given by

where e is the angle of the'dc pulse and WO=2~VD=y2h/2mr3. To confirm

that the sample is indeed aligned and that dipolar signal can be

observed, an experiment was performed with the sequence of Figure IV.9b.

Figure IV.11 presents the results of a series of these sudden z/pulsed y

experiments. The angles of the dc pulses corresponding to P and P' in

Figure IV.9b were determimed by the calibration procedure described

previously. The spectra consist of two lines corresponding to either

the zero frequency or ±Vo lines of the polycrystalline case. The

-predicted behavior for an aligned sample under different dc pulses is

observed. For 6=900 , all the signal evolves as the local fields and

magnetization are perpendicular. Calculation of the order parameter of

the solute from the zero field spectrum yields, Szz=0.054 ± 0.001. The

molecular order parameter measured from these spectra in zero field is

the same as that found in high field within an experimental error based

on the linewidths and small scale temperature fluctuations which may

occur in the course of the experiment.

The removal of the sample to low or zero fields might be expected

to show a change in the bulk alignment of the liquid crystal molecules.

If the sample were to disorder, the predicted zero field spectrum would

be different. For example, one case is that where the local ordering
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Figure IV.11: Spectra of the CH 2Cl 2/11650 system obtained via the

sudden z/pulsed y field cycle of Figure IV.9b. DC pUlses used were (a)

90~,270~ and (b) 180~,180~. The observed spectra show the dependence on

pulse angle as predicted by Equation (IV.12) which was obtained assuming

an ordered nematic liquid crystal in zero field. The molecular order

parameter may be measured from the observed frequencies and was found to

be Szz=0.054 ± 0.001, which is unchanged from high field within an

experimental error of 2%. Linewidths of -45 Hz may be attributed to

residual fields.
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within a domain remains the same, while the alignment of the local

directors of these domains changes orientation as illustrated in Figure

IV.7c. Assuming that the allowed motions and fluctuations within a

local domain are the same as in the monodomain, then the director frame

order parameter of the solute will be the same for all orientations

since the director frame Hamiltonian is unchanged. The distributions of

director orientations will manifest themselves as changes in the

intensities of the lines in the zero field spectrum as discussed in

Section II.C.2. (This is similar to a distribution of "crystallites" in

which the degree of disorder mayor may not lead to an isotropic

distribution of director orientations.) Thus ordered and disordered

nematics may be distinguished by the characteristic appearance of their

zero field spectra since the relative intensities of the zero field

lines will be indicative of the degree of disordering.

If the alignment is altered before reaching zero field, a sudden

transition experiment would be expected to show evolving signal. In the

limit of an isotropic distribution of the local directors, the

normalized zero field signal for the sudden transition experiment or the

sudden z/pulsed y version with both dc pulses equal to 900 is given by
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which is the same form as that predicted for the proton pairs in a

polycrystalline hydrate. Improperly prepared samples, such as those

with large bubbles, result in observable zero field NMR signals due to

the disruption of uniform alignment caused by surface effects and/or

mechanical mixing. An example of such a spectrum showing broad peaks at



the dipolar frequencies is compared to the same material in Figure IV.12

using the sudden transition field cycle. A schematic picture of the

possible disordering induced by a bubble appears in Figure IV.13. This

effect was found to be exacerbated when using liquid crystal samples

with very low viscosities although even here disordering was not

observed in samples with no bubbles.

2. Demagnetization and Other Pulsed Experiments

Further studies were also performed to observe the effect of

complete demagnetization on the liquid crystal system. The field cycle,

shown in Figure IV.14a, consists of demagnetization to zero field

combined with a pulsed version of the experiment. A spin temperature

argument suggests that the density operator describing the initial

demagnetized state in an aligned sample (aX)O) should be proportional to

Iz,L since the motibnally averaged dipolar and Zeeman Hamiltonians

commute 0
23 This predicts that the zero field signal is described by

Equation (IV.'2) and is confirmed experimentally since spectra produced

with the same de pulses appear identical to those in Figure IV.". Thus

the resulting state is not one characteristic of a demagnetized dipolar

coupled system as described in Chapter III. If the demagnetization were

to produce an initial condition other than Iz,L then one expects an

entirely different functional dependence for Set,).

The effects of residual fields on the linewidths can be decreased,

in any of the zero field experiments described, by employing a

transverse dc 1800 pulse to form a zero field echo. Figure IV.15 shows

the results of a 1800 refocussing pulse applied in the middle of the
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Figure IV.12: CH2C12 in the nematic phase of EBBA with 6X>0. The

spectrum shown in (a) results when the sudden transition field cycle of

Figure IV.9a is used. The lack of dipolar signal indicates that the

sample remains aligned; there is only a zero frequency signal from non

evolving magnetization. Samples in which large bubbles are present do

display dipolar signals as shown in (b) which can be explained by

disruption of the ordering of the liquid crystal molecules.
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Figure IV.13: The uniform alignment of the sample is disrupted through

the presence of a bubble in the sample. This effect may be due to

either sample mixing in shuttling and/or surface effects. A possible

scenario is shown above in which the director axes are anchored by a

bubble and caused to point away from the z axis. This distribution of

directors will alter the relative intensities of the zero field lines.
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Figure IV.14: Other zero field experimental field cycles used in the

study of liquid crystals. (a) After demagnetization to zero field, dc

pulses are used to initiate and terminate the zero field evolution

period t 1 as described in Chapter II. (b) Same field cycle as (a)

except that the t 1 period is now di~ided in half by a 1800 refocussing

pulse. This pulse removes the effect of residual field inhomogeneities

in the z direction. (c) Zero field dc pulse sequence for the production

of dipolar order in zero field. The directions of the dc fields are

shown. The sequence 90X-~-45y takes the initial state of I z to one of

di polar order in the lab frame. After the delay, 6., -the 45y pulse

transforms the state into observable transverse magnetization.

Application of a 90x pulse and the z field allows for observation of

this evolution as a function of t 1 in high field.
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Figure IY.15: Zero field echo spectrum or CH2Cl2 taken using the zero

field echo sequence, Figure IV.14b, which removes the effect of the

linebroadening residual fields. Shown is the spectrum using the dc

pUlse sequence 90~-t1/2-180~-t1/2-270~,where all pUlses are applied

along the laboratory y axis. A linewidth of -15 Hz is obtained. The

lines at one half the dipolar frequency and zero frequency are artifacts

due to pulse imperfections.
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evolution period as illustrated in Figure IV.14b. After a 900 y pulse

on the initial state, Iz,L' the signal can be calculated from
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S(t1) - Tr{IxexP(-iHzFt1/2)exP(-i~Iy)exP(-iHzFt1/2)

IxexP(iHzFt1/2)exP(i~Iy)exP(iHzFt1/2)} (IV. 14a)

where HZF-HZ + Hg, and HZ is the interaction with an inhomogeneous

residual z field such that it commutes with Hg. The resulting signal is

(IV. 14b)

I
J

As expected, this pulsed dc field variation of the Hahn echo

experiment24 yields decreased linewidths which are measured here as -15

Hz. This is due to reversing the sense of evolution under the residual

field term without altering the evolution in t 1 under the bilinear

dipolar Hamiltonian and can easily be seen by the fact that linear terms

in I z change sign with a 1800 pulse while the bilinear terms in HO do

not. Lines at one half the zero field frequency appear as artifacts in

the echo spectrum and can be accounted for by imperfections in the dc

pulses.

The initial condition for an aligned sample with ~x>o is equal to

Iz,L and the zero field Hamiltonian in the laboratory frame is identical

to that of the secular dipolar Hamiltonian in a high field rotating

frame at resonance. With this understanding of the system, a multiple

dc pulse sequence was attempted in zero field. A sequence was chosen to

produce a dipolar ordered state in zero field, in the same manner as one

would in high field, as such a state was not obtained by demagneti

zation. A zero field version of the Jeener-Broekaert sequence25 was



performed, but unlike high field NMR techniques, separate coils were

used for each orthogonal (900 "phase shifted") pulse direction. Using

the field cycle of Figure IV.14c, the sample was demagnetized to an

intermediate field then suddenly demagnetized to zero field where the

pUlse sequence 90X-T-45y-6-45y-t1-90x was applied~ Immediately after

the final 90x pUlse the sample was remagnetized and the high field

signal recorded as a function of t 1• The preparation part of the

sequence (through the first 45y) has the effect of creating a density

operator given by
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(IV. 15)

which contains both a dipolar ord~r term and a double quantum term. 26

Here the delay 6 used in the sequence was chosen to be long enough to

allow any remaining single and double quantum coherences to decay to

zero. Accumulation or the high field magnetization as a function of t 1

yields the interferogram of Figure IV.16. As expected the signal

arising from the created dipolar order grows in sinusoidally in t 1 (in

analogy to the quadrupolar case presented in Chapter III.C). Fourier

transformation of the signal produces the spectrum shown in Figure

IV.16.

3. Positive and Negative Magnetic Susceptibility Anisotroples

The form of the dipolar Hamiltonian in zero field was further

explored by the use of samples with positive and negative magnetic

susceptibility anisotropies. As stated in section A.2 of this chapter,

the quantization axes of the spin systems and director orientations in

J
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Figure IV.16: Interferogram from the zero field version of the Jeener

Broekaert experiment using the pulse sequence shown in Figure IV.14c.

The T used in the preparation of dipolar order was 160 ~sec and the

delay 0 was chosen to be 20 msec to allow for the decay of any other

coherences. The sinusoidual appearance of the interferogram, S(t1), is

as expected for the conversion by a 45~ pulse of the dipolar order to

observable single quantum coherence. Fourier transformation of the

interferogram yields the dispersive zero field spectrum shown below

consisting of lines centered at ±vD. The linewidths and splittings of
the zero field lines may be attributed to dc pulse imperfections and

residual fields.
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high and zero fields differ with the ordering of the liquid crystalline

phase. In order to observe the evolution of a spin system in zero

field, the initial state of the spin system in zero field and the zero

field Hamiltonian must not commute. For liquid crystals which remain

aligned with the field direction, this is not the case; it was

demonstrated that in such instances pUlsed de fields can be used to

alter the initial condition and observe the dipolar spectrum of a solute

molecule dissolved in a nematic liquid crystal. In this section, we

explore the alternative possibilities of changing the zero field

Hamiltonian through the use of liquid crystal systems with different

magnetic susceptibilities.

The samples consisted of approximately 5 weight percent CH2Cl2

dissolved in EBBA (p-Ethoxybenzylidene p-butylaniline, Frinton

Laboratories) with a ~x>o, or ZLI 1167 (EM Chemicals, a ternary mixture

of propyl-, pentyl- and heptyl- bicyclohexylcarbonitriles) with a ~X<O.

An interesting feature of these two nematics is that in binary mixtures

they display an unusual temperature dependent phase behavior. 27 The

apparent anisotropy in the magnetic susceptibility ranges from positive

to negative with changing temperature and, at a certain transition

temperature, appears to be zero. 28 High field and zero field NMR

spectra of the neat phases were obtafned to compare the order parameters

of the solute with and without the presence of a large magnetic field.

The high field dipolar spectrum of CH2Cl2 in EBBA appears in Figure

IV.17. As with the previously discussed nematic liquid crystal sample,

this system has also been found to remain aligned on the time scale of

the zero field experimental field cycle and the spectrum was shown
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Figure IV.17: High field and zero field spectra of 5 wgt %CH2Cl2 in

EBBA (6X>0). The high field spectrum in (a) was obtained with a 90x-t-'

90x sequence with t chosen to detect only the solute signal. The order

parameter calculated from the observed splitting is 0.064 ± 0.001. In

(b), the zero field spectrum.using the field cycle of Figure IV.9b with

dc pulses 'equal to 90 and a 180x refocussing pulse. The order parameter

measured in zero ·field (Szz • 0.063 .:I: 0.001) is identical to that in

high field within experimental error. The intensities and dependence of

the signal on dc pulses are indicative of a sample still aligned with

the original field direction.

221



previously in Figure IV.12. Thus in order to observe the zero field

spectrum, the field cycle with 90~ dc field pulses must be used to

produce signal. Refocussing pUlses can also be employed in the field

cycles of Figure IV.9 and Figure IV.17b is the resulting zero field

dipolar signal of CH2Cl2 in EBBA taken with a 180~ echo pulse in the

field cycle of Figure IV.9b. The uniaxial order parameters measured in

high field (Szz = 0.064 ± 0.001) and zero field (Szz = 0.063 ± 0.001)

are identical within experimental errors.

On the other hand, zero field evolution can be initiated by using

samples with 6X<0 in which the axis of quantization for the nuclear

spins changes on going from high to zero field. Unlike the aX>o case,

no dc pulses are needed to initiate zero field evolution and the sudden

transition field cycle of Figure IV.9a was used with a 180~ echo pulse.

The high field and zero field spectra of CH2Cl2 in ZLI 1167 (6X<0)

appear in Figure IV.18a and 18b. In this case the observed frequencies

of the dipolar coupling are different in high and zero field. Due to

the perpendicular alignment of the liqUid crystal molecules, one would

expect the zero field dipolar spli ttings to be twice as large as those

in high field as will be discussed in the following sections.

&. Spin Hamiltonian in zero Field. The dependence of the high or

zero field NMR spectrum of a liquid crystal/solute system on field

strength, the sign of 6X, and initial condition can easily be understood

through the form of the NMR Hamiltonian. Some of the earlier discussion

is repeated here. In the absence of an applied field, the liquid

crystalline phase alone determines the truncation of the Hamiltonian.

Only two frames of reference are needed to describe the spin inter-

222

I -

i

J



- j

I I I I I I I I I
CH2CI2 in ZLI 1167

a) High field

-

. b) Zero field

.

.1 L 1 1 -l .. L.
, T r ' ,

I I I I I , I I I

223

-4 -2 0 2
Frequency (kHz)

4

XBl866·11161



Figure IV.18: CH2Cl2 (5 wgt %) in ZLI 1167 with 6X<0. The high field

spectrum was obtained with a 90x-t-180x-t sequence with t chosen to echo

only the solute signal. The high field splitting observed in (a) is

reduced by a factor of -0.5 relative to that in zero field due to the

truncation of the Hamiltonian with respect to the field. The high field

order parameter is calculated to be 0.100 ± 0.001. The zero field

spectrum in (b) was obtained using the sudden transition field cycle of

Figure IV.9a with a 180z refocussing pUlse. The order parameter is

identical to that calculated in high field within experimental error

with Szz • 0.101 ± 0.001.
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actions in zero field, the principal axis system (PAS) of the dipolar

interaction and the director/zero field frame of the liquid crystal.

The Hamiltonian in zero field can be written as a product of second rank

spherical tensor operators as given in Equation (IV.6). Due to the

axial symmetry of the two spin dipolar interaction and the uniaxial

nature of either of the nematic phases, there can be no dependence on
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the EUler angles, Y or a, in the Hamiltonian. Therefore, with

(IV.16)

c j

1
~}

J
.J

in Equation (IV.6) the only term which survives is that with m and m'

equal to zero and the director frame Hamiltonian reduces to that given

by Equations (IV.7) and (IV.B). This truncation holds regardless of the

orientations of the liquid crystal molecules. That is to say, there is

no dependence on the bulk alignment of the molecUles as the interaction

need only be considered in the local director frame. Thus for samples

with ~x>o or ~x<o the form of the zero field Hamiltonian is identical.

This similarity in zero field is apparent for CH2C12 in EBBA and ZII

1167; the spectral splittings differ due to different order parameters,

Szz' but the general appearance of the spectra is the same.

Although the zero field Hamiltonians have the same form for the

two phases, it may not yet be evident why dc pUlses are required in the

case with ~x>o to initiate evolution in zero field, but not when ~x<o.

Using any of the field cycles described thus far, the initial condition

prepared in high field is proportional to Iz,L' and if this commutes

with the zero field Hamiltonian evolution does not occur with the sudden

transition in field as described previously. For example, if the sample



in zero field remains aligned along the original field direction, then

the zero field Hamiltonian truncated with respect to the director axis

has the same quantization axis as in high field and commutes with Iz •

Applying a 900 dc pulse to initiate evolution, the normalized signal as

a function of t 1 is calculated according to Equations (IV.10)-{IV.12):
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(IV.17)

where wo • y2h/2mr 3• This calculation does not take into account an

echo pulse or residual field which can easily be incorporated as in

Equation (IV.14).

When ~x<o the form of the zero field Hamiltonian is truncated

identically with respect to the director frame, but if the liquid

. crystal sample remains aligned perpendicular to the field direction, the

zero field and high field frames are no longer coincident. The

magnetization now precesses about the local dipolar fields in zero field

after the sudden transition in field. This can be pictured as if the

liquid crystal (or the averaged local field) is shifted by 900 as a

consequence of the phase rather than the magnetization by a pUlsed

field. In order to calculate the zero field spectrum, a transformation

between the laboratory frame of the initial condition and zero

field/local director frame must now be included. The normalized signal

as a function of t 1 becomes identical to Equation (IV.17),

where R • exp{-i~Iz)exp{-i6Iy) and 6=900 for the fixed relative

-1 -1
S{t1) • Tr{RIz,LR exp{-iHot1)RIz,LR exp{iHot 1)}

3
• cos{2SzzwOt1)

(IV.18)
I

J

J
J
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orlentation of n and the laboratory z axis for I1X<O. It is clear that

there is no ~ dependence in the signal function due to the overall

symmetry of the phase around z. Thus the transformation by R(Q) with

6-900 produces an initial condition, expressed in the director frame,

having the form of Ix. In both cases represented in Equations (IV.17)

and (IV.18), all the magnetization evolves if the alignment is uniform

over the sample. The intensities in the zero field spectrum, and the

dependence on the field cycle used, are again indicative of the bulk

alignment of the sample.

b. Spin Halliltonian in High Field. In a similar manner, the

relative scaling factors of the high field spectra may be understood by

describing the Hamiltonian in high field. The Hamiltonian can again be

represented by Equation (IV. 6) although now an additional transformation

from the director frame to the laboratory/field frame is required and

can be written as
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(IV. 19)

J
J
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where the 0~($6~) term relates the director and lab frames. This

angular term is not averaged over molecular motions since the

fluctuations of the director with respect to the field direction are

slow on the timescale of the experiment. 1,9 Since the liquid crystal

and laboratory/field frames are uniaxial, only the angle 6 is needed to

make the transformation and 000(6)-1/2(3cos26-1). For I1X<O, 6-900 and

the 050(6) term in Equation (IV.19) equals -1/2, while for I1X>O the

angle is zero and this term is equal to 1. The high field spectra are



then scaled by these factors of 1 or -1/2, in addition to Szz, as is

apparent in Figures IV.17 and IV~18, respectively. The order parameters

for the ax<O case can be calculated to be Szz = 0.100 ± 0.001 and Szz =

0.101 % 0.001 in high and zero field, respectively.

4. Summary

The molecular order parameters of nematic liquid crystal/solute

mixtures have been measured in high and zero field and have been found

to be the same in both cases. The resulting values do not differ by

more than an experimental error which is less than a few percent.

Several conclusions can be reached based on the frequencies and

intensities of the zero field spectra, and the apparent dependence of

the signal on the de pUlses used. Due to the short duration and

relatively low fields used for the de magnetic field pulses,.only the

spin states are perturbed and not the spatial ordering of the liquid

crystal molecules. Experimental evidence suggests that fields of the

order of 1 kG need be applied to change the alignment of the molecules

in a time on the order of seconds. 9,29 Most notably, the nematic

systems were not seen to disorder in low (~200 G) or zero·fields ~hen

left in these fields for times on the order of 10-500 msec. For those

samples studied, the zero field spectra are indicative of aligned

systems showing no change from high field. Nematic liquid crystals may

be expected to remain aligned in zero field on relatively long

timescales, as thermal fluctuations would be slow in bringing about

disordering9,10, unless some perturbation such as the application of an

appropriate large field causes more rapid reorientation of the sample.
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It might be interesting to look for changes in the ordering of chiral

phases in zero field which are "untwisted" by an applied field and

steric forces cause it to retwist. 30 An attempt was made to look at

cholesteric samples for which it was found that the T1 was too short.

The relaxation time is related to diffusion through the helix which is

an effective relaxation mechanism. 31

For systems with ~X>O, the ordering of the sample remains along

the original field direction and dc pulses are necessary to produce

dipolar signal in zero field. Since the alignment of the liqUid crystal

molecules with ~X<O is perpendicular to the laboratory z aXis, signal

results with the sudden transition in intermediate field. High

resolution spectra may be obtained with refocussing pulses and allow for

more accurate determination of the order parameters. In mixtures of

'liquid crystal solvents with ~X<O and ~X>O, in concentrations and at

temperatures close to their phase transition regiOn27 ,28, preliminary

results indicate that although these samples are very sensitive to these

experimental limits, even removal of the field does not cause a change

in the aligned state.

In general, demagnetization experiments on nonoriented samples are

expected to produce initial conditions other than Iz,L~ However, due to

the unchanged ordering and molecular motions of the CH2C1 2/nematic

systems (~X>O) in the demagnetization experiment, the magnetization

remains quantized along the laboratory z axis. Thus demagnetization

experiments on the nematic systems produce an initial condition no

different than that in experiments utilizing an intermediate field to

maintain the spin order. DC pulses along various directions of the
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laboratory frame may then be successfully used to produce a new spin

order. Examples of such have already been shown in the composite pulse

experiments and the isotope selective pulses in Sections III.A and D.

Extensions of these zero field experiments are easily envisioned

to more complex systems such as smectics, discotics32a and lyotroPics 32b

which do not order uniformly in an applied field. High field studies of

such materials are hindered due to orientational disorder and thus might

be productively studied in zero field. Examples incorporating the first

class of materials are presented in the following section.

C.. SIIlectic Phases in Zero Field Experiments

1.. Introduction

Nematic/solute systems have.been extensively studied by high field

NMR techniqUes. 2,7,8 The alignment of the sample has a profound effect

on the NMR spectra of these materials since all molecules have an

equivalent average orientation with respect to the applied field.

Admittedly, nematic phases are conveniently studied by such methods as

the molecular motions and large fields truncate the dipolar Hamiltonian

to produce discrete, narrow lines. Even in the absence of a large

magnetic field, the spatial averaging in the liquid crystal retains the

truncated form of the Hamiltonian. Lower temperature smectic and

cholesteric phases, as well as most lyotropic liquid crystalline phases,

do not possess the property of uniform alignment in a magnetic field. 3

Thus in the high field NMR spectra of such systems one find inhomo-

geneously broadened lines due to the random distribution of molecular
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orientations with respect to the applied field. The usefulness of the

zero field NMR experiment lies in the ability to obtain sharp well-

resolved spectra on such disordered materials.

Smectic phases often show a complex and diverse arrangement of the

molecules as discussed in Section IV.A. Some phases are uniaxial and

are describable by a single order parameter while others are biaxialpnd

require more order parameters. Biaxiality is generally attributed to

the type of molecular ordering and to a partial rotational freeze-out of

the molecular motions which can be observed through the angular

dependence of the spectrum of an aligned samPle. 9,33 The biaxial order

parameters can be related to a motionally induced asymmetry in the spin

interactions. 34 Biaxial smectics (primarily smectic C phases) have been

studied in several cases, either oPtically35, by NQR36 or by NMR37

methods. The latter requires oriented samples produced by sample

rotation38 , ac electric fields 39 or attempting to uniformly align the

phase through cooling down the sample from a higher temperature phase in

the presence of a field. 40 ,41 Once an aligned sample is produced then,

like a single crystal, it must be studied as a function of many

different orientations with respect to the applied field. In most

cases, the biaxiality is often a subtle effect and its observation has

often been in dispute or is difficult in unaligned samples. 9,37 In this

section, the high field and zero field NMR spectra of several smectic

phases are presented.

2. High Field and zero Field Spectra

The smectic phases studied were room temperature A, Band E phases
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as described Section IV.A. The smectic A phase was produced using -2

wgt %CH2C1 2 in BCB (octylcyanobiphenyl, EM Chemicals). In this phase

the molecules align perpendicular to the layer normal and are free to

rotate about their long axes. As shown in Figure IV.3, there is no

positional order to the molecules in the layer, a~d they diffuse rapidly

throughout the layer (more rapidly than in B or E phases).1 The smectic

A sample was found to spontaneously align in an applied field. The

smectic A case, due to the sample alignment, is indistinguishable from

that of a nematic phase and calculation of the signal follows

identically as before. Thus the high field spectrum, as shown in Figure

IV.19a, consists of the doublet characteristic of a dipolar coupled pair

of spins scaled by the uniaxial order parameter. In zero field using a

field cycle such as Figure IV.9b with 90~ dc pulses and a 1BO~ echo

pUlse, the zero field spectrum of Figure IV.19b results. The order

parameters for the aligned, uniaxial phase in high field and zero field

are 0.077 :t 0.002 and 0.074 .± 0.001, respectively.

The molecules are arranged in more complicated intralayer

structures in the Band E phases as shown in Figure IV.3. The smectic B

phase has a rotational freedom of the molecules although they are

arranged in a hexagonal pattern. Since in this particular B phase the

molecules align.parallel to the layer normal, the phase is uniaxial. In

contrast, the smectic E phase has restricted rotational freedom of the

molecules about the long molecular axis which is expected to lead to a

biaxiality of the phase. The room temperature smectic Band E phases

consist of mixtures of the same two components: 4-n-butyloxybenzyl-

idene-4'-n-octylaniline (40.B) and 4-n-octyloxycyanobiphenyl (BOCB).
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Figure IV.19: CH2Cl2 (-2 wgt %) in 8CB Smectic A phase. (a) The high

field spectrum was obtained wi th the standard echo. The order parameter

was calculated to be Szz • 0.077 ± 0~002. The zero field spectrum in

(b) was obtained using the field cycie wi th 900 dc pUlses of Figure'

IV.9b and a 180y echo pulse. The order parameter measured in zero field

is Szz • 0.074 ± 0.001. Both high and zero field spectra are indicative

of an aligned sample (indistinguishable from the aligned nematics).
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The smectic B phase consists of -5 wgt %CH2C12 in 60% 40.8 and 40% 80CB

mixture by weight. The smectic E phase consists of -7 wgt %CH2C12 in a

50:50 mixture. The phase diagram of mixtures of these components can be

found elsewhere42 ; as an example, the neat 50:50 mixture has the

following phase transition temperatures

Neither of these phases aligns in a magnetic field unless heated to the

isotropic or nematic phase and cooled in the presence of a field. Since

the zero field experiment does not require an aligned sample, the

unaligned multidomain samples were used. The transition between Band E

phases can also be accomplished with a change in temperature for a given

sample mixture as seen above. The change in lattice structure, E being

a compressed version of B, and the n-fold versus 2-fold rotation are

indicative of a thermally activated motional process 40b • The mechanisms

leading to the biaxiality are just beginning to be understood with their

study becoming of interest in the last 10-15 years.

Because the smectic Band E samples are not aligned in the field,

a distribution of director orientations results. This produces a high

field powder spectrum which is broadened by the frequency dependence on

the orientational distribution. The smectic B case is described first

since it is conceptually easier. Since the phase is uniaxial, the

Hamiltonian in the director frame for the two spin solute system is

equal to that of Equation (IV.7) since the phase is uniaxial
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(IV.20)
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The director frames and laboratory/field frame are no longer coincident,

as for an aligned sample, and a second transformation to the laboratory

frame must be included to give

(IV.21)

Only the T20 term remains in high field and with no ~ or ~ dependence

Equation (IV.21) becomes

(IV.22)

which represents the angular distribution in e of the randomly oriented

directors. The high field spectrum is shown in Figure IV.20a and

consists of the typical powder pattern scaled by the uniaxial order

parameter, Szz, which can be calculated from the separation of the

singularities. Since this phase is not aligned it behaves like a

polycrystalline powder and dc pulses are not required to initiate

evolution in zero field. Thus using the field cycle of Figure IV.9a,

the predicted tnree line spectrum corresponding the the axially

SYmmetric dipolar coupling of the two protons results and is shown in

Figure IV.21. The linewidths are not a function of the phase but rather

the effects of residual fields as is discussed in Chapter V. From the

·separation of the lines, the order parameter can be calculated. High

field and zero field values are 0.041 ± 0.002 and 0.042 ± 0.002,

respectively.

The high field powder spectrum of the smectic E phase in Figure

IV.21a shows a broadened lineshape that can be attributed to the
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Figure IV.20: High field and zero field spectra of CH2Cl2 (-5 wgt %) in

an unaligned Smectic B phase. The high field spectrum of the solute (a)

shows a powder spectrum scaled by the uniaxial order parameter, Szz =

0.041 ± 0.002, as calculated from the separation of the singularities.

The signal in the center of the spectrum is most likely liquid crystal

wpich was not completely removed by the echo. The zero field spectrum

in (b), taken with the sudden transition field cycle of Figure IV.9a

(with no echo pulse), shows the expected thre~line spectrum of two

dipolar coupled protons of an unaligned sample. The calculated order

parameter is Szz • 0.042 ± 0.002. The linewidths are due to residual

field effects and are not a property of the phase.
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Figure IY.21: High field and zero field spectra of CH2Cl2 (-5-10 wgt %)
in an unaligned Smectic E phase. The high field spectrum (a) shows a

broadened lineshape characteristic of a nonaxially sYmmetric coupling.

Poor resolution makes determination of the singularities, necessary to

calculate the value of nand WO, difficult. In-(b), the zero field

spectrum shows six well-resolved narrow lines due to the nonaxial

sYmmetry of the dipolar coupling. The aSYmmetry induced by the

biaxiality of the phase can be calculated from the spectrum.
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asymmetry of the dipolar coupling induced by the biaxial phase. This is

not unlike what has been seen before for the quadrupolar spectrum in a

similar Phase40a~ If features of the lineshape are well enough resolved

to determine their frequencies, the value of nand SzzWo can be

calculated in a manner similar to that of a spin 1=1 system. 9,40a This

is often difficult in the powder spectrum, especially when n is small.

The zero field spectrum is qUite sensitive to the perturbations and

small induced asymmetries due to the narrow lines. As shown in Figure

IV.21b, an additional splitting of -200 Hz which yields a pattern of six

lines (and one at zero frequency due to residual field effects) is

directly attributable to the nonaxial symmetry in the dipolar tensor.

The relationship between the phase biaxiali ty, the asymmetry parameter

and the biaxial order parameters is shown in the following calculation.

3. Expressions tor the Hamiltonian

Three frames of reference, shown in Figure IV.22, are defined:

the axially symmetric PAS/solute molecular frame of the dipolar

interaction (z' axis is designated), the director frame (x,y,z) which

describes the alignment of the liquid crystal molecules with ~espect to

the layer normal, and the domain frame with its Z axis coincident with

the layer normal and its x axis rotated by an angle of ±~ with respect

to the symmetry axis in the smecttc plane. The Hamiltonian can be

written in the domain frame for the second rank dipolar interaction as
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Figure IV.22: Relationships between reference frames used in describing

the Smectic E phase. (a) The z' axis of the molecular/PAS frame of the

dipolar coupling (H-H internuclear vector) is related to the (xyz) frame

of the liquid crystal order director by the angles a and 6. The angle Y

is not required due to the axial sYmmetry of the coupling in the PAS.

The domain frame has its Z axis (layer normal) parallel to the z axis of

the director frame. The molecules, as shown in cross section through

the plane in (b), are aligned at an angle ~ with respect to the symmetry

axis of the liquid crystal.
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where Dm'n(aSY) transforms between the molecular frame and director

frame, and Dmm,(~e~) between the domain and director frames. In the PAS

frame only the A20 spatial term is nonzero, thus n=O and summing over m

yields the nonzero terms

~om = T22A2ot <D;'0(aSO)D:2m,(~eO»
m'
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+ T20A2oL <D;'o(aSO)D~m' (~eO»
m'

+ T2- 2A2oL <D;'o(a~O)D~m' (~eO» -
m'

(IV.24)

Substituting in for the second rank tensor operators for the spin and

spatial terms18 gives

(IV.25)

Using Doane's notation9 , the expression simplifies to

(IV.26)

J
where the terms contained in n are the biaxial order paramters and <S20>

is the uniaxial order parameter which scales wn=y2h/2mr3• J
~ I
d



The S parameters can be dealt with separately in order to express

them in terms of the angles relating the different frames. Much of the

following discussion can be found in Doane's review article for the spin

I=l case. 9,34 The simpler <S20> term is
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(IV.27)

At this stage there are theoretically as many as five elements with the

summation over m'. Because there is a two fold sYmmetry axis

perpendicular to the layer normal 6

and summing over m' results in the following nonzero terms

1 21 2 32 2• <2(3cos 6-1)2(3COS a-1) + 4(sin 6cos2a) (sin acos2~»

(IV.28)

(IV.29)

u
u
u

Because SxX_Syy is generally much less than Szz, more so for a rod-like

molecules, the last term can be dropped. This term describes the

molecular biaxiality9,34, i.e. fluctuations of the liquid crystal

molecule about unequal molecular axes, rather than the phase biaxial! ty.

The director, describing the alignment of the liquid crystal molecules

long axes, is assumed to be along the z axis of the domain as the

molecules align to a very high degree with respect to the layer normal 9,

thus a-o for the phase and <S20>-<Szz>.



The <52- 2 + 522> term can be dealt with similarly. The brackets

represent an average over the molecular motions. The motions of the

molecular frame with respect to the director frame (aSY) are assumed to

be i·ndependent of the diffusion or jumps between positions in the domain

which r~sults in the biaxiality of the phase. 9,41 Asssuming that these

are independent allows one to factor the terms to give
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(IV.30)

The summation and substitution for the DIm terms will not be shown in

detail but results in nine real terms. This number can be reduced to

five by considering liquid crystal phases which are apolar (i.e. the

molecules can be exchanged end for end) and, as mentioned previously,

there is a two fold axis perpendicular to the layer normal. The

expression for TI, containing the five terms of the <52- 2 + 822>

summation, can be related to the spin I-1 expression solved for by

Doane9 which for a-o becomes

(IV. 31 )

The Hamiltonian of Equation (IV.26) has energies corresponding to

(IV.32a)

for the eigenstates

:;- .... '"1.

~ 1

J



f1
i

11> = 2- 1/2(laa> + Iss»

12> = -i2-1/2 (laa> - Iss»
13> = 2-

1/2(las> + ISa»
(IV.32b)
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expressed in the zero field eigenbasis for two dipolar coupled spin

1=1/2 nuclei. The zero field signal can be calculated from

where HO is given by Equation (IV.26). Averaging over all orientations

yields for the normalized signal

1 1
- 3{cos(wOSzznt1) + cos(~oSzz(3-n)t1)

1 .
+ cos(~oSzz(3+n)t1) (IV.34)

.)

- 1
~ j

~ j

J
j

J
J

In the limit of n-O, Equations (IV.26)-(IV.29).above reduce to that of

the axially symmetric.. Smectic B case. The spectrum in Figure IV.21

appears as predicted and thus from the frequencies of the lines values

of Szz = 0.045 ± 0.001 and n = 0.208 ± 0.001 can be calculated. The

peak seen at zero frequency is due to residual field effects explained

in Chapter V.

Unfortunately, due to the dependence of n on several angular

factors as given in Equation (IV.31), the problem is underdetermined by

the single measurement. When a-o in a well ordered phase, the <cos2$>

term is nonzero for partially restricted rotation about the long

molecular axis. This term is representative of a birotational freeze

out of the rotation in a two fold potential. 33 ,34 The phase biaxiality

is related to the fact that an axis , within the layer plane, must be



associated with the phase to describe the molecular ordering. This axis

is not defined in a uniaxial phase. Due to the symmetry of the frames

chosen here only the angle $ is required. Doane has also studied this

same phase mixture using 2H NMR experiments on oriented samPles. 41

Several models are presented for the restricted motion of the liquid

crystal molecules. The most likely models are those involving molecular

jumps or diffusion between four positions with relative orientations $,

$+n, -$ and -$+n where $=22±0.5° or on site librations with an amplitude

of 2$. Both motions were combined with n-flips of the liquid crystal

molecules about the C2 axis through the aromatic ring to account for the

averaging seen in the quadrupolar case. The jump mechanism is feasible

based on diffusion measurements 43 and the value of 220 is reasonable

based on X-ray data. 44 Since Szz of the ordering of the solute PAS

frame is known and with $=220 , the <sin2acos2a> term can be solved for

from the value of n. The calculated value is found to be 0.0043, and as

expected is small since it represents the molecular fluctuations about

axes other then that described by Szz.

4. summary

The smectic phases discussed here were chosen to represent several

aspects of the study of such phases where the differences between

aligned and unaligned, and uniaxial and biaxial samples were shown. In

those cases in which there is rapid n-fold rotation about the liquid

crystal long molecular axis, no component perpendicular to the rotation

axis is expected to survive and thus n must equal zero. The order

parameter of the liquid crystal molecules is then a measure of the
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degree of molecular alignment and the fluctuations of the long molecular

axis. In fact, most smectic phases are biaxial due either to a

molecular biaxiality which reflects the fluctuations about the short

axes of the molecules, or a phase biaxiality in which there is hindered

rotation of the molecules. Biaxiality has been observed directly in

only a few cases through the induced asymmetry in a 14N NQR spectrum or,

through aligned samples. In the zero field spectrum, the non-axial

symmetry is readily and clearly observed.

D. Heteronuclear Spin Systems in Liquid Crystals

Heteronuclear spin systems in solids have previously been studied

by zero field NMR. Inequivalent nuclear spins behave identically to

homonuclear spins except that they can be manipulated independently in

high and zero fields, and additional zero field transitions become

allowed. In combination with liquid crystal solvents, these spin

interactions can be observed in a variety of anisotropic media which

often yields interesting effects in the appearance of the zero field NMR

spectra. This section presents the simplest case of an I-S (I=1 H,

S.~3C) spin pair in nematic and smectic liquid crystalline phases.

In order to produce dipolar signal in an aligned nematic with

6X>O, de field pulses are required. This can be attributed to the

symmetry of the homonuclear dipolar Hamiltonian in zero field and the

initial state of magnetization prepared in high field (i.e. they

commute). An alternative approach involved using nematic phases with

6X<O. Here the behavior of a third situation, involving heteronuclear
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spin systems, is presented.

1. High Field and Zero Field Hamiltonians

A comparison of the high field and zero field Hamiltonian will

begin the discussion since the differences are of the more interesting

aspects of studying heteronuclear spin systems in zero field. For a

13C_1 H pair, the high field NMR Hamiltonian in a uniaxial phase may be

where Szzg1/2<3cos2a-l> is the order parameter of the I-S internuclear

vector relative to the liquid crystal director and scales only the

anisotropic dipolar interaction. Note that the high field Hamiltonian

contains only the secular terms of the dipolar and indirect couplings.

The high field proton spectra of 13CHCl3 in aligned nematic phases

appear in Figure IV.23 showing the doublet patterns for which the peak

separations are given by
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S I.Il- - Jzz u

for ~X>O and 6=00

for ~X<O and 6g900

where WogYI Ysh/2mr3• One can see how liquid crystals with differing

magnetic susceptibility anisotropies can be used to differentiate

between the contributions of J and Wo in the spectra. Using a value of

210 Hz for J45 and r gl.073 A46 , the order parameters for the ~X>O and

~X<O cases are 0.115.:t 0.001 and 0.082.:t 0.001, respectively.

Heteronuclear spin systems in zero field have previously been

discussed in Chapter II.C. In the high temperature limit, the

c 1

J
~ 1
U ._.
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Figure IV.23: High field l H spectra of 13CHCl3 in nematic liquid

crystal phases. (a) 13CHCl3 in EBBA (~X>O) shows the predicted doublet

pattern for a two spin system from whic~ an order parameter of Szz =
0.115 % 0.001 is calculated. (b) 13CHCl3 in ZLI 1167 (~X<O) shows a

doublet scaled by -0.5 in addition to the order parameters Szz = 0.082 ±

0.001. ·The signal at the center of the doublet is most probably due to

residual liquid crystal signal.
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equilibrium initial condition produced in high field can be written as

the reduced density matrix
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p(O) a a1 L+ bS Lz, z, (1V.36)

in which the coefficients a and b represent the relative polarizations

of I and S spins. As there are no Zeeman energy differences in zero

field, the I and S spins are ~dentical with respect to exchange and

additional terms in the Hamiltonian become energy conserving. For the

general case in zero field, the Hamiltonian is then written in the

director frame as

Y1YShSzz
HZF~ - 3 (31 S - l·S + n(1 S -r S ))2nr z z x x y y

- J(1 S . + I S + IS)
. z z y y x x

J
J
U
'. 1~ J

U

and follows from the same description presented previously for the

homonuclear cases. The full J coupling, except anisotropic terms,8 and

dipolar coupling, including any possible asymmetry term (see Section

IV.C), are now included. Truncation of the Hamiltonian by the liquid

crystalline enVironment retains the same terms as for the homonuclear

case. The energy levels and allowed transitions are illustrated in

Figure IV.24, where

SzzwD JE .- (1 +n)1 2 - 4'
(IV.38al

E .-
SZZ~

(1-n) J
2 2 - 4'
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Figure IV.24: Zero field energy levels and allowed zero field NMR

transitions for a pair of I-S spins (I.1H, S.13C). The most general

scheme wi th nl'0 is illustrated based on the Hamiltonian, eigenstates and.

energies given in the text. The energies depend upon the indirect

coupling constant, J, and the dipolar coupling (WO=YIYSh/2~3) scaled by

the liquid crystal unixaxial order parameter, Szz. The asymmetry in the

dipolar coupling (n;O) removes the degeneracy of states 1 and 2

resulting in six allowed transitions. Only positive frequencies are

shown as the spectrum is symmetric about zero. When n=O, levels 1 and 2

are degenerate, thus introducing a zero frequency transition and

reducing the total number to 4 as shown in Chapter II.
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for the zero field eigenstates given previously in Equation (IV.32)

including the singlet state, 14>=2-1/2(laS>-ISa». Note that

transitions are now allowed between the singlet and triplet manifolds

unlike the homonuclear case.

2. Zero Field Spectra

The sudden removal of the intermediate field, as in the field

cycle of Figure IV.9a, initiates evolution at the dipolar frequencies if

the initial condition does not commute with the zero field Hamiltonian.

If the liquid crystal is aligned with the director axes along the

laboratory z axis, such that the z axes in Equations (IV.36) and (IV.37)

are coincident, then for a-b, the commutator is
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Cj

!

. j

(IV.39)

and no signal will result. This is evident since if a=b then the

density matrix in Equation (IV.37) is identical to a homonuclear system.

If though, the coefficient a is not equal to b, as is generally true for

equilibrium S... 13C and I ...1H polarizations, it can easily be shown that

the commutator in Equation (IV.39) for a heteronuclear pair is not equal

to zero and thus evolution will occur even in a sample aligned along the

original field direction. Of course, even if a-b, evolution will also

occur when, as for a polycrystalline sample, there is a distribution of

director axes.

J
j

J



The normalized signal can be calculated for an arbitrary

orientation of director frame, described by the angles e and ~ with

respect to the laboratory z axis, from
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(IV.40)

in which the detected operator is I z and R.exp(-i~Iz)exP(-iely). For

any single orientation of director with n=O this reduces to

Sn(t1) = N{(a+b)cos 2e + (a-b)sin2ecos(~SzzWO+J)t1

+ (a-b)cos
2

ecos<SzzWO-J)t1 + <a+b)Sin2ecos<iSzzWo)t1} (IV.4l)

,
c ;

where WO·YIYsh/2mr3 and N is a normalization constant. The angular

factor depends on a single value of e for a liquid crystal sample which

remains uniformly aligned in zero field. For example, nematic liquid

crystals with 6X>0 will have e_oo and Equation (IV.41) becomes

(IV.42)

Similarly, for a nematic liquid crystal with 6X<0 the angle of alignment

with respect to the laboratory z axis is 900 and

(IV.43)

. )

I
~J

Experimentally this means that separate transitions of the heteronuclear

spin manifold will be selected by the ordering of the liqUid crystal

system. Spectra of 13CHCl3 in nematic phases with 6X>O and 6X<0 are

shown in Figure IV.25 and demonstrate this effect. The order parameter



13CHCI3 in Nematic phases

a) AX> 0

b) AX < 0
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Figure IV.25: Zero field NMR spectra of a 13C_1H pair in nematic liquid

crystals. (a) 13CHC13 (6 wgt %) in EBBA, AX>O. Zero field signal

results after a sudden transition to zero field with lines corresponding

to AW12 and AW34 of Figure IV.24 and Equation (IV.42) with n=O. The

calculated value of the order parameter is Szz = 0.115 ± 0.001. (b)

13CHC13 (6 wgt %) in' ZLI 1167, Ax<O. The spectrum' shows the 'other

possible transitions in the singlet/triplet manifold (Aw14=AW24 and

AW13=AW23 for n=O in Figure IV.24). The relative intensities of the

peaks in the spectrum do not match precisely with those given by

Equation (IV.43) in the text for equilibrium populations and may

possibly be due to relaxation or demagnetization effects. The order

parameter was found to be Szz = 0.083 ± 0.001.
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can be calculated from the spectrum using values of J=+0.210 kHz 45 and

r=1.073 A46 • This yields values of Szz=0.115 ~ 0.001 (~X>O) and

Szz=0.083 % 0.001 (~X<O) for the two nematics.

Nonaligned samples, such as smectic B (axially symmetric) and E

(nonaxially sYmmetric), have a distribution of director orientations and

describing the signal in these cases requires that Equation (IV.41) be

averaged over the angle 6. An axially sYmmetric heteronuclear dipolar

coupling (n-O) produces the spectrum shown in Figure IV.26 and the

signal is given by the normalized expression below
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1
S(t1) • N{(a+b) + 2(a-b)cos(2Szzwn+J)t1

+ (a-b)cos(Szzwn-J)t1 + 2(a+b)cos(~SZZWD)t1} (IV.44)

Due to the symmetry effects of the liquid crystalline phase, the

Hamiltonian may be nonaxially SYmmetric (n~O) as defined previously for

the Smectic E phase. This aSYmmetry lifts the degeneracy of the two

lowest energy levels and increases the number of peaks in the spectrum

such that

1
S(t1) • N{(a+b)cos(Szzwnn)t1 + (a-b)cos(2Szzwn(1-n)+J)t,

1
+ (a-b)cos(2Szzwn(1+n)+J)t1 + (a-b)cos(Szzwn-J)t1

1 1
+ (a+b)cos(2Szzwn(3-n»t1 + (a+b)cos(2Szzwn(3+n»t1} (IV.45)

The spectrum of a nonaxially SYmmetric dipolar coupled pair is shown in

Figure IV.27. This spectrum illustrates the most general form of the

heteronuclear dipolar Hamiltonian for two spins as all possible

transitions in the singlet/triplet manifold are present. An interesting

J
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J

J

-
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13CHCI3 in Smectic B phase
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Figure IV.26: 13CHCl3 in an unaligned Smectic B phase liquid crystal.

The seven peaks correspond to the transitions with n-O of 6w12'

±6w13-6W23' ±6w34 and ±6w14-6W24 between the triplet and singlet energy

levels. In order to account for the positions of the peaks in the

experimental spectrum the sign of Szz must be negative in Equation

(IV.44). The calculated value of Szz is found to be -0.080 ±.O.OOl.



13CHCI3 in Smectic E phase

262

q 
j

-3 -2 -1 o 1 2 3

Frequency (kHz)

XBL 869-11691

Figure IV~21: 13CHCl3 in Smectic E phase liquid crystal with a

nonaxially symmetric dipolar coupling (n~O). The twelve peaks in the

spectrum correspond to all possible allowed transitions in the

singlet/triplet manifold for two heteronuclear spins. The slight

linebroadening and artifacts at low frequencies are most likely caused

by small residual fields. The uniaxial order parameter was found to

have a negative value of Szz· - 0.062 ± 0.001 and an asymmetry parameter

of n • 0.186 % 0.002.
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result arises when calculating the order parameter for the Smectic Band

E cases. In order to account for the frequencies in the spectrum, the

sign of S must be negative for the proper relationship of the dipolar

and J coupling terms, which are written with the same sign of the

Hamiltonian, and J being Positive. 47 T~e order parameters for the

smectic phases are then Szz=-0.080 ± 0.001 and Szz=-0.062 ± 0.001 for

smectic Band E, respectively, with an asymmetry parameter of n=0.186 ±

0.002 in the latter. The relative change in sign of the Szz parameter

between nematics and smectics may be indicative of the different average

alignment of the solute molecules being trapped among different parts of

the liquid crystal molecules. 48

E. Appendix: Liquid Crystal Samples and Experimental Details

1. Experimental Aspects

a. sample preparation. Sample preparation is also mentioned

briefly in the AppendiX of Chapter II. Samples were made homogeneous by

thoroughly heating and mixing the liquid crystal solvent/solute mixture

above its clearing point (isotropic phase) using a carefully regulated

hot water bath as extremely high temperatures can decompose the liquid

crystals. The precision in determining the clearing points is only good

to wi thin a few degrees. Ascertaining the phase is probably the most

difficult aspect of sample preparation. Clearing points are only useful

for determining the nematic to isotropic transition and the liquid-like

nematic phase is often easily recognizable at room temperature. Other

phases are not easily identifiable by sight and one can not assume from
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one known transition temperature that the others will be depressed by

the same amount. Therefore, the liquid crystal samples chosen were

those which had the desired phase over a reasonably broad and accessible

temperature range to allow for the addition of a solute.

b. Field Cycling. The pneumatic shuttling system employed for

translation of the sample and the electronics for producing the zero

field have been described in Chapter II. Minimum air pressures were

used to reduce the physical shock of shuttling the sample. The

possibility of complete disordering and subsequent reordering in the

time of the field cycle is ruled out by the behavior demonstrated under

pUlsed dc fields. The samples were generally found to be extremely

stable under field cycling conditions. Some samples which were found to

be less stable are those consisting of mixtures of two liquid crystal

components where upon shuttling the sample separated or changed phase.

This may be due to problems with miscibility or using mixtures near a

phase transition.

The most serious experimental problems involved temperature

fluctuations over the course of the experiment. These were generally

small «±20
) but can affect either the liquid crystal phase or alter the

value of the order parameter. Samples such as nematics were more

sensitive than the smectics to these effects. Thermal fluctuations can

result in linebroadening and/or a shift in the spectral splitting in

sUbsequent spectral acquistions. Other experimental aspects such as

concentration or field gradients/inhomogeneities will also broaden the

lines. 7,8 Eddy currents, produced by the switching coils, result in

time varying magnet fields and require that long delays be included in
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the field cycle to allow for their decay.

c. Experiments to detect disordering. Several attempts were made

to detect a change in the alignment of the sample in low or zero fields.

The field cycle consisted of the usual sudden transition or

demagnetization cycle with an extension of the time spent in either the

intermediate field or zero field. Initiating evolution after this time

interval would be expected to show any changes in the system. The

limits on the time allowed were determined by the relaxation time in low

or zero fields (- few 100 msec) and the stability of the electronics.

On this timescale, no changes were seen to occur.

d. Relaxation times. The proton relaxation times of the solute

molecules in most nematics and smectics were generally on the order of a

few seconds in high field and 100 msec or more in low fields. An

example shown in Figure IV.28 illustrates the magnitude of the solute

signal as a function of time in zero field from which a rough estimate

of the zero field T1 is gained. The relaxation times of the liquid

crystal molecules is generally so short in high or zero field that only

the evolving solute magnetization is detected. Several experiments were

conducted on selectively deuterated or protonated liquid crystals but no

zero field signal was ever observed. The solvent and solute signals can

be separated in high field by waiting a delay on the order of a few 100

~sec between initial echo pulses. When working in a more homogeneous

magnet to obtain the high field spectra, a delay on the order of

milliseconds is required. Thus using the high field echo may be

unnecessary, as only the solute signal is observed to oscillate, except

its use removes the large background solvent signal.
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Figure IV.28: High field spectra of CH 2C1 2 in Eastman 11650 as a

function of time in zero field. The sample is shuttled to zero field

using of the field cycle of Figure IV.14a with no dc pulses to initiate

evolution in the aligned sample. The sample is allowed to remain in

zero field for a given amount of time before being remagnetized to high

field where the high field spectrum or signal amplitude is measured. As

shown in this figure, the amplitude of the signal decays and from such

the zero field T, can be calculated. No change in the system ordering

is observed with demagnetization to zero field and immediate

remagnetization as is the case for t,=O milliseconds.
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2. Samples

a. Solutes. Dichloromethane and 13C-chloroform were chosen as

simple convenient two spin systems. 49 Both solutes readily dissolve in

the liquid crystals and, in moderately low weight percents (-5 %),

produce sufficient signal without altering the phase ranges by more than

a few tens of degrees. CH 2Cl 2 and CHCl 3 have previously been studied by

NMR in liquid crystal solvents. 10 Although the order parameters are not

large, indicating a small degree of alignment, these solute molecules

were still sensitive probes of the phases. Other solutes with simple

spin systems might be found which align to a higher degree.

b. Liquid Crystals. Compounds which show liquid crystalline

phases generally consist of long organic molecules with one or more

rings in the structure. This ring structure helps to introduce the

diamagnetic susceptibility; samples with ~X>O generally have aromatic

structures, while samples wi th ~X<O generally have cyclohexane rings.

The following section includes some details about the liquid crystals

used. Temperatures are reported in degrees C. The notation is as

follows: K=crystalline, S=smectic, N=nematic, and I=isotropic.
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1. 11650: p-pentylphenyl-2-chloro-4-(p-pentylbenzoyloxy) benzoate

(Kodak) MW 493.0 ~X>O

2. EBBA:

Stable solute/nematic mixture at room temperature with a

broad range. Fairly viscous and stable under shuttling.

p-Ethoxybenzylidene p-butylaniline (Frinton)

MW 281.4



Reasonably stable nematic at room temperature with most

solutes. Some sample separation may occur with shuttling.

3. ZLI2141: mixture of cyanobiphenyls and cyanotriphenyls. (EM

Chemicals) Low viscosity liquid crystal with nematic phase.

Used to see if disordering occurred.

4. ZLI1167: Mixture of propyl, pentyl and heptyl bicyclohexyl-

carbonitriles (EM Chemicals) ~x<o
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No data on mixture. Stable nematic phase with all solutes.

5. ZLI1537: ethylbicyclohexylcarbonitrile (EM Chemicals)

~x<O K~290~SA~46o~N~48o~I

Similar behavior to 4 with narrow phase ranges.

6. ZLI1538: butylbicyclohexylcarbonitrile (EM Chemicals)

~x<O K~28o~SA~54o~N~790~I

Similar to 4 and 5. Useful smectic A range. Aligns in field

7. MBBA: N-(p-methoxybenzylidene)-p-butylaniline

~X>O MW 267.4

I
u

1
J

MBMBA:

8. HOAB:

p-methoxybenzal-p-methylbutylaniline

The latter is chiral and in small weight percents «12%)

with MBBA forms a chiral phase with the helix axis

perpendicular to the field. Very narrow temperature range

and with sOlute/isotropic transition is near room

temperature. Short relaxations times of solute.

4-4'-bis-(heptyloxy)azoxybenzene

K~74o~Sc~930~N~122o~I



Frequently studied smectic C phase. Predicted biaxiality.

9. ZLI3~88: Ferroelectric RT smectic C* Mixture

Composition unknown, obtained via H. Zimmermann from Merck
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10. 40.8:

11. 80CB:

Aligns in magnetic field, no observable biaxiality.

4-n-butyloxybenzylidene-4'-n-octylaniline (Frinton)

MW 365.6 K~32o~SB~48o~SA~60o~N~76o~I

See 11. Unstable neat smectic B phase.

4-n-octyloxycyanobiphenyl (EM Chemicals/BDH)

MW 307

Used in combination with 10, these liquid crystals show room

temperature A, Band E phases. Reasonably stable phases if

mixtures not near phase transition except for A which

separates due to low miscibility.

12. 8CB: bctylcyanobiphenyl (EM Chemicals,K24)

6X>0 J

Similar to 11 in structure. Narrow but useable and stable

smectic A phase with solute. Aligns in a field.

Results using all the compounds listed were not reported in this

chapter. This is generally due to the fact that the behavior of the

nematics with 6X>0 or 6X<0 was identical in terms of alignment,

demagnetization, solutes, similar order parameters, etc. A principal

application of liquid crystals with 6X<0 and 6X>0 comes about when it is

desirable to spin the sample for higher resolution. Depending on

whether the field is produced by a superconducting magnet (Bz along

- i

J
J
J
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spinning axis) or an electromagnet (Bz perpendicular to spinning axis),

it is useful to use one or the other sample where spinning would

otherwise cause the sample to reorient about the spinner axis. In the

mixtures of AX>O and AX<O (primarily 2 and 4), it is very difficult to

prepare the exact concentration to produce the phase transition at room

temperature. Temperature regulation is the most direct approach for

observing the transition, but even so Tc occurs over a very narrow -1-2 0

range. Chiral systems, such as 7 and 9, and Smectic C phases, such as

8, are interesting systems to study as there is predicted to be a

biaxiality to such phases and a non-uniform alignment with respect to an

applied field direction.
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v. NONAXIALLY SYMMETRIC DIPOLAR COUPLINGS

A. Introduction

NMR is an excellent tool for the study of motion in condensed

matter since one observes a time average over the motion resulting in an

average chemical shift, quadrupolar interaction, or dipolar coupling.

Small amplitude motions can result in an asymmetry in the dipolar

coupling, although such motions typically do not result in easily

observable changes in the high field NMR powder spectrum. Zero field

NMR should be sensitive to small amplitude motions which will result in

splittings or extra lines in the frequency spectrum. In the previous

chapter, an asymmetry in the dipolar coupling was found as a result of

the biaxiality and restricted motions in a liquid crystalline phase. In

this chapter, two further examples of motionally induced asymmetries in

dipolar coupled systems are presented. The first case is a study of the

libration of the water molecules in a polycrystalline hydrate by proton

and deuterium zero field experiments. The second involves the effects

of proton jumps in a hydrogen bonded carboxylic acid dimer. As a

concluding section, the relationship between the induced asymmetry and

the effects of residual fields in the zero field NMR experiment is

presented.

B. Librational Motions in a Polycrystalline Hydrate

1. Molecular Motions and Tensor Averaging

a. Dipolar tensor. The characteristic motion of the water
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molecules in a typical hydrate are rapid '800 flips about their C2 axes'

and librations about three axes. 2 ,3 To a good approximation the

librational modes correspond to rotations about the x, y, and z axes 3 of

the molecular coordinate system shown in Figure V., and are commonly

referred to as rocking, waving and twisting, respectively. The

influence of the motion on the proton zero field spectrum is treated by

calculation of its effect on the dipolar Hamiltonian, HD• The rapid

'800 degree flips have no effect since they merely exchange the two

protons. Waving has no effect since it leaves the orientation of the

internuclear vector r unchanged. The dipolar Hamiltonian is therefore

-motionally averaged by only two of the librational modes. The resulting

motionally averaged Hamiltonian, HD', is given in the molecular frame by
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,
i

::::j
1,·<R (6 )R (6 )OR (6 )-'R (6 )-'>.1

2z z x x x x z z

;: I ·D'·1, 2

(V.1)

where 6x and 6z are the librational angles about the x and z axes

respectively, and the brackets signify a time average over the

librational motion. To second order in the angles 6i characterizing the

libration, we can write the motionally averaged tensor, 0', in angular

frequency units as 2 ,4

J
d

0'=

o
2 2

-2+3<6 >+3<6 >
z x
o

(V.2)



XBl 859-12121

Figure V.l: The three librational modes of the water molecules in

barium chlorate monohydrate. In this molecular coordinate, system the

H20 molecule lies in the plane of the paper with its C2 axis parallel to

the z axis. From top to bottom these modes are referred to as waving,

twisting and rocking. Waving does not produce a reorientation of the

internuclear vector, thus only twisting and rocking have an averaging

effect on the dipolar tensor.
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where d=y2h/2~r3. Application of the rotations in the reverse order of

Equation (V.1) produces the same expression for D' to this order of

approximation. An unequal intensity in the amplitudes of the two

librational modes produces a nonaxially symmetric average dipolar

tensor. This is made more clear by defining ~ = D'22 and n= (0'11

0'33)/0'22 and rewriting Equation (V.2) as
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Calculation of the sudden transition experiment zero field

spectrum for this case proceeds in a manner analagous to that described

previously. The eigenvalues for the Hamiltonian in Equation (V.1) can

be solved for using Equation (V.3). The normalized high field signal

expected for a powder sample is given by

\
, j

(V. 4)

where t 1 is the evolution time in zero field. The proton zero field

spectrum of a static water molecule, n=O in Equation (V.4) above, would

consist of lines at zero frequency and at ±Vd=3y2h/8~2r3, where r is the

internuclear distance of the two protons. The effect of the motion is

to split the lines of the static spectrum by an amount proportional to

the asymmetry of the dipolar tensor. These motionally produced

splittings or additional lines in the zero field spectrum are in sharp

contrast with the shoulders on broad powder patterns which occur in the

high field case.



b. Quadrupolar Tensor. The zero field spectrum of a motionally

averaged spin 1=1 nucleus follows from a treatment similar to that

above. Explicit expressions for the dependence of the quadrupole

coupling constants and asymmetry parameter on the librational amplitudes

have been calculated. 2,4 Both the quadrupole co~pling constant and

asymmetry parameter depend on all three librational modes as well as the

exchange frequency characterizing the 180 0 flips. In barium chlorate at

room temperature, however, the flip frequency is sufficiently high that

one need only consider an average over the two orientations. 1 The 180 0

flips average the static quadrupole tensor, which has its principal axis

along the 0-0 bond, to one with its principal component either along the

C2 axis or perpendicular to the molecular plane of the water molecule. 5

The asymmetry parameter is also affected, its value near unity is a

consequence of the motion. 6 One notes however that librational

amplitudes are a function of the reduced mass of the molecule, hence the

amplitudes and NQR frequencies will differ slightly in HOO and O2°.

2. Zero Field Experiments

a. Proton zero field spectra. The proton zero field spectrum of·

isotopic abundance barium chlorate has been presented before in Chapter

II. Intermole9ular dipolar couplings produce linewidths of approx-

imately 7 kHz thus obscuring the splitting due to the motion. The

effect of isotopic dilution by deuterium on the linewidth of the proton

zero field spectrum is shown for a series of dilution levels in Figure

V.2. An increase in the amount of structure in the spectrum is seen as

the level of protonation decreases. The spectrum from a 10% protonated

sample, Figure V.3, shows all three lines predicted by Equation (V.4)
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Figure V.2: Proton zero field spectra.of barium chlorate monohydrate as

a function of isotopic dilution by deuterium: (a) isotopic abundance,

(b) 60% protons, (c) 31% protons, (d) 10% protons. Structure due to the

asymmetric dipolar tensor of dilute water molecules is observed as the

intermolecular contribution to the linewidth is reduced. Unpaired

protons in the dilute samples contribute to the line centered at zero

frequency.
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Figure V.3: a). Proton zero field spectrum of 90% deuterated

Ba(C103)2·H20 obtained with the field cycle shown at the inset. Here

only the positive frequency portion of the spectrum is displayed. All

three lines characteristic of the motionally averaged non-axially

symmetric dipolar tensor are resolved, appearing at 1.37, 41.8 and 43.4

kHz with linewidths of approximately 2 kHz, considerably narrower than

that obtained with the fully protonated material. b). Zero field

spectrum from the field cycle with 900 dc pulses shown in the inset.

This experiment employed a dc field of 0.010 Tesla oriented orthogonal

to Bo • The spectrum is essentially identical with that of the sudden

experiment.
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for the asymmetric dipolar tensor. A value of n=0.047 ± 0.004 can be

calculated from the observed splitting.

By combining Equations (V.2) through (v.4) one can use the

experimental splittings and a value of r=1 .52 angstroms, obtained from

neutron diffraction measurements 7 , to calculate <Sx2>=0.044 and

<8z
2>=0.070 (radians2). Ideally for the zero field calculations one

would like to use the value r' given by r'=<1/r 3>-1/3 where the brackets

signify averaging over the librational and vibrational modes. In the

absence of this information the neutron diffraction data seems

reasonable, however, as pedersen's8 calculations have found the

internuclear distances, reo varying from 1.52 to 1.55 A and that

<1/r3>=0.98(1/r~) which is a rather negligible difference. A detailed

treatment of this subject is beyond the scope of this chapter, however

it is clear that corrections due to differences 9 in <1/r3>. 1/r~, and

<1/r>3 will have little effect on the calculated <8f>'s.

A second experiment was performed to determine if the observed

splittings could be due to residual magnetic fields present during the

zero field evolution period. The field cycle is shown in the inset of

Figure V.3b. In this experiment a 90 0 dc pulse was given immediately

after the sudden switch-off of the intermediate field and a second was

applied after the t 1 period. This sequence. being identical with the

sudden experiment in every other detail, has the effect of simply

changing the relative orientation of the stray field with the initial

condition of the magnetization. The spectrum obtained with this

sequence. Figure V.3b, is essentially identical with that of the sudden

experiment. Results of computer simulations of the effects of stray

fields 24 indicate that residual fields >1 gauss are required to produce
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measurements typically place an upper limit of 0.025 gauss on then
~l

splittings comparable to those seen in Figure V.3. Experimental

285

magnitude of the stray field and thus this is not considered to be an

effect in the splitting.

b. Deuterium spectrum. Although the rapid C2 flips do not

manifest themselves in the proton spectrum, they are readily observable

via their effect on the deuterium quadrupolar spectrum. 2,5,6 The

deuterium zero field NQR spectrum of a 50% deuterated sample of barium

chlorate was obtained at room temperature using the indirect detection

method which is described in detail in Chapter III to selectively

observe only the 2H signal. Since room temperature deuterium low field

T1's are of the order of milliseconds, an indirect detection method is

necessary to observe those deuterons in the HOO molecules. In the

spectrum, shown in Figure V.4, the v+' v_, and va lines are all clearly

resolved and from their frequencies one calculates e 2qQ/h =122.7 kHz and

n=0.960 which is in good agreement with earlier work. 2 Combining the

zero field proton and deuterium data with the quadrupole coupling

constants of the static molecule found by Chiba,2 one can calculate <6 2>y

for the H20 molecule. In brief this is done by 1) calculating <6~>HOO

2and <6z>HOO using the formulas in reference 8 to correct for the reduced

masses, 2) using these expressions to calculate <6~> ~rom the zero field

HOO data, and 3) calculating <6~>H20 by the reverse procedure in step 1.

Using the explicit expressions for the field gradient tensor averaged by

libration and the C2 flipping, one obtains <6y2>=0.123(radians2). The

librations have a relatively minor effect on the quadrupole spectrum,

the value of n near unity is primarily a consequence of the C2 fliPs.6

An advantage of the dipolar measurements is that the static dipole
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Figure V.4: Indirect detection zero field deuterium NQR spectrum of 50%

deuterated barium chlorate monohydrate. All three lines expected are

resolved from which one calculates e2qQ/h=122.7 kHz and n=0.96 in

reasonable agreement with single crystal results of the perdeuterated

material where values of e2qQ/h=121.5 kHz and n=0.976 ± 0.007 were

obtained. The intensities and phases of the peaks are a complicated

function of the level crossing dynamics, initial zero field state and dc

pUlse angles, and are therefore not easily calculated. The bump at

approximately 40 kHz is due to residual proton signal and its small

relative size gives an indication of the selectivity of the indirect

experiment for the deuterons.
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interaction is inherently axially symmetric and any asymmetry is

observed the direct result of motion.

3. Discussion

The non-axially symmetric dipolar tensor produced by libration is

readily observable via the proton zero field spectrum. The agreement

between the results of the two versions of the zero field experiment, as

well as the results of computer simulations, rule out the possibility of

splittings due to residual fields. Results for the mean square

amplitudes of the librational modes are in fair agreement with earlier

data,2,8 especially when one considers that the exact librational modes

might differ slightly from the inertial rotations assumed. 3 The zero

field NQR results for HDO demonstrate the high resolution of the

experiment and the precision with which it can measure the asymmetry

parameter. The parameters relating to the motion are urrderdetermined

with a single NQR experiment since the quadrupolar frequencies are a

function of the three librational modes, the rate of the 1800 flips, as

well as the values of (e 2qQ/h)0 and no' the parameters of the static

molecule. The room temperature deuterium NQR measurements of a hydrate

are usually inaccessible to frequency domain techniques because of their

relatively short T1 's and low quadrupolar frequencies. In general the

2H and 1H results provide complementary information on the motional

characteristics of the system since they possess unique principal axis

systems and hence are affected differently by the different motions

which occur in a system. The zero field measurements have the

significant advantage of being made with a powder sample whereas the

earlier measurements required a single crystal. 2 This aspect should
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allow study of subtle motions in systems inaccessible to single crystal

measurements including amorphous and polycrystalline materials. In

addition, temperature dependent studies can be compared to computer

simulations to understand the dynamics of the system. 10

C. Proton Jumps in a Carboxylic Acid Dimer

1. Introduction

A second example of a motionally induced asymmetry is found in the

dipolar coupling between the carboxylic acid protons in a hydrogen

bonded dimer. In p-toluic acid (methyl benzoic acid), like many

carboxylic acids, the molecules form dimers in the solid state. 11

X-ray ll and NMR 12 data have shown that the protons are in a state of

dynamic disorder at room temperature. The motion of the protons between

two sites relative to the oxygen atoms is expected to lead to an

asymmetry in their dipolar coupling. This motion has been previously

studied via single crystals where the asymmetry was observed 12 and

should be directly observable in the zero field NMR spectrum. NQR

studies of the 170 atoms in the carboxylic acid sites have corraborated

the fact that the protons jump back and forth between sites rather than

the -COOH moieties undergoing 1800 fliPs.13

2. Motionally Averaged Dipolar Tensor

This case can be considered to be identical to that of the

twisting libration in the water molecule. Choosing a molecular axis

system such that the internuclear vector of the protons in the dimer, as

illustrated in Figure V.5, lies in the xy plane of the molecule and that
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Figure V.5: Zero field proton spectrum of p-toluic acid, 98% deuterated
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at all positions except the carboxylic acid protons as shown at top.

The protons of the dimer jump between equivalent positions on the two

carboxylic acid oxygens. The shoulder .of the high frequency dipolar

peak suggests the presence of a motionally induced asymmetry in the

dipolar coupling. The large peak at zero frequency is due to unpaired

protons.



the jumping protons cause the internuclear vector to change positions

symmetrically by an angle ~ about the y axis. (This corresponds to a

twist about the z axis out of the plane.)

The average tensor can be calculated as the sum of the dipolar

tensors at either of the two positions
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o (V.5)

where 01 and O2 are the two tensors differing in orientation in the

molecular frame by ±~ and, x1 and x2 are the mole fractions or

populations of each site. The internuclear vector for the two positions

is assumed equal based on crystallographic data for a closely related

nondisordered carboxylic acid dimer. 14 Thus D1 and D2 are equal and

assuming equal populations of the two sites as expected at room

temperature due to the low energy barrier 12, the matrix form of Equation

(V.5) becomes

-o [
1-3Sin2~

d 0

o

o
21-3cos ~

o
(v.6)

3. Zero Field Spectrum

For the static case, the spectrum is expected to be the usual

three line spectrum. The eigenvalues for the Hamiltonian can be derived

from the averaged tensor in Equation (v.6) and the zero field spectrum

will also be given by an expression similar to that of Equation eV.4).

The zero field spectrum is shown in Figure V.5. From the value

calculated by Meier et al. 12 for a jump angle of ~=18.6° ± 20 and a
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value of r=2.33 ± 0.005 A, peaks are expected at 13.0, 11.52 and 1.48

kHz. The spectrum does not clearly show resolved splittings but the

features in the high frequency peak suggest an asymmetry and appear at

approximately the correct frequencies. The low frequency peak is not

resolved due to the large zero frequency peak due to residual uncoupled

protons.

De Quenching of Residual Fields by Nonaxially Symmetry Dipolar Couplings

1. Introduction

This discussion was motivated by the observation that in recent

zero field NMR experiments, the spectra due to axially symmetric dipolar

couplings were broadened by residual fields, whereas those due to

nonaxially symmetric couplings were not. It is well known that dipolar

couplings involving integer spins can be qUenched. 15 This quenching

effect has been seen to increase with the increasing asymmetry of the

quadrupolar interaction and is reduced in the presence of a magnetic

(local dipolar or applied) field. 15 ,16 The study of NQR lineshapes in

the presence of a modulating field has long been of interest as a means

of assigning NQR transitions and for determining asymmetry

parameters. 17 ,18 Additionally, analytic expressions for the Zeeman

effect on the energy levels of a spin 1=1 nucleus have also been

reported. 17 In this section, an analogous case of the quenching effect

of residual fields with the onset of the asymmetry in the homonuclear

dipolar coupling between two spin 1=1/2 nuclei (a pseudo spin 1=1 case)

in zero field NMR is discussed.
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2. Zero Field NMR Theory with Residual Field Effects

a. The Hamiltonian. Generally the dipolar Hamiltonian is treated

as axially symmetric (11=0) in the principal axis system of the

interaction. However, through motional or symmetry effects, the

resulting Hamiltonian in a molecule fixed frame may become nonaxially

symmetric (11fO). With this in mind, the zero field dipolar Hamiltonian

for two homonuclear dipolar coupled spin I=1/2 nuclei, with the z axis

chosen to be along the internuclear vector, can be written
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(V.7)

The Hamiltonian has no angular dependence in the laboratory frame and is

identical for every crystallite in a powder sample. The energies for

the triplet manifold of two dipolar coupled spin I=1/2 nuclei are

11 °

E1

-wo ( 1 + 11) (V. B)-2-

E2

-wo ( 1 - 11) 11 f °2

E = Wo3

where Wo=y2h/2~r3. The eigenstates and energy levels for this system,

written in the zero field basis set, are illustrated in Figure v.6. The

additional 11 dependent term is seen to lift the degeneracy of two of the

levels when 11fO. The dipolar coupled system is entirely analogous to

~ J

J

J
J
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Figure V.6: Unperturbed triplet manifold energy levels, eigenstates and

predicted spectral transitions of the zero fieldhomonuclear dipolar.

Hamiltonian with n=O and n~O. The eigenstates are written in terms of

the zero field basis set for two spin 1=1/2 nuclei and for both cases

are given as 11> = 2- 1/2 <laa>+ISS», 12> = -i2-1/2 (laa>-ISS» and

13> = 2- l/2 (iaS>+!Sa». The zero field energy levels are independent of

orientation as can be seen from their respective energies El , E2 and E3
given in the text. The n term of the Hamiltonian lifts the degeneracy

of the two lowest energy levels. The lines which appear in the zero

field spectrum are of equal intensity in the absence of a perturbation.

The zero frequency line in the n=O cases arises from nonevolving

magnetization corresponding to the degenerate energy levels.



the quadrupolar spin 1=1 case. The similarity has been noticed for the

8=1 EPR case where expressions for the lineshapes in the presence of a

spin-spin coupling and a field have been calculated. 19 Due to this

similarity, the effects of coupling to a local dipolar field (a

nonresonant 1=1/2 spin) or a residual field (due to' incomplete

cancellation in the zero field region) should be similar to that found

previously for quadrupolar sPins. 15

b. Perturbation by Residual Fields. A rough estimate of the

effect of a small residual DC field on the dipolar Hamiltonian is made

first by perturbation theory. These calculations have been presented

before for n~O,20 and are repeated here for comparison to the n=O case.

The magnitude of Zeeman interactions with the residual field, Bres ' is

assumed to be much smaller than the dipolar interaction. The zero field

Hamiltonian now contains an extra term:
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The angular terms relate the residual field, assumed to be in the lab z

direction, to the molecular frame. If nfO, one can easily show that the

perturbation does nothing to first order as the matrix elements of Ix'

I y and I z are zero. 15 ,16,21 To second order in the perturbation the

resulting energy levels for nfO are

J
J
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z y (V.10)E2 = - -(1-n) + --

Wo(3-n)2 wOn

202
202

E
3

y x
= Wo +

Wo(3-n)
+

Wo(3+n)

where the 0 terms contain the orientation dependence of the residual

field in the molecular frame: 0x=YBressinecos~, 0y=YBressinesin~ and

Oz=YBrescose. The perturbation is seen to shift the energy levels

quadratically in second order and the low frequency transition (E 1 - E2)

is affected most strongly. The shift in energy levels is different for

each crystallite orientation due to the angular dependence in the 0

terms and results in a linebroadening effect when averaged over all

orientations. From these expressions, it is evident that as n increases

the shift in energy levels decreases.

When n=O, due to the degene~acy of two of the zero field energy

levels, degenerate perturbation theory must be used to describe the

situation. In this case, the degeneracy is lifted to first order

linearly in the residual field. To second order the resulting energy

levels for n=O are

Wo 1/2(02 + 02)
E1 - 0 x y

-"2 z 3/2wO + 0z

Wo 1/2(02 + 02)
E2

+ 0 x Y (V.11)= - 2 z 3/2wO - Dz

1/2(D
2

+ D2 ) 1/2(D
2

+ D2)
E

3
x y x YwD

+ +
3/2wo + D 3/2w

D
- Dz z

The effective perturbation is larger for n=O as it is a first order

295



effect. The spectrum in either case will involve a distribution of

Equations (V.10) and (V.11) over all relative orientations of Bres •

c. Numerical Simulations. The effect of the residual fields can

be illustrated through numerical simulations. The residual field is

chosen to be along the laboratory z axis as this is generally the

largest component present in practice. Of course the actual direction

of the residual field has no effeqt on the form of the zero field

Hamiltonian. The simulations calculate the shift in energy levels for

each relative orientation of the field direction in the molecular frame.

The normalized signal, S(t 1), is then calculated as a sum over all

orientations from
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where R = exp(-i$Iz)exP(-iSly) is the transformation between the lab and

zero field frames. The appearance of the spectrum depends most strongly

on the relative orientations of the initial condition and the residual

field and, of course, the relative magnitudes of the zero field

interaction and the residual field.

The simulated spectra, produced with the program RESID.FOR, for a

given residual field and increasing n values appear in Figure V.7. For

n=O, the linebroadening of the high frequency line is significantly

greater than for an individual line with nrO. The low frequency peak is

most strongly affected as predicted from the perturbation theory

calculations and the component at zero frequency results from the fact

that the residual field and initial magnetization are colinear, thus a

component remains along the z axis and does not evolve. As expected
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Figure V.7: Numerical simulations of zero field NMR spectra of two

homonuclear dipolar coupled spin I=1/2 nuclei with a residual field of

0.025 G in the laboratory z direction and increasing values of n. The

first spectrum with n=O shows substantial broadening of the high

frequency lines. The zero frequency peak corresponds to nonevolving

magnetization proportional to Iz,lab and is not strongly affected by the

field. With a nonzero value of n, the low frequency lines are most

affected by the residual field showing broadening and a decrease in

intensity. In addition, a peak appears at zero frequency which should

not occur when n!O. This peak is a component of the magnetization which

does not evolve but rather remains along the residual field. The effect

of the residual field decreases noticeably as individual lines broaden

very little (although are altered in intensity) with larger values of n.

(Note that the spectra are not plotted to scale as the integrated

intensity is in fact constant.)
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this peak increases in size with increasing levels of the residual

field. In the limit of a residual z field which is greater than the

local interactions, a large proportion of the magnetization will remain

locked along the field direction although interesting low field NMR

phenomena result with the sudden transition in intermediate field. 22

3. Experimental Results

The quenching effect has been experimentally observed in two

liquid crystal systems. The zero field NMR spectra of these systems,

consisting of a CH 2C1 2 probe molecule in Smectic Band Smectic E phases,

have been presented in Chapter IV. Both are disordered powder-like

phases, the former with axial symmetry and the latter a biaxial phase

thereby inducing an asymmetry in the dipolar coupling tensOr. The

spectra display inherently narrow lines due to the lack of

intermolecular dipolar couplings. Typically a residual field of

approximately 0.025 G results from shimming the zero field region with a

Gaussmeter. The liquid crystal samples, with very small dipolar

frequencies and narrow lines, have made it necesary to improve upon

this. The zero field NMR spectra taken under identical experimental

conditions are compared with computer simulations in Figure V.8. The

spectrum of the axially symmetric dipolar interaction shows the effect

of a residual field in the broadening of the outer lines and narrow zero

frequency peak. In the case of a nonzero n in the biaxial phase, the

effect of the residual field is reduced although the decreased intensity

of the low frequency lines and the peak at zero frequency are clear

evidence of its presence.

The effects of residual fields can be removed from the zero field
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Figure V.8: Experimental spectra of CH2C1 2 in Smectic B (axially

symmetric, n=O) and E (nonaxially symmetric, n~O) phases and computer

simulations of the effect of a residual field. For n=O, the high

frequency lines in (a) are broadened considerably relative to the line

at zero frequency. The simulation below in (b) was produced with a

residual z field of 0.0175 G and is broadened slightly with a Lorentzian

function. In (c) the linewidths with n~O are quite narrower than in the

former case. The simulation shown in (d) uses the same residual field

as (b) and shows the expected broadening of the low frequency lines, the

altered intensities and zero frequency peak.
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spectrum by using a dc pulsed field as a refocussing echo pulse in

analogy to a high field Hahn echo. 23 For samples such as aligned

nematic liquid crystals, a 1800 pUlse applied in the middle of the zero

field t 1 interval will refocus the magnetization and remove the

linebroadening. For powder samples with n=O, the normalized signal

after a dc pulse in the laboratory x direction can be calculated from
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(V.13)

. ;

which for the normalized signal averaged over all molecular orientations

is

where Szz is the liquid crystalline order parameter which scales the

dipolar interaction. The analytic expression shows that not all the

signal is refocussed and will show no effect of the residual field. A

certain component evolves for only half the t 1 period and is then

broadened by the residual field to half the width of the original line .

The experimental spectrum of the Smectic B phase with a 180~ dc pulse is

shown in Figure V.9. The high frequency lines are narrowed appreciably

and the half frequency broad lines are evident.

4. Conclusions

The residual field quenching by dipolar coupled spin 1=1/2 nuclei



CH2CI2 In Smectic B Phase
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Figure V.9: Experimental spectrum of CH 2Cl 2 in Smectic B phase after

the application of a 1800 dc refocussing pulse in the laboratory x

direction in the middle of the zero field period. The signal appears as

predicted in the text with a portion of the magnetization refocussed

into narrow lines at the higher dipolar frequencies. At half this

frequency, magnetization which evolves under the residual field for only

one half the zero field period produces a broadened line.
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has been shown experimentally and is in agreement with predictions made

from perturbation theory and numerical simulations. This effect is

analogous to that seen for integer spin systems in NQR experiments (1).

The simulations assume a residual field in the laboratory z direction

but can easily incorporate any field direction. As stated above,

altering the dire~tion of the residual field will not affect the zero

field Hamiltonian when averaged over a powder distribution, but altering

the relative orientations of the initial condition and residual field

will affect the appearance of the spectrum. 24 Through pUlsed dc field

experiments which remove the effects of very small residual fields, high

resolution spectra of disordered materials are obtained.
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VI. COMPUTER PROGRAMS

Five computer programs which were written in the course of this

work are included in this chapter. Fortran and executable versions are

stored on magnetic tape. Comments are included in the programs to aid

in their interpretation.

1. INHOM: Computes the effect of a single dc magnetic field pulse

on a zero field state proportional to the dipolar Hamiltonian. The

effects of pulsed magnetic field inhomogenei ty, to a linear or quadratic

approximation of the change in pulse angle over the sample, can also be

included. Single crystal orientations or averages over a powder can be

calculated over a wide range of pulse angles.

2. PLTSIM:· Calculates the zero field NMR spectrum for two dipolar

coupled spin I=1/2 nuclei assuming an initial state equal to Ho. The

signal is calculated for the demagnetization field cycle using two dc

magnetic field pulses. An output file for plotting is produced.

3. OEMAG: Predicts the final demagnetized state in zero field for

a single spin I=1 nucleus as a function of initial crystal orientation,

e 2qQ/h and n values. The output indicates numerically whether one, two,

or more level crossings occur during the demagnetization. A matrix of

these level crossing values, produced as a function of crystal

orientation angles e and ~, can be displayed visually on the Lexidata

using a program written by 0.8. Zax.
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4. QUAD: Calculates the zero field NQR spectrum for a single spin

1=1 nucleus under two dc magnetic field pulses applied in zero field.

The initial condition is that found by program DEMAG and corresponds to

the high field populations being carried over to zero field. An output

file for plotting is produced.

5. RES1D: Computes the perturbation of a small residual z field

on the spectrum of two dipolar coupled spin 1=1/2 nuclei, with or

without a non-zero asymmetry parameter. The initial condition is

assumed to be 1z,L as for the sudden transition field cycle.
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c
c
c
c
c
c
c
c
c
c
c
c

c

c

c

pro~ram to calculate si~nal intensities
for two dipolar coupled spins after a sin~le adlf
pulse in zf. Initial state = H(D). Sin~le cr~stal

orientations are wei~hted b~sin(th) and summed.
Si~nal in arbitrar~ units, scale with no. divisions.
DC coil inho.o~eneities are also considered
to a linear or Quadratic approximation.

this pro~ram is INHOH: incremented calculations of
pulses and orientations. amt 9/3/84

complex*16 m(3,3),n(3,3),rm(3),rn(3),st
co~plex*16 w(3),x,~,z,s,ra(3),rb(3)

double precision p(3),r(3,3),~(3),th,dd,ai

double precision aa,t,ac,tc,ar,pi,del,div,as
dimension f(3)

fct(b,l) = -(b**l)

t~pe*,'this pro~ra. will calculate the zero field
@ intensities'

t~pe*,'as a fct. of a sin~le zf pulse for a
@ ho.onuclear'

twpe*,'dipolar coupled pair of proton spins dema~.

@ to zf.'
t~pe*,'enter initial pulse an~le in de~rees.'

accept*,aa
t~pe*,'enter incre.ent in pulse len~th and no. of

@ repetitions'
accept*,ai,nn
t~pe*,'enter coil inho.o~eneit~ (% field) and no.

@ of divisions'
accept*,del,div
t~pe*, 'enter functional dependence of inhomo~eneit~'

t~pe*, '(O=none, l=linear, 2=Guadratic)'
accept*, ft
ft=ft-l
t~pe*,'enter initial an~le of cr~st. orient. in de~s.'

accept*,t
t~pe*,'enter increment in orientation an~le and no.

@ of repetitions'
accept*,ti,mm

pi=4.0*atan(I.0)
del=del/l00
aa=(aa*(pi/180.0»
t=(t*(pi/180.0»
ac=(ai*(pi/180.0»
tc=(ti*(pi/180.0»
p(l)=-l
p(2)=2
p(3)=-1
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c
c

~l
~

10

~1
20

i

=- ~
30i

C

C

C

c
40

c
c
c
c

c
c
c
c
c
c

c.
c

Set UP functional dependence of field over coil

if (ft) 10,20,30
1=1
Slo to 40
1=1
Slo to 40
1=2

calculate zero field &iSlnal for nn increments of
dc pulse, and ~m increments of theta

do 800 ii=l,nn+l
st=o.o
ar=O.O
ar=aa+(ac*(ii-l»
do 600 kk=l,IUt+l
th=t+(tc*(kk-l»

rotation matrices to be calculated with value
of (th) calculated above

r(l,l)=O.S*(l+dcos(th»
r(1,2)=(2**-.S)*dsin(th)
r(1,3)=0.S*(1-dcos(th»
r(2,1)=-(2**-.S)*dsin(th)
r(2,2)=dcos(th)
r(2,3)=(2**-.S)*dsin(~h)

r(3,1)=r(1,3)
r(3,2)=-r(1,2)
r(3,3)=r<1,1)

calculation of unitar~ transforms and multipli
cation b~ initial den$it~ matrix

now to take into account the inhomo~eneit~

s=O.O
do SOO JJ=O,div
b=JJ/div
as=ar+ar*del*(fct(b,l»
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111

do 110 i=1,3
f(i)=(2-i)*(as)
do 111 i=1,3
x=cexp(cmplx(O.O,f(i»)
do 111 J=1,3
",(i,J)=x*r(i,J)
n(i,J)=(conJSI(x»*r(i,J)
do 140 J=1,3
do 130 i=1,3
~=O.O

z=O.O



120

130

135
140
c
c
c
c

do 120 k=1,3
w=wfr(k,i)*_(k,J)
z=zfr(k,i)*n(k,J)
rm(i>=w
rn(i)=z
do 135 i=1,3
m(i,J)=p(i)*rm(i)
n(i,J)=rn(i)
continue

now to use subroutines to calculate the final
matrices to sive the intensities and freauencies

call .atml(n,m,rb)

310

do 400 i=1,3
w(i)=p(i)*n(i,i)
s=sfw(i)

400 continue
500 continue
c
c weishtins of sinsle crwstal orientations after
c incrementins the anSle (th) to produce powder 'sum'.
c Note, if onlw sinsle orientation is counted,
c then all are weishted the same.
c

if (ti.ea.O .and. mm.ea.O) then
wst=1

else if (th' .ea. 0) then
wst=O.l*sin(ti)

else
wst=sin(th)

end if
st=stfs*wst

600 continue
c
c
c output for plottins
c
700 print*,ar*(180/pi),real(st/(mmf1»
800 continue

stop
end

c
c
c

subroutines

subroutine mat.l(a,b,ra)
matrix multiplier a=a*b
complex*16 a(3,3),b(3,3),ra(3),s
do 14 i=1,3
do 12 J=1,3
s=O.O
do 11 k=1,3

• J
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J
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u
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11
12

13
14

s=sf_<i,k)*b<k,J)
ra(J)=s
do 13 J=1,3
a(i,J)=ra(J)
continue
return
end
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c
c .ore information for output format
c

c
c
c
c
c
c
c
c
c

c
c

312

pro.r•• to c.lculat. iero field intensities
and freQuencies for two dipolar coupled spins
under adlf w/pulses in zf. Crwstal orientations
are weishted b~ sinCth) and summed.

this proSram is PLTSIH: incremeneted calculations of
pulses and orientations with the option of producins
a spec file for plotting. amt 9/2/S4

character*15,fna.e
COMPlex ru(3),rv(3),mC3,3),nC3,3),rmC3),rn(3),at,
co.plex bt,st,cC3,3),dC3,3),Q,wC3),u,v,x,w,z,a,b,

·coMPlex s,ra(3),rbC3)
di.ension e(!),p(3),r(3,J),f(3),g(3),tnCJ),
dimension npt(3),frea(3)
real nt
t~pe*,'this proSra. will calculate the zero'
t~pe*,'field intensities and freauencies for'
tvpe*,'a ho.onuclear dipolar coupled pair of'
twpe*,'proton spins.'
twpe*,'enter internuclear distance in ansstroms'
accept*,h
t~pe*,'enter initial pulse ansles alpha, beta (deSs).'
tvpe*,'where alpha is the first pulse in zfield.'
accept*,aa,bb
twpe*,'enter alpha and beta increments and no. of

@ repetitions'
accept*,ai,bi,nn
t~pe*,'enter initial ansle of cr~stal orientation.'
accept*,t
tvpe*,'enter increment in orientation ansle and no.

@ of repetitions'
accept*,ti, ...
pi=4.0*atanCl.0)
dd=(6.0067e-20)/(Ch*le-S)**3)
aa=(aa*(pi/1S0»
bb=Cbb*Cpi/1S0»
t=(t*Cpt/l80»
bc=(bi*Cpi/180»
ac=Cai*(pi/180»
tc=Cti*(pi/180»
p(1)=-1*Cdd/l000)
p(2)=2*Cdd/l000)
p(3)=-1*Cdd/l000)

t~pe*,'output to spec file? if wes,t~pe 0.'
accept*,ll
if Cll.ne.O) So to 1
tvpe*,'what bandwidth will YOU be plottins?Cin khz)?'
accept*,bw

calculate Zf sisnal for nn increments of beta, .



n
I

c
c
1

and ot alpha, and a. incre••nts ot theta

do 900 ii=1,nn+1
at=O.O
bt=O.O
st=O.O
do 700 kk=1,lflm+1
br=O.O
ar=O.O
br=bb+(bc*(ii-1»
ar=aaf(ac*(ii-1»
th=tf(tct(kk-1) )
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c
c rotation matrices to be calculated with value
c ot (th) calculated above
c

r(1,1)=0.5*(1fcos(th»
r(1,2)=(2**-.5)*sin(th)
r(1,3)=0.5*(1-cos(th»
r(2,1)=-(2**-.S)*sin(th)
r(2,2)=cos(th)
r(2,3)=(2**-.S)*sin(th)
r ( 3 r1 ) =r ( 1 ,3)
r(3,2)=-r(1,2)
r(3,3)=r(1,1)

c
c calculation of unitar~ transforms and multipli-
c cation b~ initial densit~ matrix
c
c a.trices for second anSle calculated first
c

J
J
J
:: l

tJ

10

11

20

30

35
40
c
c
c

do 10 i=1,3
e(i)=(2-i)t-br
do 11 i=1,3
a=cexp(caplx(O.O,e(i»)
do 11 J=1,3
c(i,J)=a*r(i,J)
d(i,J)=(conJs(a»*r(i,J)
do 40 J=1,3
do 30 i=1,3
v=O.O
u=O.O
do 20 k=1,3
v=vfr(k,i)*c(k,J)
u=ufr(k,i)td(k,J)
rv(i)=v
ru(i)=u
do 35 i=1,3
c(i,J)=p(i)*rv(i)
d(i,J)=ru(i)
continue

tor tirst zero field pulse ansle



314

110

111

120

130

135
140
c
c
c
c

do 110 i=1,3
t ( 1> =(2- i)*(•r)

do 111 1=1,3
x=cexp(c.plx(O.O,f(i»)
do 111 J=1,3
lI'I(i,J)=x*r(i,J)
n(i,J)=(conJs(x»*r(i,J)
do 140 J=1,3
do 130 i=1,3
\:1=0.0
z=O.O
do 120 k=1,3
\:I=\:I+r(k,i)*II'I(k,J)
z=z+r(k,i)*n(k,J)
rll(i)=\:1
rn(i)=z
do 135 i=1,3
a(i,J)=p(i)*rm(i)
n(i,J)=rn(i)
continue

now to use subroutines to calculate the final
matrices to sive the intensities and freauencies

call .atml(d,c,ra)
call matml(n,.,rb)

c
c calculation ot final intensities and freouencies
c

; j
U

J
J
J

it (th .ea. 0) then
wst=0.1*sin(tc)

else
wst=sin(th)

end it
at=at+a*wSt
bt=bt+b*wst
st=st+s*wst
continue

weisht sinsle cr\:lstal orientations and sum to
Set powder 'SUIfI'

700

a=O.O
b=O.O
s=O.O
do 400 i=1,3
do 300 J=1,3
w(J)=d(i,J)*n(J,i)
S(J)=p(i)-p(J)
it (s(J).ea.O) b=b+w(J)
it (s(J).lt.O) a=a+w(J)
it (S(J).st.O) s=s+w(J)

300 continue
400 continue
c
c
c
c
550



1

, j

I

J

J
J
U

c
c
c

710

730

750

c
c
c
800

810

840

850

860
870

875

880

900

c
c
c

output to tile

norlll=at+bt+st
it (ll.eo.O) So to 800
print*,'for alpha and beta pulses of:'
pr1nt*,ar*(180/pi),br*(180/pi)
print*,'initial orientation, inc., reps.'
print*,t*(360/pi),ti,lIlm
print 730
tor.at (/,1x,'intensities',14x,'freouencies(khz)',/)
print 75~,at/nor.,p(1)-PC2)

print 750,bt/nor.,pCl)-p(3)
print 750,st/norm,p(2)-p(3)
tor.at (Cfl0.3,tl0.3),5x,t10.3)
So to 900

ereation of spec tile for plottins

treoCl)=p(1)-pC2)
treo(3)=p(2)-p(3)
treo(2)=p(1)-p(3)
tn(1)=at/norll
tn(2)=bt/norm
tn(3)=st/norm
twpe*,'spec tile na.e (spec*.da):'
accept810,tname
torlllat(a)
open(unit=3,name=fnallle,status='new')
hzpt=(bw*1000)/1024
ipts=3
write (3,840) ipts
torllat(iJ)
write (3,850) hzpt
forllat(fl0.J)
do 870 i=1,3
npt(i)=512+Jnint(1000*treo(i)/hzpt)
write (3,860) nptCi),tnCi)
foraat(i5,fl0.3)
continue
print 875
forl/atCII)
print*,'the spec file:'
print 880, fname
for.at (lx,a15)
print*,'has a bandwidth of:'
print*,bw,'khz,for the followinS exptl. info.'
510 to 710
continue
stop
end

subroutines
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c

11
12

13
14

subroutin. a.t.l(a,b,ra)
.atrix multiplier a=a*b
co.plex a(3,3),b(3,3),ra(3),s
do 14 1=1,3
do 12 J=1,3
5=0.0
do 11 k=1,3
s=5fa(i,k>*b(k,J)
ra(J)=s
do 13 J=1,3
a(i,J)=ra(J)
continue
return
end
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J
J
U

c
c
c
c

c
c
c
c

c
c
c

10

11
c
c

pro.r•• DEHAG
a proS ram to calculate the demasnetized
state of a spin one nucleus
a.. t 6/11/86

complex ize(~,J),iex(J,J),i~~(J,J),c(3,3),f(3,3)

complex zz(J,J),zzz(J,J),isa(J,3),r(3,3),s(3,3)
complex o(3,3),x(J,J),v(J,J),z(J,3),ox(3,3),0~(3,3)

cOMPlex oz(3,3),ozz(3,J),ozzzCJ,J),u(3,3)
dimension st(3),pop(J),htempC3),ipt5Cl00,100),lxfC3)
com.on nst,a,et.,th,ph
nst=J
t~pe.,'Inputvalue of e2aQ/h and eta.'
accept.,auad,eta
tvpe*,'Input no. of repetitions in theta and phi.'
accept*,nreps
t~pe*,'Input initial field value Csauss).'
accept*,ho
pi=4.0*atanCl.0)
a=auad*(0.25)
Sa••a=6.45e-1
tc=2.0/floatCnreps-1)
pc=180.0/float(nreps-1)

Settins UP the auadrupolar hamiltonian

a.-J.O*o
bb=-1.0*0
cc-et.*a

Settins UP the initial matrices

do 10 i=1,nst
do 10 J=1,nst
f(i,J)=c.plxCO.O,O.O)
c(i,J)=c.plx(O.O,O.O)
iso(i,J)=cmplxCO.O,O.O)
ize(i,J)=caplx(O.O,O.O)
iex(i,J)=cmplxCO.O,O.O)
iwy(i,J)=caplx(O.O,O.O)
iwv(1,J)=cmplx(1.0,O.O)
iwv(3,1)=caplxCl.0,O.0)
ize(1,2)=cmplxCO.0,-1.0)
izeC2,1)=caplxCO.0,1.0)
iex(2,J)=cmplx(1.0,O.O)
iexCJ,2)=cmplx(1.0,0.O)
do 11 i-=1,3
isa(i,i)=cmplxC-2.0,0.0)
i50Ci,i)=0*isoCi,i)
continue

Now finish the hamiltonian by multiplyins
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c
c

c
c
c
c

and addins th. astrices

call matml(ize,ize,nst,aa,c)
call matadd(t,c,nst)
call .atadd(f,isQ,nst)
call .atmICiex,iex,nst,cc,c)
call mstaddCf,c,nst)
call matmICivv,ivw,nst,-cc,c)
call aataddCf,c,nst)

LoopinS over theta and phi values
note that each theta and phi combination represented

print.,nreps
do 600 iii=1,nreps
tans=-1.0 + tc.tloatCiii-l)
th=acosCtans)
do 500 JJJ=l,nreps
ph=(O.O + pc.tloat(JJJ-1».Cpi/180)
ihold=O.O
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- j

~ 1
- I

j
;

c
c Calculate the level crossinss before the next step
c

14
15

20

26

27

28

c
c

abit-l0.0
h=500.0
hinc-1.0
call levelx(h,hinc,500,lxf)
counta-1
do 20 ii=l,nst
it ClxtCii» 14,14,15
!lo to 20
count-count+1
kk=count+2
hteapCkk)=lxtCii) + abit
continue
if Ccount) 26,27,28
hc=O.O
in=-l
So to 100
hc=hteap(2)
in=O
So to 100
in=1
if C(hte.p(2)-htempC3».le.O.0) then

hn=hteap(3)
hb=hteIllP(2)

else
hn-htemp(2)
hb=htemp(3)

end it
So to 100

Now di.sonalize the hamiltonian and store populations

--1-

f
J

: 1u _---



i 12
~1

c
Cj c
I c

50

c
c
c
60

"-- ;

}
U

J
U

1U

c
100

c
c
c
70

c

c

call zter.(ho,iex,ivv,ize,r)
call matadd(r,f,nst)
call heiSen(r,u,nst)
call order(r,u,nst)
do 12 ii=1,nst
pop(ii)=r(i,i)
if (in) 50,60,70

ihold=273
So to 400

One level crossinS

call zter.(hc,iex,ivv,ize,r)
call .atadd(r,f,nst)
call heisen(r,x,nst)
call order(r,x,nst)
find overlap u and x
call .atraml(u,x,nst,ox)
call overlap(ox,nst,ihold)
ha=hc-2.0*abit
call zter.(ha,iex,i~~,ize,r)

call matadd(r,f,nst>
call heisen(r,~,nst>

call order(r,v,nst>
find overlap x and ~

call .atraml(x,~,nst,o~>

call overlap(ov,nst,ihold)
sao to 400

Two level crossinss

call zter.(hn,iex,i~v,ize,r)

call .atadd(r,f,nst>
call hei.en(r,x,nst>
call order(r,x,nst>
find overlap u and x
call matraml(u,x,nst,ox)
call overlap(ox,nst,ihold)
ha=hn-2.0*abit
call zter.(ha,iex,ivv,ize,r)
call matadd(r,f,nst)
call hei~en(r,v,nst)

call order(r,w,nst>
find overlap x and w
call m.traml(x,v,nst,o~)

call overlap(ov,nst,ihold)
call zterm(hb,iex,ivv,ize,r)
call •• tadd(r,f,nst)
call hei~en(r,z,nst)

call order(r,z,nst)

319



find overlap wand z
call matraMI(v,z,nst,oz)
call overlap(oz,nst,ihold)
hc=hb-2.0*abit
call zterm(hc,iex,ivw,ize,r)
call .atadd(r,f,nst)
call heisen(r,zz,nst)
call order(r,zz,nst)
tind overlap z and zz
call ••traml(z,zz,nst,ozz)
call overlap(ozz,nst,ihold)

c produce fin.l densitv matrix for zero tield proSram
C the nu.bers produced were used to plot a two
c diaensional .ap on the lexidata, each color
c represented the presence or absence of a level
c crossinS and which levels cross
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then

400

500
600

900
c
c
c

it (ihold.eo.273> then
pt-1

else it (ihold.eo.266)
pt=2

else it (ihold.eo.161)
pt=3

else it (ihold.eo.84)
pt=4

end it
ipts(i,J)=pt
print*,iptsCi,J)
continue
continue
stop
end

Subroutines

then

then

subroutine zter.(ho,iex,iwv,ize,r)
c
c sets UP field teras of hamiltonian
c

10

cOMPlex r(3,3),iexC3,3),ivv(3,3),ize(3,3)
co.plex xt(3,3),vt(3,3),zt(3,3)
co••on nst,o,eta,th,ph
Saama=6.45e-1
do 10 i=bnst
do 10 J=l,nst
r(i,J)=(O.O,O.O)
wO=Sam.a*ho
dx=wo*sin(th)*cos(ph)
dv=wo*sin(th>*sin(ph)
dz=wo*cos(th)
do 11 i=lH.st
do 11 J=bnst
r(i,J)=dx*iex(i,J)+dv*ivv(i,J)+dz*ize(i,J)

J
J
J



11

C

c
c
C

continue
return
end

• aatrix aultiplier

321

co.plex a(n,n),b(n,n),d(n,n),rv(64),s
do 14 i=l,n
do 12 J-1,n
s=O.O·
do 11 k=l,n

11 s=sfa(i,k)*b(k,J)
12 rv(J)=s

do 13 J=l,n
13 d(i,J)=x*rv(J)
14 contin'Je

return
end

C

C
subroutine aatadd(a,b,n)

C

C

C

adds two nxn COMPlex matrices a=afb

;

" J

COMPlex a(n,n),b(n,n)
do 10 i=l,n
do 10 J=l,n

10 a(i,J)=a(i,J) f b(i,J)
return
end

C

C

subroutine order(r,u,n)

j

jJ
! J

1
- 1
~

t I
U

c
c
C

C

10

orders the eisenstates by enerSY as heiSen does not
alwavs return thea in the same order

COMPlex r(n,n),u(n,n),t(3,3)
dimension e(3)
do 10 i=l,n
e(i)=real(r(i,i»
continue
do 11 ii=1,n
if (e(1).St.e(2) .and. e(1).st.e(J» then

t(ii,l)=u(ii,l)
if (e(3).st.e(2» then

t(ii,2)=u(ii,3)
t<ii,J)=u(ii ,2)

else
t(ii,2)=u(ii,2)
t ( ii, J ) ='J ( ii, 3 )

end if



else it Ce(2) ••t.eCl) .and. e(2).st.eCJ» then
tCii,1)=uCii,2) .
if (e(I).st.e(3» then

tCii,2)=uCii,1)
tCii,3)=uCii,3)

else
tCii,2)=uCii,3)
t ( ii, 3) =u Ci i , 1 )

end if
else it Ce(3).st.eC2) .and~ e(3).st.eCl» then

tCii,I)=u(ii,3)
if (eCl).st.eC2» tnen

tCii,2)=uCii,1)
tCii,3)=uCii,2)

else
tCii,2)=uCii,2)
t Cii, 3) ='J C1 i , 1 )

end if
end if

11 continue
do 12 i=l,n
do 12 J=1,n
uCi,J)=tCi,J)

12 continue
return
end

c
c.
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coaplex aCn,n),bCn,n),cv(64),s,oCn,n)
do 14 J=l,n
do 12 i=l,n
s=O.O
do 11 k=l,n
s=s+conJsCaCk,i»*bCk,J)
cv(i)=s
do 13 i=l,n
o(i,J)=cv(i)
continue
return
end

c
c
c

11
12

13
14

c

o=a-adJoint*b

i
- ,

c
c
c
c

subroutine overlapCa,n,ihold)

looks for max overlap of eisenstates and assiSns
flnal stat. after level crossins

cO/llplex aCn,n)
real .ax
dimension iJ(3)



indx(ii,JJ,kk)=ii + a*JJ +64*kk
ii=l
JJ=2
kk=4
ihold=O.O
ihold=indx(ii,JJ,kk)
do 10 J=l,n
iJ(l)=ii
iJ(2)=JJ
iJ(3)=kk
if (real(a(1,J».~e.real(a(2,J»)then

lflax=real(a(l,J»
aa=l
bb=J

else
lftax=real(a(2,J»
aa=2
bb=J

end if
if (real(a(3,J».~t.max) then

aa=3
bb=J

end if
if (aa.ne.bb) then

temp=iJ(aa)
iJ(aa)=iJ(bb)
iJ(bb)=telDP
ihold=indx(iJ(!),iJ(2),lJ(3»

end if
10 continue

return
end

subroutine prin(a,n)
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)

J

10

c
c
c
c
c

cOIlPlex a(n,n)
do 10 i=1,n
print*,(a(i,J),J=l,n)
continue
return
end

a pro~ralfl to calculate the level crossins field
of the spin 1 eisenstates from anal~tic solutions
of the enerSlies

diMension e(3),y(3),lxf(3)
co••on nst,o,eta,th,ph
salllla=(6.45e-1)
pi=4.0*atan(1.0)
ea=(1.0+eta)*o



eb=(1.0-et.>*0
ec--2.0*0
x=O.o
v=O.O
z=O.o
ix=O.O
iv=O.O
iz=O.O
lxf(1)=O.O
lxt(2)=0.0
lxt(3)=0.0
do 100 i=1,n+1
v(1)=0.0
v(2)=0.0
v(3)=0.0
hh=h - hinc*(i-1)
d=Sla....*hh
p=-(d**2 + (0**2)*(3.0 + eta**2»
oa=0*(d**2)*«(cos(th»**2)+cos(2*th)+eta*

@ «sin(th»**2)*(cos(2*ph») .
ob=ea*eb*ec
oo=oa+ob
c=(00/2.0)*«(3.0/abs(p»**3)**.5)
bet.-.cos(c)
do 10 J=1,3
k=J-1
ctr-cos«beta+tloat(k)*2.0*pi)/3.0)
cnt=«4.0*.bs(p»/3.0)**.5
e(J)·ctr*cnt

10 continue
v(1)=abs(e(1)-e(2»
v(2)=abs(e(1)-e(3»
v(3)=.bs(e(2)-e(3»
it (v(1).le.1.0) then

x=x+hh
bc=ix+1

end it
if (v(2).le.1.0) then

w=w+hh
i1:l=i1:l+1

end if
if (v(3).le.1.0) then

z=z+hh
iz=iz+1

end if
100 continue

if (ix.n•• O.O) lxf(1)=x/(ix)
if (iw.ne.O.O) lxf(2)=~/(i~)

if (iz.ne.O.O) lxf(3)=z/(i%)
return
end
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c pro.ra. to calculate zero field intensities
c and freouencies tor a sinsle spin 1 nucleus
c under adlt w/pulses in zf. Initial condition
c corresponds to HF pops. SinSle cr~stal orientations
c are weishted in phi b~ sinCth) dependence
c
c this proSra~ is QUAD: incremeneted calculations at
c pulses and orientations with the option of producins
c a spec file for plottinS. amt 10/86
c

character*15,fname
co.plex ru(3),rvC3),m(3,3),nC3,3),rmC3),rn(3),at,bt,
complex st,c(3,3),dC3,3),0,wC3),u,v,x,~,z,a,b,s,

coaplex ra(3),rbC3),tha,thb,ephi,rC3,3),ths,thz,zt,
coaplex zz,t<3,3),cv(3),cbC3)
dimension e(3),p(3),fC3),s(3),en(3),tens(4),nt(4),

(l freo(4)
double precision oo,eta
twpe*,'this proSram will calculate the zero'
t~pe*,'field intensities and f~eouencies for'
t~pe*,'a sinSle spin 1 nucleus.'
twpe*,'enter e20Q/h (kHz) and eta'
accept*,oo,eta
twpe*,'enter initial pulse ansles alpha and beta

(l in dess.'
twpe*,'where alpha is the first pulse in zfield.'
accept*,aa,bb
twpe*,'enter alpha and beta increments and no. of

@ repetitions'
accept*,ai,bi,nn
twpe*,'enter incre.ents in theta and phi (eouator)'
accept*,tt,incp

c
c Settins UP all those hand~ little numbers for later
c

pi=4.0*atanCl.0)
00=00*.25
aa=Caa*(pi/180.0»
bb=(bb*(pi/180.0»
bc=Cbi*(pi/180.0»
ac=(ai*(pi/180.0»
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)

J

u
1 u
I

--J fJ~ ~ i

c
c
c
c

c
c
c

The ouadrupolar enerSies and populations
in zf eiSenstates

en(1)=00*<1+eta)
en(2)=-2*00
en(3)=00*C1-eta)
p(l)=1
p(2)=-1
p(3)=O

more information for output format



c
c
c
c
1

tvpe.,'output to spec file1 if ves,twpe 0.'
Bccept.,xxx
if (xxx.ne.O) .0 to 1
twpe*,'what bandwidth will wou be plottins?(0-1 khz)'
accept.,bw

calculBte zt sisnal for nn increments ot beta,
and of alpha, and tt incre.ents of theta

ar=O.O
br=O.O
do 900 ii=1,nn+1
ar=aa+(ac*(ii-l»
br=bb+(bc*(ii-1»
tha=O.O
thb=O.O
ths=O.O
thz=O.O

326

c
c Loopin. over theta
c

c
c rotation .atrices to be calculated with value
c ot (theta) and (phi) calculated above
c

r(1,1)=.5*(1+cos(theta»*conJs(ephi)
r(1,2)=(2**-.5)*sin(theta)
r(1,3)=.5*(1-cos(theta»*(ephi)
r(2,1)=-(2**-.5)*sin(theta)*conJs(ephi)
r(2,2)=cos(theta)
r(2,3)=(2**-.5>*sin(theta)*(ephi)
r(3,1)=conJs(r(1,3»
1'(3,2)=-(1'(1,2»
r(3,3)=conJs(r(1,1»

c
c
c

c
c
c

it (tt .ne. 1) tinc=2.0/(tt-1.0)
do 701 II=l,tt
at=O.O
bt=O. o·
st=O.O
zt=O.O
c1 = -1.0 + tinc*float(ll-l)
theta=acos(cl)
iPP=Jnint(tloat(incp)*abs(sin(theta»)
if (ipp .ea. 0) ipp=l
pinc=2*pi/ipP

Loopin. here for phi dependence

do 700 kk=l,ipp
phi=pinc*float(kk-l)
ephi=cexp(c.plx(O.O,phi»

Unitarw transform between basis sets

J
J



J
J
U

U

c
c
c
c
c

10

11

20

30

35
40

c
c
c

110

111

120

t ( 1,1>. (2**-.5)
t(1,2)=0.0
t(1,3)=(2**-.5)
t(2,1)=0.0
t(2,2)=1.0
t(2,3)=0.0
t(3,1)=(2**-.5)
t(3,2)=0.0
t(3,3)=-(2**-.5)

calculation of transforMed pulses

aatrices for second angle beta calculated first

do 10 i=1,3
e(i)=(2-i)*-br
do 11 i=1,3
a=cexp(cmplx(O.O,e(i»)
do 11 J=1,3
c(i,J)=a*r(i,J)
d(i,J)=(conJs(a»*r(i,J)
do 40 J=1,3
do 30 i=1,3
v=O.O
u=O.O
do 20 1c.=1,3
v=v+conJg(r(lc.,i»*c(Ic.,J)
u=u+conJg(r(k,i»*d(k,J)
rv(i)=v
ru(i)=u
do 35 i=1r 3
c(i,J)=rv(i)
d(i,J)=ru(i)
continue
call uamu(t,c,cv)
call uamu(t,d,cb)

for first zero field pulse ansle

do 110 i=1,3
f(i)=(2-i)*(ar)

. do 111 i =1,3
x=cexp(cmplx(O.O,f(i»)
do 111 J=1,3
,,(i,J)=x*r(i,J)
n(i,J)=(conJg(x»*r(i,J)
do 140 J=1,3
do 130 i=1,3
':1=0.0
z=O.O
do 120 k=1,3
':I=w+conJS(r(k,i»*m(k,J)
z=z+conJSCr(k,i»*n(k,J)
rm(i)=':1
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do 200 i=1,3
do 180 J=1,3
c(i,J)=p(i)*c(i,J)
m(i,J)=p(i)*m(i,J)

180 continue
200 continue

call m.tml(d,c,ra)
call matml(n,m,rb)

130

135
140

c
c
c
c

rn( i) =z
do 135 i=1,3
m(irJ)=rm(i)
n(i,J)=rn(i)
continue
call uamu(t,m,cv)
call uamu(t,n,cb)

now to use subroutines to calculate the final
.atrices to sive the intensities and freQuencies
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el

I

'1
I

c
c calculation of final intensities and freQuencies
c for a .iven theta and phi
c

300
400
c
c
c
c

700
c
c
c

701

a=O.O
b=O.O
s=O.O
zz=O.O
do 400 i=1,3
do 300 J=1,3
w(J)=d(i,J)*n(J,i)
g(J)=abs(en(i)-en(J»
it (abs(s(J)-0.0).le.ld-4) zz=zz+w(J)
if (.bs(g(J)-(2*eta*QQ».le.ld-4) a=a+w(J)
it (.bs(s(J)-«3-eta)*aa».le.ld-4) b=b+w(J)
it (abs(s(J)-«3+eta)*aa».le.ld-4) s=s+w(J)
continue
continue

Su. over phi v.lues first and weight b~ dphi

at=at+a*pinc
bt=bt+b*pinc
st=st+s*pinc
zt=zt+zz*pinc
continue

Now to su. over theta

th.=tha+at
thb=thb+bt
ths=ths+st
thz=thz+zt
continue

- 1
j

J
J
J
t I
U



860
870

875

880

1
900

J

J

I---I

~1
I
j

j

/

!
I

i
!

c
c
c

710

730

750

c
c
c
800

810

840

850

output to file

rnorm = thz+tha+thb+ths
dnorm=2*rnorll
if (xxx.ea.O) So to 800
print*,'For a spin 1 nucleus with e2oQ/h and eta:'
print*,4*aa,eta
print*,'for alpha and beta pulses of:'
print*,ar*(180/pi),br*(180/pi)
print 730 .
format (/,lx,'intensities',40x,'freauencies(khz)',/)
print 750,real(thz)/rnorm,aa*0.0
print 750,real(tha)/rnorm,2*eta*aa
print 750,real(thb)/rnorm,(3-eta)*oa
print 750,real(ths)/rnorm,(3+eta)*ao
format (f20.5,5x,f20.3)
So to 900

creation of spec file for plott~nS

tvpe*,'spec file nalDe (spec*.da):'
accept810,fname
for.at(a)
open(unit=3,name=fname,status='new')
ipts=4
frea(l)=O.O
frea(2)=2*eta*aa*1000
frea(3)=(3-eta)*aa*1000
frea(4)=(3+eta)*aa*1000
tens(2)=real(tha)/rnorm
tens(3)=real<thb)/rnorm
tens(4)=real(ths)/rnorm
tens(l)=real(thz)/rnorm
hzpt=(bw*1000)/512
write (3,840) ipts
forlDat(i3)
write (3,850) hzpt
forlDat(f10.3)
do 870 i=1,4
nt(i)=l+Jnint<frea(i)/hzpt)
write <3,860) nt<i),tens(i)
forlDat(i5,f10.3)
continue
print 875
forllat(//)
print*,'the spec file:'
print 880, fname
format (lx,a15)
print*,'has a bandwidth of:'
print*,bw,'khz,for the followins exptl. info.'
510 to 710
continue
stop
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c
c
c

11
12

c

c
c
c

c

end

subroutines

subroutine ~rin(a)

cOID~le)( a(3,3)
do 12 i=1,3
do 11 J=1,3
~rint*,a(i,J)

continue
return
end

unitarw transform b=u-adJoint*b*u

co.~lex u(3,3),b(3,3),v(64)
call matra.I(u,b,v)
call .at.l(b,u,v)
return
end

subroutine .atra~l(a,b,cv)

330

l
)

11
12

13
14

c
c .atrix .ulti~lier b=a-adJoint*b
c

co.~lex a(3,3),b(3,3),cv(64),5
do 14 J=1,3
do 12 i=1,3
5=0.0
do 11 k-1,3
5=s+conJs(a(k,i»*b(k,J)
cv(i)=s
do 13 i=1,3
b(i,J)=cv(i)
continue
return
end

· 1

c

11
12

13
14

subroutine ~at~l(a,b,ra)

••trix .uIti~lier a=a*b
co_pIex a(3,3),b(3,3),ra(3),5
do 14 i=1,3
do 12 J=1,3
5=0.0
do 11 k=1,3
5=s+a(i,k)*b(k,J)
ra(J)=s
do 13 J=1,3
a(i,J)=ra(J)
continue
return
end

· .
• 1J

J
J



pro.r•• to calculate the effects of a
residual field Cz) in zero field on
a non-axiallv swmmetric dipolar tensor

eoual incre.ents of dcosCtheta) and increments in
phi deterllined b~ sinCtheta) weishted bw d(phi).
Total intensity normalized to 2 units. Warnins:
this prOSra••aw not work when the residual field
interaction approaches the splittins due to eta.
Also, the eiSenvalues and eisenvectors returned
fro. heisen are sorted bw enersw level. This ma~

not hold for all cases.

co.plex u(3,3), a(3,3), h(3,3), f, e(3), w
dimension peak(2,1024)
co...on nst,n
nst = 3
n = 3
tvpe*, , Input residual field strensth in Gauss.'
accept*, res
resk = res * 4200.0
tvpe*, , Input dipolar couplins scaled bv S (kHz),
and eta.'
accept*, dd, eta
note that dd is 1/3*spectral freouencv
ddd • dd*1000.0
pi = 4.0*atanC1.0)
tvpe*, , Input no. of incre.ents in theta, and phi
(at eouator).'
accept*, tt, incp
ip = incp/360
tvpe*, , Input full bandwidth in kilohertz.'
accept*, bdw
hzpt = bdw*1000.0/1024.0
tvpe*, , Output to file for plottins1 (O=no,l=~es)'

accept., iplot
if (iplot .ne. 1) so to 5
tvpe*, , Input nu.ber of spec file for plottins.'
accept*, i fl
print*, , Field, Couplins, Eta, Theta Inc., Phi Inc.,
Bndwth'
print*, res, dd, eta, tt, incp, bdw
if (iplot .eo. 1) print*, 'Spec file no. ' , if1

- ,
i

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

PrO!lra.. RESID AMT 6/29/86
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The followins .atrix aCn,n) is I(z,lab) and also
the for. of the residual field.

if (tt .ne. 1) tine = 2.0/(tt-l.0)
do 700 ii = 1, tt
cl = -1.0 + tinc*float(ii-1)
theta = acos(cl)
ipp = Jnint(ip*360*abs(sin(theta»)



it (ipp .eG. 0) ipp • 1
pine = 2*pi/iPP
do 600 JJ = 1, ipp
phi = pine*tloat(JJ-l)

e
xxx = sin(theta)*eos(phi)
YVV = sin(theta)*sin(phi)
zzz = cos(theta)
a(l,l) = c&plx(O.O,O.O)
a(~,2) = Yww*cmplx(1.0,0.0)
a(l,]) = xxx*emplx(1.0~0.0)

a (2, 1) = a <1., 2 )
a(2,2) = aUr!)
a(2,]) = zzz*cmplx(0.0,1.0)
a(],1> = a(l,])
a(],2) = conJS(a(2,]»
a(],]) = a(l,1)

c
c
c Set UP initial Ha.iltonian
c
c The .atrix h(n,n) is the initial state includins the
e dipolar terms and the residual field.
e
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do 11 i = 1,]
do 10 J = 1,]
h(i,J) = caplx(O.O,O.O)
u(i,J) = cmplx(O.O,O.O)

10 continue
11 continue

h<1,l) = ddd*c.plx(2.0,0.0)
~h(1,2) • a(1,2)*resk

h(l,]) = a(1,3)*resk
h(2r!) a(2,1)*resk

- 1

= ;

h(2,2) • ddd*eMPlx(-(l-eta),O.O) _ J

h(2,]) = a(2,])*resk
h(],1) = a(],1>*resk
h(],2) = a(],2)*resk
he],]) • ddd*cmplx(-(l+eta),O.O)

e
c Now diasonalize this matrix
e

call heiSen(h,u,nst)
it (eta .eG. 0) So to 15
call sort(h,u)

15
50
c
c
c

c
c

do 50 i=l,nst
e(i> = heiri)

Now tind the I(z,lab) in the zero field basis

Now find iJ and Ji ele.ents for intensities and

J
J
J



e
e
e

seale bw .nsular powder terIRs and find enersies
Save this infor~ation in an arraw for plott ins

333

W = 0.0
do 300 i = 1, nst
do 200 J = 1, nst
W := a(i,J)*a(J,i)
if Creal(w) .It. 1e-6) So to 200
f • e(1) - e(J)
ipnt = 512 + JnintCrealCf)/hzpt)
peak(1,ipnt) := ipnt
peak(2,ipnt) := realCw)*pine + peak(2,ipnt)

200 eontinue
300 eontinue
e
e
600 eontinue
700 eontinue
e
e Output to plottins file
e

k = 0.0
SUIll. = 0.0
print., , Point Number and Intensities:'
do 701 iii=1,1024
if (peak(2,iii) .ne. 0.0) print*, peak(l,iii),

ff peakC2,iii)
su•• := sua. + peakC2,iii)
if Cpeak(2,iii) .ne. 0.0) k = k + 1

701 eontinue
e

I
iJ

70S

710

750
800

e
900

e
e
e

e
e
e

if (iplot .eo. 0.0) So to 900
eall defile('spee',ifl,O)
writeC1,70S) k
for.atCi6)
write(1,710) hzpt
forlRat(e14.6)
do 800 i = 1,1024
if (peak(2,i) .eo. 0.0) So to 800
write(1,750) Jifix(peakC1,i»,

@ peak(2,i)/(sulR./2)
foraat(i6, e14.6)
eontinue
elose (unit=01)

stop
end

subroutines

subroutine sort(a,b)

sorts the ha~iltonian and eigenveetors
based on .asnitude of eigenvalues



C

15

C

100
200

220

230

300

320

330
~OO

415

cOMPlex aC3,3), bC3,3), aworkC3,3), bworkCJ,J)
di.ension s(3), t(2)

do 15 i=1,3
sCi) = realCaCi,i»
rM.xl = a.axlCsCl),sC2),sC3»
it Crmax1 .eo. s(1» then

itlasa = -1
else it Cr.axl ••0. 5(2» then

itlasa = 0
el •• it CrMaxl .eo. s(3» then

itlasa = 1
end it

it (itlasa) 100,200,300
sao to 400
do 220 i=1,3
-awork(i,1) = aCi,2)
aworkCi,2) = aCi,1)
aworkCi,3) = aCi,3)
bworkCi,l) = bCi,2)
bwork(i,2) = bCi,l)
bworkCi,3) = bCi,3)
do 230 i=1,3
aCl,i) = aworkC2,i)
aC2,i) = awork(l,i)
aC3,i) • aworkC3,i)
bCl,i) = bwork(2,i)
b(2,i) • bwork(l,i)
bC3,i) = bworkC3,i)
sao to ~OO

do 320 J=1,3
awork(J,1) • aCJ,3)
aworkCJi2) = a(J,2)
aworkCJ,3) • a(J,l)
bwork(J,l) = b(J,3)
bworkCJ,2) = b(J,2)
bwork(J,3) = bCJ,l)
do 330 J=1,3
aC1,J) = awork(3,J)
aC2,J) = awork(2,J)
a(3,J) = awork(l,J)
bCl,J) = bwork(3,J)
b(2,J) • bwork(2,J)
b(3,J) • bwork(l,J)
do 415 i1:1,2
t(i) = re.l(a(i+1,i+l»
rmax2 = amax1(t(1),tC2»
it (r.ax2 .eo. t(l» ~o to 600
do 520 k=1,3
aworkCk,l) = a(k,l)
aworkCk,2) = aCk,3>
awork(k,3> = a(k,2)
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bwork(k,l) = b(k,l)
bwork(i,Z) = b(k,3)

520 bwork(k,3) = b(k,2)
do 530 k-l,3
a(l,k) = awork(l,k)
a(2,k) = awork(3,k)
a(3,k) • awork(2,k)
b(l,k) = bwork(l,k)
b(2,k) = bwork(3,k)

530 b(3,k) • bwork(2,k)
600 return

end
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