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Pulsed Zero Field NMR of Solids and Liquid Crystals
Ann M. Thayer

Abstract

This work describes ;he development and applications to solids and
liquid crystals of zero field nuclear magnetic resbnance (NMR)
experiments with pulsed dc magnetic fields. Zero field NMR experiments
are one approach for obtaining high resolution spectra of amorphous and
polycrystalline materials which normally (in high field) display broad
featureless spectra. The behavior of the spin system can be coherently
manipulated and probed in zero field with dc¢ magnetic field pulses which
are employed in a similér manner to radiofrequency pulses in high field
NMR experiments.

In Chapter I, the fundamental nuclear spin interactions and
formalism used throughout are introduced. The field cyeling scheme is
explained theoretically and practically in Chapter II, including
calculations of the signal function for a few illustrative experimental
examples. Technical details are relegated to the appendix. Chapter III
introduces how experimental dc pulse sequences can be exploited to
improve pulsed field homogeneity with composite pulses. Such sequences
are also used for the detection of NMR and NQR spectra with increased
sensitivity via level crossings, for isotope selective pulses, and for
two dimensional extensions of the experiment. Theoretical consider-
ations of the initial zero field state after demagnetization are also
included.

The study of liquid crystalline systems by zero field NMR methods



is the topic of Chapter IV. Nematic phases are studied in order to
observe the effects of the removal of an applied magnetic field on
sample alignment and molecular order parameters. In nematic phases with
positive and negative magnetic susceptibility anisotropies, a comparison
between the forms of the spin interactions in high and low fields is
made. High resolution zero field NMR spectra of unaligned smectic
samples are also obtained and reflect the symmetry of the liquid
crystalline environment. These experiments are a sensitive measure of
the motionally induced asymmetry in biaxial phases. Homonuclear and
heteronuclear solute spin systems are compared in the nematic and
smectic phases. 1In Chapter V, nonaxially symmetric dipolar couplings
are reported for several systems. The effects of residual fields in the
presence of a non-zero asymmetry parameter are discussed theoretically
and presented experimentally. Computer programs for simulations of

these and other experimental results are found in Chapter VI.
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I. INTRODUCTION

A. Introduction

Nuclear Magnetic Resonance (NMR) involves the interaction of
nuclear spins with static and time dependent magnetic fields. It can be
used to obtain information on chemical identity, structure and dynamics.
This information is contained in the nuclear spin Hamiltonians which may
be probed as perturbations in the presence of an applied static magnetic
field or, as will be discussed in this thesis, in the absence of such a
field. In this first chapter, the formalism and basic interactions are
introduced. Later chapters describe the theory and implementation of
zero field NMR techniques and their applications to polycrystalline
solids and liquid crystalline mesophases. In the experiments presented,
the similarity between the uses of pulsed dc magnetic fields in zero

field and the high field radiofrequency pulses of "normal" NMR methods

is considered.
B. The Density Matrix

A pure quantum mechanical state can be represented by a single

ket , |w>, which when expanded in a complete orthonormal basis set, ]un>,

is written

lo(e)> = T e (t)]u > (1.1)
n .

The coefficients, ¢, may be time dependent and often contain arbitrary

phase factors. In NMR, one is generally concerned with measuring the



average expectation value for an ensemble of identical systems, rather
than observing a single state. In such cases, it is convenient to
employ the density matrix.1

The elements of the density matrix, p, are defined in the
expression for the ensemble averaged expectation value of an operator,

0, as

e *
0> =1 zce <ulofu>
nm

=Iz%p <ulofu> (1.2)
nm

The quantities cmc; can be thought of as the matrix elements of the

Hermitian operator, p, where

*
c C
mn

- <um|p|un> (1.3)
From Equations (I.2) and (I.3), it is evident that the expectation value

of any operator is quite easily calculated from

<0> = Tr{p0} = Tr{Op} (I.4)

The diagonal elements of the density matrix, Phn? correspond to the

ensemble averaged populations of the states u, and the elements p,.

n
correspond to coherences between states u, and Up, - The essence of the

random phase approximation2

is that the off-diagonal elements are equal
to zero at thermal equilibrium. The diagonal elements, or populations,

are expressed in terms of the Boltzmann distribution

1
Pn = 7 exp(iEn/kT) (1.5)

in which the partition function Z=Znexp(iEn/kT). Writing Equation (I.5)

.
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in terms of the Hamiltonian of the system yields an expression for the

density operator
p = % exp (1H/KT) - (1.6)

The Hamiltonian for a nuclear spin system at thermal equilibrium in a
large applied magnetic field is dominated by the Zeeman Hamiltonian
(HZ=-onz where wO=YBO) since this interaction is orders of magnitude
larger than the internal spin interactions. Expanding the exponential
in Equation (I.6) and truncating to the first two terms (since KT>>H, in

the high temperature limit3), the density operator becomes

w I

Hy _la .23 (1.7)

:
p =70 -7 Z KT

In order to interpreﬁ and predict the behavior of an ensemble of
nuclear spins with time, the evolution of the density operator must be
understood. The evolution of the density operator is given by the

Liouville-Von Neumann equation)4

95 = i[p,H] (1.8)

For a time independent Hamiltonian, H, the solution of Equation (I.8) is
p(t) = exp(-iHt)p(0)exp(iHt) (1.9)

in which exp(-iHt) is termed the propagator of the system. The
Hamiltonian, H, appearing in the exponential terms can include the
effects of‘local spin interactions or the transformation of the density
matrix by application of a pulsed field. The first term of the density
operator in Equation (I.7) is unchanged by the unitary transformation of

Equation (I.9) and the reduced density operator is then defined as



€

o
P = mezl, = BI, (1.10)

£~

representing the high field equilibrium state of the system.
C. Nuclear Spin Hamiltonians

In this section, the nuclear spin Hamiltonians are presented and
discussed. Since most of‘the experiments to be described occur in the
absence of an applied magnetic field, the usual rotating frame
transformation3’5 is not used. 1Instead, general forms of the
Hamiltonians are presented and specific frames of reference are

6,7 form of

indicated for individual examples. The secular or truncated
the Hamiltonians in large magnetic fields (i.e. that part which commutes
with IZ) is presented for comparison in some instances. The actual
mechanics of the truncétion are covered in many texts which can be
consulted for reference3’6'8.

The Hamiltonians can be written as a product of a second rank

(3x3) Cartesian tensor and two vectors,7
X,¥Y,2
H = X'Q'Y = I Ainin (I.11)

i,

The tensor, A, describes the coupling between the vector components, X
and Y, which can correspond to spin.vectors of the same or different
nuclei, or a magnetic field vector. The matrix representation of the
Cartesian tensor depends upon the choice of reference frame. Transfor-
mations between different frames is discussed in a later section. The

principal axis system (PAS) of A is that which renders A diagonal.

foee
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1. Zeeman Interaction
The basis of nuclear magnetic resonance lies in the intrinsic spin
angular momentum, I, of most nuclear species. The spin angular momentum
is proportional to the magnetic moment, u, which interacts with an

applied magnetic field, B. The interaction is expressed as

HZ =~ uB = - YI(h/Zﬂ)BOIZ (1.12)

where the field, Bo’ is chosen as the laboratory frame z axis and IZ is
the component of spin angular momentum in this direction. The
gyromagnetic ratio, Y1» is a constant for a pafticular nuclear species
and plays an important role in magnetic resonance. For example, the
abo&e interaction may be expressed in terms of the resonance frequency,

wo=YIBO, of a nucleus in an applied field

HZ = - onz (I.13)

in angular frequency units of radians/sec. This is by far the largest
interaction as it is on the order of megahertz (v=w/27). For a given
field, this frequency Wy is characteristic of a nuclear spin due to its
dependence on YI. Therefore, in an applied field, one gains a handle on
different nuclei allowing them to be distinguished and manipulated on
the'basis of resonance frequency. While this may seem a trivial fact

for most students of NMR, this property is later shown to be an

" important experimental factor.

The eigenstates of the Zeeman Hamiltonian are the usual angular

momentum states, |m>, upon which the angular momentum operators act



according to

I[m> = m|m>

2 (I.14)
I%m> = I(I+1)|m>

and defining I, = I,+iI, and I_ = I,-iI, as the raising and lowering

y y

operators, respectively

2|01

I |m> = [1(I+1)-m(m+1)]
(1.15)

172

I_|m> = [I(I+1)-m(m-1)]""“|m=-1>

where m=-I, -I+1,...,I-1, I for the (2I+1) eigenstates of a single

nucleus, spin I.

2. Chemical Shift-Interaction
In the presence of a magnetic field, a nucleus is shielded by
surrounding electrons. The chemical shift is a measure of the degree of

this shielding effect and takes the form

Hog = = Y;I°g'B (I.16)

and is proportional to the applied field. In the absence of a field,
the chemical shift vanishes. The chemical shift tensor is a
characteristic of different chemical sites and is therefore frequently

used for their identification.

3. Radiofrequency Interaction
The interaction of the nuclear spins with an applied radio-

frequency (rf) field can be described by the Hamiltonian

[—

S

-
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Hr,f = - YIBdIXZCOS[wt + ¢(t)] (I.17)

in which the irradiation is applied in a direction perpendicular (x) to
the static field (z). The apblied field is characterized by an
amplitude wy = YIB1, a frequency w of the irradiation and a phase ¢.
These experimental variables provide for a complex and varied approach
to the manipulation of nuclear spins. The treatment of a pulsed rf or

dc field on the density operator is discussed in later sections.

4, Quadrupolar Hamiltonian

Certain nuclear spin interactions exist even in the absence of an
applied magnetic field and it is these which are of interest in zero
field NMR and NQR experiments. One is the quadrupolar inter‘action8
which, in analogy to the chemical shift in high field, acts as a site
specifie chemical label. For nuclei with spin I21, the nucleus has a
nonspherical distribution of electric charge, i.e. a quadrupole moment,
eQ. This quadrupole moment is a property of a particular nuclear
species and interacts with electric field gradients arising in the local

environment of the nucleus (e.g. bonding, crystal structure, etc.). The

coupling of the nucleus and electric fields for a single spin is given

Dy

eq I,°V1I (1.18)

By = - ster-n e U

where V is the electric field gradient (EFG) tensor. As stated

previously, in the principal axis frame of the interaction the tensor is

\

diagonal with three components sz, v and Vexe These are defined such

yy
that



[V, | >> [Vyyl >> | Vx|
and

v,, + V., + V., =0 (I.19)

the latter in accordance with the Laplace's Equation. The largest
component of the electric field gradient is often defined as V,,=eq, and
the asymmetry parameter n, which describes the deviation from axial

symmetry of the electric field gradient, is defined by

n = XX < (I.20)

The Hamiltonian written in the principal axis frame of the interaction,

in terms of angular momentum operators, becomes

equ 2

By = - TTET-DHzm

2 2 2
[3IZ - I+ n(Ix - Iy)] (I.21)

Note that in the principal axis frame there is no angular dependence.
Two characteristic features of this interaction are the value of
e2qQ/h, the quadrupole coupling constant, and the asymmetry parameter,
n, which are very sensitive measures of different sites in a molecule,
motions or bonding. Molecular motions produce an averaging effect of
the gquadrupolar interaction making it a sensitive measure of these
effects. The quadrupolar interaction can be quite large (kilohertz to
many megahertz) but, in the cases relevant to this work, is often on the
order of 100-200 kHz. 1In high field, an interaction of this magﬁitude
would be truncated with respect to the applied field and the secular

form is

. i
|
[Ry—

o

—
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2
Ho e qQ 2

Q- ~ BI(2I-1)(h/2 ) (I.22)

2 ., 2 2
= [(3cos“8=1) + nsin BcosZu](BIZ - I

o
Ml oo

The orientation dependence arises from the relation of the principal

ooy

axis frame to the laboratory/field frame. For a powder distribution of

crystallites, the'angular dependence differs for each orientation and

P
O

results in a broad range of quadrupolar frequencies and hence a broad

spectrum.

5. Dipolar Hamiltonian
Another such field independent interaction is the direct, through
space coupling of nuclear magnetic moments as described by the dipolar

8

i Hamiltonian. The Hamiltonian may be written as a sum over the

] . couplings of many spins, or for just two spins as

| D 1 2
-
B Y. Y.;h {3(I, r)(I.°r)
| H = - —2 ! 2 -I,-1 (1.23)
;i D 211'1"3 : I’2 1 2
12 12

where r,, is the internuclear distance between nuclei 1 and 2 and r is
the unit vector. The dipolar interaction is a traceless, second rank

- tensor and is generally considered to have axial symmetry. The dipolar
Hamiltonian is similar in form to the quadrupolar Hamiltonian (n=0) with
.

products of two spin, rather than single spin, operators. The

= Hamiltonian may be expanded into a sum of six terms
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Y1 Y2h —
3 [A+B+C+D+E+ F] (I.24) :
12

21r

in which

A = (300328-1)1

z1Iz2
B = + (3c0s%8-1)(I_,I_ - I,-L,) ’
2 217z2 1 72 o
-3 -
C =3 sinBeosBexp( 1a)(IZ1I+2+ I+1Iz2)
. (I.25)
=C = ésinBcosBexp(ia)(I I +I.I_.)
D 2 2112 111z

3.2 Y
; = gsin Bexp ( 21a)I+1I+2

* 3. 2 .
F=E = Fsin Bexp(21a)I_TI_2

expressed in an arbitrary frame. The angles, a and B, relate this frame
to the principal axis frame with the PAS z axis generally chosen to be
the internuclear vector. When the reference frame is determined by an
applied fieid (z axis), the Hamiltonian reduces fo the secular terms A

and B

Y,Y.h
12
=" 4 3 [3Iz1Iz2 -
™2
(I.26)

Y, Yh
= - u_3— a1, 1, - 1/72(1,,1I,
™12

‘ 2
H I1'12](3cos B=1)

o}
D

H + I~1I+2)](300328—1)

o]
D 2
As in the case of the quadrupolar interaction, the angular dependence on

B (relating the orientation of the internuclear vector and the field

direction) produces a broad range of spectral frequencies for ;f
polycrystalline samples. If structure in a spectrum due to dipolar

couplings can be deciphered, then the geometry of the spins can be ;j
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determined from the r dependence of the interaction.
For a heteronuclear pair of spins, the dipolar coupling is written
in the same form as Equation (I.23) replacing the vector operator of the

second spin I, by S such that

Hy = - I'D*S (1.27)

where S is generally used to denote a rare spin species and I an

abundant one. The Hamiltonian can be expanded in the same manner as

Equations (I.24)-(I.25). 1In contrast, the I I_ "flip-flop"™ term in

Equation (If26), describing a simultaneous Am=1 flip of one spin and a
Am=~1 flip of the other, is no longer energy conserving for a
heteronuclear spin pair in high field due to the different I and S
resonance frequencies. The secular form of the heteronuclear dipolar

coupling is then

o_ . YIYSh

D 3
erIS

H

[2Izsz](3coszs—1) (I.28)

In the absence of a field, when (woS"“oI)*o' the form of the Hamiltonian

changes as will be shown in later discussions.

6. Indirect Coupling
The indirect spin-spin coupling, or J-coupling, is an interaction
which is mediated by the electrons of a molecule. The coupling
constant, J, is generally considered isotropic (although in some cases
anisotropic components which have the same form as the dipolar coupling

contribute), and the Hamiltonian may be written for two spins as

o



12

(I1.29) 1

1
+ (I, I % 1_,1,,)]

(o]
Hy = = 01, 1,% 201,41,

[
J—

If the chemical shift difference between spins 1 and 2 is large compared

-

to J, the secular term is no longer given by Equation (I.29) but rather

0
HJ = = J12Iz1IZZ (I.30)

For heteronuclear spins, the Hamiltonian has the same form

HJ = = JISI°S (I.31)

except that this always reduces in high field to the secular form

o}
HJ = JISIZSz (1.32)

as the i+S_ and I_S, terms-are not energy conser?ing.

D. Rotations and Spherical Tensors

1. Rotations
Rotations include the effects of rf pulées (rotations on the spin
degrees of freedom), averaging of tensor interactions (rotations
relating spin and/or spatial degrees of freedom), and the represen-
tation of tensors in different coordinate frames. A vector, X, or
tensor, T, in a coordinate system (x,y,z) can be expressed in another
coordinate system (x',y',z') through the use of a rotation operator, R,

where

(e

|
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X'=RX

T"=RTR : (1.33)

The rotation operator, R, is defined a39
R(aBY) = R(Q) = Ryu i (VRy, (B)R,(a) (1.34)

and is composed of three successive rotation operators, of in matrix
form, three rotation matrices. The R(aBY) term describes the rotation
in Cartesian space by the angles a, B, Y, commonly referred to as the
Euler angles. These angles relate the two coordinate systems as
illustrated in Figure 1.1.10 Equation (I.34) describes the rotation by
the angle a (0 £ o £ 2m) about the original z axis of the system,
followed by 8 (0 £ B £ 7) about the new y' axis and lastly, by Y (0 £ Y
L 27) about the final z'' axis. These rotations may also take place

about a set of fixed axes (x,y,z) for which R is redefined as
R(aBY) = R,(a)Ry,(BIR,(Y) (1.35)

The rotation operators can be expressed in terms of the angular momentum

operator's9 and Equation (I.35) becomes
R(aBY) = exp(-iaIz)exp(~iBIy)exp(—iYIZ) (I.36)

The effects of rotations on spherical tensors is covered in the
following section.
A pulsed radiofrequency or dc magnetic field, B1, acts as a

rotation on a spin system if the pulse is strong, so that the Zeeman

\‘1\‘
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XBL 8610-10174

Figure I.1: The relation of coordinate frames by the Euler angles
(a,B8,Y) in which the frame of reference moves with the rotated body (as
defined in Reference 10). Rotation about the z axis by the angle a (0

L a £ 2w) takes the axes from the original frame (x,y,z) to the frame

[N——

labelled (x',y',z'). In this frame, rotation about the y' axis by the
angle B (0 £ B8 £ w) results in the position labelled by (x'',y'',z'").
Rotation into the final frame (x''',y''',z''') occurs with a rotation /
by the angle Y (0 £ Y £ 27) about the z'' axis. When there is .
cylindrical symmetry about the z'' axis, the rotation by the angle Y is
no longer necessary to make the frames coincident. 1In such cases the
angles a and B can be related to the more common polar coordinates, ¢
and 68, of the z2'' axis in the original frame. Rotations can also be
conducted about the original fixed axes (x,y,z) as mentioned in the

text.
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interaction with the applied field dominates and internal interactions
can be neglected. The Hamiltonian for a field in the x direction (in
the rotating frame for an rf field3, or in the laboratory frame for a dc

field) is H = YIB1Ix and the propagator in Equation (I.9) becomes
p(t) = exp(~i¥B,I t)p(0)exp(iYB I t) (I.37)
This is readily recognizable as a rotation operator with a pulse angle,

0=YByt. As an example, consider a pulse applied to the initial state of

a spin system in a large field where p(0) « 1,

p{t) exp(—ieIx)I exp(ielx)

2 (1.38)

IZcose - Iy51ne

which corresponds to the rotation of a vector, (0,0,Iz). The rf pulse
thereby produces a transverse component of magnetization which may be

detected by the voltage it induces in a coil of a tuned circuit.

2. Spherical Tensors

Spherical tensor notation!?”'!

is introduced in the following
section as an alternative representation of the Hamiltonians. This
representation is convenient when considering the effect of
transformations of tensors under rotations. The elements of a second

rank Cartesian tensor, Tij (i,j = x,¥,2), may be combined to form

irreducible tensors of

zero r‘ank: TO 1/3TP{T1J} = 1/32Tii

first rank: T, = 1/2(Tij~T ) (1.39)

Ji
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second rank: T, = 1/2(Tij+Tji)-1/3TP{Tij} -

The irreducible tensor T1 of rank 1 has 21+1 components Tlm and can be 53

represented in a new frame by

=3
u
' -1 ! 1 iy '
Ty = RENT R (aBY) = T T D, (af) (I.40)
m'=-1
where R(aBY) is the rotation operator defined in the previous section.
The rotation operation does not alter the rank of the tensor, nor does
it change the measured observables associated with the tensor if only a
change of coordinate frame is made. The D%'m terms are the elements of
the Wigner rotation matrices
1 ' . . s
Dy, (eBY) = <Im |exp( 1aIZ)exp( 18Iy)exp( 1YIZ)|lm>
= exp(~-im'a) d;,m(B) exp(-imY) (r.u41)
The Dé'm elements are tabulated in many books as are-descriptions of
|
their symmetry and orthogonality properties.7'9'10 i
The Hamiltonians are conveniently expressed as a product of
tensors which is written as
1 m L m
A1°T1 = I (~1) AlmTl~m = I (-1) Al_mTlm (1.42)
m=-1 m=-1
For example, using Equation (I.11) from Section C.1, the expression for
the NMR Hamiltonian in Cartesian tensor and vector notation f

(N
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can now be written in spherical tensor notation as

N

1

H=3: I (D" T _ (1.43)
1=0 m=-1 lm 1-m

where the dyadic product of spin vectors forms the tensor T and the

tensor A describes the spatial terms. The NMR interactions are composed

of tensors of rank 0,1,2, thus the limits of the index 1 are determined

in Equation (I.43). The truncation of the Hamiltonians is easily seen

from the commutation properties of the spherical tensor's12

[IZ > Tlm] = mTlm (I-L”"')

thus only those elements with m=0 commute with the high field state.

The tensor elements, Tim» are given by6'7

' 1
TOO = /‘_3- [Txx + Tyy + Tzz]

i
Tyg=-~=[T,  ~T
s L Xy yx]

= = - £ i -
121 [sz sz l(sz Tyz)]

(I.45)

-3
]
|

-

w

-3
1

20 V4 ZZ (Txx * Tyy ¥ Tzz)]

1
- +
2 [sz ¥ sz i(Tyz+ sz)]

1
= - - + i
T212 2 [Txx T l(Tx *T x)]

yy y ¥

in terms of their Cartesian components.
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II. EXPERIMENTS IN ZERO FIELD

A. Motivation

It is customary in the NMR experiment to observe the nuclear spin
interactions as a perturbation on the much larger Zeeman interaction of
the nuclear moments in a large magnetic field. The magnetic field makes
two very important contributions; firstly, it produces an observable
magnetization or polarization of the nuclear spins proportional to the
field strength and secondly, it provides for increased sensitivity in
detection due to the dependence of the induced signal voltage on
resonance frequency. Thus experimentalists often strive for higher and
higher fields for sensitivity enhancement and the increased resolution
of the field proportional chemical shifts. This is understandable when
studying liquid samples, as the anisotropic components of the nuclear
spin interactions are averaged away, but complications arise when
applying the same principles to polyerystalline solids or amorphous
materials.

The resulting problems are directly attributable to the angular
terms arising in the secular forms of the Hamiltonians in a magnetic
field. For a given molecular orientation in an applied field, the
observed frequency is shifted from its unperturbed value by an amount
related to the angular term and the size of the interaction. In
liquids, this angular dependence is averaged to zero due to the fast,
random isotropic motions of the molecules. When a static distribution
of all poséible orientations is present, as in a polyecrystalline powder,

the resulting spectrum is a superposition of spectra from the individual
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¢crystallites. The result is a broad powder spectrum’' covering a range

of frequencies.,

S s
F——

For a small number of spins, the powder spectrum retains enough

' I
LS

distinctive structure, as shown in Figure II.1, to determine inter-

nuclear distances, or quadrupolar coupling constants and asymmetry

N

parameters. As the number of spins increases, so does the complexity of
the spectrum making fine structure in the spectrum difficult to
interpret. Geometrical information concerning a number of dipolar
coupled spins becomes intractable, and equally difficult is the
distinction of similar yet inequivalent quadrupolar sites with small
asymmetry parameters. Similarly, dynamical effects often produce only
subtle changes in a powder spectrum which may not be pronounced enough
to interpret. Much experimental time is devoted to unravelling complex
spectra and developing approaches to obtain high resolution spectra in
solids.z’3 Often this involves selectively averaging or removing the
effects of the orientation dependent interactions while, unfortunately,
simultaneously ridding the spectrum of some of its most valuable
inférmation. The orientational broadening is avoidable through the use ’
of oriented samples such as single crystals or liquid crystals; although

- to gain a complete analysis from a single crystal stqdy, the system must

be measured as a function of many orientations3 and the data must then

be disentangled.

Ideally, one would like to remove the anisotropy of the

~

interactions in high field while maintaining the information content.

e

Consider then, that the only difference between the crystallites in a

powder sample is their orientation dependence with respect to a field

A

direction; in the absence of a field, with no preferential direction in

L
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B = 90°
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XBL 8610-10169

Figure II.1: Theoretical powder pattern representative of either two
dipolar coupled spin I=1/2 nuclei or a single spin I=1 quadrupolar
nucleus with n=0. The distribution in frequency is a function of the
angle, B, which relates the z axis of the principal axis system (PAS) of
the spin interaction to the field direction. 1In the former, the
separation in the singularities is given by the dipolar coupling
Aw=3Y2h/er3 (tens of kHz) from which the internuclear distance can be
calculated. For a spin I=1, with n=0, the powder spectrum has the same
characteristic shape with the separation equal to Aw=2w-(3e2qQ/uh) (tens
to hundreds of kHz).
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space, every orientation is identical. Thus the energies corresponding
to the untruncated zero field Hamiltonian are finite in number and
should yield discrete, well-resolved spectral lines. Although the
Zeeman, chemical shift and radiofrequency interactions will have
vanished, the information rich dipolar and quadrupolar interactions
remain. The frequencies corresponding to the dipolar and quadrupolar
Hamiltonians can be extremely low on an NMR scale (<200 kHz) and
therefore direct detection in zero field is difficult. The conflicting
desires to use high field sensitivity andvzero field resolution are
overcome by using field cyecling techniques. Field cycling methods
employ an applied field in the preparation and detection periods of the
experiment, with the field removed during the evolution period of the
spins under the zero field Hamiltonian.

Zero field and field cycling techniques have existed for many
years as there has long been interest in the behavior of spin systems in

low and zero fields,s3 6

7-9

either for measuring relaxation® and demagne-

tization effects, 10,1

or for measuring quadrupolar frequencies.
There are several review articles and t:ext‘.s5’9—11 which cover thé field
in depth and only a brief discussion of a few related experiments |
follows. The most common experiment is pure Nuclear Quadrupole
Resonance (NQR)'Q»'! in which the isotopic abundance and differences in
quadrupolar energy levels in zero field are large enough (>few MHz) so
that the population differences produce an observable polarization. The
NQR resonances are detected directly in zero field after perturbing the
system with either an rf pulse and Fourier transforming a time domain

signal, or with continuous irradiation and detection of the frequency

domain signal.11 Quadrupolar nuclei with small quadrupolar coupling

[SS—
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constants are unaccessible by such experiments. In these cases, field
cycling techniques and double resonance NQR methodsgﬁtilizing sensi- -
tivity enhancement via level crossings are employed.12'“4 Most NQR

experiments are frequency domain experiments which means that the system

is irradiated in zefo field. Often this leads to power broadening of

the resonance 1ines,13 and in double resonance experiments, the

undesirable absorption of energy by a second spin species.13 The

experiment to be described in the following sections is a time domain

Fourier transform adaptation of previous methods of field cycling

4,16 18

developed by Ramsey and Pound,15 Hahn, Redfield17 and others.

B. Field Cycling Schemes

The field cycle is used to prepare the initial state, induce
evolution in zero field, and detect the signal. The basic concept
behind the ideal time domain sequence, as depicted in Figure II.2, is as
follows. If the sample is prepared in an equilibrium high field state,
a magnetization, M, proportional to the field, B, develops. Sudden
removal (in the quantum mechanical sense) of the field leaves the system
in a nonequilibrium state and evolution for a given time, t1, occurs
under the zero field Hamiltonian. Terminating the evolution by
reapplying the field traps a component of the magnetizationg, and the
signal is then detected in high field for that value of t1. As in a two
dimensional exper'iment,19 the evolution in zero field is monitored at a
later time in successive field cycles as a function of the incremented
time, t1. Fourier transforming this signal produces the frequency

domain spectrum. Practically, it is difficult to quickly remove a field
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Figure 1I.2: 1Idealized version of the field cycle to zero field. At
top, the field, B,, as a function of time and below the magnetization,
M,, as a function of time are illustrated. 1In the preparation stage, a
magnetization M,, proportional to Bz, develops. Sudden removal of the
field to zero at time t1=0 causes the magnetization to oscillate in the
presence of the dipolar or quadrupolar local fields. Evolution in zero
field continues for a time, t,, until it is halted by rapidly reapplying
the z field. This traps a component of the magnétization which is then
detected in the presence of Bz. Sampling the magnetization, point by
point, as a function of t1 indirectly maps out the oscillations in zero
field.
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of the magnitude desired for preparation and detection, therefore a
stepwise field cycle is used. The experimental field cyecle is illu-
strated schematically in Figure II.3, and is explained step by step in
the following sections. A variation of this field cycle using pulsed de¢
magnetic fields, as an alternative means of inducing evolution in zero

field, is also presented. Applications and variations of the experiment

are explored in later chapters.

1. The Initial State
Any experiment must begin with an observable, and in NMR it is the

behavior of the magnetization of the spin system which is usually
examined. 1In an applied field, the equilibrium state of the system is
described by the Zeeman interaction which means that for a spin I there
are 2I+1 energy levels separated in energy by AE=YhBO/2w. For N spins,
an unéqual population of the energy levels, as given by the Boltzmann
distribution gives rise to a net macroscopic magnetization in the field

direction proportiona18 to

y NYh % mexp(YhmBo/ZwkT)

o~ 27 T exp(YhmB_/27KT)
m o

(I1.1)

where m = -I to I. The Boltzmann distribution can»also be expanded in

the high temperature limit,8 Equation (II.1) takes the form

_Nrnfrren)

M
12ﬂ2kT

o B = x.B (11.2)

o)

where Xo? the bulk susceptibility of the system, is proportional to 1/T

by the Curie Law. The magnitude of the magnetization is proportional to
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Figure II.3: Schematic representation of 'the experimental field cycle.
The sample originates in a large applied field magnetic field, By
during which time an equilibrium magnetization is produced. The field
is then adiabatically reduced by removal of the sample to a field level
Bint>Bloc’ Two magnet coils are used to produce the zero field region
and provide a sudden transition in the field which leaves the sample in
zero field and initiates evolution for t;. Reapplying the field,
terminates evolution and presebves the z component of magnetization.
The sample is adiabatically remagnetized to BO and the signal is
detected by standard NMR methods. Sampling the signal as a function of
t produces S(t1), the time domain signal, which when Fourier

transformed yields the zero field frequency domain spectrum.
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the inverse temperature, the number of spins, N, the isotopic abundance
of the resonant nucleus and the gyromagnetic ratio, Y, which determines
the energy level separation for a given field. Examples of these
factors have been tabulated for a few nuclei of interest.2o
The net magnetization in the field direction, Mz, approaches its
equilibrium value, M,, roughly exponentially from a unmagnetized state
with a time constant, Tqs known és the spin lattice relaxation time.21
When allowed to equilibrate and develop a net magnetization, the high

field state of a system of many spins, N, is described by the density

operator at time t=0,

N

pL(O) a IZ,L =i§1IZi,L (II.3)

where the subscript, L, indicates that this operator is expressed in the
laboratory frame with the z axis defined by the field direction.
(Operators in the zeré fiéld representation will not have subscripts in
order to simplify the notation). The initial density operator contains
only spin angular momentum terms and is independent of molecular
orientation. The eigenstates of the system correspond to the eigenbasis
of the high field Hamiltonian. Since the magnetization is proportional
to the field strength, the initial preparation stage of the experiment

occurs in a field of approximately U4 Tesla.

2. Demagnetization
The next stage of the field cycle is demagnetization to an

intermediate field level, B as shown in Figure II1.3. The notation

int’

Bint and Bi will be used interchangeably for the intermediate field

AR
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level. The demagnetization is accomplished by mechanically moving the
sample out of the center of the large magnetic field through the fringe
field of the magnet. The fringe field is aligned in the same direction

as the main field over the entire transit, thus the shuttling process is

simply adiabatic demagnetization in the laboratory frame (aDLF).? This
process is deécribed by defining two concepts, spin temperature and
adiabatic demagnetization.

a. Spin Temperature. The idea of spin temperature originates in a
discussion8’9 of the thermodynamic properties of nuclear spin systems.
A macroscopic quantity such as temperature becomes useful in describing
the establishment of equilibrium states, c¢cross-relaxation effects and
adiabatic demagnetization. A system can be considered to contain at
least two reservoirs, namely the spins and the lattice, each with its
own thermodynamic properties such as heat capacity and temperature. The
lattice is composed of the quasi-continuous distribution of energy
levels corresponding to the other ‘degrees of freedom of the system, such
as vibrational or phonon modes in the solid. Therefore, the lattice has .
a much greater heat éapacity than the nuclear spin reservoir, and
generally is considered to be in a state of thermal equilibrium. The
lattice and spins exchange energy through spin-lattice relaxation
mechanisms, and the time constant which describes the rate at which the
spins come into thermal equilibrium with the lattice is known as Ty, At
equilibrium, the lattice has a temperature, TL‘

A temperature, Ty, different from Ty, may be defined for the
nuclear spin system if a few conditions exist.9 If the spin-spin ’ -

couplings are greater than the coupling to the lattice, then the spin

system may be considered isolated from the lattice with its own

o
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temperature. This is often the case in solids with abundant magnetic
nuclei, such as protons, among which the dipolar couplings are strong.
These couplings rapidly bring the spin system into a state of internal
equilibrium with the ratio of the populations of any two of its energy
levels is given by the Boltzmann term,9

-YhB '
) (II.4)

m
Tai s
S

m-1

with a corresponding spin temperature, TS, for a two level system. The
equilibrium is reached rapidly through the "flip-flop" terms of the
secular dipolar Hamiltonian in a time roughly on tpe order of T2. This
is an energy conserving process for spin I=1/2 nuclei with their equi-
distant energy levels in an applied field. After a time comparable to
the spin-lattice relaxation time, T1, the spin system will come into
thermal equilibrium with the lattice such that Ts=TL. This corresponds
to the establishment of a new Boltzmann distribution at the temperature,
TL' If the system is to remain isolated such that TszL, then the
condition of T2<<T1 must exist and is generally the case in solids.

" Some states are not describable by a spin temperatur‘e.9 For
example, since a spin temperature is defined by the populations of
states, the density operator must be proportional to the diagonal form
of the Hamiltonian. Anything which alters this, such as a sudden change
in field or an rf pulse, produces off-diagonal elements of the density
matrix corresponding to coherences. These coherences, according to the
random phase approximation,22 decay with a time constant T2. Thus a
minimum time T2 must pass before one can reasonably talk about the

establishment of a new spin temperature.

29
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b. Adiabatic Demagnetization. The demagnetization step can be

21 an adiabatic

defined as adiabatic if a few conditions are met.
process is reversible and occurs with constant entropy, therefore no
heat flows in or out of the system. For a nuclear spin system, this
indicates that the change in field must be fast compared to T1 as
otherwise energy is exchanged with the lattice thereby producing new
Boltzmann populations. Additionally, after each small decrease in the
field, a new state of internal equilibrium must be reached. For a
system of spin I=1/2 nuclei, this equilibrium is established through the
flip—flob terms of the dipolar coupling which conserve the populations
of the energy levels. This requires that the change must be slow on a
timescale compared to the precession period of the nuclei in the local
fields (t<1/YBloc) which is generally on the order of tenths of milli-
seconds and roughly proportional to T2.8’21 In solids, a rate of
demagnetization can usually be chosen which meets these requirements
since T2<<T1 thereby making the system always describable by a spin
temperature. |

Since the changes are made adiabatically, fast compared to T1 (the
time required to establish a new equilibrium Mo) and the flip-flop terms
conserve Mo’ the magnetization remains constant with decreasing field
and the spin temperature must therefore decrease. This can be seen by

rewriting the Curie Law (Equation II.2) in the high temperature limit

aS,

(@]
w

M = = (II.S)

/]

where C is the Curie constant containing several nuclear constants and

Ts is the spin temperature of the system. The final spin temperature is

approximated13 by

=
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T, = T, (3) (11.6)

for Bf greater than the local fields and where, i, corresponds to the
initial values and, f, the final.

The adiabatic changes in the state of the system and reestab-
lishment of equilibrium with each field step means that the density
operator is always proportional to the instantaneous Hamiltonian.8
Therefore, if the demagnetization proceeds to an intermediate field
level, Bi (where Bi>>Bloc)' the state of the system is still described
by the high field Zeemaanamiltonian as given by Equation (II.3) and
retains the polarization of the high field state. If the field is
allowed to reach a level where Bi<Bloc' it no longer is easy to describe

the system as being in a purely high field or zero field state unless

Bi=0.

3. Evolution in Zero Field

The spin system, demagnetized to an intermediate field, Bi, chosen
such that the Zeeman interaction in.this field dominates over ahy local
spin interactions, is in a state proportional to the Zeeman Hamiltonian.
The system remains in the eigenstates quantized with respect to the
field direction and retains the full high field magnetization, M, if no
relaxation occurs. Two electromagnetic coils of manageable (i.e.
switchable) field strengths are used to maintain this state and provide
the transition to zero field (see Appendix A). Evolution under the zero
field Hamiltonian can be initiated with the sudden removal of B; as
illustrated in Figure I1I.3 by the sharp transition in field. Sudden is

defined in the quantum mechanical sense,23 whereby the change in the
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Hamiltonian (i.e. field) is too rapid for the system to follow, in
contrast to the édiabatic transitions described earlier. The state of
the system is unable to change instantaneously, thus the density
operator immediately before and after the transition in field is
proportional to Iz,L‘

Once the field is removed, the system is in zero field. With the
discontinuous change in the field, there has also been a discontinuous
change in the Hamiltonian describing the spin system. The high field
and zero field Hamiltonians do not commute. In fact, the zero field
Hamiltonian is now in an untruncated form and is best represented in a
molecular based frame of reference. Because the system is not in the
eigenstates of the zero field Hamiltonian, evolution occurs at
frequencies corresponding to the local interactions. Evolution
continues for a time, t1, and is deseribed by the time evolution of the
density operator (See Section I.1). Evolution is terminated after the
t1 interval by the sudden reapplication of the intermediate field in the
laboratory z direction (with Ts<<T2, to avoid the decay of the evolved
state). This traps components of the magnetization in the field
direction (i.e. those proportional to Iz,L) while transverse components,

(i.e. those perpendicular to the longitudinal field direction) decay.9

4. Remagnetization and High Field Detection

The last step of the field cycle illﬁstrated in Figure II.3 is the

detection of the evolution of the nuclear spin system in zero field.
After terminating evolution and preserving the laboratory frame 2z
component of the zero field state, the sample is adiabatically

remagnetized. As in the case of the demagnetization, the state of the
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system is conserved while increasing the field under the same adiabatic
constraints. Upon return to the high field, the magnitude of the z
component is detected (see Appendix A). The measured signal is a single
data point in the period of the zero field oscillations for a given
value of t1. After waiting a delay to allow for relaxation of the
nuclear-spins, the field cycle is repeated for the next value of t1.

The detected signal, S(t1), is modulated as a function of t; at the
frequencies corresponding to the zero field interactions. Fourier
transforming this time domain signal produces the frequency domain

spectrum.

5. Field Cycling with Demagnetization to Zero Field
Other approaches to field cycling are possible and one which is

frequently used involves complete demagnetization to zero t‘ield.12'“4

Once demagnetized, the spin system can be probed with rf pulseszu or
continuous rf irradiation as is common in frequency domain

12-14 or, as developed in the time domain experiments

experiments,
described in Chapter III,25’26 with pulsed dc magnetic fields. A
schematic representation of two such time domain field cycles are
illustrated in Figure II.4. In the following sections, the features of
these field cycles which differ from the one described previously are
discussed.

a. Demagnetization to Zero Field. Many years ago in-an experiment
conducted by.Pound27 it was found that after adiabatically demagnetizing
a system to zero field, such that when Bo=0 so does MO=O, the full

magnetization was recovered with reapplication of the field. Remagne-

tization occurred in a time much less than T1 which indicated that, by
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Figure II.4: Field cycles utilizing demagnetization to zero field
pulsed dc magnetic fields. The sample is demagnetized to an
intermediate field level then to zero field in two steps. In both

and (b), the equilibrium state of the spin system is caused to evol
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for t1 by applying a pulsed dc magnetic field. Evolution can be stopped

by either, (a) suddenly applying a field in the z direction thereby

trapping a component of magnetization before remagnetization and

detection, or (b) applying a second dc pulsed field, remagnetizing the

sample from zero field and detecting the signal as a function of t,
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some means, the order of the spin system, once corresponding to a magne-
tization, was preserved even in the absence of a field. A demagnetized
state is therefore intrinsically different than an unmagnetized state.
The order is maintained by the nuclear moments aligning with the local
fields. Due to the random distribution of local fields, there is no net

magnetization. The order in the local fields decays with a time

constant different than T, and characteristic of the type of order
present (e.g. T1D for dipolar order, T1Q for quadrupolar order).

A remaining question is: What is the nature.of the demagnetized
state and how might it be described? Previously it was stated that
during demagnetization the density operator is always proportional to
the instantaneous Hamiltonian. This is true for large numbers of
coupled spins which are describable by a spin temperature. The
transition by adiabatic demagnetization from high to zero field consists
of the Hamiltonian, and the eigenstates, going sméothly over to that
which describes the system in zero field.9 The density operator is then

proportional to an equilibrium condition in zero field such that

For example, as the Zeeman order is transferred to dipolar order, the
Hamiltonian of the system changes from being proportional to Hy; to
proportional to Hp (which is also Hgp).

For isolated spins or spin I=1 systems, the demagnetization can

8,9 In such

not be described by the spin temperature approximation.
cases, it is more difficult to simply describe the initial condition in
zero field. Equally as difficult is a simple description of the initial

state in those instances where spin systems, isolated in high field,
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come into contact via the equalization of their energy levels as a
consequence of demagnetization. These circumstances and their bearing
on the zero field experiment are discussed in more detail in Chapter
III.

b. Initiating Evolution with Pulsed DC Magnetic Fields. Without e

explicitly specifying the form of the initial zero field state, it can
be safely assumed that after demagnetization‘the spin system is in an
equilibrium (non-evolving) state in zero field? and evolution must be
initiated. Previously, this was accomplished by a sudden change in the
Hamiltonian. Since the system is already in a state related to the zero
field Hamiltonian, instead of a change in the Hamiltonian, a pulsed
field can be used to bring about a change in the state of the system.
Two such schemes are illustrated in Figure II.H4 using pulsed dc magnetic
fields. As described in section I.D.7, if Bi>>Bloc’ the pulsed field

acts as a rotation (6) on the density operator causing part, but not

éll, of the original diagonal elements to be rotated into off-diagonal
elements. These off-diagonal elements correspond to coherences between L
zero field eigenstates and thus the system, no longer in an equilibrium
state, begins to evolve under the zero field Hamiltonian.

Evolution continues for t; in a manner identical to that described
before and can be terminated in two ways. In Figure II.4a, a field is
reapplied suddenly in the laboratory z direction to trap those
components proportional to Iz,L' This state 1s then remagnetized and ;
detected as before measuring the change in Iz,L with time. An alter-
native method in Figure II.Ub is to apply a second pulse (8') which
rotates the off-diagonal elements of the density matrix back into

diagonal population differences. Remagnetization of this state -
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preserves the populations and transforms it back into high field fqr
detection in much the reverse of the demagnetization step.

The Zeeman interaction with the pulsed field should dominate over
local interactions so that the pulses act like rotations and no |
evolution occurs during their application. For quadrupolar nuclei with
large quadrupole couﬁling constants and low gyromagnetic ratios, a field
on the order of several hundred Gauss to a kGauss is then required.
This is much more easily produced as a short intense pulse than for the
longer time required of the intermediate field in the sudden transition
field cycle. Thus pulsed field cycles have some distinect practical
advantages. Additionally, the second field cycle of Figure II.l allows
pulses to be used selectively in exciting different nuclei and the
exploitation of the naturally occurring level crossings in the

demagnetization step.
C. Calculation of the Signal

1. General Approach

In this section, -an approach to calculating the analytical form of
the zero field signal is presented for the field cycle shown in Figure
II.3. These calculations are based almost entirely on the principles
introduced in Chapter I for the density operator and transformations
between reference frames. The signal after the zero field t1 period is
calculated as the expectation value of the detected high field operator.
This operator is generally Iz,L' such that the normalized signal is

given by Equation I.A
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s(t,) = Trip(t DI, 1} © (I1.8)

,L

in which pL(t1) is the time evolved state of the initial density
operator under the zero field Hamiltonian, HZF' As given by Equation

(I.9), the time evolution is written in the zero field frame as

p(t1) = exp(-iH )p(O)exp(iHZFt1) (I1.9)

AR
in which p(0) is the initial density operator prepared in high field and
through demagnetization. One characteristic of the field cycle with a
sudden transition to zero field (Figure II.3) is that the prepared and
detected operators are identical. The initial state has thus far always

been expressed in the laboratory frame as

pL(O) = IZ,L (I1I1.10)

and Equation (II.8) would then represent the correlation function of
Iz,L with its time evolved counterpart.

For convenience in the calculation of the propagator, the zero
field Hamiltonian is best expressed in its eigenbasis referenced to a
frame descriptive of the zero field state. This frame is most often
chosen to be some molecular based frame in which the Hamiltonian is
identical (homogeneous) for all orientations. When working in a zero
field/molecular frame, the properties of rotation operators must be used
to express the laboratory based operators in the zero field frame. The
normalized signal function, reexpressed by substituting Equation (II.9)
into Equation (II.8) and including the proper transformations into the

zero field frame, is

pHo
Ll
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Sn(t1) = Tr{exp( iHZFt1)RpL(O)R exp(lHZFt1)RIZ’LR } (II.11)

The subscript, Q, indicates that this expression contains an angular
dependence relating the laboratory frame to the crystallite molecular
frames by the rétation elements, R(Q)=R(aBY). The angular terms differ
for each orientation and since there is a random distribution of
orientations of crystallites in a polycrystalline sample, each equally
probable, the signal must be integrated over all possible orientations

to yield a powder average where

s(t,) = f S,(t, )P(2)da B (II.12)
Q

and for an isotropic distribution P(Q)dqQ = sianBdadY over the limits of
the Euler angles.3

A few important points can be illustrated by discussing ﬁhe
relationship between laboratory and zéro field/molecular frames. For
the sudden transition field cycle, immediately before and after the
removal of the field, pL(0)=IZ,L. It was stated previously that this
corresponds to a non-equilibrium (evolving) state under the zero field
Hamiltonian and is easily demonstrated by expressing the density

operator in the zero field frame through

0(0) = a(aey>pL(o)R“(asv>

= IchSB + IysinBsina + I sinBcosa (I1.13)

where the angular momentum operators in the final 1line are in the

molecular/zero field frame. Note that there is no dependence on the
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éngle, Y, which may be attributed to the axial symmetry of the initial
condition. The matrix representation in the zero field basis of
Equation (II.13) contains off-diagonal terms corresponding to coherences
which describe the evolution of the system. Thus Equation (II.13) does
not represent an equilibrium state of the zero field Hamiltonian, which

is to say

[p(0), HZF] # 0 (II.14)

indicating from the Liouville~von Neumann equation that evolution occurs

since dp

EE#O (II.15)

Equations (II.14) and (II.15) are a concise general statement about the
conditons required for evolution in zero field.

The general approach to calculating the zero field signal can be
stated in a few words. First, choose a convenient basis set in which
the zero field Hamiltonian is diagonal and calculate the eigenvalues (or
as is more often the case, diagonalize HZF to find the eigenbasis and
eigenvalues). The eigenstates and eigenvalues in a molecular based/zero
field frame should contain no dependence on crystallite orientation.

The initial condition, if proportional to a lab based operator, must be
expressed in the zero field frame. For initial and detected operators
equal to I, ;, substituting Equation (II.13) into Equation (II.11)

yields

Sn(t1) = Tr{exp(-iH Ft1)(IzcosB + IyslnBsina + Ix81nBcosa)

Z

x exp{iH t1)(IzcosB + IysinBsina + Ixsinecosa)} (II.16a)

ZF

and defining the time evolved operator I, (t;)=exp(-iHzpti)I exp(iHzptq).
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Sg(t1) = Tr{(Iz(t1)cosB + Iy(t1)sin8sina + Ix(t1)sinscosu)

X (IzcosB + IysinBsina + Ixsinscosa)} (II.16Db)

The explicit form of In(t1) consists of terms which are products of spin
operators and frequency containing terms.28 Only certain combinations

of operators will survive the trace operation since

TP{IjIk} = ij
(I1.17)
TP{IjIkIl} =0
Taking the trace and powder average yields
1 2 2 2
s(t)) =3I (IIxjkl + Iijkl + IIZJ.kl )COSwjkt1 (11.18)

3 ik

where, for example, Ixjk is the (jk)th matrix element of I,, the
molecular frame operator, and Wy = Ej—Ek/(h/Zw), the frequencies of the
zero field Hamiltonian. Positive and negative frequencies are indistin-
guishable and therefore the spectrum is symmetric around zero. Fourier
transforming S(t1) yields the frequency domain spectrum.

In spite of the fact that the detected operator was chosen to be
Iz,L' the calculation discussed thus far can easily incorporate
different initial conditions or detected operators or both. One must be
consistent in expressing the operators or propagators in a common basis
set or frame. Often careful selection, via symmetry arguments, leads to
a choice of molecular frame which simplifies the calculation. 1In later
chapters, more explicit calculations including features such as de¢

pulses, different initial and detected conditions, and transformations

between molecular and liquid crystalline frames are covered. Having
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demonstrated the general approach, a few specific examples of simple

spin systems follow.

2. Two Homonuclear Spin I=1/2 Nuclei (I-I)
For two dipolar coupled spin I=1/2 nuclei, such as the two protons

in a water molecule, the initial density operator is

pL(O) = IZ’L = IZ1’L + 122,L (I1.19)

The protons are assumed to be identical with respect to exchange,
consequently, the constants preceding the operators have been dropped to
facilitate the following calculatidns. In zero field, the Hamiltonian
is the full untruncated form of the dipolar coupling as given by
Equation (I.24) and will be expressed in a molecular based frame. If
the z axis of this frame is chosen to be the internuclear vector (which
is also the z axis of the PAS), the angle B equals zero and the

Hamiltonian reduces to the axially symmetric form

2
=Y 'h
H =~—3-[3I

D (11.20)
2mr

21522 = I "I

Written in the zero field basis set, the eigenstates are given by

|1> = 2—1/2(|aa> + | 88>)

|2> = -i(2~1/2)(|aa> - |88>)

13> = 2772(JaB> + |Ba>) (I1.21)
" 4> = 2712 |aB> - [80>)

where o is defined as m=1/2 and B8 is m=-1/2 (from <Iz> in the zero field

frame for the state ]I112>). The first three states are commonly

e




referred to as the triplet manifold and the latter as the singlet state.

The eigenvalues corresponding to these states are

W,

D
By =Ey=-3
E3 = wp ' (I1.22)
Ey =0

with wy = Yzh/2nr3 and contain no orientation dependence, unlike the
dipolar energies in high field. The energy levels and allowed trans-
itions are illustrated in Figure II.5. The angular momentum operators
do not couple the singlet and triplet manifolds, aﬁd the allowed

transitions occurring only among the triplet energy levels are

(11.23)

The signal, calculated as for the sudden transition field cycle,
is given by Equation (II.16). The matrix representations of the

28

operators in the zero field basis are left as an exercise, as is

solving for the trace of their products. Calculating the trace yields

2 2, . 2
Sn(t1) = COS Bcosw12t1 + sin " Bsin acosw23t1

sinzscoseacosw13t1 (I1.2W)

Note that only the intensities of the transitions are affected by the
ahgular terms and not the frequencies which correspond to those above.
This indicates that each relative orientation of the initial state and a

molecular frame, as described by a pair of values of the angles o and B8,

43



44

|- Spin Pair

\ 13>
|4>
1>, [2>
=3 0 3
2 “D 2 “D
Frequency

XBL 8610-10170

Figure I1.5: Energy levels and allowed transitions for two identical
dipolar coupled spin I=1/2 nuclei. The eigenstates and energies are
given in the text. Allowed transitions occurring between the triplét
energy levels are wy3=wo3 and wyo- The resulting spectrum consists of
three peaks of equal intensity at *3uwp/2 (wD=Y2h/2nr3, the dipolar
coupling) and zero frequency. The internuclear distance can be

calculated from the separation in peaks.
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contributes differently to the intensity of the zero field signal but
not to the frequency. This is in direct contrast to the high field case
in which the frequencies depend upon the values of the angular terms
(Equation I.26). Integrating over the powder to include contributions

from all crystallites and combining terms, the normalized signal is

l—a

s(t1) ==[ 1+ Zcos(%wDF1) ] (I1.25)

w

where S(t1)=1 at ty=0. The spectrum for two identical dipolar coupled
spin I=1/2 nuclei is a triplet of three lines of equal intensity; one at
zero frequency and two at i3wD/2, as illustrated in Figure II.5. An
example of an experimental spectrum is shown in Figure II1.6 for the
protons of the water molecules in an inorganic hydrate, Ba(ClO3)2-H2O.
The spectrum appears as predicted by Equaéion (I1.25) and from the
frequency separation, the internuclear distance can be calculated.29
Calculations and experiments such as these can easily be extended
to larger spin systems allowing one to determine the geometry of a group
of spins from the characteristic pattern of dipolar couplings in the
zero field NMR spectrum. This area is not covered specifically in this

28,30 The

thesis but has been dealt with extensively in other work.
experiment has been successfully applied in determining internuclear
distances in other inorganic hydrates,3o and in determining structures

28, 31 in good agreement with crystallographic data.

of four spin systems
The more complex systems are not deciphered by direct calculation but
rather interpretation is aided by computer simulations. An additional

experiment should also be mentioned in which, instead of detecting only

the magnitude of the signal in high field, the full high field evolution
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Figure II.6: Experimental proton zero field spectrum of polyerystalline
Ba(ClO3)'H20. Three lines of nearly equal intensity are observed at
approximately *40 kHz and zero frequency. The distortion in the
intensity of the center line may be attributed to experimental factors.
The lines appearing at two and three times the dipolar frequencies are
not completely understood but may possibly be attributed to couplings -
between more than two spins or other types of order present in the

demagnetized state.
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is allowed to occur for a time, to. Fourier transforming with respect
to both the zero field t1 domain and the high field t2 domain produces a
two~dimensional spectrum showing correlations between the high field and
zero field signals.28 The time domain zero field NMR experiment is the
only technique generally applicable for the observation of dipolar

frequencies in zero field.

3. Two Heteronuelear Spin I=1/2 Nuclei (I-S)

Generally nuclear spins with different gyromagnetic ratios are
differentiated on the basis of resonance frequency. In contrast, the
sudden transition in field or dc pulses in the zero field NMR experiment
excites the evolution of all spin species present since resonance
frequency no longer has a bearing. The following discussion focuses on
the simplest example of an isolated I-S dipolar coupled pair of spins.
The initial state prepared in high field and preserved through demagne-
tization is presumed proportional to the Zeeman Hamiltonian for each
nucleus. The polarization produced in high field must be considered

independently for each nucleus such that

pL(O) = aIZ’L + sz,L (II.26)

in which a and b are constants describing the relative polarizations of
I and S spins. These constants depend upon the gyromagnetic ratios, YI
and YS’ and are therefore unequal for the two spin types (see Equation
1.10).

In zero field, chemical shift and resonance frequency differences
vanish and the acting Hamiltonian is the mutual dipolar coupling (and

probably J coupling) of the two spins. The result is that the hetero-



nuclear spin Hamiltonian is indistinguishable with respect to exchange.

The form of the zero field Hamiltonian now includes all additional
terms, such as the flip-flop term, as these become energy conserving.
The Hamiltonian, written in the molecular/zero field frame with the z

axis along the internuclear vector becomes

Y_Y.h
g oo - LS

D 2nr3

[3IZSZ - I-8] (I1.27)

in direct contrast to the high field case, but in analogy to the homo-
nuclear case (Section I.C.5). The eigenstates and energies are
iilustrated in Figure II.7 and are identical in form to the homonuclear
case given in Equation (II.21) except that the states here refer to |IS>

spin combinations. The energies corresponding to these states are

w
D
E=E—‘2—

(11.28)

where wD=YIYsh/2wr3 and depends upon the product of the gyromagnetic
ratios of the I and S spins. Unlike the homonuclear case, matrix
elements now connect transitions between the singlet and triplet

manifolds with the frequencies given by

W, =0
Wyy = Wyn = 3 W
13 23 -2 %
1 (11.29)
Yy T Yy T2 9%
W3y = ¥p

This effect can be attributed to the differences in magnetogyric ratios
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Figure 1I.7: Energy levels and allowed transitions for two
heteronuclear dipolar coupled nuclei (I-S). Energies and eigenstates
are given in the text. Transitions are allowed between the triplet and
singlet energy levels for certain initial conditions in the
heteronuclear spin system. Peak positions in the spectrum occur at
multiples of the dipolar coupling frequency (wD=YIYSh/2wr3) with the

intensities dependent on the initial polarization of the I and S spins.
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which result in unequal initial populations of the I and S spin states
as shown later in this section. ~
The signal can be calculated as before using Equations (II.10) and

(II.11) with the detected operator corresponding to either the I or S

spins. Since the former has the larger gyromagnetic ratio and higher
natural abundance, sensitivity is expected to be higher. Calculating g
the signal for the sudden transition field cycle with the detection of

Iz,L is carried out by solving

1

- -1 .
SQ(t1) = Tr{RIZ,LR exp(-iHDt1)R(aIz +sz’L)R exp(lHDt1)} (11.30)

L

and taking the trace, Sn(t1) equals

SQ(t1) = 2(a+b)cosZB + 2(a+b)sin28cos(%th1) +

: 2(a-b)coszscos(mbt1) + 2(a-b)sinzscos(%th1) (1I1.31)

Averaging over the powder distribution yields for the normalized signal
1 1
S(t1) - gg{(a+b) + 2(a b)cos(Eth1) + (a b)cos(th1) +

2(a+b)cos(%th1)} | (II.32)

The intensities of the lines in the spectrum depend upon a and b, the
relative polarizations. The positions of the predicted transitions are
shown in Figure II.7.

Since the nuclei can be manipulated independently with rf pulses
in high field to change the relative values of a and b, the appearance
of the zero field spectrum can be alfered. For the usual equilibrium
state with a=1, b=0.25 and lines appear at all four frequencies. By

applying pulses which equalize the populations, the signal reduces to

LS —

gpenn
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t,) } (I11.33)

s(t,) = %{ 2+ ucos(ng ,

which is identical to the homonuclear case. This is reasonable since
the initial density operator for an I-S pair will be indistinguishable
with respect to exchange when a=b as for the homonuclear case. The
singlet to triplet transitions (w3u, w1u=m24) no longer occur and aré
directly attributable to the differences in populations. Experiments
illustrating the selection of spectral transitions through the altering
of a and b have been presented elsewhere.32 Spectra characteristic of
more complicated heteronuclear spin systems such as CH, CH, and CH3 have
also been discussed theoretically.28’3O Additionally, heteronuclear J
couplings have also been observed.32 In later chapters, specific cases
of heteronuclear spin systems (1H,2H), (1H,1HN) and (1H,13C) are
explored. Although, in general, for an arbitréry dc pulse angle all
spins are excited in zero field, this is not rigorously correct. Some
of the experiments to be presented involve the selectivity of spin
species in zero field with pulsed dc fields and the behavior of

heteronuclear spin systems in liquid crystals.

4, single Spin I=1 Quadrupolar Nucleus
The final case is the quadrupolar spin I=1. Interest in nuclei
such as deuterium frequently arises due to the ease 6f its substitution
for protons, and its sensitivity as a chemical and structural probe.
The signal for a spin I=1 nucleus in the sudden tranéition field cycle

of Figure II.3 is calculated from Equation (II.11)



Sq (t ) = Tr{RI LR 1exp( 1H t, )RI LR 1exp(lH t, )} (II.3%)
in much the same manner as before and evolution occurs under the full
untruncated quadrupolar Hamiltonian (Equation (I.21)). The eigenstates

in the zero field basis set, shown in Figure II.8, are

[1> = 1/2(|+1> + -1

[2> = -12 1/2(|+1> - -1 | (1I.35)
and

[3> = |O>

and are very similar to the triplet manifold of the two dipolar coupled
spin I=1/2 nuclei when n=0. In contrast, the quadrupolar interaction is
generally not axially symmetric (nfo) and the lowest energy levels are
no longer degenerate. The similarity of these Hamiltonians is discussed
later in Chapter V. |

The energies depend upon the quadrupole coupling constant e2qQ/h

and the asymmetry parameter, n,

E1 = -K(1+n)
E2 = -K(1=n) (II1.36)
E3 = 2K

in which K=2w°(e2qQ)/4h for I=1. The signal function, integrated over

all orientations in a powder becomes
S(t1) = % {cos(2n)Kt1 + cos(3~n)Kt1 + cos(3+n)Kt1} (11.37)

and the spectrum consists of six lines of equal intensity as illustrated

in Figure II.8 at * the frequencies (in kHz)
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Figure 1I1.8: Energy levels and allowed transitions for a single spin
I=1 quadrupolar nucleus with n#0. The energies and eigenstates are
described in the text. Transitions occur between all three levels at
frequencies corresponding to v,, v. and vgy=v,~v_. When n=0, the lowest
two energy levels are degenerate and the system reduces to three lines;
one at zero frequency and two at t(3e2qQ/uh). This spin I=1 case is
very similar to the triplet manifold of two dipolar coupled spin I=1/2

nuclei.
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v, = (3+n)K
(II.38a)
v_ = (3-n)K
and the difference frequency
Vg = 2K = v = v_ (II.38b)

From the high frequency lines one may determine K and n, which charac-
terize a quadrupolar site. When two inequivalent sites are present, the
spectrum will consist of two sets of overlapping lines and only through
the difference frequencies can the separate lines be assigned to
calculate the quadrupolar parameters for a given site. When n=0, the
two lowest energy levels are degenerate and the spectrum reduces to
three lines of equal intensity (not unlike the I-I case, Section C.2).
An example is shown in Figure II1.9 for perdeuterated diethyl-
terephthalate. In Figure II.9a, the high field powder spectrum consists
of three overlapping powder patterns corresponding to the methyl,
methylene and aromatic sites. In the zero field NQR spectrum of Figure
II,9b, four distinct regions are observed corresponding to the low

frequency v, lines, methyl, methylene and aromatic sites in increasing

o]
order of frequency. Note that unlike the high field spectrum, the
signal intensity is concentrated in a few sharp lines rather than
distributed across a broad frequency range. Five distinet sites on the

molecule are resolved with e2qQ/h and n values presented in the

following Table.

54

[et—

P—

(I



3

N,

(a) High Field

] | ]
. 55.47 55.52 55.57 55.62 55.67
Frequency (MHZz) :
’ T T T r T
) (b) Zero Field
- A 1 " } N } L L
. 0 40 80 120 160
. Frequency (kHz)

XB8L 863-11045

55



i

Lo

Al
[eT—

Figure 1I.9: a). Deuterium high field NMR spectrum of polycrystalline
perdeuterated diethylterephthalate. From the dverlapping powder
lineshapes, three separate quadrupolar sites can be discerned
corresponding to the methyl, methylene and aromatic sites on the
molecule (although only the singularities are evident for the latter
two). b). Zero field deuterium NQR spectrum of the same polycrystalline
sample showing only the positive frequencies. Four distinct regions
with well-resolved peaks are evident and correspond to the aromatic,
methylene, methyl and Vo lines in order of decreasing frequency.
Quadrupolar coupling constants and small asymmetry parameters can be
assigned to five inequivalent sites on the molecule {(as given in Table
II.1 in the text).
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Table 1: Diethylterephthalate 2H Quadrupole Coupling Parameters

Site equ/h (kHz ) n
methyl 48.9 0
methylene 149.53 0.042

152.76 0.049
aromatic 178.33 0.015
180.53 0.022

These sites could not be determined from the powder spectrum but can
from the well-resolved zero field spectrum. The differentiation of such
similar sites is unusual as the differences in quadrupole coupling
constants is small and the very small asymmetry parameters are often
difficult to measure even in the high field bowder spectrum of only one
site. A )

Although expected to be .a very small effect, dipolé-dipole
couplings between deuterons have been detected.33’3u In the zero field
deuterium NQR spectrum, this manifests itself as extra lines and/or
structure in the CD2 region of the spectrum and the corresponding Yo
lines. Since these couplings depend on many features such as the
internuclear distance, relative tensor orientations and bond angle,
through computer simulation of the zero field spectrum estimates of the
EFG tensor orientations can be determined without requiring the use of a
single crystal.3“ More extensive examples and details of quadrupolar

30,34,54

spectra are also presented elsewhere, including the observation

of half-integer quadrupolar nuclei. Quadrupolar nuclei which have been
studied by zero field NQR methods include 2-Hydrogen, 14-Nitrogen, 27-

Aluminum35 and 7—Lithium36. Some extensions of these experiments for



increased sensitivity and selectivity as applied to the observation of

2H and 1uN are discussed in the following chapter. -
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D. Appendix: Technical and Experimental Details

This appendix includes brief descriptions of the experimental
design, apparatus and implementation of the field cycling techniques
presented in the first part of this chapter. This‘reflects only one
possible method of field cycling, examples of other approaches and
equipment can be found in a review articles by Noacks, and in the series
Advances In NQR, and other's.m“13 In practice, the steps of the field
cycle involve the simultaneous timing and functioning of many separate
pieces of apparatus as illustrated in Figure II.10. 1In Figure I1I.10a,
the placement of the probe, shuttling system and low field coils rel-
ative to the superconducting magnet are shown. Each of these components
is described separately in the sections below and after which an outline

of the overall field cycle is given.

1. High Field Magnet

The polarization of the sample occurs in a 4.2 Tesla persistant
superconducting magnet of reasonable homogeneity with three super-
conducting shims. The fringe field of the magnet is roughly cylin-
drically symmetrical and drops off approximately exponentially as shown
in Figure II.11. At a distance of ~U45 cm below the base of the magnet,
the fringe field reaches a value of 100 Gauss. It is in this region
that the electromagnetic coils are positioned. The room temperature
bore of the superconducting magnet is 89 mm in diameter (without room
temperature shim coils) and generally allows ample room to house a room

temperature probe and shuttling system.
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Figure I1.10: Schematic of the different components of the field
cyeling apparatus. In (a), an overview of the entire system showing the
placement of the rf probe, shuttling system and low field coils relative
to the high field magnet is illustrated. Expanded views of each of
these regions are shown in (b)-(d) and are described in separate

sections in the text.
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Magnet Fringe Field vs. Distance
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Figure II.11: Magnetic field Bo vs. distance. The fringe field was
measured axially below the magnet. The distance scale corresponds to
zero being at the base of the magnet dewar, roughly equal to the lower
opening of the bore. The high field center of the magnet is ~35 cm

above this where the field reaches a maximum value of ~42 kGauss.
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2. Sample Shuttling

a. Container. The sample is packed into a cylindrical nylon or
Kel-F shuttle (Figure II.10b) with a tight fitting cap sealing either by
a pressure tight fit or an O-riné. The typical sample volume is approx-
imately 0.20 cm3 although smaller volumes are often used for better zero
field or dc pulsed field homogeneity, or when limited amounts of sample
are available.

It was discovered empirically that 1liquid c¢rystal samples are most
easily prepared directly in the shuttle to avoid evaporation of the
solute. For liquid crystal samples which contained CHZClz, a specially
inert O-ring is required as the usual Viton or Buna varieties absorb the
solute. The most successful O-rings found are Kalrez, manufactured by
Dupont Co. (Finishes and Fabricated Rroduct Dept., Tralee Park, Wilming-
ton , DE. 19898; size 1/8 x 1/4 x 1/16 inches). The translucent
material of the shuttle allows for the determination of the clearing
points upon héating. Often an excess of material is added and discarded
upon sealing the shuttle to insure the absence of bubbles in the
samples. The shuttles very seldom leak and samples remain intact for
many months.

b. Shuttle System. The sample shuttles fit closely into a
standard walled 10 mm o.d. (~8 mm i.d.) glass tube (Figure II1.10).
Transporting the shuttles at room temperature is easily accomplished
using air, nitrogen and/or vacuum. Gas can be applied to both ends of
the shuttle tube or, switching between air for the upward shuttle and
vacuum for the downward one, only on the lower end. Switching between
the upward and downward transits is conducted with a ;ogic controlled

circuit37 switching ~60 V and driving a commercially available three-way

63



64

solenoid valve. (Most reproducible switching results when using a dec
activated valve.) The sample travels a distance of approximately 75 cm
between the high field rf helmholtz ¢oil and the zero field switching
coils. Transit one way takes approximately 200 msec using a gas
pressure of 5 psi. The movement of the sample must meet at least two
criteria for a successful experiment; one, the time to travel to zero
field (including the switching of the coils, ~5-50 msec) must be shorter
than T1 to maintain the polarization, and two, the change in the field
with time must meet the conditions for adiabatic demagnetization. Short
relaxation times are the more serious problem as these are not under the
experimentalist's control (at a given temperature) whereas regulating

- the shuttling speed more easily controls the demagnetization. Relax-

21 which adds an additional

ation times are generally field dependent
level of complication in deciding which samples will work. The sample
is positioned and stopped at either end of its trip by plastic stops
which also help to support the shuttle tube. The shuttling procedure is

reasonably reproducible in terms of time and impact. Irregularities in

the shuttling introduce noise in the t, domain of the experiment.38

3. Zero and Intermediate Field Coils
Specific design features of the coils and electronics are
described elsewhere37'39, and only a brief description is given here.
Two requirements exist for the switching electromagnets. The first is
that a homogeneous region of zero field is produced over the sample, and
the second is that the change in the intermediate field occurs on. the
order of a micrpsecond. The homogeneity of the field scales with the

volume of the coil, as does its inductance. Unfortunately though, the
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rise time, 1, of the turn on of the coil is directly proportional to the
inductance and inversely proportional to the series resistance (1=L/R).
Additionally, the available current for producing the field in the coil
is inversely related to this resistance. Thus, although theoretically
the shut off of the field and the zero field region could be controlled
with one coil, conflicting requirements of homogeneity and speed make
two more practical. As shown in Figure II.10a and 10c, the region under
the magnet is occupied by two coils labelled the-auxiliary coil and the
shielding coil used to perform the field step in the experimental
sequence. These are also referred to as the B4 and Bo coils, respec-
tively, in Figure II.12 where the profiles of the fields from the coils
during the field cycle are shown.

a. Zero Field Coil. The larger, more homogeneous coil B, cancels
the field over the volume of the sample. The cylindrical coil is wound
in two sections (as shown in Figure II.10c) to produce a gradient
designed to match the gradient‘of the fringe field, Bf, around 100 G.39
To first order in the field gradients, this effectively matches and
cancels the field. The By coil, due to its size, has a much slower
switching time on the order of a few milliseconds to a few tens of
milliseconds depending on the inductance placed in series with the coil.
The coil operates with a logic controlled feedback network to produce a
regulated current of ~7-10 amps with a voltage of 20-30 volts.39.

The coil is aligned and shimmed using a Hall effect Gaussmeter
(F.W. Bell, Inc., Model 8114). Routinely fields of <0.1 G and generally
as low as 0.025 G or better are obtained by careful shimming. To cancel
inhomogeneities in the zero field region or misalignment of the coil, a

set of three static orthogonal shim coils (one gradient z, two trans-
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Figure I1.12: Schematic of the coilnapparatus and graphs of field vs.
time for the switching electromagnetic coils. The field, Bo,
corresponds to the high field magnet used to polarize and detect the
nuclear spins. The coils By and 32 correspond to the zero field (or
shielding) coil and the intermediate field (or auxiliary) coil,
respectively. At right, the field profiles of the different coils are
illustrated. At top, the fringe field of the Bo coil experienced by the
sample when shuttled to the low field region. The next two graphs
represent the switching of the homogeneous zero field coil, By, and the
rapid switching intermediate field coil, 52° When combined into the
field cycle, the field profile appears as shown at bottom. The steps 1-
6 are described in the text (Section D.4).
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verse) are mounted‘on the coil. These operate with a power supply

producing in the

X or y directions: 0.8 G/amp (1 amp full)

z direction: 0.4 G/cm per amp (4 amps full)

over a volume of approximately a 1 cm3. For solids, the homogeneity
1imi£ations are not as stringent as those for liquids or liquid crystals
in which the natural linewidths are very narrow and the couplings
relatively small.

b. Intermediate Field Coil. While the slower, more homogeneous
bucking coil is turning on, the sample must remain polarized before the
sudden transition in field. This is accomplished with the second
intermediate or auxiliary field coil, BZ' producing a field, Bi’ which
reinforces the fringe field, Bf, of the magnet. The B2 coil is on when
the sample reaches the low field region and the nuclear spins see a
field of Bi+Bf. After the bucking coil has turned on completely to
cancel Bf, the sample remains in a field Bi>>Bloc' The field, Bi' must
be greater than the local fields in order to maintain and detect high
field states. If Bi<Bloc* the spin systém may disorder to some extent
depending on the relative sizes of the fields and result in a loss or
distortion in signal. It is the sudden switching off of this field
which initiates the zero field period. Since this coil need not produce
as homogeneous a field and must be switched rapidly, it is much smaller
in size. 1In fact, the intermediate field coil is usually wound directly
on the glass shuttle tube and a typical coil consists of ~20 turns of 28
AWG wire with a length of ~1 cm and an i.d, of 1 cm.

For the transition to be sudden requires that the switching time



Ts<<1/wmax, where Wnax is the maximum frequency in the zero field

spectrum. This generally dictates that 1, is on the order of 1 usec

]
which is obtainable using a small inductor and large series resistance
such that L/R=tg is small. The series resistance limits the current to
the coil and therefore the maximum field, but working with R=5-25 Q@ and
a coil of the size described, fields of ~400-100 G can be produced and
switched in a few hundred nanoseconds. For proton dipolar coupled
systems in solids, 100 G is usually a more than adequate field strength
and for samples such as liquid crystals the field can be much lower.
For quadrupolar nuclei or nuclei with low gyromagnetic ratios, fields of
300-400 G are beginning to only marginally meet the required magnitudes.
The field is governed by a logic controlled high power current
pulser for which there are limitations in the accessible power and
electronics to switch and produce high fields.39 The power supplies
used are generally not regUléted as the field level, if greater than
Bioe? need not be absolutely constant. In fact, there is often a
noticeable droop of ~5-10% in the output voltage with pulses longer than
a few milliseconds. The pulsers generally operate at 180 V switching
between 7-30 amps. Excessive duty cycles which result in resistive
heating can damage the coils and/or pulsers and must be avoided. The
intermediate field coil is required to be on for both the turn on and
off of the By coil which requires that a fairly large field is produced

for a few to several tens of milliseconds.

4. The Basic Field Cycle
A composite of the field switching is illustrated in the last

diagram of Figure II.12 in which the numbers refer to the steps of the
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basic field cycle as follows:

1. The samples originates in the high field magnet for a time
greater than T1 to polarize the nuclear spins. Downward gas pressure
(from the top) or vacuum (from the bottom) is applied to move the sample
from high field through the fringe field to the intermediate field level
(~100-200 msec). .

2. Both the B1 and 82 coils are turned on. 82 turns on quickly
(few tenths of usec) producing a field, B;, at least as large as the
local fields and in the same direction as the fringe field. The By
field maintains the spin magnetization, while simultaneously, the slower
By coil (tens of msec) turns on to its regulated level cancelling the
fringe field.

3. After B, is completely on (field level = B;), the By coil is
turned off rapidly. As the sample is now in zero field, evolution of
the spin system is allowed to proceed for a gime ti.

4, The evolution is terminated by rapidly reapplying By.

5. The B1 coil is turned off producing a field Bi+Bf, then 82 is
shut off.

6. The sample is adiabatically remagnetized to high field by
applying upward air pressure. The shuttle back to high field may occur
anytime after step 4 as there is no neccessity in waiting for the coils
to switch off as the sample can just as easily be remagnetized from any
field level as from Bf. The signal is detected using one of the rf
pulse schemes described in Section 5 of this appendix and recorded.

The cycle is then repeated beginning with Step 1 and incrementing

the time period ty for a second point in the time domain signal.
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5. Pulsed DC Magnetic Fields
The use of pulsed dc magnetic fields avoids many of the problems
associated with controlling large fields for relatively long periods of
time. A brief, intense de¢ pulsed field can be much larger in amplitude

and can be produced using a larger current. In addition, a certain

amount of flexibility is added to the experiment in the choice of pulse
direction, amplitude (Bi) and duration (1), i.e. pulse angle 8=YB;T.
The same pulsers and coils described earlier can be used for the pulsed
experiments. To produce the field cycle of Figure II.4b the sequence of
the basic field cycle is slightly altered. After completing step 1,

removing the sample to the fringe field, steps 2-5 are replaced by:

2. The bucking coil, B1, is turned on slowly to adiabatically
demagnetize the sample to zero field. The rise and fall times of this
coil may be tailored to‘meet adiabatic constraints through the series
inductance used.

3. The B, coil is turned on for a brief dec pulse (few usec) of the
desired features mentioned above. The zero field period lasts for t,.

4. A second dc pulse is applied at the end of the t4 period.

5. The B4 coil is then turned off, adiabatically remagnetizing the
sample to Bg.

Step 7 occurs as before. With added pulsers, coils and alterna-
tive sequences of events, more complicated dc pulsed field schemes can i
be imagined

The rise and fall times of the dc pulsed fields should also be
sudden as described previously. For many experiments using de¢ pulses in

zero field, a compromise between field strength (related to current and
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resistance), coil homogeneity (related to coil size and inductance) and
rise times (related to inductance and resistance) is met to obtain the
correct behavior. Homogeneity plays an important role in the de¢ pulsed
field experiments since, in order for the pulse to act as a uniform
rotation over the entire sample, the pulsed field must be reasonably
homogeneous over the sample volume. This is often accomplished by using
larger coils (longer solenoids or helmholtz's) to increase homogeneity.
The increased inductance requires a larger series resistance for a rapid
rise time. This resistance of course decreases the available current
and field but, for homonuclear proton dipolar coupled or liquid crystal
samples, quite useable fields are produced. To avoid droop of the dec
pulses over long sequences, regulated power supplies are used for
increased stability of the pulse amplitudes.

To obtain a desired pulse angle, either the length of the pulse or
its amplitude can be altered. For large fields,hthe available 0.1 usec
setability in length corresponds to a large change in rotation angle.
Fine tuning of the pulses is instead easily accomplished through alter-
ing the voltage level. If the power supply does not have a variable
output, a variac can be inserted between the ac source and the supply to
adjust the output voltage of the power supply. This allows one to
establish a given pulse angle accurately, but may not allow simultaneous
setting of many different pulse angles.

To change the "phase" of the pulsed field (e.g. to give an x or y
pulse), as is required in some experiments, coils must be placed in
different directions in space as dc fields have no variable phase as do
rf fields. The design of a set of three orthogonal coils is shown in

Figure I1.13. The form for supporting the wires was machined from 1"
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Three Orthogonal Coil Desig'n

Side View Top View
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Figure II.13: Design for three orthogonal intermediate field coils. A
nylon form is machined to hold two transverse saddle shaped coils on the
four sections and an internal solenoid coil. The solenoid produces a
field colinear to the main field of the magnet. The solenoid and coil
form fit snugly about the 10 mm shuttle tube. The characteristics of

these coils are described in the text.
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nylon. The two helmholtz coils are 13 mm long by 13 mm in diameter at »i
the center. They consist of 20 turns (10 on each side) of 28 AWG wire .
spaced radially from the center of the coil form. The angle of the !
helmholtz was chosen to be the maximum possible (90°) to increase field TE

40 yet avoid overlap and coupling of the coils. The center

homogeneity
solenoid is 10 mm i.d. by 12 mm in length. These coils have reasonable j
homogeneity over the usual sample volume of 0.2 cm3 (r=0.3 em, h=0.7 cm)
and even better over a 0.1 ecm3 volume (r=0.25 cm, h=0.5 om) which was
often used for liquid crystal samples; The fields produced with these
coils using 180 V, 25 Q in series (~7 amps) were ~40 G. The rise and
fall times were ~0.2-0.4 psec from the beginning of the pulse. (Note
that the pulsers have a "deadtime" of ~0.5 usec before a pulse is
produced.) The individual heimholtz coils were found to behave essen-
tially identically. The pulses could be timed and applied immediately
after one another with no overlap. To produce six phases of pulsed
fields in the three orthogonal coils, six directions of current must be
controlled. A bidirectional current pulser was designed to switch

between two directions of current in a single coil and a circuit diagram

and description can be found in reference 37.

6. High Field Detection
To measure the magnitude of the signal in high field, a component
of transverse magnetization which is detectable by standard NMR means i
must be created. To do this, an rf pulse or series of pulses is
applied. Four examples of detection sequences are given in Figure
II.14. In the first, a 90° pulse is applied to the spin system and the

signal is detected. Generally only the magnitude of this signal is of
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Figure II.14: High field detection sequences. a). A 902 pulse is
applied and the transverse component of magnetization is detected.
Often only the magnitude of the signal is required, thus only the first
point of the free induction decay (FID) is sampled. b). Solid echo
sequence used to avoid probe and receiver recovery by echoing the signal
at a later time. In solids, ey generally equals 90° and the height of
the echoed signal is detected. The full FID signal can be detected in
(a) and (b). A pulsed spin-locking or multiple echo sequence, (c¢) and
(d), may be used to prolong the decay of the magnetization and allow for

repeated sampling of the signal. The 8, pulses are generally <90° often

obtaining maximum signal with ey-u5°. zhe echo amplitudes are averaged
as a single t1 data point for increased signal-to-noise. The difference
between (¢) and (d) is in the first echo pulse and delay. The sequence
in (c¢) is generally used for a single component system. The sequence in
(d) uses a Hahn echo to separate out the long and short lived signals on

the basis of T2.



interest (see Section B.4) and thus only the first point is recorded.

d as shown in Figure II.14b-aids in

For solids, the use of a solid echo
detecting the quickly decaying (because of short T2) signal. This
avoids losing the signal, while the probe and receiver electronics are
recovering, by echoing it at a later time.

Since one is generally interested only in the magnitude of the
signal; there is no need to allow evolution of the signal during the
high field time tz; To increase signal-to~noise, a "pulsed spin-
locking" or multiple echo train may be used to extend the decay of the
magnetization.uz This type of pulse sequence is illustrated in Figufe
II.14c where the echo amplitudes are detected between pulses. Thus one
repeatedly samples the signal with its decay governed by a time constant
approaching T1p rather than Tz. The averaged data recorded as a single
tq point in the zero field time domain signal. Sample heating is not
found to be a problem with these detection sequences as the duty cycle
is low.

When wishing to observe only the solute signal in liquid crystal
samples, the signal from the liquid crystal solvent must be removed.
This is possible due to the very different T2 relaxation times of the
two components. A similar multiple echo sequence, shown in Figure
II.14d, is used. In the initial stages, a 903 pulse is applied. This
produces transverse components of the liquid crystal and solute magneti-
zations which decay with time constants, T2,lq and Tz,s’ respectively.
Since in general T2,1q<<T2,s’ waiting a time r>>T2’1q results in the
liquid crystal signal decaying to zero. By applying a 180° pulse (Hahn
Echou3), the solute signal alone refocuses at 2t and is repeatedly

echoed and sampled.
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For stability in the experiment; the first pulse of any of the
sequences is cycled between the phases x and %. This inverts the sign
of the signal while spectrometer artifacts and de drift are unaffected.
Subtraction of the phase cycled signals should rid the time domain
signals of these instabilities. This is an important feature as the

experiment can require many hours of signal averaging, especially in

those samples with long relaxation times. Drift can occur over time in
the rf electronics, amplifier output, or in such areas as the probe
tuning (due to mechanical shock), and temperature fluctuations (liquid

crystals are especially sensitive). A discussion of the probe

‘ electronics can be found in reference 54.

One field cycle produces a single t4 data point in the time domain
cycle. The field cycle is repeated.afteriwaiting a few times T, to
allow for relaxation of the nuclear spins and is repeated for a new
value of t1. The increment in time, At1, is directly relatéd to the
range of spectral'frequeneies as 1/At1=fu11 bandwidth (kHz). According

"u, a signal must be sampled at least two times a

to the Nyquist theorem
period to avoid "folding in" or aliasing of the signal to lower
frequency. For example, if the highest frequency in the spectrum is 100
kHz, the signal must be sampled at least with At1=5 psec as this gives a
bandwidth of %100 kHz. (Recall that the zero field spectra are
symmetric around zero frequency).

The high field detection sequences should be optimized to excite
as much of the signal as possible. Due to the broad lines of many
powders or quadrupolar nuclei this is often difficult. Thus the high

field part of the experiment includes many of the rigors of any typical

NMR experiment in solids.uu Additionally, if one desires to detect the
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evolution of the sample under the high field Hamiltonian in tz; there
are a wide variety of pulse sequences other than those presented here
which can be applied to correlate specific high field information with

the zero field spectrum.2

7. NMR Spectrometer | i
A solid state NMR spectrometer has been modified for the field

cyecling experiments and required no alterations from the basic NMR
instrument except for the addition of the coils, shuttling system and
¢coil electronics which arg all external to the basic spectrometer
electronics. Additionally, the computer capabilities to control the
various aspects of the experiments must be available. The spectrometer
is a homebuilt instrument based on a 4.2 Tesla magnet and operating at a
frequency of 185.03 MHz for protons. A complete description of this
spectrometer is given elsewhere)45 and only those aspects which have been
altered or adapted are discussed. The data collection and manipulation
is controlled by software written specifically for the spectrometer

46 and works in conjunction with the pulse !

systems in this laboratory
programmer unit. The pulse sequences and timing of the zero field and
high field instrumentation is controlled by a homebuilt pulse programmer
based on its own independent microprocessor and micr'ocode.u7 This unit
generates the timing and gate words controlling the sequence df
experimental events. Timing is based on a 10 MHz clock therefore the
smallest timing increment is 100 nsec. There are ~16 independent logic
output gates divided among the tasks as follows: four rf gates, five dc¢

pulsed field controls, one zero field coil logic control line, one

shuttling trigger, one temperature controller blank, one deblanking of

[



can ey
[UTP———

~

™
[E—

[,

;)
[T RT——r)

[

iy

M

-

79

the receiver pulse; one data sampling trigger and one scope trigger:

The basic limitations of this pulse programmer unit arises when
attempting to output many short timing words which causes the unit to
"clock-out™ its memory; These difficulties oftep arise with complicated
rf or zero field pulse sequences and caution should be exercised as the
resultant behavior is not to be trusted. For the b;sic field cycle,
delays for shuttling and coil turn on are often long enough to avoid
clocking out of the memory.

Two alterations have been made to the pulse programmer for use on
this particular spectrometer. The pulse programmer contains two types
of memory units; a RAM and a FIFO. The RAM is generally used for long
repetitive sequences such as the pulsed spin-locking and signal
detection. In order to facilitate the operation of more complex
sequences, the RAM has been "split". Splitting the RAM memory merely
allows the one physical memory unit to be accessed at independent
starting locations allowing it to act as two RAM memories each half the
size." But, since there is oniy the one RAM memory present, all RAM
output statements should begin with 01. To access the split RAM, the
"flag" statements in the FIFO which call the RAM into action should be
either PA 01 00 or PA 03 00. The former executes the statements in the
first 128 steps, and the latter in the following 128 steps. Note that
the RAM is loaded sequentially and that the firgt half must be filled
(even with dummy.statements that are never executed) in order that the
second half begins being loaded at the proper memory location. The
split in the RAM need not be 50:50 as was chosen here and can be divided
differently with the proper hardware changes. O0f course, the full 256

steps of the total RAM memory can be accessed for a single execution by



calling the RAM from the FIFO with only the PA 01 00 statement. The
second change consists in the size of the FIFO memory. The basic pulse
programmer designl'7 incorporates FIFO memories which can hold 16
executable steps. These chips (Fairchild 9403's) were replaced with
Fairchild 9423 memory chips which hold 64 steps. Hopefully this will
aid in execution and timing problems. Unfortunately; precise
information on the loading and emptying times of this FIFO memories is

not available but can easily be found experimentally.

8. Variations in the Experiment

Alternatives to sample shuttling, field control and field pulsing
are all possible. In the following sections, a few alternative
approaches to the zero field experiment are very briefly discussed.
These changes may or may not be technically more difficult, but for one
reason or another have features which make them attractive.

a. Direct Observation in Zero Field. Extremely high sensitivity
detectors would be required to directly observe the oscillating magneti-
zation in zero field. Recently in experiments by other groups, such a

48 49 ind

device has been used to detect'spin noise’~, quadrupolar signals
other low frequency signalsso. These devices, known as superconducting
quantum interference devices (SQUiDs), are flux to voltage transducers
and can be frequency independent.51 Experiments with direct detection
would be extremely advantageous as the two dimensional point-by-point
field cycle would be reduced to a one dimensional experimeﬁt with a
great reduction in time. The high sensitivity might be expected to

allow for the detection of very small amplitude signals such as those

due to the polarization produced in small dipolar or quadrupolar local
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fields. If possible; this reduces the necessity of using a large
polarizing field. Experiments along these lines are being developed and
are discussed elsewhere in more detail.37s39

b. Removal of the Polarizing Field. Another experimental approach
is to cycle the field by removing the polarizing field through switching
the high field coil. Switchable coils with reasonably large fields {(up
to 1.5 Tesla) are often used in f;eld dependent relaxation studies5;52
and can be switched on a timescale of a few milliseconds.5 Although the
switch off is not sudden, it is more rapid than mechanical shuttling.
Combined with an intermediate field coil to maintain the polarization,
the range of samples could be greatly extended to those with short
relaxation times for which Mo would not survive the field cycle; Some
of the high field sensitivity would be sacrificed for the ability to
switch the field in using”a lovwer field level . In addition, homo-
geneity and reproducibility of the field level might not be as stable as
with a persistent field.

¢. Variable Temperature Zero Field Experiments. The integration
of a variable temperature field cyeling system has numerous applications
to zero field NMR experiments, Low temperature field cycling apparatus
are in use for many zero field NQR experiments?3 generally operating at
T7 X to insure the long relaxation time required for the frequency
domain field c¢ycle. Many of the low temperature systems in use involve
either the transport of an entire sample cryostat13 or the mechanical
transport of the sample.53 Many such apparatus are designed around
electromagnets whereas here, the system would have to be incorporated
into a superconducting solenoid systém.

The ability to control the temperature provides a means of
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effecting the relaxation times of different samples making their obser-
vation possible. Even more interesting is the prospect of measuring the =
dynamics of molecular systems; The zero field NMR and NQR spectra of
solids have narrow lines, unlike powder spectra in large magnetic ig

fields. The changes due to motional averaging should then be more

ey st

easily observed in the changes in frequencies and lineshapes in the zero
field spectra;55 Observing the spectra as a function of temperature
should lead to a great deal of information on the molecular dynamics.

Previously, a design for a low temperature shuttling system was
presented.5u This design was a direct adaptation of the existing zero
field set up, since the gas transporting the sample was simply temper-
ature regulated, and the shuttling tube was replaced by a dewared glass
tube. This design posed many problems as the temperature control and
the shuttling gas were one and the same. Often to control the tempera-
ture accurately required that a lower gaé pressure be used. This of
course detrimentally affected the shuttling of the sample. Special low
temperature valves were also required to switch the gas. The rf probe
was designed with the helmholtz rf and intermediate field coils outside
of the dewar which lead to problems with signal-to-noise and probe
arcing.

A new design was developed during the course of this work which
hopefully improves upon many of these probleﬁs. It was decided that the
most efficient way in which to move the sample and control the temper-
ature was to do these independently. Therefore a piston with a stroke
length of ~60 cm (ajustable to ~t5 cm) was designed to move the sample
in approximately 300-500 msec. The piston operates using room temper-

ature compressed air at pressures from 20-50 psi. The high pressure gas

C




is controlled by the switching of electronically controlled solenoid
valves. The sample is fixed on the end of a rigid fiberglass rod of
3/16" diameter. A glass dewar, supported by mounting to the probe;
encloses a region between the rf coil and the zero field coils in which
the sample travels. The temperature controlled nitrogen gas impinges on
the sample from the lower end making either high or low temperature
regulation possible: With this arrangement the temperature can be more
easily controlled and is independent of the movement of the sample. The
rf coil and intermediate field coils are housed inside the dewar system
allowing for increased signal-to4noise; 1ower rf power requirements and
larger pulsed dc fields. Leads from the coils pass through the dewar
allowing all rf and zero field electronics to remain at room temper-
ature., The ideal combination for a variable temperature experiment
which can be invisioned consists of a switchable high field coil or a
zero field detector and a temperature controlled sample region. This
requires no movement of the sample and can be designed for temperature

regulation of a limited sample region.
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III. PULSED ZERO FIELD NMR AND NQR
A. Introduction

In the previous chapter; the basic outline of time domain field
cycling methods was presented. These approaches, although extremely
useful for observing simple dipolar coupled or quadrupolar spin systems,
are not at all selective in either the excitation of the nuclear spins
or in determining the subsequent course of evolution of the spin system,
sinée a sudden transition in field or an arbitrarily chosen pulsed field
simultaneously excites all nuclear species in zero field. It is
desirable to gain a degree of control over these aspects of the
experiment and, in analogy with high field NMR with radiofrequency (rf)
pulses, pulsed dc fields applied in zero field are one such approach.

DC pulses can be used in field cycles with demagnetization to an
intermediate field (i.e. after the sudden removal of the field) or after
demagnetization to zero field. Incorporating pulsed fields into the
latter has technical advantages already enumerated in the preceding
chapter. An additional advantage of the pulsed fields is the
experimental flexibility allowed in their duration, magnitude and -
direction. With these variable parameters, the uses of pulsed fields
can go much beyond simple pulsing to initiate evolution into the realm
of coherently manipulating the nuclear spin system in zero field.
Numerous reasons for applying pulses in zero field are imaginable. Many
of these are identical to the uses of rf pulses in high field
experiments?; among them, to alter the state of the magnetization before

evolution and observe its behavior, to select spectral transitions, as
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mixing pulses in two dimensional correlation experiments, decoupling of
heteronuclear spin systems; refocussing pulses, composite pulses and
isotope selectivity.

In this and following chapters, experiments on polycrystalline
solids which explore the use of pulsed dc fields in zero field are
presented; In the first section; the basic behavior of nuclear spins
under such fields is discussed. From this foundation, the uses of
pulses in observing zero field NMR and NQR spectra, in two dimensional
pulsed correlation experiments, for increasing pulsed field homogeneity
and for isotope selectivity are examined. Pulsed fields are also
combined with sensitivity enhancement via level crossings for the

detection of quadrupolar nuclei.
B. Pulsed DC Fields in Zero Field

Before incofporating de field pulses into the field cycling
schemes of zero field NMR and NQR, an introduction to the
characteristics of the pulsed fields and to the behavior of the spin
system is given. Much of what is described is analogous to the
application of rf pulses in the typical high field NMR experiment and
may not seem surprising. Often though, the differences which arise
between working in high and zero field or with rf vs. dc pulses require
¢reative approaches to succesfully manipulate the nuclear spins.
Stepped dc fields, those turned on continuously to a fixed level, have
been frequently used in many experiments to study the relaxation
behavior in low field or to test the predictions of spin temperature

theories.?*3 wWhile the applications of brief dc field pulses are



relatively unexplored;u;5
1. Effects of Single Pulses
A pulsed field acts as a rotation on the nuclear spin system as
first described in Chapter I.D. For an effective pulse, this requires
that the field, By, of the pulse is much larger than the local fields of
the dipolar or quadrupolar spin.interactions; When working in thé limit
of the Zeeman interaction of the spins with B; being greater than the

local fields, the dc pulse is formally described as

DL(T) - exp(—inct)pL(O)exp(iﬂdct) (111.1)

acting on the state of the spin system as described by the operator »p
expressed in the laboratory frame. The operator for the pulsed field is

given by

Hdc = Ylsiln,L (I11.2)

where n=x,y or z, corresponds to the direction in the laboratory frame

of the pulsed field. A pulse angle, 6, is defined by

6--fYBit (111.3)

and thus Equation (III.1) becomes

pL(e) = exp(-1i61 )pL(O)exp(ieIn ) (II1I.4)

n,L s L

For example, if a sample is demagnetized to an intermediate field
level, Bi' applied in the laboratory 2z direction and then suddenly
demagnetized as illustrated in Figure III.1, the initial condition for

all crystallite orientations in zero field is given by Iz,L' Applying a
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Figure III.1: Field cycle employing pulsed dc magnetic fields after a
sudden transition in the intermediate field. Demagnetization from a
large field, B,, to an intermediate z field, By (>Bloc). results in a
zero field state proportional to Iz,L immediately after the sudden
transition in field. A single dc field pulse, P, or several pulses
repeated n times can be applied in any direction in space immediately
after the removal of the field. The effect of the coherent manipulation
of the magnetization in zero field can be monitored by reapplying the
field in the z direction, and remagnetizing to Bz where the magneti-
zation is sampled. Field cyeling and pulsed dc field times are not
drawn to scale and no evolution of the spin system is allowed before or
after the pulse.



pulsed field, P, in the laboratory z direction causes no change in the
initial state since a torque is not applied by the field to the initial
magnetization. This can be shown by solving Equation (III.4) to find
that pL(t)=pL(0). If, though, the field is applied in either the
laboratory x or y directions, the result is to rotate the magnetization

such that

pL(e) = exp(-ieIx )

L Iz,Lexp(iGIx’ )

L

= —Iy,Lsine + Iz’Lcose (III.5)

producing components proportional to Iy and Iz. If the intermediate z
field is suddenly reapplied immediately after the pulse, the z component
of magnetization is trapped and can be detected in high field.
Measuring the amplitude of the magnetization results in an oscillating

function, S(t), proportional to cos6é as can be calculated from

S(t) = Tr{p(0)p(1)} = Tr{I (1)} (III.6)

z,L°L

S(t) represents the projection of the final state on the initial state
which, in this case, can be considered the scalar product of two
magnetization vectors. The theoretical curve and an experimentally
obtained example are shown in Figure I1II.2. The pronounced decay of the
signal with time is not predicted and may be attributed to several
factors which are discussed later.

The above situation is identical to that in high field where rf
pulses cause the nutétion of the magnetization, Iz,L' Unlike high field
NMR where the frequency of the irradiation (YBO) affects only one

nuclear species, in zero field all nuclear spin species are
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Figure III.2: Theoretical and experimental curves of the longitudinal
maghetization vs. single pulse applied in zero field. The pulsed field_
is applied in a direction transverse to an initial state proportional to
Iz,L’ which is also the detected component (see Figure 1). The signal
oscillates according to |I,|cos® as shown in (a) for ideal pulse
conditions in the absence of relaxation. In (b), an experimental curve
of the signal from a sample of CH,Cl, in a nematic liquid crystal shows
the same general behavior, but decays due to field inhomogeneity and
other effects.
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simultaneously irradiated by a dc field and thé effective pulse angle
(e-YBiT) varies with Y. DC fields are used since the resonance
frequency is zero for all nuclei. As for an rf pulée, a de¢ pulse will
still excite over a range of frequency given by sinwt/wt. In Figure
III.2 the behavior of one spin species (here, 1H) is shown as only this
nucleus is detected in high field.

If the sample is instead demagnetized completely to zero field,
the situation is different as the pulses are now applied to an

equilibrium zero field state for which

[9(0).HZF] =0 (I11.7)

in which p is proportional to the components of a second rank tensor.
The effect of a single dc pulse on such a system can also be observed.
The pulse, referenced to a laboratory based frame, must be reexpressed

in the molecular/zero field frame of p and Equation (III.4) becomes

1

pal®) = Rexp(-ieIn’L)R-1p(O)Rexp(ieIn’L)R- (III.8)

where R=R(aBY), the rotation operator. As a simple test of these ideas,
consider the following experiment illustrated in Figure I11I1.3. The
sample, initially in high field, is shuttled down to zero field where it
is subjected to a single dec pulse of varying length, then shuttled back
to high field where its proton pulsed spin locking signal is recorded.

The high field signal for a pulse of length t using Equation (III.6) is

SQ(T) = Tr[p(O)Rexp(-incr)R-1p(O)Rexp(incr)R_1] (111.9)

Because of the powder distribution of crystallites, R(aBY) differs for
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Figure I11.3: Field cycle for the application of a single dc magnetic
field pulse after demagnetization to zero field. The sample is shuttled
‘adiabatically from the large magnetic field to zero field. The pulsed
field is applied for a time t (few usec) with a corresponding pulse
angle given by 8=YBiT. The direction, duration and amplitude of the

pulse is variable.
function of .

After remagnetization, the signal is detected as a
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each orientation as does the orientation of the rotation axis in the
crystallite molecular frame. The pulses correspond to rotations by the
angle 0=YBt about an axis oriented at some values of a and B in the
molecular frame. The expression for the signal is the correlation
function of the initial zero field state and its rotated counterpart.
Simulations in Figure III.4 illustrate the effects of a pulse applied in
the laboratory z direction on different crystallite orientations.' The
periodicity of the signal can be found by solving Equation (III.9) for a
given orientation.

For a powder sample, Equation (III;9) must be averaged over all
possible orientations, i.e. over all a, B and Y. Figure III.5a shows
that the average behavior over a powder is periodic as a function of 1
and that the sighal magnitude for 6=27 is nearly equal to that for 6=0.
This experimental~result is for the protons in polycrystalline
Ba(ClO3)2-H20, a dipolar system‘consisting'of strongly coupled pairs of
protons within thé water molecules, and similar behévior has been
obs;rved in other systems. Assuming that a single spin temperature

describes the demagnetized state3 as discussed in Chapter II,

p(0) = Hy (I1I.10)

for the pairs of protons. Performing the integration over the powder

distribution, the signal function calculated by substituting Equation

(III1.10) into Equation (III.9) is

S(t) = 1/5[1 + Zcos(YIBdct) + 2c032(YIBdct)]S(r=0) (III.11)

This agrees with the experimental results showing local maxima at nm as

illustrated in Figure III.5b, but predicts no signal decay.
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Figure III.4: Simulations of the signal amplitude as a function of dc
pulse angle in the field cycle of Figure IIIQ3, for different
crystallite orientations. The initial condition is assumed to be equal
to HD. Because of the axial symmetry of the initial condition only the
angle B, between the z axis of the PAS/molecular frame and the direction
of the pulsed field (1aboratory'z axis), is necessary. For the
orientation shown at top left, where the pulsed field is along the
direction of the local field.(8=0), no change is seen to occur. For
orientations close to R=45°, the signal goes through a single period
over the range 0-27 whereas for the orientation perpendicular to the
field direction, 8=90°, the signal goes through two periods in 2w. Note
that for all crystallite orientations shown the signal returns to its
initial value with a 27 de¢ pulse.

99



(@)

(b)

—

1 | | |- l |

NIV

2n 4n ©O66n 8n 10m 12n

Pulse angle (6 = yB; 1)

XBL 8611-6475

100

oL

TN P
i [ — [PO———
Py W e o



[T

,,
——

o

101

Figure II1.5: Signal as a function of a single dc field pulse applied
in the 1aboratory 2 direction after demagnetization to zero field
(Figure II1.3). The pulse angle is given by anHBit where t is on the
order of a few microseconds, and Bi>>Bloc‘ The magnitude of the proton
magnetization from a sample of Ba(ClO3)2'320 is detected and shown in
(a). For comparison, the theoretically predicted signal function
(Equation III.9) is plotted in (b) for an initial condition equal to Hp.
The detected signal shows the predicted periodicity and after a nx2rw
pulse, the magnetization is nearly equal to its initial value. The
damping effect may be attributed to imperfections in the pulséd field
homogeneity and amplitude.



Experimental curves such as those shown in Figures III.2 and 5 are used
as a means of calibrating the pulsed field.

A component of the dipolar ordered state in zero field is not

effected by the pulse as seen by the constant term in Equation (III.11).

This corresponds to a projection along the field direction of a
component of the zero field state from each orientation. The actual
direction of the applied field in the laboratory frame does not affect
the behavior of the spin system as a whole when p(O)aHZF. This is due
the isotropy of space and a random distribution of all crystallite
orientations. The direction of the pulsed field has some significance
when the initial condition or detected operator still bears a
"direction", that is to say, it is proportional to a laboratory based

operator.

2. Field Homogeneity
The decay of the experimental signals can be partly explained by
the 1nhomogeneity of the pulsed fields together with evolution and

relaxation which occurs during the de pulse.1

Ultimately, even under
ideal pulse conditions, the signal loses coherence and decays due to 'I‘1
and Tz processes. Evidence for evolution under the internal Hamiltonian
during the dec pulse has been seen in quadrupolar systems in which the
damping effect is more pronounced as the condition Bi>Bloc is only
marginally met. A formal description of this effect will not be given
explicitly although'evidence of its presence 1s seen in some of the
experimental results. Certainly, this is not a regime in which one
would chose to work and although one remedy is obvious (use larger

fields), it is not always obtainable pra’ctically.6
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Inhomogeneous pulsed fields result in a more severe damping of the
observed signal and the efficiency of the pulsed field has great bearing
on the experiment. Empirically, it was found that changing either the
size or form of the coil or sample greatly altered the homogeneity as is
expect.ed.7 Of course, there are drawbacks to larger coils (see Chapter
II) and reducing the sample size is not desirable due to the loss in
signal. The decay evident in the previous signals and its dependence on
experimental parameters can be illustrated by plotting the signal
magnitude at specific pulse angles such as 180°, 360°,...,nxw as shown
in Figuré III.6. A completely undistorted signal (no relaxation,
evolution or inhomogeneity during the pulse) would show no change in the
level of the signal. For a given dc field strength (~40 G) and a small
qipolar coupling (~0.5 G), the decay increases for larger sample
volumes, indicating the presence of field inhomogeneity over the sample
(Figure II11.6a). This can be attributed primarily to field inhomo-
geneities by measuring the signal from a small sample volume at two
different dc field levels (~U40 G and ~100 G in Figure III1.6b).
Comparison of thesé signals shows that there isAno change with a change
in field, and one can assume that the lower field is already in the
limit, Bi>>Bloc’ as expected since the ratio of the lower field to the
dipolar coupling is already ~80:1. Finally, the effect of the relative
field strength and dipolar coupling is made by using different samples
(Figure III.6c), one with a large dipolar coupling (~10 G), and a second
smaller one (~0.5 G) with a pulsed field of ~40 G. The decay is seen to
be more pronounced with the larger coupling. (Note that in this latter
case both samples are large, thus inhomogeneity is also a factor,

although it should be equal for the two samples volumes.) The zero
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Figure II1.6: Comparison of different experimental factors on the
behavior of the signal as a function of a single dec pulse in zero field.
An undistorted signal, one that is only affected by relaxation, would be
expected to shbw little decay from the initial value. In (a).with a
small dipolar coupling, a change in sample volume shows the effect of
decreased field homogeneity over a larger sample. The field is
approximately 40 G unless stated otherwise. Incﬁeasing the field to
~100G as shown in (b) for the same size dipolar coupling, illustrates
that the decay in (a) is not due to evolution under a weak pulse. A
weak field will however not act as effectively over large samples with a

large dipolar coupling as compared to a small coupling as in (c¢). .



106

field relaxation times are all substantially longer than the pulse /
lengths used.

Minor differences in coil designs can be significant in their
behavior in pulsed experiments. Two examples are discussed, that of a
solenoid and a helmholtz of approximately the same size. Both ¢oils
produce fields in the laboratory z direction; but the helmholtz is less H
efficient as the field per amp produced is smaller. The field from a
finite length solenoid (a helmholtz coil is modelled as two solenoids
contributing to a field centered between them) is calculated by solving

the equation8

27K 'NI
1

Bz(Tesla) =

1/72 ~ z R V-
2

2] (I1I.12)

Vr2e (172-2)2  Nr+ (1/2+2)

where 27k'= 6.3x1077 TA  'm™!

, I equals the coil radius, z the distance

from the coil center, 1 the coil length, I the current and N the number

of turns. The caiculated profiles of the fields over the length of the i

two coils are shown in Figure I1I1.7. For the same length coils, the ‘ .

field from the helmholtz does not drop off as rapidly as does the field

for the solenoid. As the coils increase in length, the curves are

expected to flatten out and the fields become more unifor'm.8
Experimentally, the coils are seen to behave quite differently.

In Figure III.8, the signal as a function of pulse angle is shown for

the two coils. The helmholtz is more homogeneous as predicted‘from

Figure III.7 and its effect is improved when the sample size is reduced.

A computer program, INHOM.FOR, was written to simulate the behavior of

the coils. The signal is calculated numerically according to Equations

(I11.9) and (III.10), and due to the rather complex function of z, as
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Figure III.7: Calculated profilés of the field produced by a solenoid
or helmholtz pulsed de field coil. Each coil is approximately 1 cm long
by 1.2 em in diameter producing a field in the laboratory z direction.
The field is calculated over the length of the coil, and is assumed to
be cylindrically symmetric. The field produced by the solenoid,
although larger per amp of current, drops off more rapidly over the
length of the sample than that of the helmholtz. The dashed lines in
the representative sample length indicate the length of a smaller sample
often used for improved homogeneity. The predicted field droop over the
solenoid is ~16% and ~8% for the helmholtz.
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Figure II1.8: Experimental curves of proton signal vs. pulse angle for
a single z.field pulse in the field cycle of Figure 11I.3. The sample
for all three is Ba(ClO3)2;H20; A solenoid coil with a field of ~125 G
and a large sample results in the curve seen in (a) where there is a
pronounced decay of the signal due to pulsed field inhomogeneity. In
(b),,a field of ~250 G from a helmholtz coil over the same large'sample
volume shows some improvement. The best behavior is seen in (¢) for the
helmholtz coil with a small sample and a field of ~155 G. Most direct
cqmparison can be made between (a) and (c¢) due to the comparable field
strengths. Fourier transforming these signals and measuning the line
widths predicts a distribution in field of ~20% for the solenoid and ~7%
for the helmholtz. Note that due to the much larger field in (b), the
0.1 usec increment in t produces a large change in 6 as in evidence by

the fewer data points and jagged appearance of the signal.
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given by Equation (III.12), a linear or quadratic approximation to the
field homogeneity over the sample was incorporated. The latter is
generally found to more closely model the experimental situation and
therefore is used in the simulations. The simulations include only the
effect of inhomogeneity, calculated by assuming different pulse angles
over different regions of the sample; The sample is also assumed to be
centered in the field. Misalignment of the relative positions of the
coil and sample will greatly exacerbate any effects.

The resulting simulations shown in Figure III.9 model the
experimental results reasonably well. The percent variations in the
fields used were obtained by Fourier transforming the experimental
signal and assuming that the distribution in Bi is related to the
linewidth. The percent inhomogeneities found by this method are
aétually very close to those predicted by calculation in Figure III.7
The performance of the helmholtz is slightly better than predicted and
the solenoid slightly worse and may be due to exeperimental factors not

accounted for in the simulations.

3. Composite Pulses
The design and implementation of radiofrequency pulse sequences is
a well explored area in NMR. Pulse sequences which take advantage of
the phase, amplitude and duration of the radiofrequency irradiation can

be devised to produce a desired response from a nuclear spin system.

Composite pulses9 have been used in NMR for spin deooupling1°,

1" 12

broadband, narrowband and bandpass excitation’'', spatial selectivity' <,

multiple quantum excitation13 and more1u. Composite pulses generally

consist of a sequence of closely spaced pulses whose net effect is the

L
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Figure III.9: Simulations of the behavior of the solenoid and helmholtz
coils usiné'the program INHOM.FOR. The contribution of the field
inhomogeneity is included by caléulating different pulse angles over
different portions of the sample. Using a quadratic approximation to
the field profile over the samplé and percent inhomogeneities predicted
from Figure III.8a and 8c, the simulations are shown for the solenoid
and helmholtz in (a) and (b), respectively. The theoretical data
matches the experimentally obtained data reasonably well, especially in

the latter case.

1
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same as that from a single pulse of a given rotation angle. These can
be used to correct for resonance offsets and/or pulsed field
inhomogeneity which would otherwise distort the desired response from a
single pulse; In specific cases, the desired behavior in exciting the
nuclear spins can be tailored to.be broadband or narrowband in some
characteristic of the irradiation (i.e. amplitude, bandwidth, ete).
Broadband behavior is required, for example, to overcome the
inhomogeneity of the dc¢ pulses. Narrowband excitation is important in
the seieetivity between spins and isotopes; for example; if one wishes
to apply a zero field pulse to carbon-13 spins without affecting protons
or deuterium (a feat easily accomplished in high field NMR because of
the frequency differences). The ability to use pulses selectively is
discussed later in-Section D of this chapter.

As in high field NMR, one hopes that the excitation of the nuclear
spins is uniform across: the sample, that is to say, the spatial
inhomogeneity of the field is a minimum. As an alternative to using
larger more homogeneous coils, composite pulses can be implemented in
the dc pulsed zero field experiment as in high field NMR experiments.
In this section, composite 7 pulses, which are not sensitive to pulsed
field inhomgeneity, are produced by applying dc fields in different
directions in the laboratory frame. Unlike high field NMR, a pulsed dc
field does not have the feature of a variable phase, although the
amplitude and duration of the field can be easily altered. Producing
the analog of a phase shifted pulse sequence in zero field, requires a
cross coil configuration. In this case, a system composed of three
orthogonal coils with uniform characteristics such as inductance,

homogeneity and field strength was designed. High power current pulsers
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which provide for rapid reversal of the direction of current flow were :
designed to provide the complementary 180° phase shifts to the x; y and B
z coils. Thus, six basic directions ("phases") and their linear ,
combinations of pulses can be manipulated in the composite pulse i ;

sequence. Technical details on the coils and current pulsers appear in

Chapter II.

The composite pulse sequence used is a very simple 90x180y90x
first suggested by Levitt and Freeman for inversion of nuclear spins in
the presence of resonance offset and rf inhomogeneity.''27¢ The
combination of these pulses more effectively acts as a 180° pulse while
compensating for field inhomogeneities. The behavior of the spin system
in zero field is identical to that in high field if the field cycle
produces an initial condition proportional to Iz,L' It is fair to
agssume for a hpmonuclear spin system with small dipolar couplings, as
will be used, that resonance offset effects are minimal as there are no
chemical shifts in zero field, yet the spins must be excited over a
range of dipolar or quadrupolar couplings (the zéro field analog of l
resonance offset). One can simply picture the compensation of the on
resonance 90x180y90x pulse by observing the trajectory of the
magnetization as shown in Figure III.10. 1In addition to the 180°
inversion pulse, multiples of 180° also prove useful in the zero field
experiment, thus the simple three pulse sequence is extended in the most
straightforward manner by concatenating the composite 180's.

A sample of CHxCl, in a nematic liquid crystal, a system which
when demagnetized in the field cycle shown in Figure III:1 has an
initial state proportional to Iz,L (see Chapter IV). Instead of only a o

single pulse in zero field, the pulse P in Figure III.1 represents the

.
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Figure II1.10: Trajectory of a magnetization vector under a single
pulse of 1803 and a composite 9031803802 pulse. The final position of
the magnetization for a single (180§+A) pulse is shown by the arrow for
one value of A corresponding to the error in the pulse angle. The
trajectory of the tip of the vector under the composite pulse is shown
by the bold line. The first nominal 903 pulse places the magnetization
vector somewhere in the zy plane above the xy plane; The nominal 1803
rotates the magnetization about the y axis. The final nominal 903 pulse
places the vector near the -z axis closer than the single 180° pulse.
The error in the 90° pulses is compensated for by the 180° pulse where
an exact rotation 180° would place the magnetization vector at the -z
axis. Other errors in pulse lengths will show similar trajectories
corresponding to a distribution of final positions near the -z axis.
360° composite pulses can be produced by applying a second 903180;903 or
903180%902 pulse which brings the magnetization up the other side of the

sphere toward the +z axis.
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appiication of one or several dc pulses which can be repeated n times.

A comparison of single pulses of nominal pulse angles of nx180° and
composite pulses are shown in Figure III.11. The single nx180° pulses
wete extracted from an experimental curve of signal intensity vs. pulse
length such as that shown previously in Figure III.2. Single pulses are
seen to produce a curve which decays with increasing pulse length. This
is the case of 'a small coupling and small sample (see Figure III.6) and
the effect is therefore primarily due to the inhomogeneity.

Using composite pulses; the nx180 and nx360 rotations of the
magnetization are seen to show some improvement as the result of
compensation. In both the single and composite pulse cases, cummulative
errors in the pulses result from long sequences. When larger pulse
angles are neeﬁed, the efficiency can be improved to some extent by
phase cycling the second pulse of the composite sequence. Figure
III.t1c illustrates this effect by using (90x180y90x-90xj80y90x)
sequences. The compensation is improved on subsequent pulses and can be
understood by the fact that the reverse sense of rotation of the 180y
and 180y pulses corrects for_sowe of the error due to the 180 pulse and
returns the magnetization more effectively to the +z2 axis.

These experiments illustrate simple applications of composite
pulses, originally &esigned for high field radiofrequency irradiation
but applied in zero field. Rotations of the magnetization by integer
multiples of 180°, and the desire for other large angle rotations arises
from the fact that in zero field different nuclear species can be
selectively excited with the proper choice of dc pulses. The degree of
selectivity or successful excitation of the spins depends upon the

uniformity of the pulsed field over the sample. Other uses might be
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Figure III.11: Experimental comparisons of single and composite d¢
magnetic field pulses. The sample is CH2012 in a nematic liquid crystal
which has a proton dipolar coupling of approximately 2 kHz. Pulsed
fields used were on the order of 45 G for all directions. In (a),
single pulses of nx180°, chosen from a function of signal intensity vs.
pulse length, are shown to cause the magnetization to decay rapidly with

increasing pulse length. 1In (b), using concatenated composite pulses of

90x180y90x the behavior is slightly improved. To reduce the cummulative
errors in repeated 180° pulses, a phase cycled pulse 90x180?90x was
alternated with 90x180y90x in (¢) yielding an improvement in the

longterm behavior.
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found in better refocussing pulses to improve zero field homogeneity (as
in the echo experiments to be discussed in Chapter IV) and the use of
composite pulses in two dimensional zero field experiments. The use of
phase shifted pulsed dc fields might be combined with the wealth of
composite and spatially selective pulses already designgd for rf
irradiation;9’1° More sophisticated d¢ pulses and pulses sequences
which are zero field analogues of rf NMR experiments can easily be
imagined.

A number of applications of these ideas are envisaged such as the

- selective excitation and evolution of protons in the presence of a

heteronucleus such as carbon, This Qould be a zero field analog of
observing a high field decoupled spectrum when only 6ne nucleus is
excited, and the heteronuclear dipolar or quadrupolar couplings are
removed., Possible approaches involve'the "quenching" of the coupling by
selectively averaging the Ix, Iy and Iz components of spin angular

momentum of the heteronucleus. Hopefully higher order terms of the

~dipolar coupling will also be removed. This is analogous to the

naturally occurring quenching of the coupling of spin I=1 nuclei in zero
field.15 With dec pulses, there is the added complication of irradiating
one spin species yet leaving the nucleus to be detected remains
untouched except for evolution under the desired Hamiltonian. Not all
high field pulses sequences are directly transferable to the realm of
pulsed dc¢ experiments, due the added terms of the zero field
Hamiltonians which must be dealt with (i.e. no high field truncation to
assist the experimentalist) and the fact that pulsed fields do not
appear as uniform rotation axes in the molecular frame for all

orientations in zero field. These complexities make the problem much
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more challenging to approach and answers might best be sought via

computer simulations as the calculations of the signal under pulsed

fields quickly becomes overwhelming;
C. Field Cyecling with Pulsed DC Fields

1. Initial Conditions and Demagnetization

The preceding section introduced the behavior of nuclear spins
under dc pulses after .being demagnetized to low (p(O)aIz,L) or zero
field (p(O)aHZF) in field cycles sﬁch as those shown in Figures III.1
and III.3. Only in certain cases, used as experimental examples thus
far, can the initial state after complete demagnetization to zero field
be easily characterized. States which are simply described during
demagnetization are those of tightly coupled spin I=1/2 nueclei for which
a spin temperature can be defined.3 Since the defelopment of the spin
system in time, its behavior under pulsed fields and the appearance of
the spectrum all depend upon the initial zero field state, the dynamics
of demagnetization to zero field are discussed in more detail. The
comments made are based upon more complete discussions found in several
excellent texts on the subJect.3’16’17 Related discussions can also be
found in another thesis.18 At present, considerations are limited
primarily to systems of only one spin species. In later sections,
particularly Section D.1, a description of level crossings which occur
between the energy levels of heteronuclear systems is presented.

a. Coupled systems. When a nuclear spin system is tightly
coupled, that is to say mutual spin flips or spin diffusion through the

system can rapidly establish an equilibrium state, the system can be

.
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described by a spin temperature3’16 as described in Chapter II.B.5. An

appropriate spin system will be defined by a collection of single spins

i
e,

with eqﬁidistant Zeeman energy levels in which the couplings to other

Cy
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nuclei introducing a "width" to the levels. (This is not a rigorous
?g treatment as in reality the spins should be treated collectively and
| I,i=m; of individual i spins is'not a good quantum number.) The
relative width and the separation in energy levels is a measure of the
degree of coupling in the system.

Energy and population conserving flip-flop transitions occur
between the levels. The establishment of an equiliSrium state
corresponds to the most probable distribution of the populations among
any two energy levels as given by Equation (II.4) and a single spin
temperature can be defined if the ratio is independent of m;3 When an
external parameter of the system, such as the field, is changed
adiabatically, the populations are conserved and the system reaches a

- new spin temperature. For a tightly coupled, hompnuclear system this
process is always reversible when conducted in a time, t, where
T2<<t<<T1. Throughout adiabatic demagnetization to zero field, the
density matrix describing the system is always proportional to the
instantaneous Hamiltonian. An example would be a dipolar coupled spin
system of spin I=1/2 nuclei, such as protons in a solid, in which the
Zeeman levels are equidistant and strong dipolar couplings exist. The
zero field demagnetized state would then be equal to the dipolar
: Hamiltonian, HD, with its corresponding eigenstates and energies.

b. Isolated systems. Isolated spin systems are generally not
iJ describable by a spin temperature.3 Spin systems which are weakly

coupled, either due to proximity or low isotopic abundance, can be




considered isolated. Also systems in which the energy levels are
unequally spaced, thereby preventing energy éonserving transitions
involving all pairs of levels, behave as 1solated systems. Hetero-
nuclear spin systems, in which the differences in resonance frequencies
are greater than the dipolar coupling, are effectively isolated since
cross relaxation or transitions between pairs of Zeeman levels are only
weakly allowed. Separately, the heteronuclear spin reservoirs may or
may not be tightly coupled subsystems in and of themselves, thus
allowing independent spin temperatures to be defined for each. For
times greater than T2 of a separate subsystem and less than the time for
a mutual spin flip to occur, a separate spin temperature can be ascribed
to each. If the cross-relaxation time is greater than T1, the state of
the entire system can be described by a common spin temperature equal
only to the lattice temperature.

An example of an isolated spin system is that of a quadrupélar

3,16 A spin I=1 system can not be

spin I=1 system such as deuterium.
described by a single uniform spin temperature at all times. If the
system is allowed to reach equilibrium in a large applied magnetic
field, then the populations of the Zeeman energy levels correspond to
the most probable distribution of the spins among the levels as given by
a Boltzmann distribution. For nonzero quadrupolar coupling constants,
the three energy levels correspond to quadrupolar perturbed Zeeman
levels and are unequally spaced. Assigning a spin temperature to the
spin system imposes a condition on the populations. Only for equally
spaced levels (in a spin I=1 system when e2qQ/h-0), a flip-flop exchange

of one spin by +1 and another by -1 does not change the populations of

the levels and a single uniform spin temperature can be defined. For

TSI
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unequal levels; a change in the populations of any two levels will alter
the relative populations of other pairs of levels, and a single uniform
spin temperature can not be assigned; It often becomes useful though to
assign a spin temperature for a limited time to a given pair of levels.

.There exists no mechanism in isolated systems which will uniformly
reestablish equilibrium populations for all levels, as does the flip-
flop term of the dipolar Hamiltonian for equidistant levels, and rapidly
establish a new spin temperature. A new Boltzmann distribution can be
reached, but only in a time greater than T1, when the spin temperature
of the entire system corresponds to the lattice temperature. Since the
system cannot be described by a single spin temperature in times less
than T1, a simple description of adiabatic demagnetization does not
follow as before. If the field is changed adiabatically, the
populations prepared in high field can be expected, according to the
adiabatic theorem?6’21, to remain unchanged and transfer smoothly to the
zero field eigenstates. The trajectory of the energy levels from high
field to zero field must then be determined as accidental degeneracies
of the levels can alter the transfer of populations to the zero field
states. In high field, HZ>>HZF, the eigenstates correspond to those of
the high field Hamiltonian. Similarly in low fields, HZ<<HZF, the
elgenstates approach those of the pure zero field Hamiltonian.

In intermediate field regions, the states are less well defined.
The behavior of the eigenstates for a spin I=1 nucleus as a function of

field and orientation were calculated using the program DEMAG.FOR. The

analytical solution begins by setting up the high field state.

H=H, + HQ (III.13)
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The Hamiltonian is most easily expressed in the zero field basis, given

in Chapter II.C, as

H = HQ + DI + Dny *+D,I, (III.14a)
or in matrix form as
-(1+n)K -iDz Dx
H= iDz -(1-n)X Dy (III.14b)
D D 2K
X y

where the molecular frame components of the applied field, related by
the angles o and B, are given by Dx-DsinBcosa, Dy=sinBsina, Dz=DcosB
with D=YB. The eigenstates and eigenvalues can be solved for through
diagonalization of Equation (III.14b). There is an orientation
dependence and field dependence to the eigenstates and eigenvglues, such
that the demagnetization differs for each crystallite orientation.

Using analytical expressions for the eigenvalues.22 the program searches
for degeneracies in the eigenvalues which correspond to c¢crossings of the
energy levels. If no level crossings are found, the states follow
smoothly from high field to zero field with the populations unchanged
and ordered the same with respect to energy level. When crossings
occur, the correlations between states before and after the crossing are
found by solving for the maximum overlap between eigenstates.

It was_found that crossings only occur for particular
orientations; in fact, those in which the field direction is along one
of the principal axes of the quadrupolar tensor. These crossings are
illustrated in Figure III.12. The infrequent number of level crossings

is convenient as, when levels c¢ross, no rate of demagnetization conforms
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Figure I1I.12: Illustrations of spin I=1 energy levels as a function of
field and the allowed levellcrossings. (The zero field eigenbasis is
given in Chapter iI.C.) Level crossihgs were found to occur only for
those orientations where the applied field is along one of the principal
axes of the quadrupolar tensor. In (a), the field is along the x axis
and no crossings occur. In (b) and (¢), the field is along the z and y
axes, respectively. Energy level separations in high and zero field are

not shown to scale.
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to the adiabatic condition when AE=0. If the crossings do not oceur, or
are avoided, adiabatic constraints still hold. The frequent occurrence
of avoided crossings is not surprising and a clear discussion of the
principles is presented in the book on quantum mechanics by Cohen-
Tannoudji et al.23 The two possible outcomes are §hown in Figure III.13
where the levels may either cross or avoid one another. When a coupling
or perturbation term is present in the Hamiltonian, an avoided crossing
“occurs where the unperturbed energies would approach one another and
cross. Under the effect of the coupling, the energy levels are mixed,
the perturbation becomes more significant close tp the crossing region
and the states repel one another. Thus over almost the entire powder
distribution, the demagnetization is independent of orientation. Only
populations survive the demagnetization and the state of the system in
zero field;_written in the eigenbasis of the zero field quadrupolar
Hamiltonian, has the populations corresponding to those prepared in high

field such that

-1
Pop = [ 0 , J (I1I.15a)
where the density operator is related to HQS'18
-3 ,.2_2y_1,2_.2
Pop = 3 (Iz 3) 5 (I, Iy) (II1.15Db)

Unfortunately, approaching the problem by computer simulation requires a
knowledge of the values of e2qQ/h and n, two parameters which are the
goal of the measurement, to corrgctly simulate the frequencies. Of
course, the simulations can always be used in retrospect to model the

zero field spectrum and is discussed in the following sections.
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Figure I1I.13: Illustration of an avoided level crossing. The
unperturbed energy levels would follow the dashed lines as the field is
reduced through the level crossing region. In the presence of a
perturbation or coupling, the energy levels do not cross. The energiles
of the perturbed levels approach those of the unperturbed
asymptotically.
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2. Zero Field NMR and NQR with Pulsed Fields

To apply dc magnetic field pulses in obtaining zero field spectra,
many schemes are possible. Two simple examples of the field cycles and
pulse sequences were shown in Figure II.4. After demagnetization to
zero field, the reduced density matrix is diagonal in the zero field
basis set and is proportional to second rank tensor interactions.- The
form of the initial state in zero field depends on the dynamics of the
demagnetization and the type of spin system. An initial dc z pulse
results in off-diagonal terms which evolve for a time t1 under the zero
field Hamiltonian. Detection of the zero field evolutién may be
accomplished by application of a suddenly switched field in the same
direction as the first pulse and remagnetization to high field where the
z component of the magnetization is sampled. This field cyclé is

illustrated in Figure II.4a and the high field signal is formally given
by

-1

-1
Sqty) = Tr{RI, R ~exp(-iH,.t,)Rexp(-16I | IR

sL ZFt1 oL

(I11.16)

t.)}

-1
p(O)Rexp(ieIz’L)R exp(iHZF 1

For a homonuclear system of spins I=1, the signal produced in this case
is analogous to directly detected magnetization in a pulsed NQR
experiment where the signal is sinusoidal and begins with zero
intensity.zu This is due to the orthogonality of second rank (the
initial density matrix) and first rank tensors {(the detected operator).
That is to say, when pulsing an equilibrium zero field state, a magneti-

zation deVelqps in time along the direction of the pulsed field. This
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can be seen by calculating the analytic form of Equation (III.16) for

[F——"

p(0) equal to Equation (III.15) and is reproduced from reference 18,

S(t1) - 4% [(2sin26 + singd)(sinw

t, + sinw,, t,)] !
: 2371 3t (III.17) ’
1 .
* 15 E(251n29+sine)(sinw23t1+2sinw12t1) + (sin29+231ne)sinw31t1 )

The intensities as a function of the first pulse 6 are given in

reference 18 and maximum signal intensity is obtained for ©
approximately equal to /4, Pulsing in the z direction and detecting in
this direction will show a time varying component of magnetization at
frequencies corresponding to sin(wt,), where w is any of the possible
quadrupolar frequencies of the system. Due to the sinusoidal dependence
of the signal, at t1-0 no component proportional to Iz;L exists and the
maximum value for different transitions occurs at different times
corresponding to wtq.

Alternativelylto detect zero field evolution, a second pulse
applied after the t, period returns a portion of the off~diagonal
elements to the diagonal as shown in Figure II.4b. Upon remagnetization
these population differences are measurable by standard high field pulse

sequences. The signal in high field is given by

' -1 -1
Sn(t?) = Tr{p(0)Rexp(-i6 Iz’L)R exp ( 1H2Ft1)Rexp( ieIz,L)R

(111.18)

-1

- 14
X p(O)Rexp(ieIz L)R Texp(iH JRexp(ie I, L)R }
’ ?

ZF%1
where 8'=27-060. The magnetization detected in high field is assumed to ;J
be proportional to the remagnetized zero field state. Again, as for R

other dc pulsed experiments with demagnetization and remagnetization to

and from zero field, the signal is calculated by taking the trace with fJ
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respect to the initial state in zero field.

This field cycle can be used to detect evolution in zero field
under either the quadrupolar or dipolar Hamiltonians for the initial
conditions described previously in Section C.1. If the range of
couplings is broad and/or extends over many spins; the zero field
dipolar spectrum is expected to be structureless;?8’19 Yet when
structure is discernible in the zero field spectrum, the system may not
correspond to one describable by a spin temperature. As a test of these
ideas, a series of proton dipolar spectra taken as a function of pulse
angles were compared to the calculated signal intensites for a system
corresponding to a dipolar ordered state in zero field. The sample was
Ba(ClO3)2jH20 whose spectrum, as shown in Figure 1I.6, is a relatively
simple three line pattern corresponding to the prinecipal intra@olecular
coupling between the protons; Intermolecular coupling is evident in the
broad lines (~7 kHz), which reduce in width with dilution with
deuterium, and possibly by the presence of the 2v and 3v lines. The
experimental spectra in Figure III.14 were obtained using the field
cycle shown in Figure II.Ub with pulse angles of (6, 8'=2w-6). The
signal can be calculated for an initial state p(0)=HD by numerically
solving Equation (III.18) averaging over all crystallite orientations.
Numerical simulation, using the program PLTSIM.FOR, is generally the
easist approach to calculating the signal under de¢ pulses. The
&ependence of the signal intensity for two dipdlar coupled protons is
shown as a function of pulse angle in Figure III.15. The signal is
Symmetric around a 180° pulse angle such that either the 8 or 2w-6 pulse
can be applied first.

Theoretical and experimental results are compared in Figure III.16

131



1 | | 1 | | 1
y /L_,/\_Jxﬂ
- JL]\__JL
W JL]UL
- JLJ\_J\,,
199° |
] | | l | | |

-60 -40 =20 0 20 40 60

Frequency (kHz)

XBL 86116459

132



'
s o

-

=y
-]

atbir e e

ot

Figure III.14: Experimental zero field proton spectra of Ba(ClO3)2'H20
using the field cycle of Figure II.4b. The pulse angle on the left
corresponds to the value of 0 in the two pulse sequence given by (8,2r—
8). The spectra show the predicted three line pattern and all have the
same phase., The relative amplitude of the outer peak shows significant
changes with pulse angle. The integrated intensity of all the spectra
is identical and are not plotted to scale.
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Figure III.15: Calculated signal intensity for two dipolar coupled spin
I=1/2 nucléi in the field cycle of Figure II.Ub with the program
PLTSIM.FOR which assumes an initial condition equal to Hp. The pulse
angle given corresponds to the first pulse in a (68,27-0) two pulse
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sequence. Both the evolving signal and the nonevolving signal oscillate
in amplitude and are symmetric about 180°. Maximum evolving signal is
produced when 0-45°,
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Figure III.16: Comparison of theoretical peak intensities and
experimentél values from the spectra of Ba(C103)2-H20 as a function of ©
in (8,27-8) zero field pulse sequence of Figure II.4%. The experimental
intensities closely follow the theoretical values for an initial
condition equal to Hp. The behavior is expected to be symmetric around
the 180° pulse, although with longer pulses, the behavior of the
experimental signal begins to deviate slightly. This may be attributed

to imperfections in the pulses.
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by plotting the integrated intensities of the outer peaks; The behavior
of the signal in the theoretical and experimental cases is very nearly
identical. This is also true for the comparisons of simulations and
experimental data of the coil characterization curves, presented in
section B.2, in which the initial condition was also assumed to be
proportional to HD. While these experiﬁental spectra and simulations
support the idea that the demagnetized state of this particular sample
is equal to HD, no general conclusions can be reached as to what samplés
will or will not behave similarly when demagnetized. Barium chlorate
monohydrate has often been used as a standard sample in characterization
of the coils, and as such, was chosen for these experiments to test
assumptions made as to the behavior of the spin system reported thusfar.
The experimental spectra shown in Figure III.14 where obtained
using a homogeneous 2z helmholtz coil and small sample volume. All the
spectra were found to have the same relative phase. Apparent artifacts,
manifested as distortions in the relative phases of the peaks with pulse
angle, were found to oécur when weak fields or inhomogeneous pulsed
fields are used.20 Theoretically, no phase changes are predicted.
Additionally in deuterium spectra, unusual phase behavior in the peaks

18 In these cases the pulsed fields were

has also been seen to occur.
weak as Bi~Bloc and may contribute to the distortions. More comments
will be made on this subject in a later section.

The NQR spectra of a perdeuterated sample also demonstrates a few
aspects of the field cycles. 1In these pulsed experiments, it is not
possible to find pulses which excite evolution uniformly over the

powder. Thus the signal is necessarily somewhat reduced from the

previously described experiment with a sudden transition in field
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(Figure II;3); as only a portion of the total spin order evolves in zero
field. Figures III.17a and III.17b illustrate the results for the
sudden transition field eycle; and the demagnetization and pulsed direct
2H detection zero field experiments conducted on perdeuterated 1,4~
dimethoxybenzene. As expected; the frequencies obtained in both are
identical and the linewidths agree within experimental error. The
assignments to two inequivalent aromatic sites (those close to and far
from the methoxy groups) and the methoxy deuterons match previous

results.2? As expected, the signal-to-noise is slightly lower in the

- demagnetization experiment, due to the pulse excitation over the powder

and possible contributions of relaxation in low fields.

The intensities differ in the experimental spectra shown in Figure
III.17. For the sudden transition field cycle (Figure III.17a), the
three lines of a given quadrupolar nucleus are expected to be of equal
intensity as described in Chapter 2, section C.4 and essentially is

found in the spectrum shown in Figure III1.17a. The intensities in the

‘pulsed experiment can be modelled by computer simulation assuming an

initial state equal to that of Equation (III.15) used in Equation
(II1.18). A computer program, QUAD.FOR, easily incorporates different
pulse angles and averages over a distribution of crystallite
orientations. The intensities are independent of e2qQ/h and n.

The signal intensity as a function of pulse angle for the three
transitions of a spin I=1 quadrupolar nucleus with n#0 are shown in
Figure III.18. A similar figure appears in reference 18 as a result of
calculating the coefficients found analytically along with a series of
spectra as a function of pulse angle which roughly follow the predicted

behavior. A component of the signal which does not evolve, but
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Figure III.17: Zero field NQR spectra of 1,l-dimethoxybenzene
(CH3OC6HuOéH3)Q a). Sudden transition.zero field spectrum of
perdeuterated dimethoxybenzene obtained using the field cycle described
in Figure II.3. Peaks at frequencies corresponding to the methyl and
aromatic deuterons are resolved. b). Pulsed direct detection zero field
spectrum of perdeuterated dimethoxybenzene obtained using the field
cycle of Figure II.4b. As the magnitude of the observed signal is
dependént on the dc pulse lengths used (9~90°), peak intensities are now
scaled differently with fespect to (a). Relaxation effects oceurring
during the different length field cycles in the sudden and pulsed .
experiments are manifested in the different relative methyl and aromatic
signal intensities of (a) and (b). c¢). Indirect detection via protons
of the deuterium NQR spectrum in 60-70% aromatic deuterated 1;4-
dimethoxybenzene. (Note that in this sample the methyl groups were not
deuterated.) Clearly resolved v,s,v. and Vo transitions are observed
with no evidence of proton signal. Signal-to-noise for the aromatic
deuterons is improved relative to the sudden and pulsed zero field

methods.
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oscillates in magnitude; appears as zero frequency signal in the
spectrum; The most complete excitation over the powder occurs when this .

component is at a minumum, although the intensity is not divided equally

R

among the remaining three transitions. Maximum signal is obtained for
different transitions with different pulse angles but overall excitation 2
is good for 8=60° (8'=27-6) as seen in Figure III.18. The calculated |
intensities are seen to match the experimental spectra (Figure III.17b)
reasonably well for 9=90°. In spite of the altered intensities, the
frequency information obtainable from these spectra is still extremely
useful.

As a final comment, in previously reported deuterium experi-
ments,18 the NQR lines in the pulsed experiments were seen to show
unusual phase behavior which is not predicted theoretically. The phase
changes were found to increase with increasing pulse 1ength (1.e. larger
8). The lines which were most strongly affected, those at higher
frequencies, correspond to ean/h values of ~150-180 kHz (or ~200-300 J
Gauss). The pulsed fields used were only marginally larger than this
(1-2 times), if that large. Thus the pulses might be expected to act
not only as rotations, and some evolution during the pulse might be
expected to occur. The effects of pulsed de¢ fields are a function of
many parameters; amplitude of the field; coil homogeneity and rise times
of the field. It would seem that the apparent frequency dependence,
pulse length dependence, weak fields and inhomogeneity effects indicaté

that the change is more likely due to experimental factors. Unfortun-

L

ately, at the time of these experiments, larger pulsed fields were not

e
U <omie

available for deuterium studies. Weaker fields were seen to show a

different dependence of the phase on pulse angle. Experimental results
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Figure II1.18: Calculated intensities of the spin I=1 transitions under
the field cycle of Figure II.4b with the pulse angle corresponding to ©
in a (9,2m-8) dc pulse sequence. The intensities are not a function of
e?qQ/h and n based on an initial condition equal to the demagnetized
high field populations. A large'portion of the signal does not evolve.
The evolving components oscillate in intensity with the Vo and v_
transitions having the same angular dependence (note this does not
correspond to their sum). The maximum evolving signal occurs at 9=60°
where the nonevolving portion is near a minimum. The signals are

symmetric about 180°.
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discussed earlier on dipolar coupled systems, in which the field is ?
-
generally many times larger than the spin interactions, support this

suggestion. -
D. Indirect Detection and Selective Pulsing

In the previous section; it was shown that in a homonuclear system
one can initiate evolution under the zero field Hamiltonian by simply
pulsing a system which is initially in a stationary (diagonal) state in
zero field. For example, this allows one to observe the NQR spectrum of
a quadrupolar system. Consider a case in which the spin system consists
of two isotopic species. An experiment with a sudden transition in
field or pulsed dc field initiates evolution for all spin species, as
long as the spin interaction with the switching field is large compared.
with zero field interactions. Thus any evolution of the spin system o
present in the detected signal produces a zero field spectrum containing )
both dipolar and quadrupolar frequencies. It is worth though
considering pulsed experiments on completely demagnetized state32b’26
which are better suited for indirect detection experiments as level
crossings between heteronuclear spins occur during the field cycle. In
this section, a time domain variation and extension of experiments
developed by Hahn and other327 is described. This method relies on the
application of pulsed dc magnetic fields after demagnetization, as in

the field cycle of Figure II.Ub, to initiate evolution and selectively

!
irradiate isotopic species (e.g. protons and deuterons) in zero field. ;j
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1. Introduction to Level Crossing and Selective Pulse Experiments
a. Sensitivity Enhancement via Level Crossings. Double resonance

NQR methods have long utilized level crossings for enhanced detection of
quadrupolar nuclei with small quadrupolar coupling constants. These
techniques were first developed by Hahn and other327 for use in
frequency domain experiments; In this section, a description of the
demagnetization behavior of a system composed of two spin species and
its bearing on NQR measurements is presented. Much of the following
brief overview is the same as for the frequency domain experiments and

28 and Edmonds29 where more detailed

is based on review articles by Blinec
descriptions are given. Additionally, the demagnetization behavior of
heteronuclear spin systems is also extensively covered in Goldman's
book.3

The basis of the approach is that, as a natural consequence of the
demagnetization of a heteronuclear I-S spin system, pairs of I and S
energy levels become equal at some finite value of the field. At this
level crossing field, the I and S systems can couple and transfer polar-
ization via mutual spin flips. The transafer of polarization increases
the sensitivity of the experiment by increasing the S nuclear spin
polarization and by allowing for detection of the S spin evolution via
the more sensitive I nuclei (i.e. double resonance). These methods are
particularly applicable in NQR for nuclei which are unaccessible by
direct observation due to their low interaction fr‘equencies29 and are
difficult to study by NMR due to the broad lineshapes. While the NQR
experiment allows one to use a polycrystalline sample, NMR experiments
overcome the problems by using single crystals. Single crystals do

provide more complete information on the quadrupolar interaction and the
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orientation of the quadrupolar tensor"; but are not always obtainable for

all materials. T

[

The system of interest consists of an abundant high Y spin I=1/2

nucleus such as protons (I) and a second, lower Y, spin S=1 quadrupolar

,‘ M,
et i

nuclear species (S), such as deuterium or nitrogen, in reasonable
proximity. In high field, the sepération of the Zeeman levels of the
protons is much greater than that of any of the quadrupolar perturbed
Zeeman levels of the spin S=1 nucleus. The polarizations, as related to
the difference in populations, is much greater for the I spins than for
the S spins. If the differences in resonance frequencies are large
relative to any coupling, then the two systems can be considered as
uncoupled and may have separate spin temperatures.3 It is assumed that
a spin temperature is always well defined for the proton system but not
80 for the quadrupolar nuclei, unless enough time has elapsed for the
system to be in equilibrium with ﬁhe lattice.

If the field is decreased, the energy level separations change
with the field and at some field level, B, the separation in the I .
Zeeman levels becomes equal with the energy level separation of one pair
of the S levels. Level crossings generally do not occur in the sudden
transition field cycle as the level of the field never gets low enough.
The spin systems couple and via mutual spin flips come to a common spin
temperature. A common spin temperature is defined only for that pair of
quadrupolar levels which cross. Since the polarization of the I spins

is larger, with demagnetization the I spins become quite cold. When

1
[ S—

contact is made with the S energy levels, the S system is "cooled down'
with a resulting increase in the polarization. Because the protons are

more abundant and tightly coupled, the I system has a larger heat
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capacity and is assumed to have changed very little by a single contact
with the S spins. A new spin temperature is rapidly reestablished in
the I system.

The level crossing can be described by the change in the
populations of the eﬁergy levels (labelled + and -).29 The populations

before (I) and after (I') a single level crossing are given by

i
=

(I, + 1) = (I, + 1)

(1I11.19)

(s, + S.)

#
=

(s, + 5_)

which merely indicates that the total number of spins, Ni’ of each type
are conserved., Through the mutual flip-flops, energy is also conserved
such that . '

S +I =8 +1 (II1.20)
and follows similarly for the + states. Finally, since the two systems

have reached a common spin temperature at the same energy level

t
S_
—

A}
I—
— = ~ (1II.21)
I

S

+ +

from Equation (II.4) whereas they were unequal before level crossing.

As the field is lowered further, the I levels become resonant with
other pairs of S levels and with each c¢rossing a transfer of
polarization occurs. The order in which the pairs of levels cross
during the demagnetization is dependent on the energy levels and their
separation in the field which in turn is dependent on crystallite
orientation. The result of this irreversible process3 is an increase in
the polarization of the S spins. The demagnetization of the I and S

systems is reversible up until the first level crossing occurs. When



146

the field, B, is decreased below the level crossing value, the systems
are no longer in contact. For spin S=1 nuclei, any spin-spin coupling
is quenched when B approaches zero.15

In the NQR experiment, the spins would be irradiated in zero field
with rf to induce transitions (generally to saturate the transitions) in
the S system.29 This corresponds to a heating of the S system.
Remagnetizing the sample results in the level crossings again between I
and S spins, but in the reverse order from before. Since the S spins
have been heated, they produce a rise in the I spin temperature. By
detecting a change in the I magnetization in high field as a function of
irradiation frequency in zero field, the evolution of the S spins is
detected indirectly. In order that the experiment succeed, the
demagnetized order of the I spins can not be destroyed by the
irradiation in zero field. Difficulties arise when trying to detect low
frequency NQR transitions (<100 KHz), as the proton dipolar system
absorbs in this region. Often in frequency domain NQR experiments, low
frequency lines are obscured by the proton signa129 which may extend
from 0-50 kHz or more.

The time domain field cyecle, such as that in Figure II.Ub, is
nearly identical to the frequency domian version except for the
irradiation/evolution period in zero field. In the time domain
experiment, evolution is initiated by a pulsed field and terminated
after t1 by a second pulse before remagnetizing the sample. The I spin
signal, detected as a function of time in zero field,.indirectly maps
out the evolution of the S spins. Because of the large heat capacity of

the 1 spins, multiple contacts between the S and I spins can be made by

cycling the field to above the level crossing value.2_8’29 The effect of
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multiple contacts between the spin reservoirs is cumulative. The
cycling of the field must be adiabatic and the number of contacts
possible depends upon the T1D relaxation time of the I spins.

The theory presented thus far is a very simple depiction of the
actual dynamics of the situation. For a three level S spin syétem, the
populations of separate levels are involved in more than a single level
crossing. The I and S populations can be solved for from Equations
(I11.19-21) throughout the field cycle taking into account each

28 and

subsequent change with a level crossing. Examples given by Blinc
Edmond329 describe the theoretical increase in sensitivity and its
dependence on various experimental factors such as relative numbers of I
and S spins and relaxation times. These calculations are based on many
assumptions as to the dynamics of the demagnetization. -The rate and
efficiency of the polarization transfer has great bearing on the
sensitivity of the experiment. One assumption that has been made is
that the transition rate through the level crossing field is slow
relative to the transfer rate of polarization. If the transfer rate is
given as 1/W (where W is the probability of a flip occurring), then the
crossover time where the energy level separations are within the
linewidths (Aw=mI-ms<linewidth) must be slow compared to the transition
rate and fast compared to T, or a new Boltzmann populations are
established.

Modelling the dynamics of the level crossing is a very complex
problem, Although it can be easily calculated theoretically for
individual orientations, in reality it depends upon the rate of
demagnetization, the coupling of the spins, relaxation times,

irradiation or evolution in zero field, and the reverse processes upon



remagnetization. The order in which the crossings occur for each
crystallite may change due to the orientation dependence of the energies
in the S system and requires that the level crossing effects be averaged
over the powder. Additional level crossings are also possible when two
spin flips occur for one "flop", e.g. at twice the energy. The proba-
bility of this occurring is low but would alter the final populations.
The more likely event is the simultaneous level crossing of two pairs of
S levels with one pair of I levels when there are near degeneracies of
the S levels and the I levels have some width due to dipolar couplings.
For example, when S=1 and n~1, then vo=v_=1/2v+. For low frequency
quadrupolar coupling constants, low frequency transitions or small
values of n (where v+=v_), one or more pairs of levels can cross
simultaneously.

It has been assumed that the relaxation times in low and zero
field are long enough to allow for the polarization transfer, the
irradiation/evolution period and the remagnetization step. The
experiment requires that the polarization of the I spins persists over
the entire field cycle, that is, that T1 and T1D of the I spins are
long. The limits on the relaxation times of the S spins are not quite
as stringent since the polarization and detection is through the I
spins. Different limiting cases are calculated by Blinc28 with
predicted intensities for each spin I=1 &QR transition after level
crossing. A few comments on the measurement of pertinent relaxation
parameters. A rough measure of the T4 in high field of the I spin
system determines the overall reﬁetition rate of the field cycle. Since
the S polarization results from the level crossings, the T1 of the S

system is not as important, unless of course it is extremely short and
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cross relaxation effects will not persist. The relaxation time in zero
field of the demagnetized I spin order, T,n(I), can be measured by
cyecling to zero field with no irradiation or pulsing. A measure of the
signal as a function of time in zero field should yield a rough estimate

of the relaxation time from

M(t) = Moexp(—t/T1) (I11.22)

where My is the initial magnetization. This measurement assumes that
the changes caused in the I polarization by the I-S level crossings are
negligible. A rough measure of T1Q(S) is possible by field cycling to
zero field, followed by irradiation to saturate only the Ilspin system.
After remagnetizing, the detected signal reflects only what has occurred
in the S system as transmitted to the I spins during remagnetization. A
time domain version with d¢ pulses would consist of selectively pulsing
the spins to destroy the order in the I system while leaving the S spins
untouched.

b. Spin Selective DC Pulses. The selectivity of dc pulsed fields
and the application to the indirect detection experiment has been hinted
at previously and now is presented in more detail. 1In a heteronuclear
system, by using a pulsed field which acts as an identity rotation for
one spin speciés, it is possible to effectively rotate that part of the
total density matrix corresponding to only one and not the other
species. An identity rotation is that which leaves the state of the
system unchanged after the pulse.A By observing the signal as a function
of pulse angle (Section III.1), it is evident that this is corresponds

to a nx2m pulse for all crystallite orientations.

Neglecting the heteronuclear dipolar coupling between a system of
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protons and deuterons15, the density operator for a system demagnetized

from high to zero field can be written in the molecular frame as

p(0) = p. + (I1II.23a)

17 Ps
where

(pC0O) , HZF] =0 (III.23b)

and HZF is the pure dipolar Hamiltonian for protons (I) and the
quadrupolar Hamiltonian for deuterons (S) in zero field. It will be
necessary to evaluate the effect of applied dc pulses in the laboratory

frame where the density operator p becomes
b (0) = R(a8V)™ ' p(0)R(aBY) (I1I.24)

where R(aBY) is the rotation operator relating the lab to the molecular
axes in terms of the Euler angles o, 8 and Y. (Note that this is just
the Eeverse of working in the zero field fﬁame. Expressing operators in
the laboratory frame is chosen here for convenienée in calculating the
.effects of the pulses.) A similar expression transforms the zero field

Hamiltonian into the laboratory frame:

L -1
HZF = R(aBY) HZFR(aBY) (I11.25)

Note that, from expanding the exponential, one finds that R'1exp(th)R =
exp(iR“HRt). Computationally, the matrix representation of the
exponentiated operator is simpler if H or R_1HR is diagonal, thus
calculation of the left or right hand side is chosen accordingly. At
time t=0, a dc pulsed magnetic field is applied for a time t. The

density operator pL(r) is written
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pL(T) = exp(—incT)pL(O)exp(incT) (II1I.26)

where Hy, = -[Y;I, + YgS,1B; and describes the dec pulsed field.

Choosing the laboratory z axis parallel to the pulsed d¢ field, and
using the equality, exp(A+B)=exp(A)exp(B; if [A,B]=0, to calculate the
effects of the pulse separately on the I and S components of p, Equation

(I1I.26) becomes

= i -1y
pL(T) exp(lYIIZBiT)pILeXp( i IZBiT)

I
(III.27)

+ exp(iYSSzBiT)pSLexp(-iYSSZBiT)
and pulse angles of eI=YIBir and OS=YSBiT may be defined.

Since the effective pulse angle depends on the gyromagnetic
ratios, and is therefore different for the protons'and deuterons, it
allows a selective means for their manipulaﬁion. Thus in a system of
deuterons and protons one should be able to selectively excite and
induce evolution of only the deuterons. In genefal, the effect of a
pulse depends on the relative orientation of the spin system and field;
however, for any particular species a 27 pulse given by 9=YBiT leaves

the density operator unchanged for all orientations and makes selective

pulses possible.

2. Experimental Results
By combining the principles of level crossings and the field cycle
to zero field with pulsed dc magnetic fields, a selective indirect
detection experiment is possible. Using dc pulses that are multiples of
2w for the protons in the field cycle of Figure II.Ub (i.e., GS=YSBdcT

or 85=(Yg/Y7)8; for the deuterons), the zero field spectrum of 60-70%
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ring deuterated 1,M-dimethoxybenzene—d4 (CH3OC6DMOCH3) shown in Figure
III.17c was obtained. No signal is observed due to the protons, only
the characteristic v,, v_ and Vo lines due to the two crystallograph-
ically inequivalent aromatic deuterons. The experimental results for
the dimethoxybenzene samples shown in Figure III1.17 allow for comparison
of the signal-to—-noise obtained in eaph of the different versions of the
experiment. The length of each FID is roughly equal and the dwell time

%H detection

is equal for these three experiments. The pulsed direct
(Figure III.17b) and the sudden (Figure III.17a) versions used 4 and 3
times as many signal averages, respectively, as the indirect detection
version (Figure III.17c). Thus the aromatic signal-to-noise obtained
via the indirect detection method is at least twice as good as in the
others. Studies of partially deuterated diethylterephthalate and its
perdeuterated analog provide further agreement with this result.
Arbitrary pulSe.lengths produce proton signal in heteronuclear
systems which can obscure low frequency (<50 kHz) 2H lines. Figure
II1.19 demonstrates this point in a series of indirectly detected zero
field NQR spectra of diethylterephthalate-d, (CH3CD2C0206HMC02CD20H3)
obtained by the method outlined above. Proton s}gnal is clearly visible
in those spectra where the nx2w condition is not met for the protons,
but is eliminated with two nx2n dc¢ pulses. Diethylterephthalate
contains two crystallographically inequivalent methylene deuterons since
the methyl-methylene bond is tilted out of the plane of the —C02C6HMCO2-
moiety30 thus producing the six line spectra for two uncoupled
quadrupolar nuclei with nonzero n. The magnitude of the observed signal
depends upon the demagnetization and upon the pulse lengths used,

therefore the relative peak intensities are scaled differently in the
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Figure III.19: Indirect detection zero field NQR spectra of diethyl-
terephthalate-d, (CH3CD2CO2C6HMCOZCDZCH3) (98% dy). a). DC pulses used

which do not satisfy the nx2w criterion for the protons, thus signal due

to both proton and deuteron evolution is observed. The proton signal

appears as a broad hump below 50 kHz. b). Same as (a) except that dc

pulses now used cause the proton signal to appear inverted relative to

the deuteron signél. c). DC pulses equal to nx2rm allow for selective

detection of only the deuterium NQR spectrum. Low frequency lines can

be clearly resolved with no interfering signal from proton evolution or N
absorption. Three lines may be assigned to each of two crystallo- -

graphically inequivalent methylene deuterons. Calculated values of 7§
(equ)/h and n from the observed frequencies are: A: (equ)/h=153.1 kHz, N
n=0.051 B:(e2qQ)/h=149.8 kHz, n=0.039.
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spectra of Figure III.19. A further advantage of the initial selective

27 pulse on the protons is that the density operator Pr undergoes no t1

dependent evolution; therefore; the dynamics of the level crossing -
should be sensitive only to deuterium evolution.

Although the use of selective pulses and indirect detection has
been presented as a method of obtaining deuterium NQR spectra, the
principles are entirely general and can be applied to any system in
which there is sufficient contact between the observed and detected
nuclei. As an example, the 1”’N zero field NQR spectrum obtained from a
sample of polycrystalline ammonium sulfate is shown in Figure III.Z20,
obtained by the sequence in Figure II.4% with indirect detection by the
protons. All six lines are resolved for the v,, v_ and Vo transitions

uN sites and yield values of (eZqQ)/h and n in

of the two inequivalent ?
agreement with single crystal r'esults31 and other field cyecling experi-
meﬁts in which the-vo lines do not appear.32 Under other conditions the
proton signal would obscure the low frequency lines but here the use of
the selective 27 pulses for the protons greatly reduces their contri-
bution to the signal. Compensation for pulse imperfections of the de
pulsed fields should provide increased discrimination against the proton
gignal.

A few comments on the differences between selective excitation and
decoupling should be made for clarification. Ih the previously
described experiments, only the quadrupolar nuclei are excited and
caused to evolve as nx2rw pulses are used for the protons. The initial
state of the proton system in zero field is assumed to be unchanged from

its equilibrium state and therefore no evolution under the homonuclear

dipolar Hamiltonian occurs. The quadrupolar nuclei meanwhile evolve



v(B)

| | 1 ] i ] | ]

0 40 80 . 120 160
Frequency (kHz)

XBL 853-8830

Figure III1.20: Indirectly detected pulsed zero field 1“N NQR spectrum
of (NHu)zsdu with selective 2w pulses for the protons. Péaks
corresponding to two inequivalent sites are labelled A and B. Residual
proton signal appears below 40 kHz but has been reduced enough to allow
for resolution of the 1I‘N NQR lines. From the frequencies observed at
room temperature, (equ)/h and n can be calculated. Site A:
(e2qQ)/h=154.5 kHz, n=0.688, Site B: (e2qQ)/h=115.9 kHz, n=0.74T. (At
296.1 K, Batchelder and Ragle give values of I: (equ)/h-154.53 kHz,
n=0.684, II: (e2qQ)/h=115.71 kHz, n=0.749.)
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£ under the quadrupolar Hamiltonian. Thus there are two separate and

£ distinect systems which are excited independently and evolve indepen-—
dently in zero field. Only because the dipolar coupling between S=1 and
I=1/2 spins is already quenched in zero field, does no evolution under

the heteronuclear dipolar Hamiltonian occur. This is fortuitous since

the NQR spectrum would be complicated by the added couplings and the

propon system would be altered by contact with the deuterons.

The selectivity in the zero field experiment is an important
feature in field cycling experiments. Unlike double resonance NQR
experiments, the spectrum of a quadrupolar spin system can be obtained
without the interference of low frequency proton signal. The time
domain version of the field cycle offers the same sensitivity advantage
i obtainable by indirect detection without the loss of information due to
! ‘ proton background. Quadrupolar nuclei with small quadrupolar coupling

constants are readily observed and resolution of Vo lines for spin S=1

systems permits spectral interpretation without resorting to double

ubiens

transition frequencies33 or double irradiation3u techniques. 1In

addition, the indirect detection experiment depends more on the
- relaxation times of the protons than those of the deuterons. This can
be of utility when the deuteron T4 is inconveniently long, or when T1Q
is inconveniently Short. As long as the 2H T1Q is on the same order as
the zero field time period, one can conceivably obtain the deuterium
) spectrum via the protons. Many double resonance NQR experiments are

! conducted at very low temperatures to providé the long relaxation times
o required for the irradiation period in zero field.29 Irradiation in
éJ zero field can cause power broadening of the resonance 1ines29 which is

not a concern in the time domain experiment.
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3. Isotope Selectivity with Composite Pulses
Selectivity between isotopic species in NMR is generally based on
differences in Larmor frequency; mo=YB0; or by rf amplitude wq=YB
selective pulses.12 Variations in rf amplitude can be used tb

selectively invert or irradiate specific nuclear species. In NMR

imaging experiments, it is often desirable to spatially select a region
based on the inhomogeneities of the B, or B1 field. For example; for a
»given nucleus and Y, the nuclear spins in a particular volume may be
selectively inverted by using a field strength which varies with
distance such that YByt=w for only that volume. Similarly, by applying
a static field gradieht, a region may be selected by the distribution of
resonance frequencies. For best isolation of the spins of interest, the
excitation should occur over a narrow range and many composite pulses‘
which are narrowband in wq=YB; are being developed.,12 These spatially
selective composite pulseé cah be directly adapted for spin isotope
selectivity in zero field experiments.

Any pulse which is designed to be narrowband in YBi, acts as an
isotope selective pulse in zero field on the basis of the magnetogyric
-ratio for a constant field. The analogy between spatially selective and
isotopically selective pulses is easily seen and is illustrated in
Figure III.21. Previously, the selectivity by zero field pulses was
based on the particular rotation angle used for a given spin species.
Both species were always irradiated and the resulting pulse angle on the
second spin is determined by the ratio of magnetogyric¢ constants. This
of course does not allow a choice of the pulse angle which initiates

zero field evolution and may not provide optimal excitation. Nor does

g
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Figure 111.21: Nuclear spin excitation in high field and zero field.

In high field NMR experiments, spin species may be selectively
irradiated on the basis of Larmor frequency m°=YB°, or as shown at top,
by irradiation which is narrowband in wq=YB, (i.e. over a range of B4
fields). In zero field, the differences in magnetogyric ratio provide a
handle for selective irradiation through the relationship, mi=YBi.
Excitation of a single spin type by narrowband irradiation in zero field
provides for manipulation of initial states and their subsequent

evolution in zero fieid.



it allow much flexibility in the excitation scheme. In selective
excitation experiments with dc fields, when both spin species are
pulsed, the desired result for one of the spins is that it is
unaffected. By using a composite pulse which is narrowband in YBi, this
result can be obtained by actually doing nothing to one isotope, that
is, not irradiating the second species at all.

Before discussing experimental examples; a brief review of the
features of 1H-13C spin pairs, originally presented in Chapter II.C, is
covered. The appearance of the zero field spectrum for such an I-S
dipolar coupled pair of spins depends upon the initial polarizations.
For equilibrium polarizations of ~MIZ+SZ; the spectrum consists of seven
lines. By altering the relative polarizations with rf pulses in high
field before demagnetization, it has been demonstrated that lines
corresponding to only certain transitions in the I-S manifold are
observed.36 Examples of these results are shown fdr a sample of 13CHCl3
in a smectic liquid crystal phase, described ip Chapter 1V, in Figure
I11I.22a-c. ’

Selective dc pulses can be used to alter the initial condition of
a heteronuclear spin system in zero field prior to evolution and thereby
diseriminate against specific spectral frequencies. Examples of zero
field selective pulses are show in Figure III.22d-f acting on an initial
condition, IZ+SZ, prepared in high field by an rf pulse. Since this
state is proportional to longitudinal magnetization (populations) it
survives the-field cycle unchanged. The resulting zero field spectrum
for this initial condition is that of Figure I1II.22¢c. By applying an
1sotope selective pulse of 180° to either the I or S spins, transitions

corresponding to an initial zero field state of i(-Iz+Sz) are produced,

e d
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Figure III.22: Spectra of '3CHCl3 (I='H, S='3C) in an unaligned smectic
B liquid crystalline phase with different zero field initial conditions
produced in high field and zero field. In (a) the characteristic seven
line spectrum results with the initial condition equal to the
equilibrium populations, RIZ+SZ. A change in initial condition to IZ+Sz
can be produced by applying a 75° pulse to the I spins in high field as
shown in (b). Similarly the populations of one spin species can be
inverted relative to the other (-IZ+SZ) by applying a 105° pulse to the
I spins in high field before demagnetization. Zero fiéld analogs uéing
composite dc pulses can-also be used to selectivgly invert one spin
species. The initial condition for (d-f) produced in high field before
demagnetization is Iz+Sz. In zero field only one spin is inverted
before zero field evolution with (d) a 180° 13¢ pulse (720° 1y pulse
which leaves the protons unchanged), (e) a narrowband 180° composite
pulse (180x180y180i) applied to the protons, and (f) a narrowband
composite pulse (180x18°y18°i) applied to the carbons. The resulting
spectra all show the spectral frequencies indicative of an initial state
proportional to *(-I,+S,).
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respectively; Because the carbon and proton magnetogyric ratios
conveniently differ by a factor of ~U, the simplest selective pulse is a
720° 'H pulse which is approximately a 180° '3C pulse. The spectrum for

—(Iz~Sz) is shown in Figure II1I.22d. As mentioned before, not all

combinations of YI and YS produce pulse angles which are useful or
integer multiples; In thi; first example; both species are irradiated
when it is advantageous to irradiate only a single spin species. Since
the pulses are not without their imperfections, the desired behavior may
not be obtained in a longer pulse sequence. For example, narrowband
selective pulses would be ideal for saturating the I spins to determine
Tqq Of the S spins.

Experimental results using the zero field dc¢ analog of Shaka and
Freeman's 180x180y180§ spatially (YB1) selective inversion pulse37 are
presented in Figure III1.22e~-f. The bulses can be applied to either the
carbon or’pfoton nuclei and are seen to be more efficient at exciting
only the desired transitions than the single 720° 1H pulse.
Unfortunately, pot all useful pulse angles for zero field excitation are
available in narrowband composite sequences, but the design of such
pulse sequences is growing. Similar qpmposite pulses are available to

14b

produce 90° narrowband behavior and might also be useful. The

simplest composite pulses to implement are those of easily determined
pulse angles such as 90°, 180°, 270° and 360°, with 90° relative phase

shifts (i.e. pulse directions) in zero field.
E. Two Dimensional Zero Field Experiments

Two dimensional NMR methods involve recording the NMR signal as a



M

164

[l

.

function of two time variables with subsequent transformation to produce
a spectrum described by two frequency var'iables;38 Applications of 73
these experiments are generally to weakly coupled liquids, and the fre-
quencies observed depend upon the specific excitation pulse sequence

used. Common examples are those which show correlations between chemi-

cal shifts and scalar couplings,38 between different chemical 75

41

shifts38'u° exchanging or c¢ross relaxing dipolar coupled nuclei, and

multiple quantum transitions.39b By measuring the connectivities
between spectral transitions, a determination of structure, conforma-
tion, dynamics or assignment of an otherwise intractable one dimensional
spectrum is possible.

In Zero Field NMR and NQR, well-resolved, sharp line spectra are
observed in polycrystalline solids. In zero field, quadrupolar fre-
quencies label specific chemical sites while dipolar couplings should
induce connectivities between zero field transitions of neighboring
spins. 1In this section, the principles of two-dimensional NMR are
applied to the detection of quadrupolar nuclei in zero applied magnetic
field. The two dimensional experiments are possible through the use of .
pulsed field cycling methods. Through a combination of these
techniques, the connectivities in the NQR transitions of a spinI =1

nucleus are shown.

1. One Dimensional Zero Field NQR Spectra ,J
The characteristics of a zero field NQR spectrum for a spin I=1
nucleus were described in Chapter II. Values of n and equ/h, which are
descriptive of a quadrupolar system, may be calculated for a given

chemical site assuming that the pair of corresponding v_ and v, lines is
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distinguishable. If there are two or more inequivalent sites; the NQR
spectrum will consist of a superposition of six or more lines.
Therefore, resolution of the difference frequency v, lines at very low
frequencies is essential in assigning the one dimensional spectrum.

The one dimensional zero field NQR spectrum of the methylene group
of polycrystalline diethylterephthalate was shown in Figure III.19c.
The spectrum was obtained using the selective indirect detection method
which has been described previously; The low frequency lines are re-
solved and allow for calculation of quadrupole coupling constants and
asymmetry parameters for the inequivalent sites as reported in Chapter
II.C.4. If more sites were present, it becomes evident that overlapping

lines would make assignment difficult.

2. Two Dimensional Zero Field Experiment

The correlgtions between the NQR frequencies can also be observed
by probing the connectivities in the spin I = 1 manifold through a two
dimensional version of the field cycle. The simplest form of!the field
cycle, in which the zero field interval is divided in half, is shown in
Figure I11I.23. The sample is demagnetized to an intermediate field,
Bint’ which is switched off suddenly to initiate evolution. The system
evolves under the quadrupolar Hamiltonian for the time t1. Application
of a short de¢ pulsed field transfers coherence between the energy levels
of the spin 1 system. Evolution in zero field continues after the pulse .
for a time, t2. Reapplication of the field and remagnetization provides
for sampling of the magnetization in high field. 1In successive field
cycles, the zero field periods are incremented independently to produce

a time domain signal as a function of t1 and t2 which when Fourier
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Figure III.23: Field cycles for two dimensional zero field experiments;
a). The saﬁple is demagnetized to an intermediate field, Bint’ which is
switched off suddenly to initiate evolution in zero field. The
evolution period is divided into two time periods, t1 and t2, by
reapplication of the field. 1If the dc field is applied as a brief
pulse, it will act as a roﬁation on the spin system and mix coherences.

~ Evolution then continues for t, and is terminated with a sudden

reapplication of the intermediate field and remagnetization to high
field. The signal is sampled as a function of the independently
incremented time variables. If the applied field is longer in duration,
~0.5-1 msec correlations between dipolar coupled groups of spins should
develop. b). Using demagnetization to zero field, indirect detection of
the zero field NQR spectrum is bossible. The short pulsed dc magnetic
fields are used to initiate zero field evolution for £, to mix
coherences as in (a), and to terminate evolution after to.
Remagnetization after the zero field period again provides for the 1H—2H
level crossings and the detection of the signal in high field. c¢). The
preparation of the spin system and t, evolution period are identical to
that shown in (a). Applying a brief dc pulsed field will effectively
store the magnetization, and prevent the decay of coherences under the
applied field. Cyecling the field slowly to an intermediate level show
provide for cross relaxation between groups of spins. Evolution is
reinitiated for t2 by a second de¢ pulse then halted and detected in the

same manner as in (a) and (b).
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transformed produces the two dimensional zero field spectrum; An
approach to the formal analytical calculation of the signal is presented

elsewhere?8 by solving

t.)

-1
JRexp( iSIZ)R exp ( iH, ot

-1
S(tj) = Tr{RIzB exp(-iHZFt2

-1 -1
RI, R exp(iHZFt1)Rexp(16Iz)R exp(iHZth) (III.28)

for the field cycle of Figure I1I1.23a and where 6 is the mixing pulse.
The task of calculating the signal analytically is extremely time
consuming and might best be handled numerically for variable zero field
pulse angles and other initial conditions.

Other initial conditions are also possible in this experiment. 1In
actual practice, for the increase in sensitivity and potentially shorter
1H T4 relaxation times, the signal can beidetected indirectly via the
protons as described previously. The field cycle of Figure III.23b uses
demagnetization to zero field followed by pulsed dc magnetic fields to
initiate and terminate zero field evolution. Of course, the behavior of
the spin system has the same dependence on the natural quadrupolar fre-
quencies, as in the version with sudden transitions in the intermediate
field, although now the intensities of the spectrum will also be a func-
tion of the initial and final dec pulse angles and the dynamics of the
level crossings. A short dec pulsed field can be applied to mix
coherences in the same manner as in Figure III.23a. . B

In addition to observing quadrupolar frequencies, connectivities \
between dipolar coupled groups of spins might be established by altering %j
the mixing period of the experimental field cycle. Assuming a deuteron- o

deuteron dipolar coupling of vD~1 kHz, application of an intermediate
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field, as in Figure II1I.23¢, for ~1 msec (~1/vD) or longer should allow
a coherence transfer between dipolar coupled spins. Thus correlations
based on spatial proximity can also be developed. In cases where the
coherences do not persist for longer than a few milliseconds, signal
might be conserved if the evolving magnetization is stored as popula-

tions by application of a dc pulse as shown in Figure III.23c. The

decay is now described by a time constant related to T1z which is ex-
pected to be longer than the decay of the coherences in solids. By
slowly cycling the field to an intermediate value, the energy levels of
inequivalent deuterons may be brought into contact. This is similar to
the signal enhancement approach via repeated level crossings used in

frequency domain double resonance NQR experiments.29

3. Experimental Results

As an experimental verification of the applicability of these
field cycles, the two—dimensional zero field spectrum of the high fre-
quency v_ and v, lines of the same methylene sites in polycrystalline
diethylterephthalate—du is shown in Figure III.24. The field cycle of
Figure III.23b was employed to indirectly and selectively detect only
the deuterium NQR signal with all d¢ pulse angles equal to multiples of
2w for the protons. A mixing pulse of 3x2w radians in the laboratory z
direction for the protons is approximately a 165° deuteron pulse which
is close to the 180° pulse predicted from Equation (III.28) to give
maximum intensity in the crosspeaks.18 The diagonal peaks fall along
the V1=Vy line and reproduce the one dimensional spectrum. Off-diagonal
peaks correspond to the v_./v, connectivities in the spin I = 1 manifold

and are illustrated by the connecting lines. One connected pair of
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Figure III.28: Two dimensional zero field NQR spectrum of the high fr-
quency v_/v, transitions of polycrystalline diethylterephthalate-d,.
The spectrum was obtained through the field cycle described in Figure
I1I.23b. By using pulses which were multiples of 2% for the protons,
selective excitation of only the quadrupolar transitions is possible.
The transfer of coherence between states in the spin I = 1 manifold was

produced with a short dc pulsed field. Diagonal peaks along the vq = v,

line correspond to the one dimensional spectra as shown in the

—

projections., The peak positions of the one dimensional spectrum are
indicated by the stick spectra. Cross peaks indicate correlations
between the v, and v_ transition of an individual deuteron site. The

connectivities are illustrated by the connecting lines.
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lines belongs to one deuteron of the CD2 group and the second pair
belongs to the other inequivalent deuteron.

NQR transitions in frequency domain experiments are often assigned
on the basis of weakly allowed double transition peaks,33 double
irradiation of two NQR lineszg, or by the shift in frequencies due to
application of a low field3u since theAlow frequency lines are often
obscured or unobserved.29 Time domain techniques have the low frequency
detection capabilities, resolution and selectivity to assign transitions
on the basis of Vo lines. All of these approaches are plagued by the
problem of increased complexity of the spectrum with increasing numbers
of quadrupolar sites. Two dimensional zero field NMR experiments can
address many of thése problems by utilizing the cross—-peak correlations
to determine connectivities. A large variety of experimental
conditions, produced with different field cycles, can be envisioned with
the use of pulsed magnefic fields to manipulate the spins in zero field.
The greatest increase in sensitivity and experimental expediency would
result by directly detecting the zero field oscillations via an
extremely sensitive detection apparatus such as a SQUID. Thus, the
experiment presented here would no longer have thg third time period of
high field detection and as such would be two~dimensional in the truest

sense.
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IV: ZERO FIELD NMR. OF LIQUID CRYSTALS
A. Introduction

1. Liquid Crystalline Phases

Many pure organic substances exist in phases, or rather
"mesophases"; intermediate betﬁeen the solid and liquid states. Whereas
a crystal has a regular packing in a three dimensional lattice and a
liquid shows no correlation between the centers of gravity of the
molecules, a liquid crystalline system displays some orientational (and
possibly some low dimensional positional) ordering of the elongated
molecules. Local ordering is generally brought on by collective
interactions between the molecules, and uniform alignment of the sample
may be induced by the application of a magnetic or electric field.
There are two basic categories of liquid crystals: thermotropic, in
which the mesophase formation and behavior are temperature dependent,
and lyotropic, in which the resulting phases are dependent on
concentration. The former class of compounds is explored in the
following experiments.

The study of the liquid crystalline phases, their characteristics
and behavior, is an extremely extensive area of research involving many
disciplines and approaches. It is inconceivable that one chapter could
accomplish a complete introduction to the amount of information
available. Thus several relevant texts should be mentioned which
introduce the physics of liquid crystals and their study by NMR. Among

these are books by de Gennes1, Emsley and Lindonz, Emsley3, Grayu,
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Chandrasekhars; Luckhurst and Gray~ and review articles by Diehl and

8, and Doane9. An exhaustive review of

Khetrapal7, Khetrapal and Kunwar
many areas of liquid crystal research with extensive lists of references
can be found in the Handbook by Kelker and Hatz.10 These are only a few
among many references; which can be consulted for more detailed
information on the areas briefly described in the following sections, in
addition to the wealth of published scientific articles.

A particular liquid crystal may display one or many phases with
variations in temperature; The major classes of thermotropic liquid
crystals are nematic; cholesteric and smectic each of which, especially
the smectics, can have many subclasses. Each subclass is distinguished
by the degree and type of order present. In describing the liquid
crystalline phase, discussions will focus on a local domain of the
sample. A domain is considered a region of the liquid crystal sample in
which there is some short-lived coherence in the alignment of the
molecules. These domains may or may not align uniformly over the entire
sample in the presence of a field. This!field dependent behavior is
covered in Section 2, while a discussion of the phases of interest
follows.

a. Nematic. These are the.lowest ordering phases and always occur
before the isotropic phase. Nematic phases are the most liquid-like as
there is no positional order of the centers of mass of the molecules,
but rather a preferred paralle; alignment of the long molecular axes as
shown in Figure IV.1. The average alignment can be described by an
6

axis, n, called the director. There is rapid, random diffusion (~10"

em? s”1) of the molecules, rapid fluctuation (10"8-40"9 s) about the

el

s

d

It 3
LR————

|

1y
L—

PR



—

] ERa )
[—— L .

g T
[N p—

Nematic Phase

XBL 8611-9257

Figure IV.1: Nematic liquid crystalline phase. The elongated molecules
are aligned on average with respect to the director as indicated by the
arrow. There is no positional order on a local scale, only a preferred

orientational order.
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director, and rotation (10-10'-10;12 s) about the long moleéular axes.
This leads to a cylindrical symmetry about n, where n and -n are
equivalent. In most common nematics, the uniformly aligned phase is
uniaxial and can be described as a monodomain with a sing;e director -3
axis. .
b. Cholesteric. Cholesterics are potentially interesting for
study by zero field NMR and are only briefly described. Cholesterics’
are a chiral form of the nematic phase; A cholesteric phase has a
helical distortion which consists of the director axes of regions of the
sample changing orientation with distance about a given axis. This
changing orientation of the directors occurs regularly and continously
about this axis such that a helix is swept out by the direetors,1'2 The
pitch of the helix is generally many times greater (~few 1000 A) thaﬁ
the molecular dimensions. Within the planes still described by the
local directors, the phase has nematic properties. Such phases can be
produced from either a pure optically active material, or by the .
addition -of this material as an impurity to a non-optically active )
nematic phase; the helical pitch is a function of either the molecular
structure of the pure compound or the relative concentrations of a
mixture. In the presence of a magnetic field, cholesteric phases may
have their twist axes either perpendicular (negative cholesteric) or
parallel (positive cholesteric) to the field direction. "1
¢. Smectic. These phases generally occur in a lower temperature
range than the nematic. Smectic phases are the most ordered but, even
among the different smectics, the type of ordering changes

substantially. A feature common to all smectics, as shown in Figure o
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IV.2; is that the molecules form layers which are generally not
positiohally correlated. The layers are ~20-30 & in thickness with a
well-defined interlayer spacing and the molecules diffuse more freely
within, than between, layers. The molecules within the layers may or
may be translationally ordered which distinguishes some of the more
common smectic phases. These are:

Smectic A: Inside the layers there is no long range order of the
molecules, which orient perpendicular to the layer plane, as shown in
Figure IV.3. Thus this phase is like a two dimensional liquid. The
phase is'uhiaxial as the molecules are free to rotate about their long
axes, the director axes and layer normal are nearly parallel and, n and
~-n are equivalent. Except for the layer structure, smectic A phases and
nematic phases are nearly identical. Often smectic A samples align in
an applied magnetic field.

Smectic C: Here the holecular axes are tilted with respect to the
layer normal. In the presence of a field upon cooling from the nematic
or smectic A phases, the molecules align with the field and the layer
planes will be tilted. A random distribution of the planes in the
azimuthal angle about the field direction forms a cone shaped domain.
The tilt angle, £, is characteristic of a particular sample and is
constant for a given temperature. The tilt can be attributed to the
fact that the layer spacing (d=1cosE) is less than the molecular length
(1) and the molecdles must therefore tip to fit within the layers.1
Rotation about the long molecular axes might be expected to be hindered.
The phase is considered biaxial in that the molecular orientation can

not be described by a single uniaxial dir'ector'.9 A director axis which
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Figure 1IV.2: Smectic phases are characterized by the arrangement of the
liquid crystal molecules in layers which are generally not positionally
correlated. The preferred direction of the molecular long axes can be
either parallel or tilted with respect to the layer normal. Trans-
laticnal diffusion occurs freely within the layers and to a lesser
extent between them. As shown here for a smectic A type phase, the
molecules are randomly ordered within the layer and align perpendicular

to the layer plane thus the director and layer normal are colinear.
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Figure IV.3: Schematic drawing of the molecular ordering within the
layer for three different smectic liquid crystalline phases in which the
molecules all align perpendicular to the layer plane. The smectic A
phase at left shows no positional ordering of the molecules. The
molecules are free to rotate about their long axes; the area swept out
by this rotation is shown by the circles. - In the smectic B phase, at
center, the molecules are also free to rotate about their long molecular
axes although there is a hexagonal positional order within the plane.
The smectic A and B phases are both uniaxial. The smectic E phase shods
a molecular packing in which the molecules oscillate between one of two
positions (represented by the ellipses) within the layers. There no
longer is the freedom of rotation about the long molecular axes which
leads to a biaxiality of the phase. The CH2C12 probe molecules are -
expected to reside between the liquid crystal molecules and exhibit the
local symmetry.
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describes the direction of the tilt is generally uniform except in
certain smectic C* phases; hin the smectic C*, formed from a mixture
with a chiral component; the tilt directors follow a helical
distortion.?

Smectic B: This is one of the smectic phases with a greater
degree of order within the layers. The ordering within the layers is
often considered more "solid—-like" as there is a rigid periodiecity in
two dimensions as shown in Figure IV.3. In the smectic B phase studied,
the molecules pack parallel to the layer normal in»a hexagonal lattice.
The molecules are free to rotate about their lbng axes so, in spite of
the increased order, the phase is still uniaxial.

Smectic E: The smectic E phase is very similar to the B phase
except that the molecules pack in an orthorhombic arrangement in the
layers as shown in Figure IV.3. The molecules are also aligned parallel
to the layer normal. One major difference between B and E phases is,
that in the latter, the molecules can no longer freely rotate about
their long axes but instead oscillate about their long axes by angles
less than 180°. This produces a herringbone-like patternlin the packing
and is expected to produce a biaxiality of the phase.

All of the above mentioned phases can consist of a single pure
compound or a mixture of two or more components. Mixtures can be formed
only when the components are misicible which generally is dependent on
the similarities in chemical composition and molecular symmetry. Other
small organic molecules also dissolve quite readily in the liquid

crystalline system which acts as an orienting solvent. When mixed with

another liquid crystal or solute, the melting point and temperatures of
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the phase transitions are usually depressed and not necessarily by a
constant amount. Often by mixing components, one can produce a specific

phase which exists over a desired temperature range (see Appendix).

2. Magnetic Field Dependent Behavior

Measurements of molecular ordering in liquid crystalline systems
are often conducted in large applied magnetic or electric fields. The
mode of alignment depends upon many features such as: the strength,
direction and duration of the applied field, the magnetic
susceptibility, concentration, dimensions and temperature of the
sample.?0 Large dc¢ fields cause the liquid crystal molecules to orient,
on average, at a fixed angle with respect to the field direction. 1In
the presence of a magnetic field, the individual molecules feel a torque
and attempt to align to minimize the free energy. This is due to the
anisotropic magnetic susceptibility of the molecules which determines
the direction and degree of alignment in a magnetic field. The magnetic

susceptibility, x, relates the molecular diamagnetic moment, M, to the
1

applied field B by

M (IV.1)

1= X138y

where i,j=x,y,2. For uniaxial nematics, the magnetic susceptibility can
be represented by a symmetric tensor with elements equal to X“ and %L
relative to the long axis of the molecule. An anisotropy of the
magnetic susceptibility, Ay = X“ - KL results when these two components
(which are usually negative) are unequal, and its sign is determined by
their relative magnitudes. For l1iquid crystal systems in which there

are strong molecular correlations and cooperative effects, the
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contribution to the free energy of many molecules overrides thermal
energies (which is not the case in a liquid) and they align. The long

range order leads to a reduction in the free energy given by2

"

G = -AxB2(300328—1)/6 _ (1v.2)

Qhere B is the angle between ﬁhe director and the field.

Examples of the alignment in the nematic phase for the two
possibilities of Ax>0 and Ax<0 are shown in Figure IV.4. For molecules
with a positive value of Ay, the domain directors align with the
magnetic field (B=0 to minimize G in Equation (IV.2)) as shown in Figure
IV.4a. 1In contrast, the molecules with a negative value of Ay align on
average perpendicular (8=90°) to the field direction, as illustrated for
a single domain in Figure IV.4b. The molecules have the same rotational
and translational freedom in both cases although in the latter the
domain director axis can have any direction in the plane perpendicular
to the external field. Other phases such as smectics behave differently

in the presence of a field. Whereas nematics readily align, an aligned

smectic phase is often only produced if the temperature is reduced from
an isotropic or nematic phase in the presence of the field.3 Uniform
alignment 1s not always obtainable as there is a dependence on factors
such as the preparation and the rate of cooling of the sample. Easily
aligned samples, such as nématics, are frequently used as NMR solvents,
and aligned smectic phases are frequently studied by NMR analogously to ' 7;

single crystals as they will not reorient with rotation. Some smectics,

ac
VR

such as A and C, may align in a magnetic field thereby leaving the
experimentalist with no option of an orientation dependent study for

these phases. Similarly, large enough fields have also been found to
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Figure IV.4: Alignment of nematic liquid crystal molecules with
positive and negative magnetic susceptibility anisotropies in high and
zero fields. The molecules align on average in a single direction
described by a director axis. The molecules fluctuate rapidly about the
director axis and rotate about their long axes. In the presence of a
large field, the director axis of a domain of the system with Ay>0 is
aligned with the field as in (a) while it is perpendicular for a system
with Ax<0 as shown in (b). The arrows indicate the quantization axes of

“the spin interactions in high field. In the absence of a magnetic

field, the director axes of a domain determine the quantization axes (as
shown by the arrows in (c¢) and (d)) of the spin interactions in zero
field. Note that while the molecules remain aligned in both cases, the
direction of the quantization axis does not change between high and zero
field in the Ay>0 case, while for Ax<0 it does.
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"untwist" a cholesteric phase.2s!! : i

In the absence of a magnetic field, the average orientation of the
director is determined by convection and interactions with walls and

[

surfaces of the container of the sample;1 The degree of order, in or

"

out of the field, is also concentration and temperature dependent. In a ; _

macroscopic sample, n is a function of position throughout the sample
owing to these effects. In the bulk sample; order on a local scale
persists over some distance known as the coherence length. This
distance is generally a few microns, and in the presence of a field can
be used to describe the length of the transition region between
competing anchoring effects and orientation by the field.1 The magnetic
field strength dependence of the alignment on a macroscopic scale is
studied by light seattering13, optical?u and magnetic15 birefringence

16 measurements. On a molecular scale, NMR

2,3,7

and magnetic susceptibility
can be used to measure the ordering.
In a strong enough applied field, regardless of the ordering of ,j
the 1iquid crystal molecules, the field direction determines the ?
relevant NMR spin interaction frame as illustrated by the axes in Figure
IV.4a and 4b. After the removal of the field, the relevant axis system
is determined by the motional and symmetry properties of the liquid
crystal molecules. This is illustrated for single sample domains in
Figure IV.4¢ and 4d, and would describe the entire system as a
monodomain in the formervif it had been aligned in a magnetic field. In
contrast, although the director axes in Figure IV.4d are all
perpendicular to the original field direction (z), they are randomly

distributed in the xy plane as shown in Figure 1V.5 and therefore, a
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Figure IV.5: C(Cross section perpendicular to the field direction for a

liquid crystal sample with Ax<O.

The separate domains are characterized

by director axes, all perpendicular to the field direction, with a

random distribution of director orientations in the xy plane.
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single director axis does not describe the entire system. Thus between
high field and zero field, or Ax>0 and Ay<0, the interaction frames
which aptly describe the spin systems may differ. In the absence of a
field, the orientational, motional and symmetry characteristics of the
thermotropic liquid crystalline phase determ;ne the magnitude and form
of the zero field NMR Hamiltonian. Thus through the observed spin

interactions in the NMR experiment, one can gain an understanding of the

molecular ordering.

3. NMR of Liquid Crystals

a. Order Parameters. The next obvious question is: How does one
describe the ordering of the liquid crystal molecules? The molecules
are fluctuating rapidly and randomly in position and orientation yet on
average are aligned in a given direction. If the molecular system can
be related to the director axes, which may or may not be aligned with
the laboratory/field frame, then the anguiar terms which relate these
frames will be descriptive of the ordering of the system. In all cases
that follow, the molecules are assumed to be rigid and therefore the
ordering can be described by a probability function, P(a,B8), of the
director axis having some average orientation, given by the polar angles
o and B, iq the molecular fr'ame.2 The parameters describing the order
mgst reflect the physical realities of the situation, to begin with they
must be continuous functions of the angles and vanish in isotropic
phases.

Since the interactions to be studied are generally second rank

tensor interactions, an order matrix or tensor can be used to express
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the director frame quantities in terms of the molecular fixed axis ;

system.1'2 For a nematic phase with a uniaxial director frame, this is

expressed as

X,V Z :
- Y ‘ -
T1i L-Sij?ij (IV.3? B
i,J
and the elements of S are given by
1
Sij =3 <3coseicosej 6ij> (IV.4)

where 0 is the angle between the uniaxial director frame z axis and the
molecular axes i and j. In this case, the S matrix is a 3x3 cartesian
matrix which is symmetric, such that Sij’sji’ and traceless, i.e.
ZSiiso. Thus there are a maximum of five independent elements. The
elements of this matrix are generally called the Saupe order
parameters17 and can be related to motional constants or averages of the
Wigner rotation matrix elements7’8 (see Chapter I). The latter will

become most useful in the calculations to follow and the relationships

between the five S and the Wigner Dm,m' elements are given below.6
Szz = <D§O> = %(300328 -1
Sex” Syy = \?g (<D§2> + <Dg_2>) = %(sin280032a>
sxy = \—-g (<Dg_2> - <D§2>) = %sinzssin&» (IV.5)
S = \;g (<D§_1> - <D§1>) = %<sinecosscosa>
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Syz = ,Jg (<D§1> + <D§_1>) = %<sinBcosBsina>
where B and a are the angles relating the uniaxial director to the
molecular frame. The order parameters range in value from 1 to -1/2.
The symmetry of both the molecular system and the phase determines the
number of order parameters necessary to describe the situation. Some
examples of the effect of molecular symmetry operations are given

below.7

Table IV.1: Molecular Symmetry and Required Order Parameters

Symmetry No. of Independent S Elements S Elements
3 fold-or 1 S
greater axis 27
2 perpendicular -
planes .2 Szz’ Sxx Syy
1 plane ‘ 3 Sxx’ Syy’ Sxy
none 5 Sxx’ syy’ Sxy
sz’ Syz

b. Nuclear Spin Interactions in Liquid Crystals. As stated
previously, the order parameters can be extracted from a measure of the
second rank tensor nuclear spin interactions such as dipolar and
quadrupolar couplings. Unlike isotropic liquids in which these
interactions are averaged to zero, the anisotropic liquid crystalline
environment merely scales the interaction and, due to fast random

molecular motions, removes the intermolecular dipolar couplings thereby
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producing narrow line spectra for small spin systems; The behavior of

the liquid crystal system in NMR experiments can be understood if one
considers the form of the Hamiltonian in an applied field which aligns
the sample. For example, the dipolar Hamiltonian in the average

director frame may be written in spherical tensor notation as _

2
JIPR. 2
Hy = ) DT T, A <o (@) (IV.6)
m,m'=-2

here Tz,m and A2,m' represent director frame spin operators and
18

principal axis system (PAS) spatial variables'”, respectively, and the

D m(9) (R=a,8,Y) term effects the transformation between the two

m',
frames. For two dipolar coupled spins, the internuclear vector which is
the z axis of the PAS frame is taken to be coincident with the z axis of
the moleculaf frame. If the molecular frame is not chosen as coincident
with the PAS frame, for rigid molecules, there still is a fixed relative
orientation of the PAS and molecular frames. Thus an additional angular
term relates the order parameter of the molecular frame to the PAS

frame. The brackets in Equation (IV.6) indicate a time average over the

D m terms which accounts for fluctuations of the alignment of the

m',
molecular frame with respect to the director frame. Assuming that the
field aligns the sample iﬂ the field direction (Ax>0), the director axis
will be coincident with the laboratory z axis. Truncation of the spin
part of the Hamiltonian by a large magnetic field leaves only the T20
term nonzero., Furthermore, only the m'=0 term of the traceless second

rank tensor Az,m' is nonzero since the dipolar interaction is axially

symmetric in the molecular/PAS frame.18 Therefore, the effective high
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field laboratory frame dipolar Hamiltonian for a proton pair is given by

0 2
HD = T20A20<D00(Q)> = TzonoSzz (IV.7a)

2

¥%h

= - ;—§—§ szz(311zI,2z - I, 12) (IV.7b)
Tr

where the uniaxial order parameter Szz is given by

2 2
sZz = <D00(Q)> = 1/2<3cos [ (Iv.8)

and B is the instantaneous angle between the director and the proton-~
proton internuclear vector. Thus by measuring the dipolar coupling for
a rigid proton pair, the value of Szz can be determined. If the proton
pair is on the liquid crystal molecule, then the order parameter
corresponds to the ordering of the liquid crystal molecules.

As has become obvious, relating many interaction frames is a
necessary part of the calculation. For example, descriptions of the

system can easily include a few, if not more, transformations from the
PAS frame + Molecular frame + Director frame + Lab Frame

depending on the phase and the selection of frames. The number of
transformations is often simplified as in the case above in which the
first and second frames are chosen to be coincident as were the third
and fourth. Only those transformations which reflect rapid molecular
motions on the timescale of the experiment are expressed as an average.
In Chapter III, high field and zero field spin operators were

distinguished by subscripts. Because of the number of reference frames
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required here, and their frequent coincidences, subscripts will not
always be used but the relevant frames should be clear based on context.
Apologies are made in advance for any confusion.

The spin system can consist of either the liquid crystal molecules
thgmselves or a probe molecule dissolved in the liquid cr&stal which is
constrained to the symmetry of the phase by dispersive and steric
f'or'ces.7’8’19 This aids one in studying the liquid crystalline phase
via simpler spin systems (withouﬁ requiring selective isotopic
labelling) and greatly aids in spectral simplification and inter-
pretation.7’8 For example, in Figure IV.6; the high field spectrum of a

fully protonated liquid crystal is shown. The broad featureless

lineshape provides little information. The ordering of a rigid solute

molecule (or part of the molecule) can be described by an order tensor,
S, which describes the average alignment of the solute spin system
molecular frame with respect to the director axis. The S parameters
corresponding to the solute differ from those of the solvent, yet
reflect the local symmetry and type of ordering in the phase.
Unfortunately, there is no simple relationship between the two S
matrices. The allowed motions of the solute reflect the anisotropic
molecular tumbling in the liquid crystal ﬁedium by characteristically
averaging the dipolar interaction.1’2 The Hamiltonian of a two spin
solute molecule dissolved in an aligned nematic (Ax>0) has the same form
as that in Equation (IV.7) and the spectrum consists of two lines due to
the scaled dipolar coupling. The order parameter of the solute, S, may

be calculated from the observed splitting § by Szz=4w2r3/3Y2h6.
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Figure IV.6: High field NMR épectrum (180 MHz 1H)‘of‘ a fully protonated
nematic liquid crystal sample. Due to the large number of dipolar
coupled spins, no structure is resolved in the spectrum and little

information on the molecular ordering is available.
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B. Nematic Phases in Zero Field Experiments

Until recently, the behavior of a liquid crystalline system in the
absence of an applied magnetic field could not be studied by NMR. Field
cycling time domain zero field NMR techniques now provide a means to
measure both the bulk ordering and molecular order parameter without the
influence of an applied field. Descriptions of the zero field NMR field
cycling experiments were presented previously and require little change
when applied to liquid c¢rystal samples. The field cyecling schemes used
in these experiments are preéented with each case as there are differing

requirements for the application of dc pulsed fields.

1. Observations of the Alignment in Zero Field

Several features of liquid cfystalline systems make their study by
zero field NMR of interest. Because the molecules are aligned by a
magnetic field, one wonders what will occur with the removal of the
field. Does the bulk ordering of the sample change, as shown in Figure
IV.7, and does any change occur in the local molecuiar ordering as
characterized by the order parameter? It has been suggested that the
degree of ordering may differ on a macroscopic and molecular level in
spite of the small energies of the order director fluctuations.20 The
order parameter and fluctuations are important parameters in describing
relaxation measurement521, which give an indication of dynamics in
liquid crystal systems, and it is thus instructive to directly measure
the ordering in high and low fields.

The system chosen for study was composed of a CH2012 probe
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Figure IV.7: Ordering in nematic liquid crystals. <(a) In the presence
of a magnetic field, B, the average orientation of the director (shown
by the arrow) is aligned along the magnetic field direction and the
dipolar coupling corresponds to the truncated high field terms. (b)
Order in the nematic remaining immediately after removal of the field.
The sample maintains its uniform average alignment along the laboratory
z axis. Due to the rotational motions and symmetry of the 1iquid
crystals, the dipolar Hamiltonian is also truncated with respect to the
z axis in the absence of a magnetic field. (c¢) Disordered system where
the alignment of the directors is no longér in the laboratory z
direction. The average orientation of the molecules on a local scale is
described by the local director. The dipolar Hamiltonian of a domain is
now truncated with respect to this director axis.

197



molecule dissolved in p-pentyl phenyl 2-chloro-4-(p-pentylbenzoyloxy)-
benzoate (Eastman Kodak 11650, Ax>0). The high field NMR spectrum of
this nematic system was obtained using a 9Ox-t—180y-1 echo sequence22 to
reduce the effects of high field inhomogeneities where the signal
intensity is measured as a function of 1. The minimum time for the
incremented variable t was selected, based on the T2 relaxation times of
the two components, to echo only the solute signal and not that of the
liquid crystal itself. The resulting dipolar spectrum i1s shown in
Figure IV.8. The alignment of the proton-proton internuclear vector
with respect to the director; n, may_be described by a single order
parameter Szz=0.055 * 0.001 as calculated from the observed splitting in
accordance with Equation (IV.7) using a value of r=1.771 & for CH,Cl,.
Previous work (section II.C.2) has shown that polycrystalline
samples of isolated proton pairs yield a three line frequency spectrum
when subjected to the sudden transition experimental sequence of Figure
IV.9. The three lines are of equal intensity and occur at zero
frequency and ivD=3Y2h/8ﬂ2r3. If this sudden transition experiment is
applied to the CH2012/11650 system, uSing a high field echo as above to
detect only the solute signal, one obtains the one line spectrum shown
in Figure IV.10. This line at zero frequency corresponds to the central
line of the triplet found in the polycrystalline case and yields no
dipolar information on the solute. Contained in the seemingly
uninformative spectrum is, however, a great deal of information on the
ordering of the nematic liquid crystal. This can be understood by
remembering that the spectrum reflects the Hamiltonian of the system in

zero field which is in turn determined by the liquid crystalline
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Figure IV.8: High field 1H NMR spectrum of CH2012 in Eastman 11650
(Ax>0) taken as a function of t with the pulse sequence shown at upper
right. The molecular order parameter of the solute is calculated to be
S,,=0.055 * 0.001 from the observed splitting.
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Figure IV.9: Schematics of zero field experimental field cycles. (a)
This basic field cycle with a sudden transition in field has been
described previously in Chapter II. (b) Sudden z/pulsed y field cycle.
This field cycle is identical to (a) except for the application of
pulsed dc magnetic fields (P and P') corresponding to rotation angles
given by anBdc p For 903 pulses the density operator at the start of
the t1 period is now proportional to Ix in the lab frame. Detection of
this transverse component is completed by the final pulse and
application of a field in the z direction to preserve the magnetization
before remagnetization to high field.
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Figure IV.10: Spectrum of CH,Cl, in Eastman 11650 (Ax>0) using the
field cycle of Figure IV.9a. The single line at zero frequency

indicates that no zero field evolution occurred during the time t1. The

| spectrum appears as expected for an ordered nematic in which the axis of

quantization is the same in high as in low field.
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a. Spin Hamiltonian in Zero Field. Consider the case of a liquid

.

crystal system which remains aligned along the original field direction
(Ax>0) in zero field. The zero field director frame dipolar Hamiltonian ;é g
for a molecule of the nematic phase, Equation (IV.6), is unchanged from o
that in high field and is equal to HB of Equation (IV.7). This is due b
to motional averaging about the director oriented along the laboratory z
axis as in Figure IV.7b. Rotation about the long molecular axes and the
uniaxial nature of the liquid crystal require that the terms in Equation
(Iv.6) with m' and m not equal to zero vanish (i.e. no dependence on o
and Y). In contrast to the high field case, the truncation can be
accomplished solely through the spatial terms of the Hamiltonian.
Again, the solute Hamiltonian has the same form as that above since the
nematic environment imposes a preferred orientation and motion on the
solute molecules.

The sudden transition experimental results reported above can now o
be interpreted. Even in the absence of an applied field, a uniformly }
aligned sample with n along the laboratory z direction, Figure IV.7, has »
a zero field Hamiltonian equal to the truncated laboratory frame dipolar
Hamiltonian. The sudden switch-off of the intermediate field in the
zero field experiment of Figure IV.9a initiates zero field evolution
only if [p,HZF]fO. Since p(0) is proportional to Iz,L before the

transition, this condition is not met. Calculating the signhal from
) e i
s(t1) = Tr{Izexp( iHDt1)Izexp((1HDt1)} =1 (IV.9) i

shows that no evolution occurs in zero field and the resulting spectrum
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for an ordered sample in zero field is simply a line at zero frequency.

The zero field dipolar spectrum of an aligned sample should still
be obtainable by the use of a pulsed d¢ magnetic field to change the
initial condition from 9(0)=IZ,L to some other operator tﬁat does not
commute with Hg. In this case, as shown in Figure IV.9%, a pulse can be
used to rotate the initial magnetization to the xy plane of the
laboratory frame. If the direction of the dc field is defined as the
laboratory frame y axis and a 90° pulse is applied, then the density
operator after the pulse is equal to Ix‘ Since [H°,Ix]f0 evolution is
initiated. Exact calculation of the zero field signal is quite easy as
the initial state, dc pulses and zero field Hamiltonian are all

referenced to a common frame for an aligned sample, and

o
. AN 7
S(t1) = Tr{l exp(-ig6'l )exp(—iHDt1)exp(-ieI )I

o .
exp(ier)exp(iHDt1)exp(ie'Iy)} “ (1Iv.10)

A second pulse, e'=36o°—e, is required to transform the evolving state
back into one proportional to Iz before remagnetization. For example,
rearranging terms and taking into account that e=90°, Equation (IV.10)

becomes
0 o
s(t1) = Tr{Ixexp( iHDt1)Ixexp(iHDt1)} (Iv.11)

which is identical to applying rf pulses in high field. Unlike previous
calculations, this requires no transformation between frames (other than
that already ascribed to the order parameter), nor is there any average
taken over director orientations as only one is present in an aligned

sample. This is analogous to a single crystal in zero field except that



the Hamiltonian is truncated.
A two proton spin system, in an oriented liquid crystal with Ay>O0,
is expected to yield the following normalized signal for an arbitrary dec

pulse angle from Equation (IV.10) as given by

2 . 2 3
S(t1) cos 6 + sin 6003(2Szzwpt1) (Iv.12)

where 6 is fhe angle of the de¢ pulse and wD=2nvD=Y2h/2nr3. To confirm
that the sample is indeed aligned and that dipolar signal can be
observed, an experiment was performed with the sequence of Figure IV.9b.
Figure IV.11 presents the results of a series of these sudden z/pulsed y
experiments. The angles of the dc pulses corresponding to P and P' in
Figure IV.9 were determimed by the calibration procedure described
previously. The spectra cénsist of two lines corresponding to either
the zero frequency or ivD lineS of the polycrystalline case. The
-predicted behavior for an aligned sémple under different dc¢ pulses is
observed. For 6=90°, all the signal evolves as the local fields and
magnetization are perpendicular. Calculation of the order parameter of
the solute from the zero field spectrum yields, Szz=0°05u * 0.001. The
molecular order parameter measured from these spectra in zero field is
the same as that found in high field within an experimental error based
on the linewidths and small sealé temperature fluctuations which may
occur in the course of the experiment.

The removal of the sample to low or zero fields might be expected
to show a change in the bulk alignment of the liquid crystal molecules.
If the sample were to disorder, the predicted zero field spectrum would

be different. For example, one case is that where the local ordering
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Figuﬁe IV.11: Spectra of the CH2012/11650 system obtained via the

sudden z/pulsed y field cycle of Figure IV.9b. DC pulses used were (a)

90°,270§ and (b) 1803,1803; The observed spectra show the dependence on

pulse angle as predicted by Equation (IV.12) which was obtained assuming

an ordered nematic liquid crystal in zero field. The molecular order

parameter may be measured from the observed frequencies and was found to N
be SZZ=O.OSH + 0.001, which is unchanged from high field within an

experimental error of 2%. Linewidths of ~U5 Hz may be attributed to !
residual fields.
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within a domain remains the same; while the alignment of the local
directors of these domains changes orientation as illustrated in Figure
IV.7Tc. Assuming that the allowed motions and fluctuations within a
local domain are the same as in the mohodomain, then the director frame
order parameter of the solute will be the same for all orientations
since the director frame Hamiltonian is unchanged. The distributions of
director orientations will manifest themselves as changes in the
intensities of the lines in the zero field spectrum as discussed in
Section II.C.2. (This is similar to a distribution of "crystallites" in
which the degree of disorder may or may not lead to an isotropic
distribution of director orientations.) Thus ordered and disordered
nematics may be distinguished by the characteristic appearance of their
zero field spectra since the relative intensities of the zero field
lines will be indicative of the degree of disordering.

If the alignment is altered before reaching zero field, a sudden
transition experiment would be expected to show evolving signal. 1In the
limit of an isotropic distribution o£ the local directors, the
normalized zero field signal for the sudden transition experiment or the

sudden z/pulsed y version with both d¢ pulses equal to 90° is given by

S(tl) -.1/3[1 + ZCOS(%Szzth1)] (Iv.13)

which is the same form as that predicted for the proton pairs in a
polycrystalline hydrate. Improperly prepared samples, such as those
with large bubbles, result in observable zero field NMR signals due to
the disruption of uniform alignment caused by surface effects and/or

mechanical mixing. An example of such a spectrum showing broad peaks at
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the dipolar frequencies is compared to the same material in Figure IV.12
using the sudden transition field cycle. A schematic picture of the
possible disordering induced by a bubble appears in Figure IV.13. This
effect was found to be exacerbated when using liquid crystal samples
with very low viscosities although even here disordering was not

observed in samples with no bubbles.

2. Demagnetization and Other Pulsed Experiments

Further studies were also performed to observe the effect of
compiete demagnetization on the liquid crystal system. The field cycle,
shown in Figure IV.1l4a, consists of demagnetization to zero field
combined with a pulsed version of the experiment. A spin temperature
argument suggests that the density operator describing the initial
demagnetized state in an aligned sample (Ax>0) should be proportional to
Iz,L since the motionally averaged dipolar and Zeeman Hamiltonians
commute.?3 This predicts that the zero field signal is described by
Equation (IV.12) and is confirmed experimentélly since spectra produced
with the same ﬁc pulses appear identical to'those in Figure IV.11. Thus
the resulting state is not one characteristic of a demagnetized dipolar
coupled system as described in Chapter III. If the demagnetization were
to produce an initial condition other than Iz,L then one expects an
entirely different functional dependence for S(t,).

The effects of residual fields on the linewidths can be decreased,
in any of the zero field experiments described, by employing a
transverse de 180° pulse to form a zero field echo. Figure IV.15 shows

the results of a 180° refocussing pulse applied in the middle of the
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Figure IV.12: CH2C12 in the nematic phase of EBBA with Ax>0. The
spectrum shown in (a) results when the sudden transition field cycle of
Figure IV.9a is used. The lack of dipolar signal indicatés that the
sample remains aligned; there is only a zero frequency signal from non-
evolving magnetization. Samples in which large bubbles are present do
display dipolar signals as shown in (b) which can be explained by
disruption of the ordering of the liquid crystal molecules.
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Figure 1IV.13: The uniform alignment of the sample is disrupted through
the presence of a bubble in the sample. This effect may be due to

(R

! either sample mixing in shuttling and/or surface effects. A possible
rg scenario is shown above in which the director axes are anchored by a

bubble and caused to point away from the z axis. This distribution of

directors will alter the relative intensities of the zero field lines.
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Figure IV.14: Other zero field experimental field cycles used in the
study of liquid crystals. (a) After demagnetization to zero field, dc
. pulses are used to initiéte and terminate the zero field evolution

i period t, as described in Chapter II. (b) Same field cycle as (a)

Sy ' except that the t4 period is now diVided in half by a 180° refocussing
; pulse. This pulse removes the effect of residual field inhomogeneities
in the z direction. (e) Zero field dc pulse sequence for the production

of dipolar order in zero field. The directions of the dc fields are

shown. The sequence 90x-t-u5y>takes the initial state of I, to one of

B dipolar order in the lab frame. After the delay, A, the M5y pulse
transforms the state into observable transverse magnetization.

- Application of a 90x pulse and the z field allows for observation of

this evolution as a function of t, in high field.
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Figure IV.15: Zero fleld echo spectrum of CH,Cl, taken using the zero
field echo sequence, Figure IV.14b, which removes the effect of the
linebroadening residual fields. Shown is the spectrum using the dc
pulse sequence 903-t1/2—1803~t1/2—270;, where all pulses are applied
along the laboratory y axis. A linewidth of ~15 Hz is obtained. The

lines at one half the dipolar frequency and zero frequency are artifacts

due to pulse imperfections.,
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evolution period as illustrated in Figure IV.1Ub. After a 90° y pulse

on the initial state; Iz,L’ the signal can be calculated from

S(t1) = Tr{Ixexp(-iHZFt1/2)exp(—iv1y)exp(—iHZFt1/2)

Ixexp(iHZEt1/2)exp(iwa)exp(iHZFt1/2)} (IV.14a)

where HZF’HZ + Hg, and HZ is the interaction with an inhomogeneous

residual z field such that it commutes with Hg. The resulting signal is
3
S(t1) = cos(zszzth1) (IV.14b)

As expected, this pulsed dc field variation of the Hahn echo
exper'iment2u yields decreased linewidths which are measured here as ~15
Hz. This is due to reversing the sense of evolution under the residual
field term without altering the evolution in t1 under the bilinear
dipolar Hamiltonian and can easily be seen by the fact that linear terms-
in Iz change sign with a 180° pulse while the bilinear terms in HD do
not. Lines at one half the zero field frequency appear as artifaects in
the echo spectrum and can be accounted for by imperfections in the de
pulses.

The initial condition for an aligned sample with Ax>0 is equal to
Iz,L and the zero field Hamiltonian in the laboratory frame is identical
to that of the secular dipolar Hamiltonian in a high field rotating
frame at resonance. With this understanding of the system, a multiple
dc pulse sequence was attempted in zero field. A sequence was chosen to
produce a dipolar ordered state in zero field, in the same manner as one
would in high field, as such a state was not obtained by demagneti-

25

zation. A zero field version of the Jeener-Broekaert sequence was
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performed; but unlike high field NMR techniques; separate coils were
used for each orthogonal (90° "phase shifted") pulse direction. Using
the field cycle of Figure IV.140; the sample was demagnetized to an
intermediate field then suddenly demagnetized to zero field where the
‘pulse sequence 90x-r-H5y-A—M5y~t1-90x was appliedf Immediately after
the final 90x pulse the sample was remagnetized and the high field
signal recorded as a function of t1; The preparation part of the
sequence (through the first 45y) has the effect of creating a density

operator given by

= oy * Ppq (IV.15)

which contains both a dipolar order term and a double quantum term.26

Here the delay A used in the sequence was chosen to be long enough to
allow any remaining single and double quantum coherences to decay to
zero. Accumulation of the high field magnetization as a function of tq
yields the interferogram of Figure IV.16. As expected the signal
arising from the created dipolar order grows in sinusoidally in t, (in
analogy to the quadrupolar case presentéd in Chapter III.C). Fouﬁier
transformation of the signal produces the spectrum shown in Figure

IV.16.

3. Positive and Negative Magnetic Susceptibility Anisotropies
rhe form of the dipolar Hamiltonian in zero field was further
explored by the use of samples with positive and negative magnetic
susceptibility anisotropies. As stated in section A.2 of this chapter,

the quantization axes of the spin systems and director orientations in
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Figure 1IV.16: Interferogram from the zero field version of the Jeener-
Broekaert-éxperiment using the pulse sequence shown in Figure IV.1dc.
The T used in the preparation of dipolar order'was 160 usec and the
delay & was chosen to be 20 msec to allow for the decay of any other
coherences. The sinusoidual appearance of the interferogram, S(t;), is
as expected for the conversion by a 453 pulse of the dipolar order to
observable single quantum coherence. Fourier transformation of the
interferogram yields the dispersive zero field spectrum shown below
consisting of lines centered at ivD. The linewidths and splittings of
the zero field lines may be attributed to dec pulse imperfections and
residual fields.
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high and zero fields differ with the ordering of the liquid crystalline -
phase. In order to observe_the evolution of a spin system in zero -
field, the initial state of the spin system in zero field and the zero
field Hamiltonian must not commute. For liquid crystals which remain
aligned with the field direction, this is not the case; it was _ -
demonstrated that in such instances pulsed dc fields can be used to
alter the initial condition and observe the dipolar spectrum of a solute
molecule dissolved in a nematic liquid crystal. In this section, we
explore the alternative possibilities of changing the zero field
Hamiltonian through the use of liquid crystal systems with different
magnetic susceptibilities.
The samples consisted of approximately 5 weight percent CH,Cl,
dissolved in EBBA (p-Ethoxybenzylidene p-butylaniline, Frinton
Laboratories) with a Ax>0, or ZLI 1167 (EM Chemicals, a ternary mixture
of propyl-, pentyl- and heptyl- bicyclohe#ylcarbonitriles) with a Ay<O0.
An interesting feature of these two ngmaties is that in binary mixtures
they display an unusual temperature dependent phase behavior'.27 The
apparent anisotropy in the magnetic susceptibility ranges from positive
to negative with changing temperature and, at a certain transition
temperature, appears to be zero.28 High field and zero field NMR
spectra of the neat phases were obtgined to compare the order parameters
of the solute with and without the presence of a large magnetic field.
The high field dipolar spectrum of CH2012 in EBBA appears in Figure
IV.17. As with the previously discussed nematic liquid crystal sample,
this system has also beeh found to remain aligned on the time scale of

the zero field experimental field cycle and the spectrum was shown
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Figure IV.17: High field and zero field spectra of 5 wgt % CH2012 in
EBBA (Ax>0). The high field spectrum in (a) was obtained with a 90 =1~ -
90, sequence with t chosen to detect only the solute signal. The order
parameter calculated from the observed splitting is 0.064 * 0.001. 1In
(b), the zero field spectrum using the field cycle of Figure IV.9b with
dec pulses equal to 90 and a 180x refocussing pulse. The order parameter
measured in zero field (S,, = 0.063 * 0.001) is identical to that in
high field within experimental error. The intensities and dependence of
the signal on dc pulses are indicative of a sample still aligned with
the original field direction.
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previously in Figure IV.12. Thus in order to observe the zero field

spectrum, the field cycle with 903 de field pulses must be used to
produce signal. Refocussing pulses can also be employed in the field
cycles of Figure IV.9 and Figure IV.17b is the resulting zero field

dipolar signal of CH,Cl, in EBBA taken with a 1803 echo pulse in the

-
|

field cycle of Figure IV.9b. The uniaxial order parameters measured in
high field (s;z = 0.064 * 0.001) and zero field (S,, = 0.063 * 0.001)
are identical within experimental errors.

On the other hand, zero field evolution can be initiated by using
samples with Ax<0 in which the axis of quantization for the nuclear
spins changes on going frpm high to zero field. Unlike the Ax>0 case,
no de pulses are needed to initiate zero field evolution and the sudden
transition field cycle of Fiéure IV.9a was used with a 1802 echo pulse.
The high field and zefo field spectra of CH,Cl, in ZLI 1167 (Ax<0)
appear in Figure IV.18a and 18b. 1In this case the observed frequencies
of the dipolar coupling are different in high and zero field. Due to i
the perpendicular alignment of the liquid crystal molecules, one would )
expect the zero field dipolar splittings to be twice as large as those
in high field as will be discussed in the following sections.

a. Spin Hamiltonian in Zero Field. The dependence of the high or
zero field NMR spectrum of a liquia crystal/solute system on field
strength, the sign of Ax, and initial condition can easily be understood
through the form of the NMR Hamiltonian. Some of the earlier discussion
is repeated here. In the absence of an applied field, the liquid
crystalline phase alone determines the truncation of the Hamiltonian. ~

Only two frames of reference are needed to describe the spin inter-
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Figure 1IV.18: CH2012 (5 wgt %) in ZLI 1167 with Ax<0. The high field
spectrum wés obtained with a 90x-r-180x-r sequence with t chosen to echo
only the solute signal. The high field splitting observed in (a) is
reduced by a factor of -0.5 relative to that in zero field due to the
truncation of the Hamiltonian with respect to the field. The high field
order parameter is calculated to be 0.100 £ 0.001. The zero field
spectrum in (b) was obtained using the sudden transition field cyecle of
Figure IV.9a with a 180z refocussing pulse. The order parameter is
identical to that calculated in high field within experimental error
with §,, = 0.101 % 0.001,

224

[

1

1 [w i




.

225

actions in zero field, the principal axis system (PAS) of the dipolar
interaction and the director/zero field frame of the liquid crystal.

The Hamiltonian in zero field can be written as a product of second rank
spherical tensor operators as given in Equation (IV.6). Due to the
axial symmetry of the two spin dipolar interaction and the uniaxial

nature of either of the nematic phases, there can be no dependence on

the Euler angles, Y or a, in the Hamiltonian. Therefore, with

2 ~iom' . 2 -ivm
D v (®BY) = e dvg(B) e (IV.16)

in Equation (IV.6) the only term which survives is that with m and m'
equal to zero and the director frame Hamiltonian reduces to that given
by Equations (IV.7) and (IV.8). This truncation holds regardless of the
orientations of the liquid crystal molecules. That is to say, there is
no dependence on the bulk alignment of the molecules as the interaction
need only be considered in the local director frame. Thus for samples
with Ayx>0 or Ay<0 the form of the zero field Hamiltonian is identical.
This similarity in zero field is appareﬁt for CHyCl, in EBBA and Z1I
1167; the spectral splittings differ due to different order parameters,

S,,, but the general appearance of the spectra is the same.

22
Although the zero field Hamiltonians have the same form for the
two phases, it may not yet be evident why dc pulses are required in the
case with Ayx>0 to initiate evolution in zero field, but not when Ax<O.
Using any of the field cycles described thus far, the initial condition
prepared in high field is proportional to Iz,L’ and if this commutes

with the zero field Hamiltonian evolution does not occur with the sudden

transition in field as described previously. For example, if the sample
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in zero field remains aligned along the original field direction, then
the zero field Hamiltonian truncated with respect to the director axis
has the same quantization axis as in high field and commutes with I,.

Applying a 90° de pulse to initiate evolution, the normalized signal as

a function of t; is calculated according to Equations (IV.10)-(1V.12):

S(t,) = Tr{I_exp(-iH t,)I exp(iH t,)} = éos(%SZZth1) (IV.17)

where wp = Yzh/Zwr3. This calculation does not take into account an
echo pulse'or residual field which can easily be incorporated as in
Equatién (Iv.14).

When Ax<0 the form of the zero field Hamiltonian is truncated
identically with respect to the director frame, but if the liquid
~crystal sample remains aligned perpendicular to the field direction, the
zero field and high field frames are no longer coincident. The
magnetization now precesses about the local dipolar fields in zero field
after the sudden transition in field. This can be pictured as if the
liquid crystal (or the averaged local field) 15 shifted by 90° as a !
consequence of the phase rather than the magnétization by a pulsed
field. 1In order to calculate the zero field spectrum, a transformation
between the laboratory frame of the initial condition and zero
field/local director frame must now be included. The normalized signal

as a function of t1 becomes identical to Equation (IV.17),

1 -1
exp ( iHDt1)RIz’ R exp(iHDt1)}

L

S(t1) = Tr{RIz’LR

(Iv.18)

3
cos(zszzth1)

where R = exp(—i¢Iz)exp(-ier) and 6=90° for the fixed relative g
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orientation of n and the laboratory z axis for Ax<0; It is clear that
there is no ¢ dependence in the signal function due to the overall
symmetry of the phase around z. Thus the transformation by R(Q) with
6=90° produces an initial condition, expressed in the director frame,
having the form of Ix; In both cases represented in Equations (IV.17)
and (IV.18), all the magnetization evolves if the alignment is uniform
over the sample; The intensities in the zero field spectrum, and the
dependence on the field cycle used, are again indicative of the bulk
alignment of the sample.

b. Spin Hamiltonian in High Field. In a similar manner, the
relative scaling factors of the high field spectra may be understood by
describing the Hamiltonian in high field. The Hamiltonian can again be
represented by Equation (IV.6) although now an additional transformétion
from the director frame to the laboratory/field frame is required and
can be written as

2
Hy -Z(—1)“‘T2_mA2nD§m,(we¢)<o§,m(asv)> (IV.19)
m,m',n

where the ng(¢9¢) term relates the director and lab frames. This
angular term is not averaged over molecular motions since the
fluctuations of the director with respect to the field direction are
slow on the timescale of the experiment.1’9 Since the liquid crystal
and laboratory/field frames are uniaxial, only the angle 6 is needed to
make the transformation and Doo(e)-1/2(300326-1). For Ax<0, 6=90° and
the D%O(e) term in Equation (IV.19) equals -1/2, while for Ax>0 the

angle is zero and this term is equal to 1. The high field spectra are
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then scaled by these factors of 1 or -1/2, in addition to Szz, as is
apparent in Figures IV.17 and IV.18, respectively. The order parameters
for the Ax<0 case can be calculated to be S,, = 0.100 £ 0.001 and S,y =

0.101 * 0.001 in high and zero field, respectively.

4. Summary

The molecular order parameters of nematic liquid crystal/solute
mixtures have been measured in high and zero field and have been found
to be the same in both cases. The resulting values do not differ by
more than an experimental error which is less than a few percent.
Several conclusions can be reached based on the frequencies and
intensities of the zero field spectra, and the apparent dependence of
the signal on the dc pulses used. Due to the short duration and
relatively low fields used for the d¢ magnetic field pulses,.only the
spin states are perturbed and not the spatial ordering of the liquid
crystal molecules. Experimental evidence suggests that fields of the
order of 1 kG need be applied to change the alignment of the molecules
in a time on the order of seconds.9’29 Most notably, the nematic
systems were not seen to disorder in low (£200 G) or zero.fields when
left in these fields for times on the order of 10-500 msec. For those
samples studied, the zero fleld spectra are indicative of aligned
systems showing no change from high field. Nematiec liquid crystals may

be expected to remain aligned in zero field on relatively long

timescales, as thermal fluctuations would be slow in bringing about o}

disorderin39'1°, unless some perturbation éuoh as the application of an

appropriate large field causes more rapid reorientation of the sample.




It might be interesting to look for changes in the ordering of chiral
phases in zero field which are "untwisted" by an applied field and
steric forces cause it to retwist.30 An attempt was made to look at
cholesteric samples for which it was found that the T1 was too short.
The relaxation time is related to diffusion through tﬁe helix which is
an effective relaxation mechanism.3!

For systems with Ay>0, the ordering of the sample remains along
the original field direction and de¢ pulses are necessary to produce
dipolar signal in zero field. Since the alignment of the liquid crystal
molecules with Ax<0 is perpendicular to the laboratory z axis, signal
results with the sudden transition in intermediate field. High
resolution spectra may be obtained with refocuésing pulses and allow for

more accurate determination of the order parameters. In mixtures of

‘1iquid crystal solvents with Ax<0 and Ax>0, in concentrations and at

27,28 opreliminary

temperatures close to their phase transition region
results indicate that although these samples are very sensitive to these
experimental l1imits, even removai of the field does not cause a change
in the aligned state.

In general, demagnetization experiments on nonoriented samples are
expected to produce initial conditions other than Iz,Lf However, due to
the unchanged ordering and molecular motions of the CH2012/nematic
systems (Ax>0) in the demagnetization experiment, the magnetization
remains quantized along the laboratory z axis. Thus demagnetization
experiments on the nematic systems produce an initial condition no

different than that in experiments utilizing an intermediate field to

maintain the spin order. DC pulses along various directions of the
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laboratory frame may then be successfully used to produce a new spin
order. Examples of such have already been shown in the composite pulse
experiments and the isotope selective pulses in Sections III.A and D.

Extensions of these zero field experiments are easily envisioned

32a 2b

to more complex systems such as smectics, discotics and 1yotropics3
which do not order uniformly in an applied field. High field studies of
- such materials are hindered due to orientational disorder and thus might

be productively studied in zero field. Examples incorporating the first

class of materials are presented in the following section.

C. Smectic Phases in Zero Field Experiments

1. Introduction

Nematic/solute systems have been extensively studied by high field
NMR techniques.2’7'8 The alignment of the sample has a profound effect
on the NMR spectra of these materials since all molecules have an
equivalent average orientation with respect to the applied field.
Admittedly, nematic phases are conveniently studied by such methods as
the molecular motions and large fields truncate the dipolar Hamiltonian
to produce discrete, narrow lines. Even in the absence of a large
magnetic field, the spatial averaging in the liquid crystal retains the
truncated form of the Hamiltonian. Lower temperature smectic and
cholesteric phases, as well as most lyotropic liquid c¢rystalline phases,
do not possess the property of uniform alignment in a magnetic field,3
Thus in the high field NMR spectra of such systems one find inhomo-

geneously broadened lines due to the random distribution of molecular
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orientations with respect to the applied field. The usefulness of the
zero field NMR experiment lies in the ability to obtain sharp well-
resolved spectra on such disordered materials.

Smectic phases often show a complex and diverse arrangement of the
molecules as discussed in Section IV.A. Some phases are uniaxial and
are describable by a single order parameter while others are biaxial and
require more order parameters; Biaxiality is generally attributed to
the type of molecular ordering and to a partial rotational freeze-out of
the molecular motions which can be observed through the angular
dependence of the spectrum of an aligned sample.g’33 The biaxial order
parameters can be related to a motionally induced asymmetry in the spin
interactions.34 Biaxial smectics (primarily smectic C phases) have been
studied in several cases, either optically35, by NQR3® or by NMR37
methods. The latter requires oriented samples produced by sample
rotation38, ac électric fields39 or attempting to uniformly align the
phase through cooling down the sample from a higher temperature phase in

4o, 11 Once an aligned sample is produced then,

the presence of a field.
like a single crystal, it must be studied as a function of many
different orientations with respect to the applied field. In most
cases, the biaxiality is often a subtle effect and its observation has
often been in disputé or is difficult in unaligned samples.9’37 In this
section, the high field and zero field NMR spectra of several smectic

phases are presented.

2. High Field and Zero Field Spectra

The smectic phases studied were room temperature A, B and E phases
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as described Section IV.A. The smectic A phase was produced using ~2

wgt % CH,Cl, in 8CB (octylcyanobiphenyl, EM Chemicals). 1In this phase
the molecules align perpendicular to the layer normal and are free to

rotate about their long axes. As shown in Figure IV.3, there is no

positional order to the molecules in the layer; and they diffuse rapidly —

throughout the layer (more rapidly than in B or E phases).1 The smectic
A sample was found to spontaneously align in an applied field. The
'smectic A case, due to the sample alignment, is indistinguishable from
that of a nematic phase and calculation of the signal follows
identically as before. Thus the high field spectrum, as shown in Figure
IV.19a, consists of the doublet characteristic of a dipolar coupled pair
of spins scaled by the uniaxial order parameter. In zero field using a
field cycle such as Figure IV.9b with 902 dc pulses and a 1803 echo
pulse, the zero field spectrum of Figure IV.19b results. The order
parameters for the aligned, uniaxial phase in high field and zero field
are 0.077 + 0.002 and 0.074 + 0.001, respectiﬁely.

The molecules are arranged in more complicated intralayef
structures in the B and E phases as shown in Figure IV.3. The smectic B
phase has a rotational freedom of the molecules although they are
arranged in a hexagonal pattern. Since in this particular B phase the
molecules align parallel to the layer normal, the phase is uniaxial. 1In
contrast, the smectic E phase has restricted rotational freedom of the
molecules about the long molecular axis which is expected to lead to a
biaxiality of the phase. The room temperature smectic B and E phases
consist of mixtures of the same two components: H4-n-butyloxybenzyl- -

idene~4'-n-octylaniline (40.8) and 4-n-octyloxycyanobiphenyl (80CB).
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Figure IV.19: CH,Cl, (~2 wgt %) in 8CB Smectic A phase. (a) The high
field speétrum was obtained with the standard echo. The order parameter
was calculated to be S,, = 0.077 + 0,002. The zero field spectrum in
(b) was obtained using the field cycle with 90° de pulses of Figure
IV.9 and a 180y echo pulse. The order parameter measured in zero field
is SZz = 0.074 £ 0.001. Both high and zero field spectra are indicative
of an aligned sample (indistinguishable from the aligned nematics).
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The smectic B phase consists of ~5 wgt % CH,Cl, in 60% 40.8 and 40% 80CB
mixture by weight. The smectic E phase consists of ~7 wgt % CH,Cl, in a
50:50 mixture. The phase diagram of mixtures of these components can be

42

found elsewhere '=; as an example; the neat 50:50 mixture has the

following phase transition temperatures

K +15%» Sg +52._9°+ Sy 839+ s, »1ou°+ Sy+ I +107.5%» I

Neither of these phases aligns in a magnetic field unless heated to the
isotropic or nematic phase and cooled in the presence of a field. Since
the zero field experiment does not require an aligned sample, the

unaligned multidomain samples were used. The transition between B and E
phases can also bg accompiished with a change in temperature for a given

sample mixture as seen above. The change in lattice structure, E being

- a compressed version of B, and the n-fold versus 2-fold rotation are

indicative of a thermally activated motional processuOb. The mechanisms

leading to the biaxiality are just beginning to be understood with their
study becoming of interest in the last 10-15 years.

Because the smectic B and E samples are not aligned in the field,
a distribution of director orientations results. This produces a high
field powder spectrum which is broadened by the frequency dependence on
the orientational distribution. The smectic B case is described first
since it is conceptually easier. Since the phase is uniaxial, the -
Hamiltonian in the director frame for the two spin solute system is

equal to that of Equation (IV.7) since the phase is uniaxial
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di (080) (IV.20)

r
H = Thoha0P00

The director frames and laboratory/field frame are no longer coincident,
as for an aligned sample; and a second transformation to the laboratory

frame must be included to give

lab 2 2
e . Z Bo0Ton<Dgo(8) D5 (¥E9) (Iv.21)

Only the T,y term remains in high field and with no ¢ or ¢y dependence

Equation (IV.21) becomes

13 a1 <02 (B)>D§O(e) = A

2
202000 1/2(3cos”6-1) (Iv.22)

20720%2z
which represents the angular distribution in 6 of the randomly oriented
directors. The high field spectrum is shown in Figure IV.20a and
consists of the typical powder pattern scaled by the uniaxial order
parameter, S,,, which can be calculated from the separation of the
singularities. Since this phase is not aligned it behaves like a
polycrystalline powder and dec pulses are not required to initiate
evolution in zero field. Thus using the field cycle of Figure 1IV.9a,
the predicted three liqe spectrum corresponding the the axially
symmetric dipolar coupling of the two protons results and is shown in
Figure IV.21. The linewidths are not a function of the phase but rather
the effects of residual fields as is discussed in Chapter V. From the
‘separation of the lines, the order parameter can be calculated. High *ﬁ

field and zero field values are 0.041 % 0.002 and 0.042 £ 0.002,

LUP—

‘respectively.
The high field powder spectrum of the smectic E phase in Figure

IV.21a shows a broadened lineshape that can be attributed to the
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Figure IV.20: High field and zero field spectra of CH,Cl, (~5 wgt %) in

an unaligned Smectic B phase. The high field spectrum of the solute (a)

shows a powder spectrum scaled by the uniaxial order parameter, Spp =

0.041 * 0,002, as calculated from the separation of the singularities.

The signal in the center of the spectrum is most likely liquid crystal

which was not completely removed by the echo. The zero field spectrum

in (b), taken with the sudden transition field cycle of Figure IV.9a .

(with no echo pulse), shows the expected three-line spectrum of two —
dipolar coupled protons of an unaligned sample. The calculated order .
parameter is Szz = 0.042 £ 0.002. The linewidths are due to residual

field effects and are not a property of the phase.
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Figure IV.21: High field and zero field spectra of CH,Cl, (~5-10 wgt %)
in an unaiigned Smectic E phase. The high field spectrum (a) shows a
broadened lineshape characteristic of a nonaxially symmetric coupling.
Poor resolution makes determination of the singularities, necessary to
calculate the value of n and wy, difficult. In'(b), the zero field
spectrum shows six well-resolved narrow lines due to the nonaxial
symmetry of the dipolar coupling. The asymmetry induced by the
biaxiality of the phase can be calculated from the spectrum.
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asymmetry of the dipolar coupling induced by the biaxial phase; This is
not unlike what has been seen before for the quadrupolar spectrum in a
similar phaseuoa; If features of the lineshape are well enough resolved
to determine their frequencies, the value of n and Szz“D can be
calculated in a manner similar to that of a spin I=1 system.g'uOa This
is often difficult in the powder spectrum, especially when n is small.
The zero field spectrum is quite sensitive to the perturbations and
small induced asymmetries due to the narrow lines. As shown in Figure
IV.21b, an additional splitting of ~200 Hz which yields a pattern of six
lines (and one at zero frequency due to residual field effects) is
directly attributable to the nonaxial symmetry in the dipolar tensor.

The relationship between the phase biaxiality, the asymmetry parameter

and the biaxial order parameters is shown in the following calculation.

3. Expressions for the Hamiltonian
Three frames of reference, shown in Figure IV.22, are defined:

the axially symmetric PAS/solute molecular frame of the dipolar
interaction (z' axis is designated), the director frame (x,y,z) which
describes the alignment of the liquid crystal molecules with respect to
the layer normal, and the domain frame with its Z axis coincident with
the layer normal and its x axis rotated by an angle of *¢ with respect
to the symmetry axis in the smectic plane. The Hamiltonian can be

written in the domain frame for the second rank dipolar interaction as

2
dom m 2 2
" = T, o 3 7 A<Dl (a8IDZ | (40y)> (1v.23)
m=-2 m'n
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Figure 1IV.22: Relationships‘ between reference frames used in describing
the Smectic E phase. (a) The z' axis of the molecular/PAS frame of the
dipolar coupling (H-H internuclear vector) is related to the (xyz) frame
of the liquid crystal order director by the angles o and B. The angle Y
is not required due to the axial symmetry of the coupling in the PAS.
The domain frame has its Z axis (layer normal) parallel to the z axis of
the director frame. The molecules, as shown in cross section through
the plane in (b), are aligned at an angle ¢ with respect to the symmetry
axis of the liquid crystal.
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where D (aBY) transforms between the molecular frame and director

m'n
frame, and Dmm.(¢ew) between the domain and director frames. In the PAS
frame only the A20 spatial term is nonzero; thus n=0 and summing over m

yields the nonzero terms

HE™ = Toghaol <Dpyo(aB0DZ,, (480)>
m'
+ Thg ZOZ <0Z,,(aBOIDZ | (960)> (V. 24)

2 n2 )
+ T, Ay <D, (aBOIDS , ($60)>
m'

Substituting in for the second rank tensor operators for the spin and

18

spatial terms gives

I I ) L(D (aBo)D

m'

Om,(¢eo)> - (Iv.25)

Hgom =Y’h_ h [(31

o z1 z2

2
J_ (Ix1 x2” Iy1ly2) 7. <D2,,(aBOID5 ,($80)> + <D o(°B°)D-zmv(¢9°>>]
m'

Using Doane's notationg, the expression simplifies to

2 <S,_5* S,
=Y"h . lg 2-2" 22 -
Hy = <820>[(3Iz1 I,,- I°I) +5 (1., I ,~I ,I )]

D 2."7‘3 <SZO} X17x2 y17y2
Y2h
—;;;§<820> [(31z1 22 I I ) + n(Ix1Ix2 Iy1Iy2)] (IV.26)

where the terms contained in n are the biaxial order paramters and <Sj,>

is the uniaxial order parameter which scales wD=Y2h/2wr3.
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The S parameters can be dealt with separately in order to express

e
s

them in terms of the angles relating the different frames. Much of the

ERan
[

following discussion can be found in Doane's review article for the spin

ATy
[——

I=1 case.?'3* The simpler <S,0> term is

1 R - 2 .
3 <Spp> = 2 <Dy (aBYIDY , (96¥)> (IV.27)
m'

At this stage there are theoretically as many as five elements with the

summation over m'. Because there is a two fold symmetry axis

perpendicular to the layer normal6

L L. L m-n_ L
D = (=17 > = (-1)""p_: (1v.28)
and summing over m' results in the following nonzero terms
<S,.> = <D2 (B)D3.(8) + (D2, (aB) + D> (aB))D.,($6)>
20 00 00 -20 20 02 .
< = <%(300326—1)%(3cosze-1) + %(sinZBCOSZa)(sin290032¢)> (Iv.29)
?i 1 2 1 2
kj = — - -
<Sz22(3cos 6-1) + (Sxx Syy)(isin 8c0s2¢)>

Because Sxx-syy is generally much less than Szz, more so for a rod-like

molecules, the last term can be drqpped. This term describes the

molecular biaxiality9’3u, i.e. fluctuations of the liquid crystal
) molecule about unequal molecular axes, rather than the phase biaxiality.
. The director, describing the alignment of the liquid crystal molecules
iJ long axes, is assumed to be along the z axis of the domain as the
3 ' molecules align to a very high degree with respect to the layer normalg,

thus 6=0 for the phase and <820>=<Szz>.
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The <So.p + 822> term can be dealt with similarly. The brackets
represent an average over the molecular motions. The motions of the
molecular frame with respect to the director frame (aBY) are assumed to
be independent of the diffusion or jumps between positions in the domain
which results in the biaxiality of the phase.g'u1 Asssuming that these

are independent allows one to factor the terms to give

> 2 2 2
¢S, p* Spp> = ) <DT,(aB0)><DS (¢00) + DT

m'

ope ($00)>  (IV.30)

The summation and substitution for the D;, terms will not be shown in
detail but results in nine real terms. This number can be reduced to
five by considering liquid crystal phases which are apolar (i.e. the
molecules can be exchanged end for end) and, as mentioned previously,
there is a two fold axis perpendicular to the layer normal. The
expression for n, containing the five terms of the <32-2 + 822>
summation, can be related to the spin I=1 expression solved for by

Doane9 which for 6=0 becomes

- 3<sin280032a><cosz¢> - 3<sin280032a><c032¢> (IV.31)

n
28,4 <3cos®B-1>

The Hamiltonian of Equation (IV.26) has energies corresponding to

w.S
D"zz
E, = 5 (1+n)
w.S
D zz
E2 = 3 (1 _T]) (Iv.32a)
E3 - “DSzz

for the eigenstates
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1> = 2‘1/2(|aa> + |88>) | -
2> = -12-1/2(|aa> - | 88>) (Iv.32b)
13> = 272(|ag> + |8a>)

‘expressed in the zero field eigenbasis for two dipolar coupled spin -

I=1/2 nuclei. The zero field signal can be calculated from
-1 -1 .
sg(t1) = Tr{RIzR exp ( iHDt1)RIZR exp(lHDt1) (1Iv.33)

where HD is given by Equation (IV.26). Averaging over all orientations

yields for the normalized signal

1, 1
S(t1) = §{cos(stzznt1) + cos(EmDSzz(3-n)t1)

.
+ cos(§wDSzz(3+n)t1) (IV.34)

In the 1imit of n=0, Equations (IV.26)-(IV.29) above reduce to that of
the axially symmetric.Smectic B case. The spectrum in Figure IV.21
appears as predicted and thus from the frequencies of the lines values
of S,, = 0.045 * 0.001 and n = 0.208 % 0.001 can be calculated. The
peak seen at zero frequency is due to residual field effects explained
in Chapter V.
Unfortunately, due to the dependence of n on several angular
factors as given in Equation (IV.31), the problem is underdetermined by
the single measurement. When 8=0 in a well ordered phase, the <{cos2¢>
term is nonzero for partially restricted rotation about the long
molecular axis. This term is representative of a birotational freeze -
out of the rotation in a two fold potential.33:3% The phase biaxiality |

is related to the fact that an axis, within the layer plane, must be
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associated with the phase to describe the molecular ordering. This axis T
is not defined in a uniaxial phase; Due to the symmetry of the frames

chosen here only the angle ¢ is required. Doane has also studied this

41 7

same phase mixture using 2H NMR experiments on oriented samples.
Several models are presented for the restricted motion of the liquid
crystal molecules. The most likely models are those involving molecular
jumps or diffusion between four positions with relative orientations ¢,
¢+m, ~¢ and —¢+w where ¢=22*0.5° or on site librations with an amplitude
of 2¢. Both motions were combined with w-flips of the liquid crystal
molecules about the C, axis through the aromatic ring to account for the
averaging seen in the quadrupolar case. The jump mechanism is feasible
based on diffusion measurementsu3 and the value of 22° is reasonable

based on X-ray data.un

Since Szz of the ordering of the solute PAS
frame is known and with-¢=22°, the <sin280052a> term can be solved for
from the value of n. The calculated value is found to be 0.0043, and as

expected is small since it represents the molecular fluctuations about

axes other then that described by Syze

4. Summary
Ihe smectic phases discussed here were chosen to represent several
aspects of the study of such phases where the differences between
aligned and unaligned, and uniaxial and biaxial samples were shown. In
those cases in which there is rapid n-fold rotation about the liquid
crystal long molecular axis, no component perpendicular to the rotation -1 =
axis is expected to survive and thus n must equal zero. The order

parameter of the liquid crystal molecules is then a measure of the
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degree of molecular alignment and the fluctuations of the long molecular
axis. In fact, most smectic phases are biaxial due either to a
molecular biaxiality which reflects the fluctuations about the short
axes of the molecules, or a phase biaxiality in which there is hindered

rotation of the molecules. Biaxiality hés been observed directly in
14

only a few cases through the induced asymmetry in a ''N NQR spectrum or ..
through aligned samples. 1In the zero field spectrum, the non-axial

symmetry is readily and clearly observed.
D. Heteronuclear Spin Systems in Liquid Crystals

Heteronuclear spin systems in solids have previously been studied
by zero field NMR. Inequivalent nuclear spins behave identically to
homonuclear spins exceptvthat they can be manipulated independently in
high and zero fields, and additional zero field transitions become
allowed. In combination with 1iquid crystal solvents, these spin
interactions can be observed in a variety of anisotropic media which
often yields interesting effects in the appearance of the zero field NMR
spectra. This section presents the simplest case of an I-S (I=1H,
S-13C) spin pair in nematic and smectic liquid crystalline phases.

In order to produce dipolar signal in an aligned nematic with
Ax>0, dc field pulses are required. This can be attributed to the
symmetry of the homonuclear dipolar Hamiltonian in zero field and the
initial state of magnetization prepared in high field (i.e. they
commute). An alternative approach involved using nematic phases with

Ax<0. Here the behavior of a third situation, involving heteronuclear
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spin systems, is presented;

1. High Field and Zero Field Hamiltonians
A comparison of the high field and zero field Hamiltonian will
begin the discussion since the differences are of the more interesting
aspects of studying heteronuclear spin systems in ze;o field. For a

13C—1H pair, the high field NMR Hamiltonian in a uniaxial phase may be

writtenoas YIYshSzz )
HHF = -wIIz - wSSz - ——;;;3—- (ZIZSZ)(3cos e-1) - JI.S, (IV.35)

where Szz=1/2<300328-1> is the order parameter of the I-S internuclear
vector relative to the liquid crystal director and scales only the
anisotropic dipolar interaction. Note that the high field Hamiltonian
contains only the secular terms of the dipolar and indirect couplings.
The high field proton spectra of 13CHCl3 in aligned nematic phases
appear in Figure IV.23 showing the doublet patterns for which the peak

separations are given by
= -0°
Aw ZSzsz +J for Ax>0 and 8=0

= - -90°
Aw Szsz J for Ax<0 and ©=90

where wD=YIYSh/2wr3. One can see how liquid crystals with differing
magnetic susceptibility anisotropies can be used to differentiate
between the contributions of J and wp in the spectra. Using a value of
210 Hz for JLI5 and r=1,073 Au6, the order parameters for the Ax>0 and
Ax<0 cases -are 0.115 * 0,001 and 0.082 + 0.001, respectively.
Heteronuclear spin systems in zero field have previously been

discussed in Chapter II.C. In the high temperature limit, the
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Figure IV.23: High field 'H spectra of '3CHCl; in nematic liquid
crystal phases. (a) 13CHCl3 in EBBA (Ax>0) shows the predicted doublet ,
pattern for a two spin system from which an order parameter of Szy =
0.115 * 0.001 is calculated. (b) ?3cnc13 in ZLI 1167 (Ax<0) shows a
doublet scaled by -0.5 in addition to the order parameters Szz = 0,082 «
0.001. -The signal at the center of the doublet is most probably due to
residual liquid crystal signal.
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equilibrium initial condition produced in high field can be written as

the reduced density matrix

p(0) a aIz,L+ sz’L (Iv.36)

in which the coefficients a and b represent the relative polarizations
of I and S spins. As there are no Zeeman energy differences in zero
field, the I and S spins are identical with respect to exchange and
additional terms in the Hamiltonian become energy conserving. For the
general case in zero field, the Hamiltonian is then written in the

director frame as

Y_YhS
1's"zz . =
Hyp= =3 (31,8,- I'S + n(I,S -1 5))
"
- I(1,S, + LS, IS (IV.37)

and follows from the same description presented previously for the

8 and

hoﬁonﬁclear cases. The full J coupling, except anisotropic terms,
dipolar coupling, including any possible asymmetry term (see Section
IV.C), are now included. Truncation of the Hamiltonian by the liquid
crystalline environment retains the same terms as for the homonuclear

case. The energy levels and allowed transitions are illustrated in

Figure IV.24, where

S w

z2z D dJ

By = - —5— (1+n) - T
(1Iv.38a)

Szsz J

E2="—-é—-(1"n)“u'
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Figure IV.24: Zero field energy levels and allowed zero field NMR
transitions for a pair of I-S spins (I=1H, S=?3C). The most general

scheme with n#0 is illustrated based on the Hamiltonian, eigenstates and

energies given in the text. The energies depend upon the indirect
coupling constant, J, and the dipolar coupling (wD=YIYSh/2wr3) scaled by
the liquid crystal unixaxial order parameter, Szz. The asymmetry in the
dipolar coupling (n#0) removes the degeneracy of states 1 and 2
resulting in six allowed transitions. Only positive frequencies are
shown as the spectrum is symmetric about zero. When n=0, levels 1 and 2
are degenerate, thus introducing a zero frequency transition and
reducing the total number to U4 as shown in Chapter II.
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J
B3 = S% ~ F ey
(Iv.38b)

3
By = 39

for the zero field eigenstates given previously in Equation (IV.32)
including the singlet state, |4>=2"1/2(|ag>~|Ba>). Note that 8
transitions are now allowed between the singlet and triplet manifolds

unlike the homonuclear case.

2. Zero Field Spectra
The sudden removal of the intermediate field, as in the field
cycle of Figure 1IV.9a, initiates evolution at the dipolar frequencies if
the initial condition does not commute with the zero field Hamiltonian.
If the liquid crystal is aligned with the director axes along the
laboratory z axis, such that the z axes in Equations (IV.36) and (IV.37)

are coincident, then for a=b, the commutator is

[p(0), HZF] =0 (1v.39)

and no signal will result. This is evident since if a=b then the

density matrix in Equation (IV.37) is identical to a homonuclear system.

If though, the coefficient a is not equal fo b, as is generally true for

equilibrium S=13C and I='H polarizations, it can easily be shown that

the commutator in Equation (IV.39) for a heteronuclear pair is not equal

to zero and thus evolution will occur even in a sample aligne& along the

original field direction. Of course, even if a=b, evolution will also ;4
occur when, as for a polycrystalline sample, there is a distribution of

director axes. z
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The normalized signal can be calculated for an arbitrary
orientation of director frame, described by the angles 8 and ¢ with

respect to the laboratory z axis, from
-1 -1
S(t1) = Tr{RIzR exp ( iHZFt)R(aIz + sz)R exp(iHZFt)} (IV.40)

in which the detected operator is I, and R=exp(~i¢Iz)exp(~ier). For

any single orientation of director with n=0 this reduces to

2 2 1
Sﬂ(t1) = N{(a+b)cos 8 + (a-b)sin eeos(-észzwD+J)t1

R ) 240083
+ (a~b)cos ecos(SzzwD J)t1 + (a+b)sin ecos(zszzwo)t1} (IV.41)

where mD=YIYsh/2wr3 and N is a normalization constant. The angular
factor depends on a single value of 6 for a liquid crystal sample which
remains uniformly aligned in zero fleld. For example, nematic liquid

crystals with Ax>0 will have e=o° and Equation (IV.41) becomes

s(ty) = N{(a+b) + (a—b)cos(Szsz-J)ti} (Iv.42)

Similarly, for a nematic liquid crystal with Ay<0 the angle of alignment

with respect to the laboratory z axis is 90° and
- 1 3
8(t,) = N{(a-b)cos(zS, uy*+J)t, + (a+b)eos(5S,, uylt,] (Iv.43)

Experimentally this means that separate transitions of the heteronuclear
spin manifold will be selected by the ordering of the liquid crystal
system. Spectra of 13CHC13 in nematic phases with Ay>0 and Ay<0 are

shown in Figure 1IV.25 and demonstrate this effect. The order parameter
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Figure 1IV.25: Zero field NMR spectra of a 130—1H pair in nematic liquid
crystals. (a) 13CHCl3 (6 wgt %) in EBBA, Ay>0. Zero field signal
results after. a sudden transition to zero field with lines corresponding
to Awq, and Awgy of Figure IV.24 and Equation (IV.42) with n=0. The
calculated value of the order parameter is SZz = 0,115 * 0.001. (b)
13CHCl3 (6 wgt %) in‘ZLI 1167, Ax<O. The spectrum}shows the 6ther
possible transitions in the singlet/triplet manifold (Aw14=Aw24 and
Aw13=Aw23 for n=0 in Figure IV.2M). The relative intensities of the
peaks in the spectrum do not match precisely with those given by
Equation (IV.43) in the text for equilibrium populations and may
possibly be due to relaxation or demagnetization effects. The order
parameter was found to be S,, = 0.083 = 0.001.



can be calculated from the spectrum using values of J=+0.210 kquS and
r=1.073 A%, This yields values of S,,=0.115 # 0.001 (4x>0) and
S,,=0.083 £ 0.001 (Ax<0) for the two nematics.

Nonaligned samples, such as smectic B (axially symmetric) and E
(nonaxially symmetric), have a distribution of director orientations and

describing the signal in these cases requires that Equation (IV.41) be

averaged over the angle 6. An axially symmetric heteronuclear dipolar
coupling (n=0) produces the spectrum shown in Figure IV.26 and the

signal is given by the normalized expression below

S(t,) = N{(a+b) + 2(a-b)cos (35 u +)t,

+ (a-b)cos(szzwb-J)t1 + 2(a+b)cos(%szzwb)t1} ' (IV.4d)

Due to the gymmetry‘effects of the liquid crystalline phase, the
Hamiltonian may be nonaxially symmetric (ng#0) as defined previously for
the Smectic E phase. This asymmetry liftsvthe degeneracy of the two
lowest energy levels and increases the number of peaks in the spectrum

such that

S(t,) = N{(a*b)cos(s, w nt, + (a-b)cos(lz-szsz(1-n)+J)t1
+ (a-b)eos (35, w (1+n)+J)t, + (a-bleos(s__uw -3)t,

+ (a+b)cos(1§SZZwD(3-n))t1 + (a+b)cos(%szsz(3+n))t1} (IV.45)

The spectrum of a nonaxially symmetric¢ dipolar coupled pair is shown in
Figure IV.27. This spectrum illustrates the most general form of the
heteronuclear dipolar Hamiltonian for two spins as all possible

trangsitions in the singlet/triplet manifold are present. An interesting
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3CHCI, in Smectic B phase

1 1 l | |

- -4 -2 0 2 4

Frequency (kHz2) XBL 869-11692
: Figure IV.26: 13CHCl3 in an unaligned Smectic B phase liquid crystal.
%% The seven‘peaks correspond to the transitions with n=0 of Aw12,

*Aw13-Aw23. *Aw3u and tA“lh'szu between the triplet and singlet energy
levels. 1In order to account for the positions of the peaks in the

o

W T

experimental spectrum the sign of Szz must be negative in Equation
(IV.44). The calculated value of S,, is found to be -0.080 + 0.001.
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Figure IV.27: '3CHCl; in Smectic E phase liquid crystal with a
nonaxiall§ symmetric dipolar coupling (n#0). The twelve peaks in the
spectrum correspond to all possible allowed transitions in the
singlet/triplet manifold for two heteronuclear spins. The slight
linebroadening and artifacts at low frequencies are most likely caused
by small residual fields. The uniaxial order parameter was found to
have a negative value of Syz= - 0.062 £ 0.001 and an asymmetry parameter
of n=0.186 * 0.002.
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result arises when calculating the order parameter for the Smectic B and -
E cases. In order to account for the frequencies in the spectrum, the
sign of S must be negative for the proper relationship of the dipolar
and J coupling terms, which are written with the same sign of the
Hamiltonian, and J being positive.“7 The order parameters for the
smectic phases are then SZZ=-0.080 £ 0.001 and SZZ=—O.O62 £ 0,001 for
smectic B and E, respectively, with an asymmetry parameter of n=0.186 =
0.002 in the latter. The relative change in sign of the S, parameter
between nematics and smectics may be indicative of the different average
alignment of the solute molecules being trapped among different parts of

the liquid crystal molecules."‘8

E. Appendix: Liquid Crystal Samples and Experimental Details

1. Experimental Asﬁects
a. Sample preparation. Sample preparation is also mentioned

briefly in the Appendix of Chapter I11. Samples were made homogeneous by
thoroughly heating and mixing the liquid c¢rystal solvent/solute mixture
above its clearing point (isotropic phase) using a carefully regulated
hot water bath as extremely high temperatures can decompose the liquid
crystals. The precision in determining the clearing points is only good
to within a few degrees. Ascertaining the phase is probably the most
difficult aspect of sample preparation. Clearing points are only useful
for determining the nematic to isotropic transition and the liquid-like
nematic phase is often eaSily recognizable at room temperéture. Other

phases are not easily identifiable by sight and one can not assume from
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one known transition temperature that the others will be depressed by
the same amount. Therefore, the liquid crystal samples chosen weré

those which had the desired phase over a reasonably broad and accessible =

temperature range to allow for the addition of a solute. ;i -
b. Field Cycling. The pneumatic shﬁttling system employed for -9
translation of the sample and the electronics for producing the zero
field have been described in Chapter II. Minimum air pressures were
used to reduce the physical shock of shuttling the sample. The
possibility of complete disordering and subsequent reordering in the
time of the field cycle is ruled out by the behavior demonstrated under
pulsed dc fields. The samples were generally found to be extremely
stable under field cycling conditions. Some samples which were found to
be less stable are those consisting of mixtures of two liquid crystal
components where upon shuttling the sample separated or changed phase.
This may be due to problems with.miscibility or using mixtures near a
phase transition. “ fé —
| The most serious experimental problems involved temperature _ %
fluctuations over the course of the experiment. These were generally
small (<£2°) but can affect either the liquid crystal phase or alter the
value of the order parameter. Samples such as nematics were more
sensitive than the smectics to these effects. Thermal fluctuations can

result in linebroadening and/or a shift in the spectral splitting in .

ol
W

subsequent spectral acquistions. Other experimental aspects such as
concentration or field gradients/inhomogeneities will also broaden the
lines.7’8 Eddy currents, produced by the switching coils, result in

time varying magnet fields and require that long delays be included in

.
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the field cycle to allow for their decay. -

c. Experiments to detect disordering. Several attempts were made
to detect a change in the alignment of the sample in low or zero fields.
The field cycle consisted of the usual sudden transition or
demagnetizétion cycle with an extension of the time spent in either the
intermediate field or zero field. Initiating evolution after this time
intervél would be expected to show any changes in the system. The
limits on the time allowed were determined by the relaxation time in low
or zero fields (~ few 100 msec) and the stability of the electronics.

On this timescale, no changes were seen to occur.

d. Relaxation times. The proton relaxation times of the solute
molecules in most nematics and smectics were generally on the order of a
few seconds in high fleld and 100 msec or more in low fields. An
example shown in Figure IV;28 illustrates the magnitude of the solute
signal as a function of time in zero field from which a rough estimate
of the zero field T% is gained. The relaxation times of the liquid
crystal molecules is generally so short in high or zero field that only
the evolving solute magnetization is detected. Several experiments were
conducted on selectively deuterated or protonated liquid crystals but no
zero field signal was ever observed, The solvent and solute signals can
be separated in high field by waiting a delay on the order of a few 100
usec between initial echo pulses. When working in a more homogeneous
magnet to obtain the high field spectra, a delay on the order of
milliseconds is required. Thus using the high field echo may be
unnecessary, as only the solute signal is observed to oscillate, except

its use removes the large background solvent signal.
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Figure IV.28: High field spectra of CH2012 in Eastman 11650 as a

function of time in zero field. The sample is shuttled to zero field

using of the field cycle of Figure IV.14a with no dec pulses to initiate

evolution in the aligned sample. The sample is allowed to remain in

zero field for a given amount of time before being remagnetized to high

field where the high field spectrum or signal amplitude is measured. As

shown in this figure, the amplitude of the signal decays and from such

the zero field T1 can be calculated. No change in the system ordering ' -
is observed with demagnetization to zero field and immediate

remagnetization as is the case for t1=0 milliseconds.
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2. Samples
a. Solutes. Dichloromethane and 13C--chlor‘of‘or'm were chosen as
simple convenient two spin systems.u9 Both solutes readily dissolve in
the liquid crystals and, in moderately low weight percents (~5 %),
produce sufficient signal without altering the phase ranges by more than
a few tens of degrees. CH,Cl, and CHC13 have previously been studied by

NMR in liquid crystal solvents.'©

Although the order parameters are not
large, indicating a small degree of alignment, these solute molecules
were still sensitive probes of the phases. Other solutes with simple
spin systems might be found which align to a higher degree.

b. Liquid Crystals. Compounds which show liquid crystalline
phases generally consist of long organic molecules with one or more
rings in the structure. This ring structure helps to introduce the
diamagnetic susceptibility; samples with Ay>0 generally have aromatic
structures, while samples with Ax<0O generally have cyclohexane rings.
The following section includes some detailé about the liquid crystals

used. Temperatures are reported in degrees C. The notation is as

follows: K=crystalline, S=smectic, N=nematic, and I=isotropic.

1. 11650: p-pentylphenyl-2-chloro-4-(p-pentylbenzoyloxy) benzoate
(Kodak) MW 493.0 Ax>0  K»390+N=+1220-1
Stable solute/nematic mixture at room temperature with a
broad range. Fairly viscous and stable under shuttling.
2. EBBA: p-Ethoxybenzylidene p-butylaniline (Frinton)

MW 281.4 AY>0 K>35%-N+780~1

o
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Reasonably stable nematic at room temperature with most
solutes., Some sample separation may occur with shuttling.
3. ZLI2141: mixture of cyanobiphenyls and cyanotriphenyls. (EM
Chemicals) Low viscosity liquid crystal with nematic phase.
Used to see if disordering occurred.
4, ZLI1167: Mixture of propyl, pentyl and heptyl bicyclohexyl-
carbonitriles (EM Chemicals) Ax<0
n=3 K»58%»N»80°+I n=5 K»62°N+82°+1 n=7 K+71°>N~83°>1
No data on mixture. Stable nematic phase with all solutes.
'5. ZLI1537: ethylbicyclohexylcarbonitrile (EM Chemicals)
AX<O  K»29°+5, »469+N+48°>1
Similar behavior to 4 with narrow phase ranges.
6. ZLI1538: butylbicyclohexylcarbonitrile (EM Chemicals)
AX<O  K+28%+8,+54%N>79%-1
Similar to 4 and 5. Useful smectic A range. Aligns in field
7. MBBA: N-(p-methoxybenzylidene)-p-butylaniline
AY>0O MW 267.4  K»200-N+47%-1
MBMBA: 'p-methoxybenzal-p—methylbufylaniline
K+220+N>24.5%+1
The -latter is chiral and in small weight percents (<12%)
with MBBA forms a chiral phase with the helix axis
perpendicular to the field. Very narrow temperature range
and with solute/isotropic transition is near room
temperature. Short relaxations times of solute.
8. HOAB: 4-yr-bis-(heptyloxy)azoxybenzene

K+7u°+sc+93°+N+122°+1
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Frequently studied smectic C phase. Predicted biaxiality.
9. ZLI3488: Ferroelectric RT smectic c* Mixture
Composition unknown, obtained via H. Zimmermann from Merck
Darmstadt K+<30°+8,4261°+5,+66%+Ch»>85%~1
Aligns in magnetic field, no observable biaxiality.
10. 40.8: 4-n-butyloxybenzylidene-4'-n-octylaniline (Frinton)
MW 365.6 K+320+55+48%+5, +60°+N>76%>1 |
See 11. Unstable neat smectic B phase.
11. 80CB: U4-n-octyloxycyanobiphenyl (EM Chemicals/BDH)
MW 307 K+5495,+67%>N>80%1
Used in combination with 10, these liquid crystals show room
temperature A, B and E phases. Reasonably stable phases if
mixtures not near phase transition except for A which
separates due to low miscibility.
12. 8CB: octyleyanobiphenyl (EM Chemicals, K24)
x>0 K+21.5%+8,+33.5%>N~40.5%1
. Similar to 11 in structure. Narrow but useable and stable

smectic A phase with solute. Aligns in a field.

Results using all the compounds listed were not reported in this
chapter. This is generally due to the fact that the behavior of the
nematics with Ay>0 or Ax<0 was identical in terms of alignment,
demagnetization, solutes, similar order parameters, etc. A principal
application of liquid crystals with Ax<0 and Ayx>0 comes about when it is
desirable to spin the sample for higher resolution. Depending on

whether the field is produced by a superconducting magnet (BZ along

“\‘ IR TR SR oY
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spinning axis) or an electromagnet (BZ perpendicular to spinning axis),
it is useful to use one or the other sample where spinning would
otherwise cause the sample to reorient about the spinner axis. 1In the
mixtures of Ay>0 and Ax<0 {(primarily 2 and Y4), it is very difficult to
prepare the exact concentration to produce the phase transition at room

temperature. Temperature regulation is the most direct approach for

observing the transition, but even so Tc OoCcCcurs over a very narrow ~1-20
range. Chiral systems, such as 7 and 9, and Smectic C phases, such as
8, are interesting systems to study as there is predicted to be a
biaxiality to such phases and a non-uniform alignment with respect to an

applied field direction.
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V. NONAXIALLY SYMMETRIC DIPOLAR COUPLINGS

A. Introduction

NMR 1s an excellent tool for the study of motion in condensed
matter since one observes a time average over the motion resulting in an
average chemical shift, quadrupolar interaction, or dipolar coupling.
Small amplitude motions can result in an asymmetry in the dipolar
coupling, although such motions typically do not result in easily
observable changes in the high field NMR powder spectrum. Zero field
NMR should be sensitive to small amplitude motions which will result in
splittings or extra lines in the frequency spectrum. In the previous
chapter, an asymmetry in the dipolar coupling was found as a result of
the biaxiality and restricted motions in a liquid crystalline phase. In
this chapter, two further examples of motionally induced asymmetries in
dipolar coupled systems are presented. The first case is a study of the
libration of the water molecules in a polycrystalline hydrate by proton
and deuterium zero field experiments. The second involves the effects
of proton jumps in a hydrogen bonded carboxylic acid dimer. As a
concluding section, the relationship between the induced asymmetry and
the effects of residual fields in the zero field NMR experiment is

- presented.

B. Librational Motions in a Polycrystalline Hydrate

1. Molecular Motions and Tensor Averaging

a. Dipolar tensor. The characteristic motion of the water
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molecules in a typical hydrate are rapid 180° flips about their C2 axes1 ]
and librations abouﬁ three axes.z’3 To a good approximation the
librational modes correspond to rotations about the x, vy, and z axes3 of
the molecular coordinate system shown in Figure V.1 and are commonly
referred to as rocking, waving and twisting, respectively. The
influence of the motion on the proton zero field spectrum is treated by
calculation of its effect on the dipolar Hamiltonian, HD. The rapid
180° degree flips have no effect since they merely exchange the two
protons. Waving has no effect since it leaves the orientation of the
internuclear vector r unchanged. ‘The dipolar Hamiltonian is therefore
motionally averaged by only two of the librational modes. The resulting

motionally averaged Hamiltonian, HD', is given in the molecular frame by

Hp'

_ -1 (a y-1
= < R, (8,)R, (8, )HpR, (0,) 'R, (®,) " >
. -1 -1,
= I, <Rz(eZ)Rx(ex)DRx(6x) Rz(ez) >1, (v.1)
= Nt
I,°D' I,

where By and 6, are the librational angles about the x and z axes

vA
respectively, and the brackets_signify a time average over the
librational motion. To second order in the angles 6; characterizing the
libration, we can write the motionally averaged tensor, D', in angular

frequency units asz'u

2

1-3¢0°> 0 0
z 2 2
D'= d 0 -2+3<85>+3<05> 0 (V.2)
0 0 1—3<e§>
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Figure V.1: The three librational modes of the water molecules in
barium chlorate monohydrate. In this molecular coordinate, system the
H,0 molecule lies in the plane of the paper with its C, axis parallel to
the z axis. From top to bottom these modes are referred to as waving,
twisting and rocking. Waving does not produce a reorientation of the
internuclear vector, thus only twisting and rocking have an averaging

effect on the dipolar tensor.
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where d=Y2h/2wr3. Application of the rotations in the reverse order of

Equation (V.1) produces the same expression for D' to this order of

approximation. An unequal intensity in the amplitudes of the two

librational modes produces a nonaxially symmetric average dipolar

tensor. This is made more clear by defining A = D'22 and n= (D'11—

D'33)/D'p and rewriting Equation (V.2) as

-A(1-n)/2 0 0
D' = 0 A 0 (v.3)
0 0 -A(1+n)/2

Calculation of the sudden transition experiment zero field
spectrum for this case proceeds in a manner analagous to that described
previously. 'The eigenvalues for the Hamiltonian in Equation (V.1) can
be solved for using Equation (V.3). The normalized high field signal

expected for a powder sample is given by
S(t,) = cos{B(3+mt.} + cos(B(3-mt,} + cos{int (V.4)
1 T 1 T 1 2 * )

where t, is the evolution time in zero field. The proton zero field
spectrum of a static water molecule, n=0 in Equation (V.4) above, would
consist of lines at zero frequency and at ivd=3Y2h/8n2r3, where r is the
internuclear distance of the two protons. The effect of the motion is
to split the lines of the static spectrum by an amount proportional to
the asymmetry of the dipolar tensor. These motionally produced
splittings or additional lines in the zero field spectrum are in sharp
contrast with the shoulders on broad powder patterns which occur in the

high field case.
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b. Quadrupolar Tensor. The zero field spectrum of a motionally
averaged spin I=1 nucleus follows from a treatment similar to that
above. Explicit expressions for the dependence of the quadrupole
coupling constants and asymmetry parameter on the librational amplitudes ;;

2,4

have been calculated. Both the quadrupole coupling constant and

asymmetry parameter depend on all three librational modes as well as the
exchange frequency characterizing the 180° flips. In barium chlorate at
room temperature, however, the flip frequency is sufficiently high that
one need only consider an average over the two or‘ientations.1 The 180°
flips average the static quadrupole tensor, which has its principal axis
along the 0-D bond, to one with its principal combonent either along the
C, axis or perpendicular to the molecular plane of the water molecule.5
The asymmetry parameter is also affected, its value near unity is a
consequence of the motion.6 One notes however that librational

amplitudes are a function of the reduced mass of the molecule, hence the

amplitudes and NQR frequencies will differ slightly in HDO and D0. =

2. Zero Field Experiments
a. Proton zero field spectra. The proton zero field spectrum of

isotopic abundance barium chlorate has been presented before in Chapter
II. Intermolecular dipolar couplings produce linewidths of approx-
imately 7 kHz thus obscuring the splitting due to the motion. The - -
effect of isotopic dilution by deuterium on the linewidth of the proton
zero field spectrum is shown for a series of dilution levels in Figure
V.2. An increase in the amount of structure in the spectrum is seen as
the level of protonation decreases. The spectrum from a 10% protonated -

sample, Figure V.3, shows all three lines predicted by Equation (V.4)
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Figure V.2: Proton zero field spectra of barium chlorate monohydrate as
a function of isotopic dilution by deuterium: (a) isotopic abundance,
(b) 60% brotons, (e¢) 31% protons, (d) 10% protons. Structure due to the
asymmetric dipolar tensor of dilute water molecules is observed as the
intermolecular contribution to the linewidth is reduced. Unpaired
protons in the dilute samples contribute to the line centered at zefo

frequency.
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Figure V.3: a). Proton zero field spectrum of 90% deuterated
Ba(ClO3)2°H20 obtained with the field cycle shown at the inset. Here
only the positive frequency portion of the spectrum is displayed. All
three lines characteristic of the motionally averaged non-axially
symmetric dipolar tensor are resolved, appearing at 1.37, 41.8 and 43.4
kHz with linewidths of approximately 2 kHz, considerably narrower than
that obtained with the.fully protonated material. b). Zero field
spectrum from the field cycle with 90° dec pulses shown in the inset.
This experiment employed a dc field of 0.010 Tesla oriented orthogonal
to Bo' The spectrum is essentially identical with that of the sudden

experiment.
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for the asymmetric dipolar tensor. A value of n=0.047 * 0,004 can be
calculated from the observed splitting.

By combining Equations (V.2) through (V.4) one can use the
experimental splittings and a value of r=1.52 angstroms, obtained from

2520.044 and

neutron diffraction measurements7, to calculate <6,
<622>=0.O70-(radian82). Ideally for the zero field calculations one
would like to use the value r' given by P'=<1/P3>—1/3 where the brackets
signify averaging over the librationai and vibrational modes. In the
absence of this information the neutron diffraction data seems

8 calculations have found the

reasonable, however, as Pedersen's
internuclear distances, re» varying from 1.52 to 1.55 & and that
<1/r35=0.98(1/r3) which is a rather negligible difference. A detailed
treatment of this subject is beyond the scope of this chapter, however
it is clear that corrections due to difference39 in <1/r3>, 1/rg, and

N
i> S.

<1/r->3 will have little effect on the calculated <8
A second experiment was performed to determine if the observed
splittings could be due to residual magnetic fields present during the
zero field evolution period. The field cycle is shown in the inset of
Figure V.3b. In this experiment a 90° de pulse was given immediately
after the sudden switch-off of the intermediate field and a second was
applied after the t period. This sequence, being identical with the
sudden experiment in every other detail, has the effect of simply
changing the relative orientation of the stray field with the initial
condition of the magnetization. The spectrum obtained with this
sequence, Figure V.3b, is essentially identical with that of the sudden
experiment. Results of computer simulations of the effects of stray

24

fields indicate that residual fields >1 gauss are required to produce

3
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splittings comparable to those seen in Figure V.3. Experimental
measurements typically place an upper limit of 0.025 gauss on the
magnitude of the stray field and thus this is not considered to be an
effect in the splitting.

b. Deuterium spectrum. Although the rapid Co flips do nbt
manifest themselves in the proﬁon spectrum, they are readily observable
via their effect on the deuterium quadrupolar spectrum.2’5’6 The
deuterium zero field NQR spectrum of é 50% deuterated sample of barium
chlorate was obtained at room temperature using the indirect detection
method which is described in detail in Chapter III to selectively

2

observe only the “H signal. Since room temperature deuterium low field

T1'S are of the order of milliseconds, an indirect detection method is
necessary to observe those deuterons in the HDO molecules. 1In the
spectrum, shown in Figure V.4, the V,» v, and v, lines are all clearly
resolved and from their frequencies one calculates e2qQ/h =122.7 kHz and
n=0.960 which is in good agreement with earlier work.2 Combining the

zero field proton and deuterium data with the quadrupole coupling

2 2

constants of the static molecule found by Chiba,“ one can calculate <6y>

for the HyO molecule. 1In brief this is done by 1) calculating <e§>HDO

and <e§>HDO using the formulas in reference 8 to correct for the reduced

masses, 2) using these expressions to calculate <e§> from the zero field

$>H20 by the reverse procedure in step 1.

Using the explicit expressions for the field gradient tensor averaged by

HDO data, and 3) calculating <8

libration and the C2 flipping, one obtains <6 ?>=0.123(radian32). The

y
librations have a relatively minor effect on the quadrupole spectrum,

6

the value of n near unity is primarily a consequence of the C2 flips.

An advantage of the dipolar measurements is that the static dipole
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Figure V.4: 1Indirect detection zero field deuterium NQR spectrum of 50%
deuterated barium chlorate monohydratel All three lines expected are
resolved from which one calculates e2qQ/h=122.7 kHz and n=0.96 in
reasonable agreement with single crystal results of the perdeuterated
material where values of e2qQ/h=121.5 kHz and n=0.976 * 0.007 were
obtained. The intensities and phases of the peaks are a éomplicated
function of the level crossing dynamics, initial zero field state and dc
pulse angles, and are therefore not easily calculated. The bump at
approximately 40 kHz is due to residual proton signal and its small
relative size gives an indication of the selectivity of the indirect

experiment for the deuterons.
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interaction is inherently axially symmetric and any asymmetry is

observed the direct result of motion.

3. Discussion
The non-axially symmetric dipolar tensor produced by libration is
readily observable via the proton zero field spectrum. The agreement
between the results of the two versions of the zero field experiment, as
well as the results of computer simulations, rule out the possibility of
splittings due to residual fields. Results for the mean square
ampiitudes of the librational modes are in fair agreement with earlier

2,8 especially when one considers that the exact librational modes

data,
might differ slightly from the inertial rotations assumed.3 The zero
field NQR results for HDO demonstrate the high resolution of the
experiment and the precision with which it can measure the asymmetry
parameter. The parameters relating to the motion are underdetermined
with a single NQR experiment since the quadrupolar frequencies are a
function of the three librational modes, tﬁe rate of the 180° flips, as
well as the va;ues of (e2qQ/h)O and Ny s thé parameters of the static
molecule. The room temperature deuterium NQR measurements of a hydrate
are usually inaccessible to frequency domain techniques because of their
relatively short T1's and low quadrupolar frequencies. In general the
2H and 1H results provide complementary information on the motional
characteristics of the system since they possess unique principal axis
systems and hence are affected differently by the different motions
which occur in a system. The zero field measurements have the

significant advantage of being made with a powder sample whereas the

earlier measurements required a single cr-ystal.2 This aspect should
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allow study of subtle motions in systems inaccessible to single crystal
measurements including amorphous and polycrystalline materials. In
addition, temperature dependent studies can be compared to computer

simulations to understand the dynamics of the system.10

C. Proton Jumps in a Carboxylic Acid Dimer

1. Introduction

A second example of a motionally induced asymmetry is found in the
dipolar coupling between the carboxylic acid protons in a hydrogen
bonded dimer. In p-toluic acid (methyl benzoic acid), like many
carboxylic acids, the molecules form dimers in the solid state.11
X-ray11 and NMR12 data have shown that the protons are in a state of
dynamic disorder at room temperature. The motion of the protons befween
two sites relative to the oxygen atoms is expected to lead to an
asymmetry in their dipolar coupling. This motion has been previously
studied via single crystals where the asymmetry was observed12 and
should be directly observable in the zero field NMR spectrum. NQR
studies of the 17O atoms in the carboxylic acid sites have corraborated
the fact that the protons jump back and forth between sites rather than

the -COOH moieties undergoing 180° flips.'S3

2. Motionally Averaged Dipolar Tensor
This case can be considered to be identical to that of the
twisting libration in the water molecule. Choosing a molecular axis
system such that the internuclear vector of the protons in the dimer, as

illustrated in Figure V.5, lies in the xy plane of the molecule and that

[Vre——
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Figure V.5: Zero field proton spectrum of p-toluic acid, 98% deuterated

at all positions except the carboxylic acid protons as shown at top.

The protons of the dimer jump between equivalent positions on the two

carboxylic acid oxygens. The shoulder of the high frequency dipolar

[N

¢

peak suggests the presence of a motionally induced asymmetry in the
ij dipolar coupling. The large peak at zero frequency is due to unpaired

protons.
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the jumping protons cause the internuclear vector to change positions
symmetrically by an angle ¢ about the y axis. (This corresponds to a
twist about the z axis out of the plane.)

The average tensor can be calculated as the sum of the dipolar

tensors at either of the two positions

-— ] L —1 -‘]
D = x,D, + x,D, = x1Rz(¢)D1RZ (9) + XZRZ(-¢)D2RZ (-¢) (v.5)

where D4 and D, are the two tensors differing in orientation in the
molecular frame by ¢ and, X4 and Xy are the mole fractions or
populations of each site. The internuclear vector for the two positions

is assumed equal based on crystallographic data for a closely related

14

nondisordered carboxylic acid dimer. Thus D, and D, are equal and

assuming equal populations of the two sites as expected at room

12

temperature due to the low energy barrier =, the matrix form of Equation

(V.5) becomes

1—3sin2¢ 0 0
D=d 0 1-3cos¢ 0 (V.6)
0 0 1
where d=Y2h/2wr3.

3. Zero Field Spectrum

For the static case, the spectrum is expected to be the usual
three line spectrum. The eigenvalues for the Hamiltonian can be derived
from the averaged tensor in Equation (V.6) and the zero field spectrum
will also be given by an expression similar to that of Equation (V.4).
The zero field spectrum is shown in Figure V.5. From the value

calculated by Meier et al.'? for a jump angle of ¢=18.6° £ 2° and a

N
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value of r=2.33 £ 0.005 A, peaks are expected at 13.0, 11.52 and 1.48 —
kHz. The spectrum does not clearly show resolved splittings but the z
features in the high frequency peak suggest an asymmetry and appear at
approximately the correct frequencies. The low frequency peak is not
resolved due to the large zero frequency peak due to residual uncoupled

protons.

D. Quenching of Residual Fields by Nonaxially Symmetry Dipolar Couplings

1. Introduction

This discussion was motivated by the observation that in recent
zero field NMR experiments, the spectra due to axially symmetric dipolar
couplings were broadened by residual fields, whereas those due to
nonaxially symmetric couplings were not. It is well known that dipolar
couplings involving integer spins can be quenched.15 This quenching
effect has been seen to increase with the increasing asymmetry of the
quadrupolar interaction and is reduced in the presence of a magnetic
(1ocal dipolar or applied) field.15’16 The study of NQR lineshapes in
the presence of a modulating field has long been of interest as a means
of assigning NQR transitions and for determining asymmetry
parameters.17'18 Additionally, analytic expressions for the Zeeman
effect on the energy levels of a spin I=1 nucleus have also been
reported.17 In this section, an analogous case of the quenching effect
of residual fields with the onset of the asymmetry in the homonuclear
dipolar coupling between two spin I=1/2 nuclei (a pseudo spin I;1 case)

in zero field NMR is discussed.



2. Zero Field NMR Theory with Residual Field Effects

a. The Hamiltonian. Generally the dipolar Hamiltonian is treated

as axially symmetric (n=0) in the principal axis system of the

interaction. However, through motional or symmetry effects, the

resulting Hamiltonian in a molecule fixed fréme may become nonaxially

symmetric (nz0).

With this in mind, the zero field dipolar Hamiltonian

for two homonuclear dipolar coupled spin I=1/2 nuclei, with the z axis

chosen to be along the internuclear vector, can be written

2
HW& = -

Yh_

[3 + (I, I. -1I,1I.)] (v.7)
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The Hamiltonian has no angular dependence in the laboratory frame and is

identical for every crystallite in a powder sample. The energies for

the triplet manifold of two dipolar coupled spin I=1/2 nuclei are

where wD=Y2h/2wr

3

=W
D
By =By =
n=20
E3 = wD
~wy
E:1 = = (1 +n) (v.8)
B, - =2 (1 - 0 0
E3 = wD

The eigenstates and energy levels for this system

written in the zero field basis set, are illustrated in Figure V.6.

1

The

additional n dependent term is seen to lift the degeneracy of two of the

levels when n#0.

The dipolar coupled system is entirely analogous to
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Figure V.6: Unperturbed triplet manifold energy levels, eigenstates and
predicted spectral transitions of the zero field homonuclear dipolar,
Hamiltonian with n=0 and n#0. The eigenstates are written in terms of
the zero field basis set for two spin I=1/2 nuclei and for both cases
are given as [1> = 27'/2(|aa>+|88>), |2> = ~1271/2(|aa>-|88>) and

|3> = 271/2(|aB>+|Ba>). The zero field energy levels are independent of
orientation as can be seen from their respective energies Eq» E2 and E3
given in the text. The n term of the Hamiltonian lifts the degeneracy
of the two lowest energy levels. The lines which appear in the zero
field spectrum are of equal intensity in the absence of a perturbation.
The zero frequency line in the n=0 cases arises from nonevolving

magnetization corresponding to the degenerate energy levels,
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the quadrupolar spin I=1 case. The similarity has been noticed for the
S=1 EPR case where expressions for the lineshapes in the presence of a
spin—-spin coupling and a field have been calculated.19 Due to this
similarity, the effects of coupling to a local dipolar field (a
nonresonant I=1/2 spin) or a residual field (due to incomplete

cancellation in the zero field region) should be similar to that found

previously for quadrupolar spins.15

b. Perturbation by Residual Fields. A rough estimate of the
effect of a small residual DC field on the dipolar Hamiltonian is made

first by perturbation theory. These calculations have been presented

20

before for n#0, and are repeated here for comparison to the n=0 case.

The magnitude of Zeeman interactions with the residual field, Bres’ is
assumed to be much smaller than the dipolar interaction. The zero field

Hamiltonian now contains an extra term:

2
Ho = -XP 30 1 - I L, + n(I

I..I..)]1 + (v.9)
2"r3 z17z2

x1ix2 = Iyilyo

YBreS[(smecosMIx + Ixz) + 51n631n¢(1y + Iyz) + cose(IZ + I_.)]

1 1 1 22

The angular terms relate the residual field, assumed to be in the lab z
direction, to the molecular frame. If n#0, one can easily show that the

perturbation does nothing to first order as the matrix elements of I,,

I,, and I, are zero.15’16’21 To second order in the perturbation the

y

resulting energy levels for ngz0 are

w D2 2D2
E, = - —(1+n) - 2~ - X
1 2 wp N wD(3+n)
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wD Di 2D§ -
E2 = = 7(1““) + (I)Dn - wD(3_n) (Vo1o) -
2D2 2D2
E = w + b + X
3 D wD(3‘n) wD(3+n)

where the D terms contain the orientation dependence of the residual
field in the molecular frame: DX=YBressinecos¢, Dy=YBressinesin¢ and
D,=YBnogC086. The perturbation is seen to shift the energy levels
quadratically in second order and the low frequency transition (E1 - E2)
is affected most strongly. The shift in energy levels is different for
each crystallite orientation due to the angular dependence in the D
terms and results in a linebroadening effect when averaged over all
orientations. From these expressions, it is evident that as n increases
the shift in energy levels decreases.

When n=0, due to the degeneracy of two of the zero field energy
levels, degenerate pepturbation theory must be used to describe ﬁhe
situation. 1In this case, the degeneracy is lifted to first order -
linearly in the residual field. To second order the resulting energy

levels for. n=0 are

" 172(D° + D2)
E. = -2 -p - X __ Y
1 2 Z 3/2mD + DZ
wD 1/2(Di + Dj)
E, =-—= +D_ - - (V.11)
2 2 A 3/2wD Dz _
1/2(p% + D7) 1/2(D% + %)
E. = w. + X y . X y
3 D 3/2wD + Dz 3/2wD - DZ

The effective perturbation is larger for n=0 as it is a first order
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effect. The spectrum in either case will involve a distribution of
Equations (V.10) and (V.11) over all relative orientations of Breg®

¢. Numerical Simulations. The effect of the residual fields can
be illustrated through numerical simulations. The residual field is
chosen to be along the‘laboratory 2z axis as this is generally the
largest component present in practice. Of course the actual direction
of the residual field has no effect on the form of the zero field
Hamiltonian. The simulations calculate the shift in energy levels for
each relative orientation of the field direction in the molecular frame.
The normalized signal, S(t1), is then calculated as a sum over all

orientations from
S(tq) = Tr{RI,R 'exp(~iHypt;)RI,R 'exp(iHyptq)] (v.12)

where R =lexp(-i¢Iz)exp(‘ier) is the transformation between the lab and
zero field frames. The appearénce of the spectrum depends most strongly
on the relative orientations of the initial condition and the residual
field and, of course, the relative magnitudes of the zero field
interaction and the residual field.

The simulated spectra, produced with the program RESID.FOR, for a
given residual field and increasing n values appeér in Figure V.7. For
n=0, the linebroadening of the high frequency line is significantly
greater than for an individual line with nz0. The low frequency peak is
most strongly affected as predicted from the perturbation theory
calculations and the component at zero frequency results from the fact
that the residual field and initial magnetization are colinear, thus a

component remains along the z axis and does not evolve. As expected
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Figure V.7: Numerical simulations of zero field NMR spectra of two
homonuclear dipolar coupled spin I=1/2 nuclei with a residual field of
0.025 G in the laboratory z direction and increasing values of n. The
first spectrum with n=0 shows substantial broadening of the high
frequency lines. The zero frequency peak corresponds to nonevolving

magnetization proportional to I b and is not strongly affected by the

z,la
field. With a nonzero value of ;, the low frequency lines are most
affected by the residual field showing broadening and a decrease in
intensity. In addition, a peak appears at zero frequency which should
not occur when n0. This peak is a component of the magnetization which
does not evolve but rather remains along the residual field. The effect
of the residual field decreases noticeably as individual lines broaden
very little (although are altered in intensity) with larger values of n.
(Note that the spectra are not plotted to scale as the integrated

intensity is in fact constant.)
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this peak increases in size with increasing levels of the residual
field. 1In the limit of a residual z field which is greater than the
local interactions, a large proportion of the magnetization will remain
locked along the field direction although interesting low field NMR

phenomena result with the sudden transition in intermediate field.22

3. Experimental Results
The quenching effect has been experimentally observed in two

liquid crystal systems. The zero field NMR spectra of these systems,
consisting of a CH2C12 probe molecule in Smectic B and Smectic E phases,
have been presented in Chapter IV. Both are disordered powder-like
phases, the former with axial symmetry and the 1attef a biaxial phase
thereby inducing an asymmetry in the dipolar coupling tensor. The
spectra display inherently narrow lines due to the>1ack of
intermolecular dipolar couplings. Typically a residual field of
approximately 0.025 G results from shimming the zero fieid region with a
Gaussmeter. The liquid crysﬁal samples, with very small dipolar
frequencies and narrow lines, have made it necesary to improve upon
this. The zero field NMR spectra taken under identical experimental
conditions are compared with computer simulations in Figure V.8. The
spectrum of the axially symmetric dipolar interaction shows the effect
of a residual field in the broadening of the outer lines and narrow zero
frequency peak. In the case of a nonzero n in the biaxial phase, the
effect of the residual field is reduced although the decreased intensity
of the low frequency lines and the peak at zero frequency are clear
evidence of its presence.

The effects of residual fields can be removed from the zero field
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a) Zero field ¢) Zero fieid

b) Simuiation d) Simulation

| i | I . | | 1 | ] |

-3 -2 -1 0 1 2 3 -3 =2 -1 0 1 2 3
Frequency (kHz) Frequency (kMHz)

XBL 868-11677

.

Figure V.8: Experimental spectra of CH2C12 in Smectic B (axially
symmetric, n=0) and E (nonaxially symmetric, n#0) phases and computer
simulations of the effect of a residual field. For n=0, the high
frequency lines in (a) are broadened considerably relative to the line
at zero frequency. The simulation below in (b) was produced with a
residual z field of 0.0175 G and is broadened slightly with a Lorentzian
function. 1In (c) the linewidths with ns#O are quite narrower than in the
former case. The simulation shown in (d) uses the same residual field
as (b) and shows the expected broadening of the low frequency lines, the

altered intensities and zero frequency peak.
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spectrum by using a dc pulsed field as a refocussing echo pulse in -
analogy to a high field Hahn echo.23 For samples such as aligned -
nematic liquid crystals, a 180° pulse applied in the middle of the zero
field t1 interval will refocus the magnetization and remove the
1inebroédening. For powder samples with n=0, the normalized signal

after a dc pulse in the laboratory x direction can be calculated from
S(tq) = Tr{RI,R 'exp(~iH,pt,/2)Rexp (~iTI,)R™ 'exp(~iH pt,/2)
RIZR‘1exp(iHZFt1/2)Rexp(iwIX)R“exp(iHZFt1/2)} (Vv.13)

which for the normalized signal averaged over all molecular orientations

is
S(tq) = 1/15(5 + Uecos3/2(S,,wptq/2) + 6cos3/2(SZZth1)) (V.14)

Wwhere Szz is the liquid crystalline order parameter which scales the
dipolar interaction. The analytic expression shows that not all the
signal is refocussed and will show no effect of the residual field. A
certain component evolves for only half the L4 period and is then
broadened by the residual field to half the width of the original line.
The experimental spectrum of the Smectic B phase with a 1803 de pulse is
shown in Figure V.9. The high frequency lines are narrowed appreciably

and the half frequency broad lines are evident.

4. Conclusions :

The residual field quenching by dipolar coupled spin I=1/2 nuclei



l l - | | | |
CHZCI2 in Smectic B Phase

| | | l l I
-3 -2 -1 0 1 2 3
Frequency (kHz)

XBL 866-11160

Figure V.9: Experimental spectrum of CH2012 in Smectic B phase after
the application of a 180° de refocussing pulse in the laboratory x
direction in the middle of the zero field period. The signal appears as
predicted in the text with a portion of the magnetization refocussed
into narrow lines at the higher dipolar frequencies. At half this
frequency, magnetization which evolves under the residual field for only

one half the zero field period produces a broadened line.
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has been shown experimentally and is in agreement with predictions made
from perturbation theory and numerical simulations. This effect is
analogous to that seen for integer spin systems in NQR experiments (1).
The simulations assume a residual field in the laboratory z direction
but can easily incorporate any field direction. As stated above,
altering the direction of the residual field will not affect the zero
field Hamiltonian when averaged over a powder distribution, but altering
the relative orientations of the initial condition and residual field

2l Through pulsed de¢ field

will affect the appearance of the spectrum.
experiments which remove the effects of very small residual fields, high

resolution spectra of disordered materials are obtained.
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VI. COMPUTER PROGRAMS

Five computer programs which were written in the course of this
work are included in this chapter. Fortran and executable versions are
stored on magnetic tape. Comments are included in the programs to aid

in their interpretation.

1. INHOM: Computes the effect of a single dc magnetic field pulse
on a zero field state proportional to the dipolar Hamiltonian. The
effects of pulsed magnetic field inhomogeneity, to a linear or quadratic
approximation of the change in pulse angle over the sample, can also be
included. Single crystal orientations or averages over a powder can be

calculated over a wide range of pulse angles.

2. PLTSIM: Calculates the zero field NMR spectrum for two dipolar
coupled spin I=1/2 nuclei assuming an initial state equal to HD. The
signal is calculated for the demagnetization field cycle using two dc

magnetic field pulses. An output file for plotting is produced.

3. DEMAG: Predicts the final demagnetized state in zero field for
a single spin I=1 nucleus as a function of initial crystal orientation,
e2qQ/h and n values. The output indicates numerically whether one, two,
or more level crossings occur during the demagnetization. A matrix of
these level crossing values, produced as a function of crystal
orientation angles 6 and ¢, can be displayed visually on the Lexidata

using a program written by D.B. Zax.
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4, QUAD: Calculates the zero field NQR spectrum for a single spin
I=1 nucleus under two dc¢ magnetic field pulses applied in zero field.
The initial condition is that found by program DEMAG and corresponds to
the high field populations being carried over to zero field. An output

file for plotting is produced.

5. RESID: Computes the perturbation of a small residual z field
on the spectrum of two dipolar coupled spin I=1/2 nuclei, with or
without a non-zero asymmetry parameter. The initial condition is

assumed to be Iz,L as for the sudden transition field cycle.

E RO



nNnNnNnNnNonaoannNnnNnnNn

308

prodram to calculate sidnal intensities .
for two dirolar courled srins after 3 single adlf
pulse in zf, Initial state = H(1), Sindle crustal
orientations are weidhted by sin(th) and summed.
Sidnal in arbitrary units, scale with no. divisions,
DC coil inhomodeneities are also considered

to 3 linear or quadratic arrroximation.

this prodram is INHOM! incremented calculations of
pulses and orientations. amt ?/3/84

comeplexXkléd m(31s3)yn(3s3)rra(3)rrn(3)sst
comrlexXls w(d)rxsgrzrsrral(3)srb(3)

double precision £(3)rr(3s3)sd(3)rthrddrai
double Pprecision asartsacrtcrarrrisrdelsdivsas
dimension f(3)

fct(bsl) = -(bxXxl)

tureXsy‘this prodram will calculate the zero field
intensities”’

tyreXy’‘as a3 fct. of @ sindle zf pulse for a3
homonuclear

tureXy ‘dirolar courled pair of proton sprins demasd.

to zf.’ '

tureXr‘enter initial pulse andle in dedrees.’
acceprtX,yaa

tyreXy ‘enter increment in Pulse lendgth and no. of
repetitions’

accertXrairnn

tureXy ‘enter coil inhomoseneity (X field) and no.

of divisions’

acceprtXrdelsdiv ’

tureX» ‘enter functional derendence of inhomodeneity’
tureXy ‘(0=noner l=linearr 2=quadratic)’

accertXy ft

ft=ft-1

tureXxy‘enter initial andle of crust, orient. in deds.’

accertx,t
tyreXr» ‘enter increment in orientation angle and no.

of repetitions’
accertXsytirmm

Pi=40°*3tan(100)
del=del/100
aa=(33%x(2i/180.0))
t=(tx(»1/180.0))
ac=(3ix(pi/180.0))
te=(tix(pi/180.0))
p(l)=-1

p(2)=2

p(3)=-1

Ll
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Set ur functional derendence of field aover coil

if (ft) 10,20,30
1=1

g0 to 40

1=1

do0 to 40

1=2

calculate zero field signal for nn increments of
de pulser and mm increments of theta

do 800 ii=1snn+l
st=0,0

ar=0.0
ar=gat+(acx(ii-1))
do 600 kk=1ram+l
th=t+(tek(kk-1))

rotation matrices to be calculated with value
of (th) calculated above

r{1+1)=0.5%(1+dcos(th))
r(1,2)=(2%X%X~,.3)Xdsin{th)
r{(1y3)=0.5%(1~-dcos(th))
r(2s1)=-(2%X~-,5)%kdsin(th)
r{(2,2)=dcos(th)
r(2y3)=(2%X%X-,35)%Xdsin(th)
r(3s1)=r(1,3)
r(392)==r(1+2)
r(3y3)=r(1,1)

calculation of unitary transforms and multirli-
cation by initial density matrix

now to take into account the inhomosgeneityu

s=0.0

do 500 JJ=0sdiv
b=dd/div
as=zartarXdelx(fct(bsrl))

do 110 i=1,3
PUid)=(2-i)%(3s)

do 111 i=1,3
x=cexr(camplx(0,0sf(i)))
do 111 =1,3
mlisdd=xXr(isd)
n{ird)=(condd(x))Xr(isdJ)
do 140 J=1,3

do 130 i=1,3

=0,0
=0,0

N g
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do 120 k=1,3
g=utr(krid)Xmlkr J)

z=z2+r(kerid)Xn(k s Jd)
ra{i)=y

rn(i)==z

do 135 i=1,3
m(ird)=p(idXrm(i)
n(ird)=rn(i)
continue

now to use subroutines to calculate the final
aatrices to give the intensities and frecuencies

call matmli{nsmsrbd)

do 400 i=1,3
w(id=p(idkn(iri)
s=st+w (i)
continue
continue

weidhting of sindle crustal orientations after
incrementing the angle (th) to rroduce rowder ‘sum’.
Noter» if only sindle orientation is counted:,

then all are weidhted the same.

if (tisea.0 sand. mm.ec.0) then
wgt=1

else it (th .ea. 0) then
wegt=0,1%sin(ti)

else
wdt=sin(th)

end if

st=st+skusgt

continue

outrut for rlotting

printXrarx(180/ei)srreal(st/(mm+1))
continue

stor
end

subroutines

subroutine matml(arbrra)

matrix multirlier a=a3Xxb
complexX1lé 3(3»3)»0(393)»ra(3)rs
do 14 i=1,3

do 12 J=1,3

s=0,0

do 11 k=1,3

£

d
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s=6+8(isk)Xb(kyJ)
ra(d)=s

do 13 J=1+3
alisJd)=rald)
continue

return

end
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prodram to calculate Zero field intensities
and freauencies for two dirpolar courled seins

under adlf w/pulses in zf. Crustel orientations
are weighted by sin(th) and summed.,

this prodgram is PLTSIM! incremeneted calculations of
rulses and orientations with the ortion of eroducing
8 srec file for rlotting. amt 9/2/84

characterx15,fname
comprlex ru(3)erv(3)ym(3¢3)esn(3»3)rrm{3)rsrn(3)sats
comrlex btrstrc(393)rd(3r3)rarw(I)rusvexswrszrashy

‘complex syra(I)srb(3)

dimension e(3)ryr(3)sr(3s3)rf(I)srd(3T)rtn(3)y
dimension nrt(3)sfrec(3)

real nt

typeXy’this prodgram will calculaste the zero’
tureXsr‘field intensities and freauencies for’
tureXxs’a homonuclear dirolar courled r3ir of’
tureXs ‘Proton srins,’ .

tureXr‘enter internuclear distance in andgstroms’
accertX,h

tyreXy ‘enter initial pulse andles slrphar» betz (dedgs).’
tureXr’where alrha is the first rulse in zfield.’
acceprtXra3arbd

tyreXsr ‘enter a3lrha and beta increments and no. of
repetitions’

accertXryaisbirnn

tureXsy ‘enter initial andle of crwustal orientation.’
acceptX,t

tureXy ‘enter increment in orientation asndle and no.
of reretitions’

accertXrtiran

pi=4.0%a3tan(1.0)

dd=(6.,0067e~20)/((hx1e-8)%X%3)

aa=(aax(p,ri/7180))

bb=(bbx(ri/180))

t=(tx(pi/180))

be=(bix(ri/180))

ac=(aix(,i/7180))

te=(tix(pi/180))

p(1)=-1%X(dd/1000)

p(2)=2%(dd/1000)

P(3)==1%(dd/1000)

more information for outrut format

tureXys ‘outrut to srec file? if vessture 0,
acceprtXx,ll

if (llsne.0) d0 to 1

tureXsy ‘what bandwidth will you be plotting?(in khz)?’
acceptX,bw

calculate zf signal for nn increments of betay
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and of alehasr and mm increments of theta -

do 900 ii=1lrnn+l

at=0.0

bt=0.0

st=0,0

do 700 kk=1rmam+i :

br=0,0 . -

ar=0,0 S
br=bb+(bek(ii-1)) :

ar=aat(ackx(ii-1))

th=t+{(tex(kk-1))

rotation matrices to be calculated with value
of (th) calculated above

r{(1+1)=0.,5%(14+cos(th))
r{ls2)=(2%%-,.5)%Xsin(th)
r(113)=0,5%(1-cos(th))
r(29s1)=-(2%%X-.5)%Xksin(th)
r{2y2)=cos(th)
r(2+s3)=(2%X%X~-.5)Xsin(th)
r(3»1)=r(1,3)
r(3s2)==-r(1+2)
r(3r3)=7(1,1)

calculation of unitary transforms and multirli-
cation by initial density matrix

matrices for second andle calculated first

do 10 i=1,3
e(i)=(2-i)x-br

do 11 i=1,3
az=cexr(cmrlx(0,0re(i)))
do 11 J=1,3
clird)=aXr(ird)
d{irJd)=(condg(@))Xr(ird)
do 40 J=1,3

do 30 i=1,3

v=0,0

u=0.0

do 20 k=1,3
v=vtr(kyidXc(ksd)
usutr ki) xd(ks J)
rv(i)=y

ru(i)=u

do 35 i=1,3
elirdd)=p(i)Xrv(i)
d(ird)=ru(i)

continue

for first zero field pulse andle
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do 110 i=1,3
Pt(i)=(2-i)%x(ar)

do 111 i=1,3
x=cexpl{cmprlx(0.0,f(i)))
do 111 J=1,3
m(irsdl)=sxXrl{isJ)
n{ird)=(conJdd(x))Xkr(ird)
do 140 J=1,3

do 130 i=1,3

u=0,0

z=0.0

do 120 k=1,3
gzytr(kri)Xm(kyJ)
z=z+r(krid)Xn(ksd)
ram(i)=y

rn{il)=z

do 135 i=1,3
m{ird)=p(i)Xrm(i)
n(ird)=rn(i)

continue

now to use subroutines to calculate the final
matrices to give the intensities and freauencies

call matml(dscrra)
call matmli{nsmsrd)

calculation of final intensities and freauencies

a=0.,0

b=0.,0

£=20.0

do 400 i=1,3

do 300 J=1,3
w(dl=d(irJd)Xn(Jdri)
g(Jl=p(i)-p(J)

it (g8(J).ea.0) b=btw(J)
if (g8¢J).1t.0) a=atuw(J)
if ("5¢J).dt.0) s=s+uw(J)
continue

continue

weight sindle crystal orientations and sum to

det powder ‘sum’

if (th +ec. 0) then
wdt=0.1%sin(tc)
else
wgt=sin(th)
end if
at=at+axudt
bt=bt+bikugt
st=gt+skwdgt
continue
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output to file

norm=at+bttst

if (ll.ea.0) d0 to 800

printXy/'for 3lerha and beta pulses of!’
printXsarx(180/,i)»brXx(180/r1)
printXsy’initial orientations inc.» reers.’
printX,tX(3460/pid)rstismm

print 730

format (/r1ixs’intensities’»14xy /' freauencies(khz)’s/)
print 750sat/normer(1)-P(2)

print 750sbt/normre(1)-,(3)

print 750rsst/normre(2)~-,(3)

format ((P10.,3,P10.3)¢5%»f10.3)

do to 900

creation of spec file for plotting

frea(ld=p(1)~-p,(2)
frea(d)=p(2)-,(3)
frea{(2)=p(1)~-p(3)

tn{l)=at/norm

tn(2)=bt/norm

tn(3)=st/norm

tureXsy ‘srec file name (sreck.da)l’
accert810r»fname

format(a)
oren{unit=3rname=Ffnamesstatus=’'new’)
hzpt=(bwx1000)/1024

irte=3

write (3,840) irts

format (i)

write (3+850) hzet

format(f10.3)

do B70 i=1,3

nrt(i)=512+inint (1000Xfrea(i)/hzrt)
write (3¢8460) nert(id)rtn(i)
format{(id,?t10.3

continue ‘

print 875

tormat(//)

printXy ‘the srec file!’

rrint 880r fname

format (1x»315)

printXs ‘has 3 bandwidth of?’
printXsbwr'khzyfor the followind exeptl. info.’
go to 710

continue

stop

end

subroutines
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subroutine matal(arbrra)
matrix multierlier a=akb
comprlex a(3r3)rb(323)rr3(3)rs
do 14 i=1,3

dao 12 J=1,3

§=0,0

do 11 k=1,3
s=54+3(irk)Xb(kyJ)

ra(J)=s

do 13 J=1,3

alird)=ralJd)

continue

return

end
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srodgram DEMAG -
2 prodram to calculate the demadnetized
state of @ srPin one nucleus

amt 6/11/86

complex ize(3y3)riex(393)riug(3913)sc(3r3)»P(3+3)

complex 2z(3r3)r222(393)risa(3rI)rr(3+3)rs(3+3)

complex 0(393)ex(I93)99w(393)92(393)90%x(3»3)r»0u(3¥3) N
comrlex 0z(31r3)r022(3+3)r0222(313) (3¢ 3) E.
dimension st(3)spor(3)rshtemr(3)sirts(100,100),1xP(3) :
common nstsaeretarthreph

nst=3

tureXy ‘Input value of e2al/h and eta.’

acceptXrquadreta

tureXy ‘Input no, of reretitions in theta and rhi.’
accertXsnrers

tupeXy‘Inrput initial field value (dauss),’

accertXrho

pi=4,0%katan(1.0)

a=auadx(0.295)

damma=6,45e~1

te=2.0/f1loat{nrers—1)

pc=180.0/float(nrers-1)

Setting up the auadrupolar hamiltonian

aa=3,0%ka
bb=-1.,0%a
cc=etaxa

Setting up the initial matrices

do 10 i=lsnst

do 10 J=1irsnst
Plird)=cmprlx(0,0,0.0)
c(ird)=carlx(0.0+0.0)
isa(irJ)=cmprlx(0.,090.0)
ize(isrJ)=cmplx(0.050.0)
iex(irJ)=cmelx(0,0:+0.0)
ivy(ird)=cmplx(0.0,0.0)
iww(1s3)=carlx(1,0+0.0)
ivw(3Irl)=cmrlx(1.0+,0.0)
ize(192)=zcarlx(0,0y-1,0)
ize(2¢1)=carlx(0.0,1.0)
iex(2:3)=carlx(1.0+,0,0)
iex(3¢2)=carlx(1,0,0.0)
do 11 i=1,3
isa(iri)=cmplx(-2.0,0.0)
isa(iri)=aXxisa(iri)
continue

Now fTinish the hamiltomnian by multiesluing
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and s8dding the matrices

call matml(izerizesnstrazarc)
call matadd(frcrnst)

call matadd(fsisarsnst)

call matml(iexsiexrnstrccesc)
call matadd(frcrnst)

call matml(ivyrivurnstr-ccre)
call matadd(frcsnst)

Loorind over theta and phi values
note that each theta and shi combirsation represented

rrintXrsnrers

do 400 iii=1lrnrers

tang=~1.,0 + tcxfloat(iii-1)
th=acos(tang)

do %00 JdJJ=lrsnrers

Ph=(0.,0 + pcXfloat(.idd-1))X(ri/180)
ihold=0.,0

Calculate the level crossinds before the next ster

abit=10.0

h=500.0

hinc=1.0

call levelx(hrhincsS50051xf)

count=-1

do 20 ii=1snst

it (lxf(ii)) 14,14515

g0 to 20

count=count+l

kk=count+2

htemrp(kk)=1xf(ii) + abit

continue

if (count) 26:27,28

hec=0.0

in=-1

do0 to 100

he=htemr(2)

in=0

g0 to 100

in=1

if ((htemp(2)~htemr(3)),12.0.0) then
hn=htempr(3) .
hb=htemp(2)

else
hn=htemp(2)
hb=htemr (3)

end if

g0 to 100

Now diadonalize the hamiltonian and store rorulations
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od




100

call zterm(horiexrivgwsizerr)
call matadd(rsyfrnst)

call heiden(rsusnst)

call order{rsusnst)

do 12 ii=1rnst
por(ii)=r(isi)

if (in) S50+60+70

No level crossing

ihold=273
g0 to 400

One level crossindg

call zterm(hcriexrivysizerr)
call matadd(rsfsrnst)

call heiden(rsxinst)

call order(rsxsnst)

find overlar u and x

call matraml(urxenstrox)
ca3ll overlar(oxsnstrihold)
ha=hc-2.0%3bit

c3ll zterm(hasriexrigygrizesrr)
call matadd(rsfrnst)

call heiden(rrgrnst)

call order{(rsyrnst)

find overlar x and y

call matraml(xrwrnstroy)
call overlar(ovrnstrihold)
g0 to 400

Two level crossinds

call zterm(hnsiexrivdgrizesrr)
call matadd(rsfrnst)

call heiden(rrxsnst)

call order(rsxsnst)

find overlar u and x

call matraml({usxrnstrox)
call overlar(oxsnstsrihold)
ha=shn-2.0%xabit

call zterm(hariexsrivgsizerr)
call matadd(ryfynst)

call heidgen{rrgrnst)

call order(rsurnst)

find overlar x and y

call matraml(xsyrnstroy)
call overlar(ousrnstrihold)
call zterm(hbriexsivydgrizerr)
call matadd(r,fsnst)

call heiden(rszynst)

call order{(rrzsnst)
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find overlar ¥ and z
call matraml(yrzynstroz)
call overlar(ozrnstrihold)

Lo 2
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he=hb-2,0%abit
call zterm(hesiexrivwrsizerr)
call matadd(rsfrnst)
call heigen(rrzzynst)
call order(rszzrnst)
c find overlar z and zz
call matraml(zyzzrnstrozz)
call overlar(ozzsnstrihold)

c produce final density matrix for zero field srodram
c the numbers rroduced were used to plot 2 two
c dimensional mar on the lexidata, each color
c rerpresented the presence or absence of a level
c crossindg and which levels cross
400 it (ihold.ea.,273) then
pt=1
else if (ihold.ea.266) then
pt=2
else if (ihold.ea.1é61) then
pt=3
else if (ihold.ea.84) then
rt=4
end if
irta(irdd)=rt
printXsimsts(ird)
500 continue
600 continye
stop
900 end
c
c Subroutines
c
subroutine ztera(horiexrivwrizerr)
c
(o sets up field terms of hamiltonian
c
complex r(393)riex(313)riww(393)rize(3,3)
comPlex xt(3,3)e9t(3r3) ezt (3,3)
comaon nstraretartherh
dgamma=4,45e~-1
do 10 i=1lsnst
do 10 J=1snst
10 r{ir»i)=(0,0,0.0)

wo=dammaXho

dx=woXsin(th)Xcos(eh)
dy=zwoXsin(th)xsin(ph)

dz=woXcos(th)

do 11 i=1snst

do 11 J=1»rnst
r{ird)=dxXiex(ird)+duXiyw(ird)tdzXize(irJ)
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continue
return
end

subroutine amatal(arbrnrxrd)

8 matrix multirlier c=akxb

complex a(nsn)sbinin)edinsnd)rrvibéd)rs
do 14 i=1isn

do 12 Jd=1sn
5=°0°

do 11 k=isn
s=5+a(irkIXbD (k)
rvldd=s

do 13 .=1sn
d{isdd=xkrv(J)
continue

return

end

subroutine matadd(arbrn)
adds two nxn complex matrices a=3+b

comrlex al{nynl)sd(nsn)
do 10 i=1rn

do 10 J=1isn
alisdd=al(ird) + b(isrd)
return

end

subroutine order{(rrusn)

orders the eidenstates bv enerdy 3s héiSen does not
aluavs return them in the same arder

complex rlnsndrsulnsin)st(3,3)
dimension e(3)
do 10 i=1sn
e(i)=real(r(isri))
continue
do 11 ii=1,n
if (e(l).gt,.e(2) .and., e(l1).dt,e(J)) then
t(iirs2)=u(iisl)
if (e(3).gt.e(2)) then
t¢iis2)=u(iisr3)
t€¢iir3)=u(ii»2)
else
t(iir2)=uy(iis2)
tCiir3d=u(iis3)
end if
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else if (e(2).gt.e(l) .and. e(2).8t.@(3)) then
t(iirt)=u(iir2) ‘
if (e(l).8t.e(3)) then
t(iis2)=u(iirl)
tC¢iis3)=u(idird)
else
t(iir»2)=u(iir»3)
tCiirsI)=uliisl)
end if
else if (e(3).dt.e(2) .and. e(3).dt.e(i1)) then
t(idsld=uCiir3)
if (e(l).gt.e(2)) then
t¢iis2)=u(iirl)
t<(iir3)=u(iir2)
else :
tC¢iis2)=uliir2)
t(iir3)=uu(iirl)
end if
end if
continue
daoa 12 i=1yn
do 12 J=1sn
ulirdl)=t(i,J)
continue

return
end

subroutine matraml(arbrnro?
3 matrix multirelier o=a—-adJointxb

comrlex a(nsn)sb(nsnd)rcviébd)ssrolnrn)
do 14 J=irn '
do 12 i=1yn

§=0,0

do 11 k=1isn .
s=stcondd(alkri))Xb(krJ)

cv(i)=s

do 13 i=tsn

o(ird)=cv(i)

continue

return
end

subroutine overlar(arsnsrihold)

looks for max overlar of eidenstates and assigns
ftinal state after level crossing

complex al(nwn)
real max
dimension 1iJ(3)

SN
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indx(iteddrkk)=1i1 + 8%JJ +64%Kkk

ii=1

JJd=2

kk=4

ihold=0.0

ihold=indx{iirddskk)

do 10 .=1lsn

iJ(1)=ii

id(2)=4dJd

id(3)=kk :

if (real(a(lri)).de.real(a(2yJ4))) then
max=real(a(1yJ)) '
aa=1
bb=J

else
max=real(a(2sJ4))
3a=2
bb=J
end if
if (real(a(3rJd)).dt.max) then
aa=3
bb=J
end if
if (aa.ne.bb) then
tempr=i.i(a3)
iJd(aa)=id(bb)
iJ(bb)=temp
ihold=indx(id(1)yid(2)y1d(3))
end if
continue
return
end

subroutine srin(arn)

comprlex a3{nyn)

do 10 i=1lsn
printXs(a(ird)rd=1lrn)
continue

return

end

subroutine levelx(hrhincrnr»lx?f)

8 prodram to calculate the level crossing field
of the sepin 1| eidenstates from analutic solutions
of the enerdies

dimension e(3)sv(3)e1xP(3)
common nstraretarthrsrh
gamma=(é.45e-1)
pi=4,0%atan(1.,0)
ea=(1.0+eta)Xea

RN AT
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eb=(1.0-eta)xa

ec=-2,0%a

»%=0,0

u=0,0

z2=0.,0

ix=0,0

iy=0,0

iz=0.0

Ixf(1)=0.0

Ixf(23=0,0

1xf(3)=0,0

do 100 i=1sn+1

v(1)=0.,0

v(2)=0.,0

v(3)=0.0

hh=h - hincx(i-1)

d=dammakxhh

p=-(dkX2 + (aXX2)%(3.,0 + etaxx2))
a3=aX (dXkX2)X(({(cos(th) ) ¥Xx2)+tcos(2%kth)+etax
((s8in(th))XX2)%(cos(2%xFh))) )
ab=eaXebXec

aa=qatab
c=(aa/2,0)%(((3.,0/abs(e))k%X3)%%X,.5)
beta=acos(c)

do 10 J=1,3

k=J-1
ctrecos((beta+float(k)%2.0%ri)/3.0)
cnt=((4,0%abs(,))/3.0)%%,.5
e(J)=ctrient

continue

v(1l)=abs(e(1)-e(2))
v(2)=abs(e(1)-e(3))
v(3)=abs(e(2)-e(3))

it (v(1).le.1,0) then

x=x+hh
ix=ixtl

end if

if (vi2).1e.1.0) then
v=yt+hh .
iw=iutl

end if

if (v(3).le.1.0) then
z=z+hh
iz=iz+1

end if

continue

if (ix.ne.0.,0) 1IxP(1)=x/(ix)
if (iv.ne.0.,0) 1Ixf(2)=u/(iy)
if (iz.ne.0.0) 1xP(3)=2/(iz)
return

end
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program to calculate zero field intensities

and freauencies for 3 sindle spin 1 nucleus

under adlf w/pulses in zf. Initial condition
correspronds to HF rpors. Sindle ecrustal orientations
are weidghted in phi bw sin{th) derendence

this Pprodras is QUAD?! incremeneted calculations of

pulses and orientations with the ostion of producing
3 spec file for plottindg., amt 10/8¢6

characterX1Ssfname

complex rud(3)srv(3)m{Is3)rn(3s3)yrm(3)rrn(3I)ratsrbt,
complex stryc(3r3)rd(3Ir3)rarw(I)susrveXsdrzrarbrss
complex ra3(3)rrb(3)rytharthbrerhirr(3»3)sthsrthzrzts
comrlex zzst(3+3)rov(3)rchb(d)

dimension e(3)»p(3)eP(3)9d(3)ren(3)rtens(4)snt(4),
freal(4)

double precision earets

tureXys‘’this prodram will calculate the zero’
tureXy'field intensities and freauencies for’
tureXy’a sindle srin 1 nucleus.’

tureX:r’‘enter e2cQ/h (kHz) and eta’

accertXsaareta

tureXr‘enter initial rfulse a3ndles alrha and bets

in deds.’ ,

tureXr ‘where 3lrsha is the first pulse in zfield.’
accertxraarbb ‘

tureky ‘enter 3lpha and beta increments and no. of
reretitions’

accertXsairbirnn

tupeXr‘enter increments in thets and rhi (equator)’
accertXsttrince

Settindg ur 3ll those handy little numbers for later

pi=4,0%xatan(1.0)
aa=caX.25
sa=(28%X(pi/180.0))
bb=(bbXx(ri/180.0))
be=(bix(,ri/180.0))
ac=(aix{(pi/180.,0))

The auadrurolar enerdies and sorulations
in zf eidenstates

en{l)=aax(lteta)
en(2)=-2%Xaa
en(3)=aaX(l-etsa)
p(l)=1

p(2)=-1

P(3)=0

more information for outerut format
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tureXs ‘outrut to srec file? if uwesrtuwre 0.’ —
accert Xy xxx

it (xxx.ne.0) g0 to 1 - P
tureXy‘what bandwidth will vou be plotting?(0-7 khz)’ :
accertXrbuw

calculate zf sidgnal for nn incrementsvof betas
and of alrhasr and tt increments of thets

al
[P——

ar=0,0

hr=0,0

do 900 ii=1snn+i
ar=aat(acx(ii~-1))
br=bb+(bck(ii-1))
tha=0.0

thd=0.0

ths=0,0

thz=0.0

Looring over theta

if (tt sne. 1) tinc=2.0/(tt-1.0)

do 701 1l=1,t¢t

at=0.0

bt=0.0

st=0,.0

zt=0.0

ci = -1.,0 + tincX¥float(ll-1)
theta=acos(cl)
irp=dnint(float{incr)Xabs(sin{theta)))
i? (irp .. 0) ipPpr=1

pinc=2%Xpi/ire J

Looring here for phi derendence g

do 700 kk=1yirp
rhi=pincXfloat(kk-1)
erhi=cexr(cmPlx(0.0sphi))

rotation matrices to be calculated with value
of (theta) and (phi) calculated sbove

r{l,1)=.3%(14+cos(theta) ) Xcondg(erhi)
r(1s2)=(2%XX~.S)%¥sin(thets)
r(1,3)=,5%(1~cos{theta))x(ephi)
r(2s1)=—-(2X%~-,89)%ksin(theta) kcondd(erhi)
r{2+2)=cos(theta)
r(2:3)=(2%%X~-,5)%ksin(theta3)x(erhi)
r{3r1)=condd(r(1,3)) o
r(3»2)==-(r(1,2))

r{3rs3)=condg(r(1,1)) -

Unitary transform between basis sets

.
[S——
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20

30

35
40

n

110

111

120

t(1,1)=(2%%~-,3)
t(1,2)=0,0
t(1,3)=(2%%~.5)
t(2+1)=0.0
t(2,2)=1.0
t(2,3)=0.0
t(3r1)=(2%%~.3)
t(3+2)=0.0
t(3¢3)=-(2%%-.5)

calculation of transformed Qulses

matrices for second andle beta calculated first

do 10 i=1+3
e(i)=(2-i)x-br

do 11 i=1,3
a=cexr({cmrlx(0.0ye(i)))
do 11 J=1+3
clirvd)z=akr(ird)
d{isJd)=(condd(a))Xrl{isJ)
do 40 J=1.3

do 30 i=1,3

v=0.0

u=0,0

do 20 k=1,3 .
v=vicondg(rl{ksi) ) Xeclkyd)
u=sutcondg(rlksi))Xd(kyd)
rv(i)=y

ru(i)=y

do 35 i=1,3

c(isdd=rv(i)
d{isdd)=ruli)

continue

call uamu(trcrcv)

call uamu(tsdrch)

for first zero field pulse anéle

do 110 i=1,3
f(i)=(2~-i)%X(ar)

.do 111 i=1,3

Xx=cexP(cmrlx(0,0,f(i)))
do 111 J=1,3
mlisd)=xXr(ir,Jd)
n{isd)=(condd{(x))Xr(isd)
do 140 .=1,3

do 130 i=1,3

uy=0.,0

2=0.0

do 120 k=1,3
w=gtcondd(rkyi))Xm(k s d)
z=z+condd(r(ksid)dXn (ks J)
rm(i)=yg

327
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rn(i)=z

do 135 i=1,3
m(isJd)=rm(i)
n{isrdd=rn(i)
continue

c3ll uamu(tymscv)
call uamu(trnsch)

now to use subroutines to calculate the final
matrices to give the intensities and freauencies

do 200 i=1,3

do 180 J=1,3
clirvdd)=p(i)Xc(irJ)
mird)=p(idXm(ird)
continue

continue

cz2ll matml(drcrra)
call matml(nrmrrb)

calculation of finsl intensities and freauencies
for 3@ siven theta and phi

a=0,0

b=0.0

€=0,0

zz=0.,0

do 400 i=1,3

do 300 J=1:s3

w(d)=d(irJ)xnldri)

d(J)=abs(en(i)-en(d))

it (abs(g(J)-0,0).1e.1d-4) zz=zz+w(J)

it (abs(ga(J)-(2%etaxaal)).le.l1d-4) a=atw(J)
if (abs(d(J)-((3~-etal)xaar)).le.1d-4) b=btw(d)
if (sbs(d(J)~-((3t+teta)kaa)),le.1d-4) s=stuw(d)
continue

continue

Sum over phi values first and weidht by dehi

at=at+axrinc
bt=bt+bxeinc
st=st+sXkrinc
zt=zt+zzXpine
continue

Now to sum over theta

tha=tha+at
thb=thbt+bt
ths=thstst
thz=thztzt
continue
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860
870
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outrut to file

rnorm = thztthatthbtths

dnorm=2Xrnorn

if (xxx.ea.0) g0 to 800

erintky’For 3 spin 1 nucleus with e2cQ@/h and etat’
printXrsd4xcareta )

printXs‘for aleha and beta pulses of!’
PrintX,arx(180/,i)brk(180/pi)

print 730 )

format (/+1xy’intensities’»40xy’'Preauencies(khz)’s/)
print 790rreal(thz)/rnormrac%x0.0

print 750sreal(tha)/rnorms2%etaxaa

print 750sreal(thb)/rnormr(I-eta)*xaa

print 750ryreal(ths)/rnorms (3+eta) Xaa

format (£20.5¢5%,£20,3)

d¢0 to 900

creation of spec file for rlotting

tyreXy ‘spec file name (sreck.da)?’
accert810sfname

format(a)
orenf{unit=3rname=fnamerstatus=‘new’)
irts=4

frea(l1)=0.0
frea(2)=2%etaXxaax1000
frea(3)=(3-eta)Xaax1000
frea(4)=(3+teta)¥aax1000
tens(2)=resal(tha)/rnorm
tens(3)=real(thb)/rnorm
tens(4)=real(ths)/rnorm
tens(1l)=real(thz)/rnorm
hzet=(bwx1000)/512

write (3,840) irts
format(il)

write (3,850) hzet
format(f10.3)

do 870 i=1+4
nt(id)=1+inint(freal(il)/hzrt)
write (3,8460) nt(idstens(i)
format(iS,f10.3)

continue

print 875

farmat(//)

printXs’the srec file!l’
srint 880y fname

format (1xs31%5)

printXy‘has a3 bandwidth of!’
printX,bws ‘khzsfor the followindg exeptl, info.’
g0 to 710

continue

stop
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end
subroutines

subroutine Prin(a)
complex a3(3s3)

do 12 i=1,3

do 11 J=1,s3
printXx, a(irJ)
continue

return

end

subroutine uamulushsv)
unitary transform b=u-adJointXxbXxu

coarlex u(3»3)sb(323)svib4)
call matraml(urbrv)

call matml(brurv)

return

end

subroutine matraml(arbsrecv)
matrix multi#lier b=a~adJointxb

complex a(3»3)»b(3s3)scvibdld)ss
do 14 J=1,3

do 12 i=1,3

5=0,0

do 11 k=1,3
s=stconJdd(a(ksi) IXb(kJ)
cv(id)=g

do 13 i=1,3

b(ird)=cv(i)

continue

return

end

subroutine matml(arbrra)
matrix myltirlier a=axb
conrlex 3(3s3)sb(3v3)rra{(3)rs
do 14 i=1,3

do 12 J=1,3

§=0,0

do 11 k=1,3
s=gta(irk)Ikb(k,J)

ra({Jd)=s

do 13 .=1,3

a(ird)=ra(Jd)

continue

return

end
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prodgram to calculaste the effects of a -
residual field (2) in zero field on -
8 non-axially swmmetric dirolar tensor -

Prosram RESID AMT 6/29/86

eaual increments of dcos(theta) and increments in :
phi determined by sin(theta) weidhted by d(rhi). .z
Total intensity normalized to 2 units. Warning! =
this Prodram maew not work when the residuazl field

interaction arrroaches the splitting due to eta,

Alsor the eidenvalues and eidenvectors returned

from heiden are sorted by enerdy level: This may

not hold for all cases.

cormrlex Uu(3s3)r a3(3r3)sy h(3s3)s f» 2(3)r w
dimension rpeak(2s1024)

common nsts»n

nst = 3

n =3 ;

twreXsy / Input residual field strendgth in Gauss.’
accertXs res

resk = res X 4200,0

tuyreXy ’ Input dirolar courlind scaled by S (kHz),
and eta.’

accertXy ddr eta

note that dd is 1/3%spectral freauencs

ddd = ddx1000.0

Pi = 4,0%atan(1.,0)

tureXxy ’ Input no. of increments in thetas and rhi
(at eaquator).’

accertx, tt, incr

ir = incr/340

tureXy ’ Input full bandwidth in kilohertz.’
accertX, bdw

hzpt = bdwx1000.0/1024.0

tureXs ‘ Outrput to file for plottind? (O0=nosri=ves)’
accert®y irlot

i? (irlot sne. 1) d0 to S

tureXy ’ Input nuaber of spec file for eplotting,’
accertXx, ifl

printXy ’ Fields Courlindy Etas Theta Inc.» Phi Inc.:»
Bndwth’

printXx, ress dds etar ttr» incery bdw

it (irlot .ea. 1) printx, ’‘'Srec file no. ’ »ifl

The followindg matrix a(nsn) is I(z»lab) and also
the form of the residusal field.

if (tt sne. 1) tinec = 2,0/(tt-1.0) :
do 700 ii = 1, tt :
cl = -1,0 + tincxfloat(ii-1) -
thetas = acos(cl) :
irp = Jnint(irk360%Xabs(ain(theta)))
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dd)

it (ipp .eaq, 0) ipp = 1
rpinc = 2%Xpi/iep

do 600 JJ = 1y irp -
phi = pincxfloat(Ji-1)
HKUN sin(theta)Xcos(rhi) .

vwee = sin(thetal)Xsin(ehi)

zzz = cos(thets) ‘

al{lsl) = cmPlx(0.0¢0.0)

a(1+2) = guuXemrlx(1.,0:0.,0) o

8(1¢3) = xxxXXcmrlx(1.0,0.0)
a(201) = 3(1,2)

a(2»2) = 3(1,1)

3(293) = zzzXcmPlx(0.051,0)
8(3s1) = a(1:3) :
a(3s2) = condd(a(2:3))
a(3»3) = a(1.1)

Set up initial Hamiltonian

The matrix h(nsn) is the initial state including the

dirolar terms and the residual field.

do 11 i = 1,3

do 10 J = 1,3

h{isd) = caPlx(0.0,0.0)
u({ird) = cmpPlx(0.,0,0.0)
continue

continue

hi(l,1) dddxcmrlx(2.0,0,0)
h(1,2) = 3(1,2)Xresk

h(1s3) = a(1,3)Xresk

h(2s,1) = 3(2r1)%resk ;
h(2,2) = ddd¥cmprlx(-(1-eta)s0.0) o
h(2:3) = a(2y3)X%Xresk

h(3+1) = 3(3r1)Xxresk

h(3,2) = 3(3r2)%Xresk

h(3,3) = dddkcmplx(~(1+eta)»0.0)

Now diadonalize this matrix
call heiden(hrurnst)

if (eta .eac. 0) d0 to 15
call sortChsyu)

do 50 i=1snst
e(i) = h(iri)

Now find the I(z»lab) in the zero field basis
call uaau(usrarnrv) =

Now find iJ and Ji elements for intensities and
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scale bw andgular rowder terms and find enersies
Save this information in an array for rlotting

w =0,0

do 300 i = 1, nst

do 200 J = 1» nst

w = a{isd)Xa(dsi)

if (real(w) .1t. le-4) g0 to 200
f = (i) - e(J)

irnt = 512 + Jnint(real(f)/hzert)
reak(lsirnt) = irnt

reak(2rirnt) = real(w)keinc + reak(2sirnt)
continue

continue

continue
continue

OQuterut to rplotting file

k = 0.0

summ = 0.0

printXy ‘ Foint Number and Intensities!’

do 701 iii=1,1024

it (peak(25iii) +ne. 0.0) printXy peak(lsiii)y
peak(2siii)

summ = summ + peak(2,1iii)

i? (reak(2yiii) +ne. 0.0) kK = k + 1

continue

if (iplot .ea. 0.0) do0 to 900
call defile(’spec’r»ifls0)
write(1,703) k

format(ié)

write(1,710) hzert
format(eld.sb)

do 800 1 = 1,1024

it (reak(2+1i) .ea. 0.0) g0 to 800
write(1,750) Jifix(peak(1lsyi)),
reak(2ri)/(summ/2)

format(iér, el14.46)

continue

close (unit=01)

stop
end

subroutines
subroutine sort(ard)

sorts the hamiltonian and eidenvectors
based on madnitude of eigenvalues
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coarlex a3(3»3)s b(3+3)r» awork(3»3)y» bwork(3s3)
dimension s(3)y t(2) -

do 15 i=1,3

s(i) = real(a(iri))

remaxl = amaxl(s(1),8(2)rs(3))

i? (rmaxl .ea. s(1)) then .
iftlag = -1

else if (rmaxl .ea. 8(2}) then £
iftlag = 0 -

]

else if (rmaxl .ea. s(3)) then
iflag = 1
end if

if (iflag) 100,200,300
g0 to 400

do 220 i=1,
a(ir2)
alirl)
a(is3)
b¢ir2)
b(isl)
b(is3)

awork(i»2)
awork(is3)
bwork(isl)
bwork(ir2)
buork(i,»3) =
do 230 i=1+3
3(1rsi) = awork(2,i)
3(2si) = awork(1l,1i)

@onounnnw

a8(3si) = awork(3,i)
b(1si) = buwork(2s,1)
b(2si) = bwork(1lsi)
b(3ri) = bwork(3ri) , _
do to 400 ]

do 320 J=1.3
awork(Jel)
awork(Jrs2)
awork(Js3)
bwork(dsr1) b(Jds3)
bwork(J»2) b(J»2)
bwork(Jrs3) = b(drl)
do 330 J=1,3

alled) = awork(3»J)
al2rd)
8(3sd) = awork(l,J)
b(1s4)
b(2sd) bwork (2sJ)

b(3rJ) = buwork{(1l,»J)

do 415 i=1,2

t(i) = realca(i+l,i+1)) -
rmax2 = amax1(t(1),st(2)) s
if (rmax2 .eq. t(1)) d0 to 600
do 520 k=1,3

3(J»3)

a(Jdrl)

awork(ks1) = a(ksl) _J
awork(ks2) = a(ks3)
awork(ks3) = a(ks2) :

3Jr2) .

awork(2y4) o

buwork (3sJ) o
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520

330
600

buwork(krl)

b(ksl)

bwork(ks2) = b(ks3)

bwork(ks3)

do 530
al(lsik)
a8(2rk)
at3rk)
b(1sk)
b(2sk)
b(3sk)
return
end

b(ke2)

k=13

awork(1sk)
awork(3sk)
awork(2r»k)
bwork(1lsk)
bwork(3sk)
bwork(2sk)






