
;f 

i 

LBL ·23023 " "'\ 
Preprint -""" 

Lawrence Berkeley Laboratory 
UNIVERSITY OF CALIFORNIA 

EARTH SCIENCES DIVISION 

Submitted to International Journal of Heat 
and Mass Transfer. 

RC:CElVEO 
LAWRDJCE 

BE:-I"(FI ,Olf ~_l.\ru"PnTORY 

APR 2 2 1987 

A SEMIANALYTICAL SOLUTION FOR HEAT PIPE EFFECTS 
NEAR HIGH-LEVEL NUCLEAR WASTE PACKAGES BURIED IN 
PARTIALLY SATURATED GEOLOGICAL MEDIAS 

C. Doughty and K. Pruess 

February 1987 

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



.;, 

LBL-23023 

A Semianalytical Solution for 
Heat Pipe Effects Near High-Level Nuclear Waste Packages 

Buried in Partially Saturated Geological Media 

Christine Doughty and Karsten Pruess 

Earth Sciences Division 
Lawrence Berkeley Laboratory 

University of California 
Berkeley, California 94720 

February 1987 

This work was supported by the 
U.S. Department of Energy under Contract No.DE-AC03-76SF0098 



'" 

A Semianalytical Solution for 

Heat Pipe Effects near High-Level Nuclear Waste Packages 

Buried in Partially Saturated Geological Media 

Abstract 

Christine Doughty and Karsten Pruess 
Earth Sciences Division 

Lawrence Berkeley Laboratory 

The emplacement of a strong heat source, such as a high-level nuclear waste pack-

age, in a partially saturated permeable medium will give rise to the development of heat 

pipe conditions. The present paper analyzes a suitably simplified version of this problem 

which has a steady-state solution, for radial geometry. The solution is obtained in semi-

analytical form, and is compared to the analogous solution for a linear heat pipe. Vari-

ous applications are presented for porous as well as for fractured-porous media with 

different hydrologic properties. The parameters determining heat pipe length and the 

question of whether or' not the vicinity of the heat source dries up are discussed. The 

semianalytical solution is verified by means of numerical simulations which show the 

transient evolution from uniform initial conditions to the eventual steady state. 
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Nomenclature 
I dimensionless capillary pressure (J =PcIJP / ~o) 

I' derivative of I with respect to S 

9 gravitational acceleration (m/s2) 
hul vaporization enthalpy (J /kg) 
K thermal conductivity (W /m K) 
k intrinsic permeability (m2) 

kr relative permeability 
m mass flow rate per unit area (kg/s m~ 
p gas pressure (Pa) 

Po partial pressure of air (Pa) 
" P., partial pressure of vapor (Pa) 

P, liquid pressure (Pa) 

PeIJ, capillary pressure (Pa) (PcG, =P, -P, ) 
Pco reference capillary pressure (Pa) 

P'IJI saturation pressure (Pa) 
Q heat source strength (W /m) 
q heat flux (W/m2) (q=Q /21rr in radial geometry) 

R gas constant for water (461.52 J/kg K) 
r radial distance (m) 

dr radial mesh spacing (m) 
ar heat-pipe length (m) 

S, liquid saturation 
Sir irreducible liquid saturation 
Sr. saturation at which liquid becomes fully mobile' 
S scaled liquid saturation (S =( S,-S'r )/( S'B -Sir )) 
T temperature (. C) 
Xo heat-pipe length in linear geometry (m) 
y Air mole fraction 

Greek Symbols 
f3 ratio of kinematic viscosity for liquid and vapor 
6 dimensionless distance (eq. A.H) 
A parameter in characteristic curves 
v kinematic viscosity (m2 /s) 
p density (kg/m3) 

q vapor-liquid interfacial tension (N/m) 
t/> porosity 

1/1 function controlling heat pipe length .' 
w dimensionless heat source strength (eq. A.12) 

Subscripts 
a air 
b outer boundary of system 
c waste canister 

f fracture 

9 gas 

• inner boundary of heat pipe 
I liquid 

0 outer boundary of heat pipe 
v vapor 
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Introduction 

Heat pipes are being widely applied in engineered heat transfer systems, and vari

ous aspects of their behavior have been studied by many workers. The basic ingredients 

of a heat pipe are (1) a volatile fluid, and (2) a mechanism by which liquid and gas 

phases can flow in opposite directions. If heat is injected into such a system, liquid 

phase will vaporize, causing pressurization of the gas phase and gas-phase flow away 

from the heat source. The vapor condenses in cooler regions away from the heat source, 

depositing its latent heat of vaporization there. This sets up a saturation profile, with 

liquid phase saturations increasing away from the heat source. In engineered heat pipe 

systems incorporating porous media, backflow of the liquid phase towards the heat 

source is effected by capillary forces. Heat pipes occur naturally on a large scale (kilome

ters) in a rare type of hydrothermal convection system known as vapor-dominated 

geothermal reservoirs [1, 2, 31. In these systems a deep heat source of magmatic origin 

vaporizes water present in fractured porous rocks. The vapor rises in the fractures, and 

condenses at shallower depths on the cooler rock surfaces. The liquid condensate then 

flows back towards the heat source simply by gravitational force. Effective heat conduc

tivity in these systems can be of the order of several hundredW 1m· 0, whereas heat 

conductivity of rocks is typically in the range of 1-3 W 1m • O. 

A number of workers have developed analytical and semianalytical solutions for the 

steady state behavior of one-dimensional heat pipes in homogeneous porous media [4, 5, 

6, 7, 8]. All the formulations assume a linear one-dimensional geometry, and some 

include gravity. 

In the present paper we study a problem which arises in the context of nuclear 

waste isolation, namely, a heat pipe in one-dimensional radial (cylindrical) geometry . 

Numerical simulation studies by Pruess, Tsang, and Wang [91 have indicated that strong 

heat pipe effects can evolve in the vicinity of high-level nuclear waste packages buried in 

a partially saturated permeable material. This is of great practical significance, as it 
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may have dramatic impacts on waste package environment and design criteria (tempera

tures, presence or absence of moisture and air). The conditions which may be attained 

at some time following high-level waste emplacement are schematically depicted in Fig. 

1. The waste package may be surrounded by a dried zone, in which heat transfer occurs 

essentially only by conduction. At larger distance a heat pipe region may be present, 

beyond which there is another zone with predominantly conductive heat transfer, where 

temperatures are too low for significant evaporation and heat pipe effects to occur. 

Depending upon the properties of the permeable medium and the rate of heat input, the 

heat pipe region could extend all the way to the heat source, or it could be extremely 

short. 

For the problem of geologic disposal of high-level nuclear waste, heat pipe condi

tions will be of a transient nature, as heat is being transferred from a localized source 

with a time-varying rate into a large (essentially infinite) rock mass. The problem 

addressed in the present paper has been simplified by assuming that (1) the rate of heat 

generation is constant, independent of time; and (2) time-independent boundary condi

tions-are posed at' a finite distance -from the' heat source. With these two simplifications 

the system will attain steady-state conditions, for which an approximate semianalytical 

solution can be obtained. Additional approximations will be introduced in the course of 

the theoretical formulation, below. We also report fully-transient numerical simulations 

of the heat pipe process near a cylindrical heat source, which are used to verify the accu

racy of the semianalytical solution. 

Theoretical Formulation 

Present design considerations assume nuclear wastes to be packaged in tall 

cylinders of approximately 4.5 m length and 0.5 m diameter [10j. For vertical emplace

ment, this shape will give rise to two-dimensional cylindrically symmetric heat flow pat

terns. In order to simplify the analysis, we eliminate end effects by considering a heat 

.. 

• 
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source in the form of an infinitely long string of cylindrical waste packages. Further, by 

neglecting gravity effects and assuming that boundary conditions depend only on radial 

distance r from the symmetry axis, fluid and heat flow will possess one-dimensional 

radial symmetry. For time-independent boundary conditions, the system will attain a 

steady state. Under steady state conditions, three domains with different heat transfer 

mechanisms may exist in the porous medium around the heat source (see Fig. 1). The 

innermost domain is a vapor zone in which little mass flow occurs and heat flow is con-

duction dominated. The middle domain is a two-phase liquid/vapor zone at the satura-

tion temperature, the heat pipe region, where heat flow is primarily convective. The 

outermost domain is a liquid water/air domain at temperatures below the saturation 

temperature in which there is little mass flow and conduction-dominated heat flow. The 

variables used to describe the state of the system are gas phase pressure P, temperature 

T, air partial pressure p", and liquid saturation S,. It is also convenient to define a 

scaled liquid saturation S, given by S = (S, - S'r )/(S,. - S'r), where S'r is the irredu-

cible liquid saturation, and S,. is the saturation at which liquid relative permeability 

becomes equal to 1. 

A constant heat source of strength Q is prescribed at the waste canister radius rc. 

The pressure, temperature, and saturation conditions are assumed fixed at a radial dis-

tance of rb. These boundary conditions are denoted ll, Tb, and S,b, respectively. The 

specification of II and T6 fixes P'b , air partial pressure at rb, through the saturation 

curve. The scaled liquid saturation at the boundary is given by Sb =(S'6 -S,r )/(S'8 -S,r ). 

In the outer conduction zone (see Fig. 1), total pressure and saturation are assumed 

to be equal to the boundary values. Heat flow is purely conductive, so that the tempera-

ture at a distance r can be expressed as 

T(r)= Tb + Q In! rrb 1 
21rKb 

(1) 

where Kb 15 the thermal conductivity of the medium at a saturation S,b. The 
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saturation dependence of thermal conductivity for geologic media has been studied by 

Somerton et a1. [11, 12]. The gas phase in the outer conduction zone is a mixture of air 

and vapor. Air partial pressure is 

(2) 

with vapor pressure Pv given by the Kelvin equation 

[
Pea, (S) 1 Pv (T,S) = P.at (T )·exp PI R (T +273.15) (3) 

where P.al is saturation pressure, Pea, is capillary pressure (negative), PI is liquid den

sity, and R is the gas constant for water. For weak or moderate capillary pressures, 

vapor pressure lowering effects are small, and the exponential factor can be replaced by 

1. (A 1% lowering of vapor pressure requires a capillary pressure of approximately 

Pea;.=-13 bars.) 

Equation (1) shows that T steadily increases as " decreases; equation (3) indicates 

a. corresponding increase in P." while a concurrent decrease in Po follows from (2). 

WhenPv becomes ,equal. to total, pressure ~ (and· Po =0); heat. pipe . conditions develop. 

The temperature To at which this occurs can be obtained from (3) 

. () [ Pea, (S6 ) 1 
P.at To ·exp PI R (To +273.15) = ~ (4) 

The outer boundary of the heat pipe, '0' can be obtained by solving equation (I) for 

T ('0 )= To· At, 0 , we have Po = ij , Pao =0, and So = S6. The variation of satura-

tion with radial distance between '0 and the inner boundary of the heat pipe, 'j, is 

derived in Appendix A. The parameter 'j is determined from the condition 

Sj == S (rj ) = o. 

If rj < r c then two-phase conditions extend all the way to the heat source, and the 

inner conduction zone is absent. If 'j >rc then a single-phase vapor zone, in which heat 

transfer is conduction dominated, develops around the h.eat source. The value of Tc can 
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then be calculated from 

(5) 

where 1i is the temperature at the inner boundary of the heat pipe, and K" is the ther

mal conductivity of the vapor-saturated porous medium. Because K" is small, and Q 

can be large, Tc can be much higher than 1i. As well as causing a large increase in Tc , 

the formation of a vapor zone around the heat source inhibits a number of chemical 

reactions that depend on the presence of liquid water. 

Fluid and heat flow in the heat pipe region are considered in Appendix A. By 

integrating equation (A.15), the saturation profile along the heat pipe can be obtained as 

an implicit function of radius 

, s(,) 

wI d6 = w6(r) =' I 
'0 s. 

-I' dS 
-L+1-
k" k" 

(6) 

Equation (6) is of the same form as Udell's equation (24) [8J for linear geometry. 

For moderate heat flux, temperature variations along the heat pipe are small, and the 

integrand in (6) is primarily a function of S. It can be integrated numerically for given 

capillary pressure and relative permeability functions. In the examples below, we have 

integrated equation (6) using the Cautious ADaptive Romberg Extrapolation (CADRE) 

numerical integration algorithm [13J. The inner boundary of the heat pipe region, ri, 

can be.found by integrating (6) to S(rj )=0. 

o 

w6{ r;) = I 1-I' /3 dS == -1/;{/3,S" ) 
s. __ +_ 

kr, k" 

(7) 

The function 1/;{/3,Sb), which governs total heat pipe length is shown in Fig. 2 for the 

Peap, kr" and krl functions given in Table 3, Case A and several values of Sib' Substi

tuting the definitions for wand 8 into (7) yields rj: 
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(8) 

where hvl is the latent heat of evaporation of water, ~o is a (negative) reference capillary 

pressure, k is intrinsic permeability, and II v is vapor kinematic viscosity. 

The pressure profile in the heat pipe region can be similarly obtained by. noting 

that 

dP 
dP dr -=----
dS dS do 

(9) 
_.-
dO. dr 

and using (A.IS) for dS/do, (A.2) for dP/dr, and differentiating (A.H) to obtain d6/dr. 

Finally, equation (3) can be used to obtain temperatures from pressures. 

It is of interest to state the conditions under which the vicinity of the heat source 

will dry up (i.e., ri >rc). From equations (1) and (8) this condition can be written, 

neglecting vapor -pressure lowering, as 

(10) 

Dry-up of the heat source is facilitated by large heat flux Q and small permeability k. 

Comparison to Linear Geometry Case 

For the linear geometry case with S6 = 1, Udell [8] obtains an expression for the 

length of the heat pipe % 0 given by 

%0= 
-1/;([3,1 )hvl ~ok 

q "v 
(11) 

Taking the heat flux q in the radial flow case at the inner end of the heat plpe, 

q =Q /27rri , equation (8) for ri can be written as 

(12) 
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The heat pipe length is 

(13) 

Expanding the exponential, this becomes 

( 

2 Xo Xo 
Llr = Xo 1 + -- + -- + 

2rj 6r; 2 
(14) 

indicating that heat pipe length in radial geometry can be substantially larger than In 

linear geometry. For heat pipes far removed from the canister (r; large) or short heat 

pipes (xo small), (xo/r; )-0, linear geometry is being approached, and therefore 

Examples 

We have applied the above formulation to calculate steady-state thermo-hydrologic 

conditions near a cylindrical heat source emplaced in a partially saturated porous 

medium for a variety of problem parameters (see Tables 1-3). The heat source radius 

and strength are rc =0.2 m and Q =500 W 1m, respectively. At the outer boundary 

r6 =10 m, ambient conditions of T6 =26· C, ~ =1 bar, and S/6 =0.8 prevail. In cases· 

A-C permeability and porosity are 10-12 m2 and 0.4, respectively, which is representative 

of a laboratory sand pack. In cases D-F we take k =32.6X 10-18 m2 and t/>=0.108, as 

has been suggested for Yucca mountain tuffs [101. From equation (7) we see that the 

length of the heat pipe depends strongly on the relative permeability functions, krg and 

krl' so the different cases examine the effect of various functional forms for relative per-

meability. The relative permeability curves for cases A-C are shown in Fig. 3, while 

those for cases O-F are shown in Fig. 4. The resulting saturation, pressure, tempera-

ture, and composition profiles are given in Figs. 5-11; for convenience we have plotted 

air mole fraction Y =Po I P rather than partial pressure Po . 
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The characteristic curves for case A have been used in conjunction with laboratory 

studies using packed sand cores [8, 14, IS, 16]. Case B uses the same capillary pressure 

function, but a linear rather than cubic saturation-dependence for relative permeabilities, 

as has been suggested by other workers [5, 7]. The effect of using either cubic or linear 

relative permeability curves is clearly seen by comparing Figs. 5 and 6. In Fig. 5 (case 

A, cubic relative permeabilities) the heat pipe is short enough so that a vapor zone forms 

around the canister, leading to high temperatures at the canister. In Fig. 6 (case B, 

linear relative permeabilities) the saturation decline towards the canister is more gradual, 

yielding a longer heat pipe region. At the canister radius, there is still liquid present, so 

temperature remains near the saturation temperature. The effect of relative permeabil

ity functions can be predicted qualitatively by examining equation (7) and the relative 

permeability curves for cases A and B (Fig. 3). The cubic relative permeabilities are 

smaller than the linear ones over the entire range of liquid saturation where both phases 

are mobile. Thus the denominator of the integrand in (1) is consistently bigger for the 

cubic functions, leading to a smaller value of 'I/J, and consequently a shorter heat pipe. 

Tlie relative' permeability' curves' of cases' A' and B are commonly used in the 

petroleum literature, but their applicability to two-phase water flow is less well esta

blished. Case C uses relative permeabilities as measured in laboratory experiments on 

liquid-vapor water flow [17]. The saturation profile for case C (Fig. 7) is similar to that 

for case B (Fig. 6); liquid saturation remains large and no vapor zone forms at the canis

ter. A careful examination of equation (7) and Fig. 3 indicates why this is so. The mag

nitude of the integrand in equation (1) is dominated by the smaller of the relative per

meabilities. Fig. 3 shows that for large liquid saturations, vapor relative permeability is 

smaller and therefore the controlling factor in (7). Further, krg values for cases Band C 

are similar for large 8" and much larger than krg for case A. Thus the saturation 

profiles for cases Band C are similar to each other (Figs. 6 and 7), but quite different 

from that for case A (Fig. 5). 

,. 



'. 

- 11 -

For small liquid saturations, krl is smaller than krg , so krl becomes the controlling 

factor in equation (7). Since the krl curves are quite different for cases Band C, one 

would expect the resulting saturation profiles to differ for small values of S. Fig. 8 

shows the heat pipe conditions for cases Band C with a larger heat flux, Q =1750 

W 1m. As predicted, the saturation profiles begin to deviate significantly only when S 

becomes small. 

Case D uses characteristic curves [18] that have been suggested as plausible for the 

rock matrix of the candidate nuclear waste repository site at Yucca Mountain, Nevada 

[9, 10]. The saturation and temperature profiles (Fig. 9) show that the heat pipe is 

extremely short and there is no isothermal two-phase zone separating the inner and 

outer conduction zones. This result is supported by equation (8), which indicates that 

heat pipe length depends exponentially on absolute permeability k, which is much 

smaller for case D (32.6 X 10-18 m2) than for cases A-C (10-12 m2). It should be pointed 

out that the potential repository horizon at Yucca Mountain is highly fractured [10], and 

the case D parameters neglecting fracture effects are considered unrealistic. 

Pruess et 801. [9J developed an effective continuum approximation, in which fracture 

effects are represented by means of suitably modified rela.tive permeability functions. 

Essentially, effects of large fracture permeabilities are approximated by allowing relative 

permeability to become very large. Following Pruess et 801. [9J we have considered two 

effective continuum cases, E and F, which differ with respect to assumed liquid phase 

mobility in the fractures. Case E makes the conventional assumption that at ambient 

conditions of Sib =80%, corresponding to a capillary pressure of Peap =-10.92 bars, the 

fractures are drained of liquid so that the large fracture permeability is available only for 

gas phase flow. Fracture flow effects can then be simply represented by assigning a large 

constant relative permeability krg =k, Ik to the gas phase, where k, is average fracture 

permeability in the continuum sense. For an assumed k, =10-13 m2, we have krg =~067 

(see Table 3 and [9]). Alternatively it appears possible that a finite liquid phase mobility 
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may be present in fractures whose bulk volume has been drained, because of liquid held 

on the fracture surfaces by means of phase adsorption forces, or by means of capillary 

effects from surface roughness. Case F uses the relative permeability parameters pro-

posed by Pruess et al. [9] to represent mobility of both gas and liquid phases in the frac-

tures. Comparing the effective continuum calculations with the results for the unfrac-

tured case (Fig. 9), it is seen that allowance for gas flow in the fractures causes a 

moderate increase in heat pipe length (Fig. 10), while additional allowance for liquid flow 

in the fractures gives dramatic effects (Fig. 11). In the latter case heat pipe conditions 

extend all the way to the heat source. With no dried conductive zone present, tempera-

tures remain constrained near 100· C. For case F the constant relative permeabilities 

allow direct integration of (7). 

w~r.) = 1(8,,) -/(0) 
"\1 1 (3 

-+-
Jerg Jeri 

(15) 

Comparison' with Numerical Simulations 

The numerical model TOUGH [19, 201 has been used to study the transient 

development of heat pipes, and to verify the analytical solutions presented above for the 

steady state. TOUGH (Transport Of Unsaturated Groundwater and Heat) calculates 

the two-phase flow of air and water in gaseous and liquid phases together with heat flow 

in a fully coupled way. The governing equations account for gaseous diffusion and Darcy 

flow with- relative permeability and capillary presstire effects. Vaporization and conden-

sation with latent heat effects along with conductive and convective heat flow are 

included in the energy balance. Water, air, and rock are assumed to be in local thermo-

dynamic equilibrium at all times. The flow domain can include liquid, gaseous, and 

two-phase regions. Materia.l properties vary with temperature and pressure in a realistic 

way. TOUGH employs a.n integral finite-difference method which is applicable for one-, 

two-, or three-dimensional flow problems in porous or fractured porous· media. The 
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governing mass- and energy-balance equations are strongly nonlinear and are solved 

completely simultaneously, using Newton-Raphson iteration. 

A one-dimensional radial calculational mesh with 50 elements is used to calculate 

S(r), P(r), Po (r), and T(r) around a heat source for Case A (see Tables 1-3). The 

parameters in the left-hand column of Table 1 vary with temperature in TOUGH, but 

are considered constants for the analytical solution. Because the heat pipe is nearly 

isothermal, this difference is not significant [211. Further, because the analytical solution 

does not consider air in the heat pipe region, we set the coefficient of binary diffusion to 

zero in the simulations. The innermost element of the mesh, O<r <0.2 m includes the 

heat source, with strength Q = 500 W 1m. The mesh has a spacing of dr =0.1 m where 

heat pipe effects are expected (0 to 4 m), and dr =0.6 m for the outer conduction zone (4 

to 10 m). Initial conditions are everywhere equal to ~ , T" , and Sl6 • 

A calculation to steady state takes 300 time steps and requires 2.7 minutes of CPU 

time on a Cray X-MP. Fig:-12 snows tne transient development of the heat pipe, with 

the analytical solution superimposed on the final frame, which shows steady state condi

tions. The agreement is quite good. In the numerical simulations liquid saturation 

shows a slight variation in the outer conduction region, indicating a weak heat pipe 

(liquid-vapor counterflow) process in the region with T < TaG' (~). The analytical solu

tion assumes constant saturation in the outer conduction region, leading to some 

difference between the analytical and simulated saturations at r o. This difference is the 

source of the discrepancy between the analytical and simulated pressure profiles in .the 

heat pipe region, and the slight difference in saturation profiles for S >0.2. If the 

analytical saturation at r 0 is arbitrarily set to match the numerically simulated value 

there, then the analytical pressure profile matches the simulated one closely, and the 

analytical and simulated saturation profiles for S >0.2 agree well. By using a finer 

mesh, the numerically simulated saturation profile matches the analytical one closely for 

S <0.2, near rj. Fig. 13 shows the analytical solution and the numerically simulated 
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results for a mesh with 132 elements, with finest resolution, dr =0.01 om, around ri' 

This simulation would be quite expensive if it began with uniform initial conditions as 

the previous simulation did; instead it begins with the final conditions simulated by the 

50 element mesh. This progression from coarse to fine calculational mesh provides an 

efficient way to utilize numerical models in conjunction with analytical solutions. Also 

shown in Fig. 13 are the results of a simulation including binary diffusion. Departures 

from the no-binary-diffusion simulation are small, and limited to the vicinity of ro . 

For the linear geometry case the treatment is similar, and an equally good match 

was found [201 between the numerically simulated results and the analytical solution. 

Conclusions 

Under steady state conditions three domains may exist around a cylindrical heat 

source emplaced in a partially saturated geological medium: a vapor-phase inner conduc

tion zone, a two-phase heat pipe region, and a liquid water/air outer conduction zone. A 

heuristic model of mass and energy transport has been used to develop approximate 

analytical solutions for pressure, temperature, and liquid saturation profiles around the 

heat source. The accuracy of these solutions has been verified by means of numerical 

simulations. They offer a convenient means for addressing the important question of 

whether or not the vicinity of the heat source will dry up. 

The extent of the heat pipe region can be much greater for radial geometry than 

for linear geometry, a consequence of the decrease in flow rate per unit area that occurs 

with radial distance. Because fluxes diminish with radial distance, smaller pressure gra

dients are needed to drive them. This leads to a smaller capillary pressure gradient, 

resulting in a smaller saturation gradient and a longer two-phase zone. 

The characteristic curves for relative permeability and capillary pressure also have 

a strong impact on the extent of the heat pipe region. Fractured/porous media provide 

conditions which are favorable for heat pipe development, namely, large permeability in 
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the fractures and strong capillary effects in the porous matrix. 

Future work plans include a study of the transient pressure, temperature, and 

saturation profiles that develop following emplacement of a heat source. 
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Appendix A: Saturation Variation in the Heat Pipe Region 

To determine S (r) in the heat pipe region ri < r < r 0 , we begin with Darcy's law, 

modified for two-phase flow 

(A.I) 

(A.2) 

where the subscripts v and I refer to vapor and liquid phases, respectively, Til is mass 

flow rate per unit area, k is absolute permeability, kr is the relative permeability of each 

phase, and v is kinematic viscosity. Liquid pressure is less than vapor pressure because 

of the addition of the (negative) capillary pressure, Pcap 

(A.3) 

so we may write 

dPcap dFf dPu --=-----
dr dr dr 

(A.4) 

Under steady state conditions, liquid and vapor Bows are equal in magnitude and oppo-

site in direction 
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(A.5) 

For conditions of interest in nuclear waste isolation, heat fluxes are relatively small, so 

that temperature and pressure gradients in the heat pipe region are also small, and con-

ductive heat flow there can be neglected. As a consequence, evaporation and condensa-

tion take place only at the hot and cold ends, respectively, of the heat pipe. The con-

vective heat flux, q, is given by 

(A.6) 

where h", is the latent enthalpy of vaporization of the liquid. For linear geometry, q 18 

a constant, but for radial geometry q is a function of r, given by 

q =-.!L 
21rr 

where Q is the constant heat source strength: 

Substituting (A.1), (A.2), (A.5), (A.6), and (A.7) into (A.4) gives 

Following Udell [8j, we rewrite equation (A.S) in nondimensional form as 

where 

f = Pea" 
~o 

(A.7) 

(A.8) 

(A.9) 

(A. 10) 

(A.ll) 

(A.12) 

(A.13) 
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Here ~o is a (negative) reference pressure for a particular capillary pressure function, p is 

density, and 9 is gravitational acceleration. Equations (A.9) through (A.13) are identical 

to those for the linear heat pipe [8J, except for the definitions of 6 and w (equations A.ll 

and A.12). 

Equation (A.9) describes the variation of non-dimensional capillary pressure I with 

non-dimensional radial distance 6. Since we want an expr~ssion for the variation of 

saturation S with 6, we need to write (A.9) in terms of S. The relative permeabilities, 

/crlJ and /cr" and the non-dimensional capillary pressure, I, are all assumed to be func-

tions of S only, so dl / d6 may be written as 

dl = dl . dS = I' . dS 
d6 dS d6 ·d6 

where the notation I' =dl / dS is used. Hence (A.9) may be written as 

dS w (-/c~-IJ + -:-, ) 
- = ---';~---,---~ 

d6 -I' 

(A.14) 

(A.1S) 

Equation (A.1S) gives the· fundamental relationship between scaled saturation Sand 

non-dimensional length 6 for the steady state of a heat pipe in one-dimensional radial 

geometry. 
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Table 1. Material properties (at T =101 ° C). 

f3 - 0.0142 

II" - 18.9 X 10-6 m2/sec Kb - 1.07 W/m °C 

h", - 2.257 X 106 J /kg K" - 0.582 W/m ° C 
(7 - 0.05878 N/m 

Table 2. Boundary conditions. 

At rb = 10 m S'b =0.8 
fl, = 1 bar 
Tb = 26°C 

At rc = 0.2 m Q = 500 W /m 

Table 3. Characteristic curves for relative permeability and capillary pressure depen
dence on saturation. 

Case 
At 

B" 

C 

D:j: 

E 

F 

Capillary Pressure 

Pco, = ~of 
~o = -q(t/J/Ie)VJ 
f = a (l-S) + b (1-S)2 + C (1-S)3 
a =1.417, b =~2.12, c =1.263 

Same asA 

Same as A 

Pco, = ~of 
~o = -13.93 bars 
f = {S-I/>'_l)I->. 

Same as D 

Same as D 

t after Udell [81 
:j: after Hayden et al. [101 

Relative Permeability 
ler, = S3 
ler, = (1-S)3 
S'r =0.15, S18 =1.0 

ler, = S 
ler, = 1-S 
Sir =0.2, S18 =0.895 

ler, = S3 
ler , = a +bS +cS 2 

a =1.259, b =-1.7615, c =0.5089 
S'r =0.2, S18 =0.895 

ler, = ..;s [1 - (1-S 1/>.)>. r 
ler , = 1 - ler, 

S'r =9.6 X 10-4, S'B =1.0, A=0.45 

ler, = ..;s [1 - (1-S 1/>.)>. r 
ler, = 3067 
S'r =9.6 X 10-4, S'B =1.0, A=0.45 

ler, = 90.65 
lerJl = 2976 
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Fig. 1. Schematic of heat transfer regimes in plane perpendicular to the axis of the 

waste packages (not to scale). 
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Fig. 2. The function 1/;{/3,S6) for a range of temperatures and saturation boundary con

ditions, calculated using characteristic curves given in Table 1, case A. 
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Fig. 3. Relative permeability curves for cases A-C. 



- 25 -

104 

krg 

102 

.. krt Case F 

10° 
krg Case D ~ 

.:::t:, 

10-2 

Cases D and E 

10-4 

1 0-6 L-..L1..._J........--1.._...L---L_-'--~"'---'-_"""--__ 

0.0 0.2 0.4 0.6 0.8 1.0 

XBL 8611-12750 
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Fig. 5. Analytical solution for scaled saturation, pressure, temperature, and air mole 

fraction profiles, using characteristic curves from Table 1, case A, and Sib =0.80. 
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Fig. 6. Scaled saturation, pressure, temperature, and air mole fraction profiles for case 

B and Sib =0.80. 
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Fig. 7. Scaled saturation, p.ressure, temperature, and air mole fraction profiles for case 

C and S'b =0.80. 
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Fig. 8. Scaled saturation, pressure, temperature, and air mole fraction profiles for cases 

Band C with Sio =0.80 and Q = 1750 W 1m. 
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Fig. 9. Scaled saturation, pressure, temperature, and air mole fraction profiles for case 

D and Sill =0.80. 
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Fig. 10. Scaled saturation, pressure, temperature, and air mole fraction profiles for case 
'..'"': 

E and S'b =0.80. 
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Fig. 11. Scaled saturation, pressure, temperature, and air mole fraction profiles for case 

F and S/I, =0.80. 
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Fig. 12. Numerically simulated scaled saturation, pressure, temperature, and alr mole 

fraction profiles at various times. For steady-.state conditions, numerical and analytical 

solutions are both shown. 
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Fig. 13. Steady state profiles simulated numerically using a fine mesh, compared with 

the analytical solution. Profiles for a simulation including binary· diffusion are also 

shown. 
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