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ABSTRACT

This lecture is primarily an introduction to coordinate-invariant regulariza-
tion, a recent advance in the continuum regularization program. In this con-
text, the program is seen as fundamentally geometric, with all regularization
contained in regularized DeWitt superstructures on field deformations.
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7-9, 1987, University of California, livine. Proceeding Suppl ts Section of Nucleasr Physics B.
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1. Introduction
The goal of the continuum regularization program®~? is uniform nonperturbative in-

variant continuum regularization across all quantum field theory. Successful applications

43-7 gauge theory with fermions®®

have been given for the scalar prototype? , gauge theory
and supersymmetric gauge theory'®. An introductory discussion of the program may be
found in Ref. 11. Recently, a general framework for coordinate-invariant regularization'3:*?
has been given, with applications to the general non-linear sigma model'*!? and quantum
gravity'*>'* as examples.

1 shall concern myself here primarily with this advance. The most general framework is |
in phase-space'®, and, with certain covariant spacetime Laplacians, this formulation should
provide invariant regularization for any theory with Liouville measure. The development
is geometric, with all regularization contained in regularized DeWitt!® superstructures on
field-coordinate deformations. Parallel development of invariant coordinate-space regu-
larization follows with regularized functional integration® of the momenta, and here the
previous regularizations of the program are seen as special cases in flat space and flat
superspace.

For a given formal theory, defined as a functional integral with certain symmetries,
the program always follows two basic steps:

1) Find a formally equivalent covariant stochastic'®!” or Schwinger-Dyson (SD) formu-
lation. Viability of the SD formulations is expected even when the formal action is
unbounded, as in the case of Euclidean gravity discussed below.

2) Apply covariant-derivative regularization,

@ = { exp(a/A?), Euclidean 1)

(1 —4/4%)™, Euclidean-Minkowski
where A is the cutoff, R is the regulator and A is the relevant covariant spacetime Lapla-
cian. The exponential or heat-kernel® regulator is guaranteed to regularize any Euclidean

1!—4,6—1

theory, and power-law regularization is expected to succeed as well for n not less

than some theory-dependent critical power.



2. Phase-space functional integrals
Introduce generic field-coordinates $*(€) and conjugate momenta n,,(€) on a d-dimen-
sional space time {™, where the generic index M may include Einstein tensor indices. The

formal theory of interest

z2= /me-"l‘-" (2.1a)

Do = [ dmas(€) A dd™(€) (2.1b)
[§

(F) =27 [ Dwe " Fig,x) (2.1c)

is taken with Liouville measure and an essentially arbitrary “Hamiltonian® H. 1 focus
here on two possible coordinate-invariances of Z,

G,: field-coordinate diffeomorphisms ¢ (€) = F*($(¢))

Gq¢: Einstein diffeomorphisms £ = f™(§)

which, along with gauge invariance and other symmetries, should be respected by the
regularization.

1 also introduce DeWitt's'® G4 and Gg-invariant inner-product on field-deformations

USHI* = f(de) Gun($(€1)64" (€156%(6) (220)
Ouan($6)) = Eua($(ENEns(H(E)) @2

where 0w and £,,, are the ultralocal supermetric and supervielbein respectively. For

example, the most general supermetric for gravity ¢* — g, is

mnrs l mr __ne me _ne mn_ro
g =c[§(y 9 +g™ e )+ 919™"9 ] (2.3)

with ¢ = det'/Yg,..). The inverse ou;cnhuctmcu are J~" and £¥“. | am going to employ
these superstructures as auziliary quantities or covariant kernels'® in the construction of
equivalent covariant stochastic and SD formulations below, independent of ihe specific
form of H.

Some examples of particular interest are as follows. The Hamiltonian

H= %/(df)ﬁug""nn + 514 (2.4)
corresponds to
z= / DéE(gle "M (2.58)
E19) = [1det'*Gun( () {2.5)
! 4.
> ~%

after a trivial momentum integration in (2.1), so this is the general theory with coordinate-

space DeWitt ineasure. The class includes the general non-linear sigma model
1
§ = 3 [(4)0ung™0.4" 00" 1 - (264)

Ounw = e(:un(¢) (26‘))

and DeWitt-measure Euclidean gravity.

Other cases of interest include real-time Hamiltonian and constrained Hamiltonian sys-

Sems. As an example, consider canonical gravity'® with ¢* —s (g, A), ma — (n, 5™),

H = =i [[de)lx"0g, ~ AT (g5, %) (2.78)

Gmn 3 95, Foi =X, goo = AN - A: {2.7b)
and the standerd identification of the full metric g... is given in (2.7b). This unextended
phase-space formulation is manifestly invariant only undes G-, the group of spatial Ein-
stein diffeomorphisms, but the full auxiliary supermetric is easily constructed from (2.3)
and (2.7b).

Zwanziger's ghostless gauge-fixing™ may be applied to unextended phase-space the-

ories at the stochastic and SD levels below. A next step to Grassinann-extended phase-
spaces, incorporating the developments of Refs. 8,9, will allow the regularization of more

conventional ghost gauge-fixing®®.
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3. Phase-space regularization

The original stochastic process studied by Langevin®? was a phase-space process, and
two recent studies in phase-space stochastic quantization?? of flat-space scalar fields were
helpful in constructing the general processes of this section.

I begin by stating the G4 and Gy (or G{) covariant!® phase-space process

. §H §H

Ky = — z;; -pg.,,z;: + VBEuana (3.1a)

e SH

= (3.1b)
(n.(6, )nu(€', 1)) = 26,86 — €)5(t — 1) (3.1¢c)

which I will show below is formally equivalent to the general phase-space functional in-
tegral (2.1). Here 7, is supertangent-space noise, t is a Markov time, overdot is Markov
time derivative and 8 is & positive auxiliary parameter which generally controls the rate
of equilibration. As promised above, the DeWitt superstructures €., and G, appear as
covariant kernels*® in the process, independent of the specific form of H. ¥ also note the

remarkable fact that such phase-space processes are stochastically unambiguous'?34,
1
Euana =0, (3:2)

that is, insensitive to choice of stochastic calculus?.
Invariant regularization of the phase-space process (3.1) is achieved by replacing the

supervielbein in the noise term by a regularized supervielbein 8;‘,6 &
(Euande [ &) Ebgienal€) o (3)

Eb e = RO Eu(9E)) (3.3b)

where R is the covariant regulator. The correct matrix elements (A),,¢’ of the abstract
spacetime Laplacian A are defined on objects V., ~ mu which transform under G4 and G

like the momenta,

(AVM)( = (A<)Q"V~(f) (3.4a)

@™ = @)% - ¢) (3.4b)

)

and the twiddle is a reminder that m,, is a G (or Gf—- )-tensor density when ¢* is a tensor.

The regulator is constructed by matrix multiplicﬁtion, and the unregularized process (3.1)

' @
is regained in the formal large cutoff limit
R@)u"™ — 82846 - €)  (359)
Ebgae 3 Eua($E)EE - €) (3.5b)

of the regulator forms (1.1). The prescription (3.3) is a geometric generalization of the
previous regularizations of the program.

The regularization is invariant’® under all the covariances of A. The degree of dif-

ficulty in the explicit construction of A depends on an interplay of Gy, G¢ and other

invariances. For example, if regularization of G only is of interest, the ordinary Lapla-
cians A = g™ D,, D, of general relativity will suffice. The same A constructed with (2.7b)
is adequate for regularization of canonical gravity. I call such Laplacians provisional, since
it would be pr;femble to maintain manifest covariance under Gy and G; simultaneously.
The original gauge-covariant Laplacian employed in the regularization of gauge theory'®
is provisional in the same sense.

In the case of the general non-linear sigma model (2.4) and (2.6), it is not difficult to
obtain a spacetime Laplacian A = g™"A,, A, which is covariant under both Gy and Gg.

The covariant derivative A,, is simplest on V,, = e"'Vu = Gg-scalar,

AnVis = BuVas — T, Vi = Vium (3.6a)
AVum = 8 Vim — ~m(9)Vur - f‘:uvnm (3'6‘))
I, = 8.4°T%,(0) (3.6¢)
where I'7,_ (g) is Einstein connection, and
¥V — ;l_ MT __2_ _8_ —_ _8_
Pus(g) = 20 (8¢Ngr’ + 8¢,gru 81}"0"’) (3.7)

is the superconnection.

Construction of A in more general cases deserves further study. For example, I have
not yet constructed a G, and G-covariant Laplacian for gravity, and the regularization
of gravity below is provisional in this sense.

When H is a non-singular quadratic form in the momenta, eq. (3.1b) may be used to
eliminate . in favor of ¢¥. The resulting regularized covariant second-order stochastic

processes are discussed in Refs. 13,24.



4. Regularized phase-space Scllwi'nger-Dyson systems

The invariant regularized SI) system

sH 6

0= ([F‘H]+p[/(d()g..,. +4_)F) (4.1a)
(. = fuo | - g% il (a10)
B, = [0V 55 (4.10)

is associaled to the regularized process (3.1) and (3.3), under assumption of equilibra-
tion, and provides a d-dimensional formulation of the regularization. Hese F|¢, ] is an
arbitrary functional, the \brncket is ordinary Poisson bracket, and A. is the regularized

phase-space super-Laplacian, in terms of the regularized supermetric
g:’{;u(’ = /(d{")t':‘;“,.f:‘,;“., (4.22)
= [(d€") BBt R Gral$16) (4.20)

It is easy to check that the system (4.1) is a regularization of the original formal theory.

In the formal large A limit,

Oleme —5* TunlHENE'(E - €) (43)

and the SD eqs. (4.1a) are seen to correspond to the unregularized formal identities

0= / Dwle ¥, F) (4.40)

0 =0 D f(de) g (e Oun s F] (4.40)

at the level of the functional integral (2.1). The roles of f and (., s auxiliary quantities
in the formulation are clearly seen in (4.4b). In fact, the systems (3.1) and (3.3) or (4.1)

93334 of invarinnt regularizations of the original theory. Such structure is

define a f-family
analogous to latticeization ambiguities, and I will note below that large g is the simplest

of the family.

5. Moment relations
In what follows, I study further structure in the special case of the general theory with

DeWitt measure (2.4), for which (4.1) takes the formn
0= ((F.H) +/’[/(d{)x.,% +b)F) . (5.1)

In particular, § begin to study here a family of moment relations®!?, which will provide
the basis for the treatment both of Weyl anomalics and integration of the momenta below.
‘The moinent expansion is in powers of the momenta. For example, the zeroth-moment

choice Fy[¢, =) = F[$) in (5.1) g'ivco the zeroth-moment relation

= fuormue™ s 2o Fld) (52)

which states the vanishing of translation-invariant averages linear in the momentum. The

first-moment choice Fy|¢,x} = (df) n., 0" 6/64" F|$] gives, after some algebra, the first-

~ moment selation

0= (|- fuaorzzom sz + &) Fidl) (53)
where &’ is 8 mized phase/coordinale-space super-Laplacian
B = [l sl Onul 0 OO sz, O
D § 4
b = Loy~ O gy (5.40)

and D/D¢? is super-covariant derivative. With regularized integration of the momenta,
discussed below, averages involving the momenta are rcpln‘ccd with averages over the
coordinates alone. Then, the relation (5.3) will provide a purely coordinale-space regu-
larization.

A taste of the integration procedure is obtained with the mixed-moment choice F§ =
H, which givea

( Jldeymug™mna) = { fropase™ (5.5)

where

GA = G808 (8(0)) (5.6)

80 the right side of (5.5) is the average of the invariant trace of the regularized supermetric.
This relation is in momentum-integrated form, and will be seen to play a crucial role in

the study of Weyl anomalies below.



In this connection, it will be useful to have the identity (5.5) in another form. It

follows from (4.2) that

08¢~ = [1de) R ™ R, 57)

where I have introduced another set of matrix elements of the spacetime Laplacian, now

defined on objects V¥ = g4~ Vy ~ 6¢™ which transform like field-coordinate deforma-

tions, _
@V¥) = @)WV (5.80)
@™ = (A w86 ~ €) (5.8b)
= 0 (HE) @) Ganl(E)) - (5.8¢)

Moreover, as seen below, these are the natural matrix elements for coordinate-space reg-

ularization.

‘/_/ b}

6. Weyl anomaly in the general d = 2 non-linear sigma model
I define the phase-space stress-tensor ™" as the vesponse of any matter Hamiltonian

to a general deformation of the Einstein metric

1 mn
8y Hunnser = 3 [(d€) 6™ 6g1nn . 6.1)
This gives
_ 55 d .
el = 0™ g, = -29.....—-5g + Eﬂug N (6.2)

for the general d-dimensional non-linear sigma model (2.4) and (2.6). The second term
in (6.2) is the response of the DeWitt measure.

In d = 2 dimensions, the first term of (6.2) is the full response of the action to a Wey!
deformation. For the classically Weyl-invariant S of (2.6), this term (and its regularized

average) is zero. The relation

( /(dé) ed) = /(dc)x..a“":,.) =( /(Jf)g;‘,“"‘ (6.3a)
= ( fO)EE YA (YY) (6.3b)

is then obtained with eqs. (6.2), (5.5) and (5.7) from the measure term alone. The result
(6.3) is a nonperturbative geometric characterization of the general Weyl anomaly in the
presence of the regulator.

As a comparison with known background-field (one-loop) results, consider the flat D-
dimensional internal manifold O, = e,,y. Then the A of Section 3 reduces to ordinary

G¢-covariant Laplacian on scalars and scalar densities,

O e = 55 (O)e (6.4a)
@™ = 62e()D)ee™(€) | (6.4b)
= 82 (6.4¢)
@) = (D™0.)8*(€ ~ ) (6.4d)
and
( flde)ed) = D fde) (¥ *)ee (6.5)
— Juore[ 22 4 D gy oa) (6.50)

is obtained by heat-kernel expansion, as expected?®, where R(g) is Einstein curvature
scalar. The general nonperturbative characterization (6.3) invites further analysis on

non-trivial manifolds with heat-kernel and background-field methods.

9



7. Coor(‘]inate-space regularization

1 now discuss regularized integration®'3-2¢

of the momenta at large # to obtain the
corresponding form of coordinate-space regularization in the case of the general theory
with DeWitt measure. As in the case of regularized Grassmann integration®, integration
of the momenta at finite 3 secins prohibilively complex.

Since the formal unregularized theory is independent of 3, no growth®* of the averages

'ol the theory is expected at lasge 8. The large-g relation

0= ([/(d{)x., +A]F)m (1.1)

then follows from the SD eqs. (5.1), to prevent the growth of the other terms. The
subscript zero denoles statements like (7.1) which are true only at large f. The relation
(7.1) can be solved’® by iteration with a general moment expansion, as in Section 5, and

the results packaged as a generating functional for averages involving the momenta

(eﬂ‘“““""ml) _ ( ;jla)Juu)omw,ﬂ«')pm) (7.2)

'
where F|¢] is arbitrary and J* is a source. This states that the large-f momentum

integration is still Gaussian, with the contraction rule

1
"u(()'n“ ) = u( ne (7.3)
inside coordinate-space averages.
In particular, this result can be used to eliminate the mc tum-dependerice in the

mixed phase/coordinate-space super-Laplacian A’ of eq. (5.3), which gives the regularized

coordinate-space SD system

0 = (LFI4) (7.42)
L = /("03;:0‘"', 7o ‘ (1.4b)
B = fle s s pos (7.4¢)

announced originally in Ref. 12. Here A is the regularized coordinate: space super-Laplacian,

in terms of the regularized inverse supermetric
5" = ") RAY S rer RAY™ o 07 (")) - (75)

which I have expresscd in terms of the natural Laplacian (4)*¢,,¢ for coordinate-space

regularization, given in (5.8).
1

[ 2N Y

As above at the phase-space level, it is easy to check that the SD system (7.4) is a
coordinate-space regularization of the original unregularized theory. In the formal targe

A limit

()" e -+ 58 - ¢) (7.6a)
OF™C — g (NS (E - €) (7.60)

and the SD eqs. {7.4) correspond to the umegnlmizcd formal identities

0= [Ds [ue) w(c)[ & SEIO (A 53773 Fdl] (1.7

54(6)
at the coordinate-space action level (2.5).

Regularized Ito and Steatonovich coordinale-space processes equivalent to (7.4) on
assumplion of equilibration are given in Refs. 12,13,

The ?revioul xeguluéznliom of the program are special cases of (7.4) in flat space and

flat superspace. For example, the y = 0 form™® of regularized gauge theory is obtained

from (7.4) with ¢ — A% Guw — 5,.5%, T2 ,(0) —+ 0 and

gy — s Rt (7.8)

where A is non-abelian gauge-covariant Laplacian. Like the G¢-covariant Laplacian of
general relativity, this Laplacian is provisional, and a Laplacian covariant under both G,
and gauge-transformations is not yet known. The full G,4-covariant Laplacian for the
scalar prototype is, of course, a special case of the general sigma-model Laplacian given

in Section 3.

1.

Lol K4



8. Regularized Buclidean gravity
As an example, the general regularized coordinate-space SD eqs. (7.4) are easily writ-

ten out for DeWitt-measure Euclidean gravity

0 = (LFlgma)) ' (8.1a)

L = /(dc)[tlgmn - Omn;n_éf—]‘sz—m ‘l’A (Slb)

bg..
B = [N O A e o

" Dg,.(€") bgmn(£)

where the supermetric for gravity was given in (2.3). I have also added s G-Zwanziger

(B.IC)

gauge-fixing term

ngmn = DmZn + Dnzm » (82)

whose generic form is always a gauge-transformation. The spacetime Laplacian is the
provisional A = g™ D, D, of general relativily on symmetric covariant tensors of rank
two, and the regulator is taken as heat-kernel.

The differential SD formulation (8.1) bypasses the question of integration contour for

the unstable conformal mode?? of the Einstein action

1
=5 ] ()R, (8.3)
giving directly the correct Euclidean result, at least in weak coupling. In particular, with
Gmn = bina + 8hpy » A= hmm (840)
Za = (Buham — 28.h) (8.4b)
m = 2" i tnm 2 B
the free regularized graviton propagator
(hn(E)h (€)'
—[(l + T ) _ 142y (6 9,_91 +8 _8,,.8,,)](2320/43) (3.55)
- 2~d/mars 3-d+2y\V™ QO 0 -0 /e
Lines = 5 (Boebna+ Bibiar) s T = B (8.5b)

is obtained directly, and the free regularized n-point functions are constructed according
to Wick's theorem from (8.5). The result is gauge-equivalent for all 4 to the correct
Euclidean Feynman gauge (first term), and also indicates that the perturbation expansion
is much simpler for the supermetric parameter choice y = —1/2.

Chian and I'* have generalized the SD system (8.1) to regularize arbitrary power-law

measure []¢ e(€), where vow = (d + 1){d — 4)/4 is the DeWitt power in d-dimensions,

12

« 0

and studied the weak-coupling expansion. The expansion provides a geometrization of
previous regularized SD rules, whose structure will be generally applicable in coordinate-
invariant regularization. We have also completed a non-trivial one-loop explicit check of
Einstein invariance of the regularization. Our conclusion is that a one-loop cosmological

counterterm

$2-1d-2
]

Py
to- gl £ oo

is necessary to stabilize the flat vacuum, and that, with this counterterm, the graviton

mass is zero for all (d,v), as it should be.

13
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