
LBL-23028
c

, d-.. 

Lawrence Berkeley Laboratory 
UNIVERSITY OF CALIFORNIA 

.J Physics Division 
.. 

Presented at the Conference on Nonperturbative 00\' I 

Methods in Field Theory, Irvine, CA, 
January 7-9, 1987, and published in the Proceedings 

THE GEOMETRY OF CONTINUUM REGULARIZATION 

M. B. Halpern 

March 1987 

Prepared for the U.S. Department of Energy under Contract DE··AC03-76SF00098 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



~ -4 

March 1987 LBL-23028 

UCB-PTII-87/9 

THE GEOMETRY OF CONTINUUM REGULARIZATIOW. 

M,B. Halpern 

Lawrence Berkeley Laboratory 
and 

Department of Physics 
University of California 

Berkeley, California 94720 

ABSTRACT 

This lecture is primarily an introduction to coordinate-invariant regulariza­
tion, a recent advance in the conlinuum regularization program. In this con­
text, the program is seen as fundamentally geometric, with all regularization 
contained in regularized DeWitt superstructures on field deformalions. 
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1. Introduction 

The goal of the continuum regularization program,-a is uniform nonperturbative in­

variant continuum regularization across all quantum field theory_ Successful applications 

have been given for the scalar prototype2 , gauge theoryl,l-7, gauge theory with fermions8 ,& 

and supersymmetric gauge theorylo. An introductory discussion of the program may be 

found in Ref. 11. Recently, a general framework for coordinate-invariant regularizationu ,I3 

has been given, with applications to th" general non-linear sigma modelu ,13 and quantum 

gravityU-U as examples. 

lshall concern myself here primarily with this advance. The most general framework is 

in phase-spaa", and, with certain covariant spacetime Laplacians, this formulation should 

provide invariant regularization for any theory with Liouville measure. The development 

ia geometric, with all regularization contained in regularized DeWitt" superstructures on 

field-coordinate deformations. Parallel development of invariant coordinate-space regu­

larization follows with regularized functional integration& of the momenta, and here the 

previous regularizations of the program are seen as special cases in fiat space and fiat 

supers pace. 

For a given formal theory, defined as a functional integral with certain symmetries, 

the program always follows two basic steps: 

I) Find a formally equivalent covariant stochastic1o,17 or Schwinger-Dyson (SO) formu­

lation. Viability of the SO formulations is expected even when the formal action is 

unboun~ed, as in the case of Euclidean gravity discussed below. 

2) Apply covariant-derivative regularization, 

R(Ll) = {eXP(Ll/ J12), 
(1 - Ll/ J12)-n, 

Euclidean 

Euclidean-Minkowski 
(Ll) 

where A is the cutoff, R is the regulator and 4 is the relevant covariant spacetime Lapla­

cian. The exponential or heat-kernel' regulator is guaranteed to regularize any Euclidean 

theory, and power-law regularizationl l- 4,o-7 is expected to succeed as well for n not less 

than some theory-dependent cri.tical power. 



2. Phase-space functional integrals 

Introduce gcneric field·coordinates ","(0 and conjugftte momenta ... «() on a d·dimen· 

sional spftce time (m, wl,ere the generic in<lex AI mfty include Einstein tensor indices. Tile 

formal theory of interest 

z = j Vwe- III •. •1 

1\., = n dw .. (() 1\ d","W 
f 

(F) = Z-I j 1\.,e-1I FI"',.) 

(2.la) 

(2.IN 

(Hc) 

is taken with Liouville measure and an essentially arbitrary -Uamiltonian- II. I foeu. 

here on two possible coordinale-invariances of Z, 

0.: field·coordinate diffeomorphism. ~ .. «() = F II(",«(» 

Oc: Einstein diffeomorphisms f' = /m«() 

which, along with gauge invariance and other .ymmetriCl, .hould be respceted by the 

regularization. 

I also introduce DeWill'." G. and Of-invariant inner-product on Reid-deformation. 

115"'111 
= j(d()O .... ("'«(»5"'HW5"' .. W 

o .... ("'«(» = ell A ("'(E))CH A ("'(0) 

(2.2.) 

(2.2b) 

where Oil,. and e .... are the ultralocal .upermetric and .upervielbein reapceti.ely. Fo~ 

eJIDmple, the most gen~ral supermetric for gravity ",II -+ g ... " i. 

om", .. = e( ~(gm. g"" + gm"g"') +.., gm"g") (2.3) 

• 
with e = detl/'Ig","). The inverse superstructures are OWH and CWA

_ I am loinl to employ 

these superstructures ae ouxiliarll quantities or covariant lernel." in the construction of 

equivalent covariant stochastic and SD formulations below, independent of the .pecific 

form or II. 

Some examples or particulllr interest are ae follows. The lIamiltonian 

corresponds to 

II = ~ j(d()7f .. O
IlH

",. + 51"'1 

z = j V"'£I</>le- SJ 4'1 

[I"') == n dell/'O .. ,.(</>(O) 
~ 

:2. 
~ .....:! 

(2.4) 

(2.5a) 

(2.51i) 

arter a trivial momentulll integration in (2.1),60 this is the genefal theory with coordinate­

.pace DeWitt measure. The c1M. inchulcs ti,e general non· linear sigmft model 

I l(_1t "'",. u 5 = 2 j"",)(J .. .,g 8"", 8",,,, + ... (26ft) 

0 .... = eO .... (",) (2.6h) 

and DeWitt-measure Euclidean grftvity. 

Other caees of interest include real-time nftmi.ltonian and constrftine<llIomiltonian sys­

.lem •. A. an eKample, consider canonical gravityl. with "' ... -t (9;;, ~ ... ), " .. -+ (.;;,,,m), 

II = -i j(d()lw lj
8,g;j - ~m 1""(g;j,.I;)I (2.7a) 

gmn: 9;j, 901 = A" 900 = ~;A' - A: (2.7b) 

and the .landard identillcation of the rull metric 9m" i. given in (2.7b). This unextended 

phaae-.pace formulation i. manifestly invariant only under 0(, the group of spftti .... Ein­

.tein diffeomorphism., but the full auxiliary .upermetric is easily constructed from (2.3) 

and (2.7b). 

Zwanziger'. ghnetJeSl gauge-lI.ingN may be applied to .unextended phase· space the­

oriCi at the .tochaetic and SO level. below. A next .tel' to Grassmann-extended phase­

'pacCl, incorporatinl the development. of Ref •. 8,9, will allow the regularization of more 

conventionallhnet laule-lixinl1l . 

.3 
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3. Phase-space regularization 

The original &tochailic process studied by Langevin2a WIUI A phase-space process, and 

two recent studies in pbase-space stochastic quantizationU of flat-space scalar fields were 

helpful in constructing the general processes of this section. 

I begin by stating the G1 and G, (or G {) covariantU phase-space procesa 

. 5H HI fa 
.... = - 5"," - {J()"H 5"H + V{J£: .... " .. (3.1110) 

~ .. = HI 
5 .... 

(3.lb) 

(".U,t)'1 .. «',t'» = 25 ... cS"U - (')5(t - t') (3.lc) 

which I will show below is formally equivalent to the general phase-spacc functional in­

tegral (2.1). Here" .. is super tangent-space noise, t is a Markov time, overdot i. Markov 

time derivative and {J is a positive auxiliary parameter which generally controls the rate 

of equilibration. As promised above, the DeWitt superstructures E .... and O"H appear lUI 

covariant kernels'S in the process, independent-of the specific form of H. I also note the 

remarkable fact that such phase-space prOCe&&CS are ~toch4Stically unam6iguo,.;a.,., 

n 
£ .... " .. ": 0, (3.2) 

tbat is, insensitive to choice of stochastic calculusa6 • 

Invariant regularization of the pbase-spacc procesa (3.1) ia achieved by replacing the 

supervielbein in the noise term by A regularued ~upervie16cin E!';A(' 

(£: ... " .. ), -t f(d(I)£:~,; .. ,.".«(I) (3.3a) 

A - ·Nt' 
E .. ,; .. " == R(.1) .. ,· £:H .. (<J>(f» (3.3b) 

where R is the covariant regulator. The correct matrix elements (.1) .. ,;H'· of the abstract 

spacetime Laplacian .1 are defined on objects V .. ~ 1l .. which transform under G1 and G, 

like the momenta, 

(.1V .. ), == (.1,)~ HVH(O 

(.1) .. ,;H'· == (.1C>~H 5"U - e') 

(3.4a) 

(3.4b) 

and the twiddle is a reminder th"t 1[ .. is a G, (or G{ )-tensor density when "' .. is a tensor. 

The regulator is constructed by matrix multiplication,and the unregularized process (3.1) 

4 

{..,. " . 

is regained in the formal large cutoff limit 

R(.1) .. c""· -:;-> 5:5"U - (') 

E~,; .. ,. "7 E.u (</>(0)5"U - (') 

(3.5a) 

(3.5b) 

of the regulator forma (1.1). The pr!",cription (3.3) is a geometric generalization of the 

previoua regularizations of the program. 

The regularization is invariantU under all the covariances of .1. The degree of dif­

ficulty in the explicit construction of .1 depends on an interplay of G~, G, and otber 

invariancca. For example, if regularization of G, only is of interest, tbe ordinary Lapla­

cians .1 = gmn DmDn of general relativity will suffice. The same .1 constructed with (2.7b) 

is adequate for regularization of canonical gravity. I call such Laplacians provisional, since 

it would be preferable to maintain manifest covariance under G~ and G, simultaneously. 

Tbe original gauge-covariant Laplacian employed in tbe regularization of gauge tbeory,,3 

is provisional in tbe same sense. 

In the cllSe of the general non-linear sigma model (2.4) and (2.6). it is not difficult to 

obtain a spacetime Laplacian .1 = gm".L1m.1" wbiCh is covariant under both G~ and Gc. 

The covariant derivative .1m is simplest on V .. == e-'V .. = GCscalar, 

.1mV .. = D."V .. - f: .. VH == V .. m 

.1"V"m = 8,.V .. m - i""nm(g)V ... - r::"VHm 

r::. .. == 8...",Rr; .. (O) 

where I""nm(g) is Einstein connection, and 

r:;.(o) = ~o .. r( a~Ou + a:SOXH - a:rQHs) 

is tbe superconnection. 

(3.6a) 

(3.6b) 

(3.6c) 

(3.7) 

Construction of .1 in more general cases deserves furtber study. For example, I have 

not yet constructed a Ga and G,-covariant Laplacian for gravity, and the regularization 

of gravity below is provisional in this sense. 

Wben H is a non-singular quadratic form in the momenta, eq. (3.1b) may be used to 

eliminate 1[ .. in favor of ~". The resulting regularized covariant second-order stocbastic 

processes are discussed in Refs. 13,24. 

5 



4. Regularized phose-space Schwinger-Dyson systems 

The invariant regularized SI) system 

} 
611 6 

0== ( {F, II} + p[ (d()OUHC-'- +~. ]F) 
OWN 011',., 

(4.la) 

6F 611 611 6F] 
{F, II} == j(d() [6"i';' 6tr: - 6~" h .. (4.11.) 

61 

~. == j(d()(d(')O!('H(.-. - .. - (4.~c) 

is associated to the regularized process (3.1) and (3.3), under &lsllmption of equilibra. 

tion, and provides a d·dimensional formulation of the regularization. lIere F(~, _I i. an 

arbitrary functional, the bracket is ordinary Poisson brackel, and fl. i. the regularized 
\ 

phtUe.,pace ,uper.Laplacian, in terms o( the regularized .upermdric 

Ot'('H(' == j(d(")C!('A(.C:("A(. 

j(d(") R(Ll) .. (,r(·· R(Ll),,(,IO(· Oro(~(f'» . 

(4.2a) 

(4.2b) 

It is e&lY to check that tile .yatem (4, I) i. a regularization of the original formal theory. 

In the (ormal large A limit, 

O!('H(' -;' O .... (~«(»CSd(E - E') (4.3) 

and the SD eqs. (4 .... ) are seen to corre.pond to the un regularized formal identiti.,. 

o = jVw(e-H,F} 

o =pjVwj(d()6! .. (e-"0""6!"F] 

(4.4a) . 

(4.4b) 

at the level of the functional integral (2.1). The roles of p and 0 .. " &I aUlliliary quantities 

in the formulation are clearly seen in (4.41.). In fact, the' systems (3.1) and (3.3) or (4.1) 

define a p.family8,I3,U of invari"nt regularization. of the original theory. Such .tructure i. 

analogous to laUiceizalion ambiguities, anel I will nole below that large p is the simplest 

or the ramily. 

... -' , 

6. Moment relations 

In what follows, I study further structure in the special case o( the general theory wilh 

DeWitt measure (2.4), (or which (4.1) h,kes the (orm 

0== ({F,IIHP[j(d()IrU6!u +i.\.)F). (5.1) 

In particular, I begin to .tudy here a (amily of moment relations·,ll, which will provide 

the basis (or lhe treatment both of WeylanolJlalies an.1 integration o( ti,e momenta "elow, 

The moment ellpansion i. in powers o( the momenta. For example, the zeroth· moment 

clloice Fo(~, Ir) == F(~I in (5.1) gives the zeroth· moment relation 

0== (j(d() Ir .. O .. 
H 6!" FI~I) (5.2) 

which .tat.,. the vanishing of translation·invariant averag.,. linear in the momentum. The 

IIrst·moment choice FII~, _) == Jtd() _ .. 0"H616~H F(~I gives. after lOme algebra, the first· 

moment relation 

0", ((- j(d()6~0"" 6;" +~IJF(tl) (5.3) 

where ~I i. a miaed ph&le/coordinate·space super·l.aplacian 

/),' == j(d()(d(I) 1r .. (UIr .. «(')O .. r(~(mOHO(~(n) J)~O({') 6:r ([j (5.4,,) 

D 6 _ (_6_6" _ cS"«( _ f)r" ]_6_ 
D~O(E') 6~r«) = 6~CI«(') r or 6~"(() 

(5.4b) 

and 01 O~o i. super·coooriant derivative. With regularized integration or the momenta, 

discussed below. averages involving the momenta are repla~ed with averages over the 

coordinates alone. Then, the relation (5.3) will provi.le a purely coordinate· space regu· 

larization. 

A taste of the integration proceelure is ot.tained wilh Ihe milled·momenl choice F; = 
II, which givCfl 

(j(d()lruO""Ir,,) = (j(d()O!('Uf
) (5.5) 

where 

Q~/'( = O!(,,,(oHU(~(m (5.6) 

10 the rigM aide or (5.5) is the average o( the invariant tmce or the regularized supermetric. 

This relation is in momentum·integrated (orlll, anel will I.e seen to playa crucial role in 

the study of Weylanornalies below. 

1 -;--, x 
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In this connection, it will be useful to have the identity (5.5) in another form. It 

follows from (4.2) that 

a!/"' = j(~) R(.1)ut" R(Ll)"C ;H" (5.7) 

where I have introduced another set of matrix elements of the spacetime Laplacian, now 

defined on objects V" == aUHvN ~ 64>" which transform like field-coordinate deforma-

tions, 

(LlV"), == (LlC>~ NVH(t) 

(Ll)"';H" = (Ll,)~ Hlio/(t - t') 

= aur(4)u))(.1)r,;Q''OQH(4>U' )) . 

(5.8a) 

(5.8b) 

(Uc) 

Moreover, as seen below, these are the natural matrix elementa for coordinate-apace reg­

ularization. 

8 
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6. Weyl anomaly in the general d = 2 non-linear sigma model 

I define the phase-space stress-tensor oon" as the response of any matter Hamiltonian 

to a general deformation of the Einstein metric 

6,H ......... = -i j(~)eOm"69on" . (6.1) 

This gives 
,,_........ _ liS d .. N 

e ... = e... !1m" - -2g"."-li- + 211",,0 1I"N 
. gm" 

(6.2) 

for the general d-dimensional non-linear sigma model (2.4) and (2.6). The second term 

in (6.2) is the response of the DeWitt measure. 

In d = 2 dimensions, the first term of (6.2) is the full response of the action to a Weyl 

deformation. For the classically Weyl-invariant S of (2.6), this term (and its regularized 

average) i. zero_ The relation 

<j(dt)eS) = <j(~)1r"a"H1rH) = <j(~)O!/"') 
= <j(~)(~I)(ell"')"r"(eiJ/"')"';H(') 

(6.3a) 

(6.3b) 

is then obtained with eqs. (6.2), (5.5) and (5.7) from the measure term alone: The result 

(6.3) is a nonperturbative geometric characterization of the general Weyl anomaly in the 

presence of the regulator. 

A. a comparison with known background-field (one-loop) results, consider the flat D­

dimensional internal manifold a"N = eli".,. Then the Ll of Section 3 reduces to ordinary 

aC-covariant Laplacian on scalars and scalar densities, 

and 

(Ll)'" ;N(' = Ii; (Ll)((, 

(.1)",;N(' = 6:e(()(Ll)CC'e-1((') 

= 1i:(Ll),,( 

(Ll)((. == (DmOm)(li2U - (') 

< j(dt) eS) = D j(~)(e2iJ/"')(C 
A2D D 

= j(~)e[ 811" + 2411"R(g)+O(r
1 ») 

(6.4a) 

(6.4b) 

(6.4c) 

(6.4d) 

(6.5a) 

(6.5b) 

is obtained by heat-kernel expansion, as expected'B, where R(g) is Einstein curvature 

scalar. The general nonperturbative characterization (6.3) invites further analysis on 

non-trivial manifolds with he&t-kerneland background-field methods. 

9 



7. Coordinate-space regularization 

I now discuss regularized inlegralion,·u.H of lhe momenta at large fl to obtain the 

corresponding form of coordinate· space regulariz"tion in the case of tbe general theory 

wilh DeWitt measure. As in the CIlse of reguillfized GrMsmann integration'. integration 

of tbe momenta at finite fl seems probihitively complex. 

Since tbe formalunregularized tbeary is independent of P. no growthO•I • of the averages 

. of tbe tbeary is expected at large fl. Tbe large·fl relation 

0= «(}(d()1I'.,c
6

- +,t,]F) 
"".. 10 1 

(7.1) 

then follow8 from the SD e'ls. (5.1), to prevent the growth of the olher term •. The 

lubscript zero denoles olalemenls li"e (7.1) which are true only at large fl. The relation 

(7.1) can he 80Ivedu hy iteration with a general moment expansion. &I in Section 5, and 

the resull. packaged as a genecaling fundional for averages involvinsthe momenta 

( ejld(P""" FI~) = (e l jld(1 JIICClQt."H"JHIC'1 FI;) 
M M' (7.2) 

where FI~) ia arbitrary and JII i. a IOInce. Thi •• tates that the large-fl momentum 

integration i8 still Gaussian, with the contraction rule 

r-l ,)' OA 11'.,( 011' 1'( ( = IIC;HC' (7.3) 

inside coordinate.lpace averages. 

In particular, thia result can be uBed to eliminate the momentum.dependence in the 

mixed phase/coordinate-splice luper.Laplacian~' of e'l. (5.3), which gives the regularized 

coordinate-Bpace SD system 

o = (I.FI4») 

l 65 O"H_~ +13. 
L = - J(d() 6~1I 6~H 

, D 6 
13. == /(dO(d(')Oa;e;o<c Dr(e) 6~"«) 

(7.4a) 

(7.4b) 

(Hc) 

announced originally in Ref. 12. lIereh il the regularized coonlinate:,pace ,uper-I-oplacian, 

in terms of the regularized invrne 8upermetric 

O,:'C'H(' == /«1(") R(Ll)"C;rc"R(Lltt';Qt"OPQ(4>(C)). (7.5) 

which I I,ave expressed in terms of the natural l.al'llIciRIl (Ll)"(;Ht. for coordinale.space 

regularization, given in (5.8). 
lO 

~"" '"': 

As ahove at tile pbase.space level. it is e .... y to check th"l the SI) system (7.'1) is a 

coordinate·space regularization of the original unregularize(1 I.I,oory. In the formal I"rge 

A limit 

R(Ll)"C ;HC' 

O,:'C;HC' 

A' 6;:6"«( - (') 

-. (}"H(4>«())6"(~ - n 
A 

and the SD e'll. (7.4) correspolul to the unregularized form,,1 i(lelllilies 

0= / V~ /(d() 6!"(O(e-S£(~)(}"H(~«())6!H(OF(~)] 
at the coordinate·.pace action level (2.5). 

(7.6,,) 

(7.61.) 

(7.7) 

Regularized Ito and Stratonovich coordinate·.pace processea equivalent to (7.'1) on 

.. sump lion of equilibration are siven in Ref •. 12,13. 

The previous regularization. of the program are special ellSea of (7.4) in nat sp"ce and 

lIat .uperapace. For example, the.., = O.forml
.' of regularized g"uge theory is ol.taille(1 

(rom (7.4) with ~., ~ A:. 0111' -t 6,.,6"', 1':'1'(0) -. 0 and 

O,:'C;HC" -t 6,,,,IR2(Ll»)'" (7.8) 

where Ll i. non·abelian gauge.covariant Laplacian. J.ike the 0c·covariant (,aplacian of 

general relativity. thl. Laplacian I. provisional, and a Laplacian covariant under both ° A 

and gauge-transformations i. not yet known. The full O,·covariant I.apl"cian (or the 

Icalar prototype i., of course, a .pecial case of the general ligma'mo<leI J.apl"cian given 

in Section 3. 

Il 

....... :, 
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8. Regularized Euclidean gravity 

Ai an eXAmple. the general regullUized coordinate-space SO eqs. (7.4) lUe easily writ­

ten out for DeWitt-measure Euclidean gravity 

o = (LF(g.nn» 6S 6 

L == j(~)[.ca9onn-"mnir'6g..J6Ymn +~ 
D 6 

~ = j(~)(~')"!n(iro(' Dy .. «') 69onn{O 

(8.1a) 

(8.lb) 

(8.1c) 

where the supermetric for gravity was given in (2.3). I have also added a GC-Zwanziger 

gauge-fixing term 

.c.90nn = DmZn + DnZm • (8.2) 

Wh06e generic form is alwaYI a gauge-transformation. The spacetime Laplacian is the 

provisional .d = ymnDmDn of gcncral relativity on aymmetric covariant tenaora of rank 

two. and the rcgulator is taken AI heat-kernel. 

The differential SO formulation (8.1) bypasses the question of integration contour for 

the unstable conformal mode27 of the Einstein action 

S = :2 j(dt)eR, (8.3) 

giving directly the correct Euclidean result. at least in weak coupling. In particular. with 

Ymn = 60nn + Khmn, h == hmm (8.4a) 

1 1 
Zm = 2K (a..hnm - ill.nh) (8.4b) 

the free regulariud graviton propagator 

(hmn{Ohr.«'»{O) 

=[(1+ ---'!:.-) _ 1 + 2-, (6 8.0. + 6 ll.n1J,. 2e
20

/"a 
2 - d mnir. 3 - d + 2-, mn 0 r. 0 )]( -0 ) CC' 

(8.5a) 

1 
Imn.r. == 2{5mr6n• + 5rn .5nr ). Tmnin == 6mn5n (8.5b) 

is obtained directly. and the free regularized n-point functions are constructed according 

to Wick's theorem from (8.5). The result is gauge-equivalent for all -, to the correct 

Euclidean Feymnan gauge (first term). and also indicates that the perturbation expansion 

is much simpler for the supermelric parameter choice -, = -1/2. 

Chan alld 114 have generalized the SD system (8.1) to regularize arbitrary power-law 

measure nc eat. where "'pw = (d + l)(d - 4)/4 is the DeWitt power ill d-dimellsions. 

12 
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and studied the weak-coupling expansion. The expansion provides a geometrization of 

previous regularized SO rules. whose structure will be generally applicable in coordinate­

invlUiant regularization. We have also completed a non-trivial one-loop explicit check of 

Einstein invariance of the regularization. Our conclusion is that a one-loop cosmological 

counterlerm 
KIA" tP-7d-2 

~o = (8Ir)"/2['" - .. ] (8.6) 

is neceisary to Itabilize the Oat vacuum. and that. with this counter term. the graviton 

mass is zero for all (d .... ). as it should be. 

u 
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