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A high resolution study is made of spin-wave dyn~mics above the Suhl 
threshold in a sphere of yttrium iron garnet driven by microwave ferro-
magnetic resonance. In different regions of parameter space observed 
behavior includes: excitation of a single spatial spin-wave mode at 
threshold; when two modes are excited, low frequency collective oscillations 
with a period doubling route to chaos; nonperiodic relaxation oscillations; 
when three modes are excited, quasiperiodic route to chaos; abrupt hystere
tic onset of wide-band chaos. These results are accounted for in a unified 
way by numerical iteration of a model: coupled quantum oscillators repre
senting the photons of the cavity and the magnons, including four-magnon 
scattering processes. 

1. INTRODUCTION 
Spin-wave instabilities were first observed by Damon 1 and Bloembergen and 

Wang2: microwave resonance in ferrites, when strongly driven,showed onset of 
anomalous absorption. Noisy low frequency oscillations were also discovered. 3 

-+ . 

To fix ideas consider spin Sj on the crystal lattice of a ferrite sphere i~ an 
-+-

external magnetic field Ho' with a hamiltonian 
-+- -+- -+- -+-

X = -hy~ Sj·Ho - 2J.E., Sj·Sj' + E Hdipole-dipole 
J J ,J 

(1 ) 

where y is the gyromagnetic ratio and J (J>O) the Heisenberg nearest neighbor 
exchange energy. The Zeeman interaction leads to a uniform precession of the 

crystal magnetization M about Ho at frequency wo: yHo and to a narrow ferro
magnetic resonance absorption at wp= Wo when driven by a small ac field HI sin 
(wpt), perpendicular to Ho. The exchange term can give rise to spin-waves; the 
overall dispersion relation for Eq. (1) is4 

= (2) 

for spin-waves of frequency Wk and wave vector k in the direction 8k relative 
to Ho. Here, Ms = sample magnetization, wM:y4rrMs , and the exchange constant 
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Sciences, Materials Sciences Division of the U.S. Department of Energy under 
Contract No. DE-AC03-76SF00098. 
+Permanent address: Fukuoka Institute of Technology, Higashi-ku, Fukuoka, 
811-02, Japan. 
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f., 

D = 2JSa2 /hy Gcm 2 • Nonlinear coupling between the uniform and spin-wave modes 

arises through the exchange and dipolar terms, which, for certain values of Ho 

and pump frequency wp' gives rise to an instability: when the drive field HI 

is increased to a critical or "threshold" value H1c, there is abrupt growth in 

the spin-wave excitation. A theory of this was given in 1957 by Suhl,5 who 

remarked, " .•• this situation bears a certain resemblance to the turbulent 

state in fluid dyn~mics ••• ". 

Suhl predicted several instabilities: (i) of first order when wp ::: 2wk -

2wo ("subsidiary absorption"); (ii) of second order when wp::: wk ::: Wo ("pre

mature saturation"); (iii) and first order at wp ::: 2wk with pump field HI 

parallel to Ho ("parallel pumping"). An example of what can happen in ~ase (i) 

is shown on the dispersion diagram, Fig. l(a), computed from Eq. (2), with 

parameters valid for yttrium iron garnet (YIG) spheres (y = 17.7x106 G-l sec -l, 

D = 5.4 x 10-9 Gcm 2 , 4nMs = 1700 G) and for pump frequency wp = 2n x 9.2 GHz, 

and for Wo = yHo = 0.5 wp' correspond i ng to Ho = 1640 G; however, the exact 

condition Wp = 2wo is not required. Spin-waves can exist in the manifold 

shown, 0 ~ 6k ~ n/2. How can they be excited? By a three-magnon scattering 

process6: a pump photon with wp ::: 2wk can excite a uniform magnon (wp,k=O)mag 

which scatters into a pair of magnons, (wkok) and (wk. -k), i.e. a standing , 
spin-wave mode, with locus along the dashed line, Fig. l(a). Since the maximum 

wave vector, k ::: 105 cm- 1 , is much larger than the fundamental wave vector ko 

= n Id for a sphere of diameter d - 10- 1 cm, a large number of spin-wave modes 

are possible; they are damped at a rate y k - 106 seC 1, typi ca 11 y, by magnon

phonon processes. Cases (ii) and (iii) are similar; in all cases microwave 

photons excite spin-waves of frequency -10 10 Hz. 

Although these Suhl instabilities were extensively studied 7 earlier, no 

clear evidence of low dimensional chaotic motion was reported. Nakamura et 

al. 8 and Ohta and Nakamura 9 reexamined the theory for parallel pumping, 

numerically iterated the equations of motion assuming two modes, and found 

onset of instability, collective oscillations, and a period doubling cascade to 

chaos, with a Henan-like return map. Gibson and Jeffries lO observed a period 

doubling route to chaos, periodic windows, and a single-hump return map for the 

second order instability in YIG. Zhang and Suhl ll iterated the original 

equations for this instability and found a period doubling cascade to chaos. 

Similar theoretical conclusions were reported by Rezende et ~.12; de Aguiar 

and Rezende 13 reported theory and experiments on parallel pumping. 

In this paper we report a high resolution study of the first order 

instability in a YIG sphere. New findings indicate: a two-parameter (Ho,Hf) 

phase diagram; excitation of single modes; collective oscillations with 

quasiperiodicity, locking and chaos; and abrupt onset of high-dimensional 

-2-



,-

'. 

.. , 

6 - r' 
I 

I (b) 
u 
Q) I DETECTOR I (/) 

0 
"'0 ... 

... "" 4 LINEAR 
~ COUPLING f 

>-
() 
z 3 UJ 
::J 
0 
UJ THERMAL a: 2 u. RESERVOIR 
UJ 

~ 
~ , 
z 
a::: 
(J) 

0 
-4 -2 0 2 4 

YIG SPHERE 
WAVEVECTOR k (105 cm-1) 

... _. 

FIGURE 1 
(a) Dispersion diagram, Ulk vs. k, from Eq. (2) for YIG sphere. (b) Diagram of 
experimental arrangement and model, Eq. (3). 
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Regions and boundaries of observed behavior in parameter space (Ho,Hf). 
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turbulence with hysteresis. We present, in Sec. 3, a theoretical model to 

account for these in a unified way. 

2. EXPERIMENTS 

Figure l(b) indicates schematically the experimental arrangement as well as 

the theoretical model. Microwave power from a klystron (fp = 9.200 GHz) is 

coupled via a precision attenuator into a waveguide, and into a resonator, 

producing a field HI sin(2wfpt) on the YIG sphere, oriented with the [111J axis 

parallel to a uniform and adjustable field Ho. The sphere of diameter 0.066 cm 

is spherical to within 6R/R = 6 x 10- 5 and highly polished, to within 0.15 ~m. 

Incident power P is absorbed by the resonator (A), and the uniform mode (B), 

~nd the spin-wave modes (bk). Power not absorbed is reflected onto a diode 

detector giving a dc signal So as well as an ac signal S(t) (100 Hz to 1 MHz). 

This paper mainly reports on the subsidiary absorption instability (HI J. Ho). 

although some data are given for parallel pumping (HI " Ho), ·to be reported 

separately.14 

Figure 2 shows regions and boundaries of observed behavior in the space of 

two parameters: . dc field Ho and. microwave pump power P a: Hi. Th~ Suhl 

threshold boundary is found by monitoring signal So, which drops at onset of 

any spin-wave excitation. This boundary is abrupt and reversible except near 

the shaded area, where onset is abrupt and hysteretic, and accompanied by a 

large signal S(t) of wideband character (- MHz) with no resolvable spectral 

peaks. For H < 600 G the boundary becomes increasingly less distinct. 

For Ho ; 1600 G and P - 0.1 dB above the Suhl threshold we generally find 

onset of sinusoidal "auto" oscillations [Fig. 3(a)J in the frequency range 

10 4 < fco < 10 6 Hz, which are believed to arise from coupling between spin

waves; we refer to them as "collective" oscillations. These oscillations show 

period doubl ing [Figs. 3(b). 4(a)J and a transition to chaos [Figs. 3(e). 

4(b)J. The frequency has a marked dependence on pump power, Fig. 5(a), which 

is consistent with predictions, Fig. 5(b), of our model in Sec. 3, as well as 

that of Zautkin et ~.15 Typically these single frequency oscillations display 

a bifurcation to quasiperiodicity [Figs. 3(c), 3(d), 4(c)J, along with fre

quency locking and chaos; they may appear when at least three spin-wave modes 

are excited. The spectral lines of these periodic oscillations are - 50 dB 

above a broad spectral base believed to be of deterministic origin. In some 

regions (Ho - 1400 G, P - 50 mW) the base has a much higher intensity (+30 dB); 

the rough boundary for these noisy oscillations is shown in Fig. 2. 

The parallel pumped instability is also observed, showing period doubling 

[Fig. 4 (d) J to at least period eight, onset of quas iperiodicity, and chaos, 

Fig.4(e). Another type of signal, nonperiodic "relaxation oscillation," Fig. 
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FIGURE 3 
Observed signals, set) (relative units) vs. t, showing (a) periodic oscilla
tions, fco ::: 16 kHz; (b) period doubled; (c) quasiperiodic; (d) quasiperiodic; 
(e) chaotic; (f) relaxation oscillation'. 
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FIGURE 4 
Observed power spectra, p(f) (10 dS/div) vs. f for: (a) period doubling; (b) 
onset of chaos; (c) quasiperiodicity; (d) parallel pumping, period doubling to 
period 8; (e) quasiperiodicity; (f) relaxation oscillations, Fig. 3(f). 
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3(f), is found in a broad region, Fig. 2; they have essentially no resolved 
spectral peaks, Fig. 4(f), and may be related to the "chaotic bursts" of the 

model below. 
The Suhl threshld in the region 1600 :: Ho :: 1900 G, when examined at high 

resolution, has a rich structure, Fig. 5(c). For constant pump power, the dc 
signal So vs. Ho is recorded while slowly increasing Ho, showing a series of 
peaks in the power absorption spaced by ~Ho = 0.157 G, which can be understood 
as high order spatial resonances of single spin-wave modes within the sphere. 16 

In a simplified picture assume that the spin-wave mode (wk,±k) has an integral 
number n of half wavelengths that resonantly fit in the diameter d of the 

sphere if n(n/d) = k; if k is changed by ~ko = n/d, the next spatial resonance 
at n+1 will be excited. From Eq. (2) this small change ~ko can be induced by a 
field change ~Ho while holding constant wk = wp/2, if ~Ho = 20k~ko. If we take 
k = 3 x 10 5 cm- 1 and a = 0 [Fig. l(a)], this expression yields ~Ho = 0.152 G in 
agreement with the observed splitting. Another sequence of modes will have a 
similar set of dips of slightly different spacing with the irregular inter
ferences most clearly seen to ·the right in Fig. 5(c). In a more refined 
picture the. dips in Fig. 5(c) may be viewed as the modes of a sphere Mjkl' say, 
labelled by suitable indices. We find that for the first few dips in So only 
single modes are excited and are not accompanied by a collective oscillation 
signal S(t). Beyond this point simultaneous excitation of two or more modes 
becomes possible owing to mode overlap. Signals at fco = 10 5 Hz may appear 
when a second mode becomes simultaneously excited; a second frequency fIco may 
appear when a third mode is simultaneously excited. 

3. THEORY 
We model the system, Fig. l(b), as a collection of coupled quantum oscilla

tions, with the hamiltonain7,8 

JC = hWrA+A + hwoB+B + E hWkbkbk 
k 

(3) 

These terms are, respectively: (1) a single oscillator with raising and lower
ing operators A+,A representing a single electromagnetic mode of the resonator 
of frequency Wr; (2) a single oscillator representing the uniform mode of fre
quency Wo = YHo; (3) a set of oscillators representing spin-waves of frequency 
wk> Eq. (2), for all possible wave vectors k; (4) linear coupling G between 
resonator and uniform mode; (5) nonlinear coupling between uniform and spin 
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wave modes; (6) nonlinear wave-wave coupling from the four magnon interaction; 

(7) microwave driving of the resonator by the klystron of frequency wp and 

amplitude F. The pump power P ex: F2. From Eq. (3) we obtain the equations of 

motion for A, a, and bk, and then add phenomenological damping terms r, Yo, Yk, 

respectively. 

Since wp :::: lOll seC l and we are interested in signal frequencies -0 to 

10 7 sec-I, we transform to slow variables A, a, and Ck using 

- -A = A exp(-iwpt); a = a exp(-iwpt); bk = Ck exp(-wpt/2) (4) 

Since waves are created in (k,-k) pairs we take Ck = C-k, and \Ck\2 becomes the 

magnon occupation. number. This transformation introduces the "detuning" 

parameters 

lin 0 = Wo - wp -
lin k = (wk - wp/2) 

lin r = wr - wp, set 

3 x 10 10 seC l 

= 2nvk < 10 6 

to zero . 
see l 

(Sa) 

(Sb) 

(Sc) 

We make the approximation that the resonator has the greatest damping and - -thereby A adiabatically follows a and Ck. Since a may oscillate rapidly due to 
.:. 

large values of lin 0 , we replace it by its average and regard the average of a 
as small. The only remaining dynamical variables are the Ck with equation 

Ck = -YkCk - iL\nkCk - iOF9kCk 

(6) 

where k = 1,2, .•• N is an index for a spin-wave mode, k' = 1,2, ••• N, and para

meters 0 and E are functions of the parameters previously i~troduced. Equation 

(6) has the form of a set of N coupled damped driven nonlinear oscillators, 

each representing one spin-wave mode; there is always one uniform mode, 

somewhat hidden in these equations: B depends on Ck as B = OF + E {" 9k'C~'. 
We do not convert the variables Ck into Cooper-pair variables 7 since this 

obscures important symmetry properties of the system. For suitable parameter 

values 17 we numerically iterate Eq. (6), first for N = 1, then N = 2, etc., 

adding one mode at a time. Control parameters used include pump power P, and 

the detuning frequency vk [Eq. (Sb)] corresponding to a change in the field Ho-

In Eq. (6) we note that Ck = 0 is always a solution or fixed point of the 

system. For small forcing F this is a stable fixed point, but it becomes 

unstable at the Suhl threshold where the forcing is first able to overcome the 

damping. Nonzero (or nontrivial) fixed points may also exist and have 

important consequences for the system's behavior. If we assume one mode to be 

excited, then we may determine these nontrivial fixed points exactly. The 
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equation fk = 0 can be put in the form: 

(ck")2 . 
M + NICkl2 = -- = pOlnt on unit circle 

ICkl 2 

where M = i(Yk + i6Qk)/QF9k 

and N = -(2Tkk + Skk + Elgkl 2)/QF9k 

(7a) 

(7b) 

(7c) 

The Suhl threshold corresponds to IMI = 1, and the solution Ck = 0 is stable 

for IMI > 1 (note that M varies inversely with the forcing F). There are two 

distinct possibilities for what may occur when the threshold is crossed. For 

Re(M/N) ~ 0 one obtains an ordinary (or supercritical) symmetry breaking 

bifurcation at the Suhl threshold. As the solution Ck = 0 becomes unstable, a 

complementary pair of stable nontrivial fixed pOints emerge from the origin, 

Fig. 6(a). (These two solutions are actually equivalent: one represents a 

shift in phase by ~ of the other.) The second possibility is that Re(M/N) < 0 

and a subcritical symmetry breaking bifurcation will occur. ·In this case, 

nontrivial fixed points first appear below the Suhl threshold via saddle-node 

bifurcation. As F cros~es·the Suhl threshold Fc, Ck jumps to one of these at a 

finite valuei and the system will display hysteresis on reducing F, Fig. 6(b). 

In our experiments we observe a region of hysteresis, Fig. 2, which we believe 

is due to this effect. 

Numerical iteration of Eq. (6) yields a wide variety of behavior, here 

summarized. With only one spin-wave mode allowed (in addition to the hidden 

uniform mode) a Suhl threshold is found, but no oscillations. For N = 2 modes 

an example of behavior follows: choosing parameters [Eq. (5b)] VI = -60 kHz, 

v2= 40 kHz, yields Suhl thresholds at pump power PI = 8.43 mW, P2 = 4.77 mW. 

respectively, for Cl and C2. At P = 10 mW, C2 has developed an asymmetric 

orbit at f2 = 97 kHz, Fig. 7(a); and Cl a symmetric orbit at fl = (1I2)f2' 

Holding P = 10 mW but decreasing Ho yields various computed behavior: for VI = 
-77 kHz, v2 = 23 kHz we find period doubling for C2, Fig. 7(c), and symmetry 

breaking for Cl, Fig. 7(d). For VI = -82 kHz, v2 = 18 kHz, both orbits have 

become chaotic: Figs. 7(e) and (f) sho~ this for mode C2. At other parameter 

values, particularly when one mode is below and the other above Suhl threshold, 

nonperiodic "relaxation oscillations" are found, Fig. 6(c,d,e), rather similar 

to those observed experimentally [Figs. 2, 3(f), and 4(f)]. 

For N = 3 modes the computed behavior shows peri odi c orbits, then quas i

periodic as in the portrait of Fig. 8(a) and power spectrum, Fig. 8(b). A 

chaotic section is shown in Fig. 8(c), with power spectrum, Fig. 8(d); the 

orbits are apparently near, but not locked, to a 1:5 winding number. Unusual 
behavior is shown in the portrait and time series, respectively,' in Fig. 
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1m C, (b) 1m C1 
(d) p (f) 

Re C, Re C1 

FIGURE 7 
Computed behavior for two modes: (a) phase portrait for periodic 
asymmetric mode; (b) symmetric mode; (c) period doubling; 
breaking; (e) chaos; (f) power spectrum of abov~, f max = 0.5 MHz. 

oscillations, 
(d) symmetry 

8(e,f). This orbit appears to be of the Silnikov type, and may be related to 
that of Fig. 6(c) and (d), for N = 2 modes, but with additional high frequency 

components. Behavior qualitatively like this is observed in the experiment. 

4. SUMMARY AND CONCLUSIONS 
Starting from the viewpoint of microscopic scattering processes of spin 

waves on a magnetic crystal lattice, we make a connection to the theoretical 
framework of nonlinear dynamics. We specifically aim to elucidate the 
dynamical behavior of the magnetization in a finite sphere of a real material, 
yttrium iron garnet, above the Suhl first order instability, excited by 
microwave pumping. The model used is a collection of quantum oscillators 
representing the photons and magnons; effects of the cavity mode are included; 
the consequences of symmetry are i nves t i gated. I n a high reso 1 ut i on (10 - 5 ) 

experimental exploration of parameter space we find, on a global phase diagram, 
the regions and boundaries of a wide variety of behavior: (1) The Suhl 

threshold is found when, in addition to the uniform precession, a single 
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3 

Re C1 Re C1 

p(f ) (b) p (f) (d) Re C3 

f f t 

FIGURE 8 
Computed behavior for three modes: (a) phase portrait of quasiperiodic orbit 
and section; (b) power spectrum of above; fmax = 0.25 MHz; (c) Poincare section 
of orbit beyond quasiperiodic transition to chaos; (d) power spectrum of above; 
f max = 0.25 MHz; (e) portrait of Silnikov-type orbit; (f) time series of above. 

spatial spin-wave mode is excited, fl - 10 10 Hz. (2) When a second mode is 

excited, at f2- 1010 Hz, there may occur ~nset of a low .frequency collective 

oscillation, fco - 104 -106 Hz, owing to the coupling between the two microwave 

modes; the observed dependence of fco on pump power is in agreement with the 

model. The oscillation fco displays a period doubling route to chaos. (3) 

When a third mode is excited, an additional oscillation fIco may arise, and the 

system then displays a quasiperiodiic route, including frequency locking and 

chaos. Regions (2) and (3) are closely intertwined. (4) There exists a small 

region characterized by abrupt hysteretic onset of wide-band chaos. (5) There 

is an extended region characterized by nonperiodic "relaxation" oscillations. 

The model predicts the observed behavior in regions (1), (2), and (3), and 

also predicts behavior qualitatively like (4) and (5). For four modes excited, 

neither the experiment nor the model have yet yielded three-frequency quasi

periodicity; we expect this only in a very small region of parameter space. 

Further details will be published elsewhere. 14 
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