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1. Introduction 

I would like to describe in thia lecture aome aspecta of geometry which have 

become relevant to physics during the past few years. 'fhe importance of differential 

geometry, topology and of concepta auch aa that of connection and curvature on 

fiber bundles has been recognized for some time. These concepts are important, for 

instance, in the study of classical aolutiona of Yang-Mills theory and relativity. More 

recently, a knowledge of the theory of line bundles and U(1) bundles has become 

an essential tool for the understanding of a number of aubjecta. Among them are 

the anomalies in quantum field theory and atring theories and varioua properties of 

Riemann aurfacea and their mod.uli apacea, which are relevant for atring theories. 

In thia lecture I shall try to outline, by meana of a aimple example, aome basic 

facta about line bundles for the inexperienced phyaicist. The best known phyaical 

example would be the Dirac point monopole. Instead, I ahall describe the quantum 

mechanical phenomenon called Berry'• phase, where the aame mathematics emerges, 

without reference to physical monopoles. No new result. wiU be presented. My aim ia 

to be as clear and pedagogic u poaaible, even at the coat of mathematical_rigor. Only 

some familiarity with exterior differentiation ia assumed. I ahall be aatiafied if I have 

aroused enough curiosity to motivate the reader to look into the appropriate literature. 

Among the mathematical references (1-5), Refs. (2) and (3) are written for phyaiciata 

and are very readable. Actually, (1 ), (4) and (5) are also quite readable, if one ia willing 

to make a little effort. I quote only a few physics papen on anomalies (7-9), on atringa 

(1G-13) and on Berry'• phase (14-16), chosen because they are representative of the 

use of the mathematical methoda mentioned above. Reference (6) ia a collection of 

papers and lecture notes and contains numerous references to earlier literature. A 

rather mathematical introduction to geometric quantization ia given in (17). 

This lecture is dedicated to T. D. Lee on the occasion of hie 60th birthday. It ia 

a small way to express my admiration for his qualities as a scientist and as a person 

and my gratitude for the friendship he has shown me on many occasions. 
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2. Non Integrable Quantum Phase 
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Let H(A) be a quantum mechanical Hamiltonian which depends upon a certain 

number of parametera A = (Aa, A2 , • • • A•) and let lA > be the normalized eigenvector 

corresponding to a given discrete isolated non-degenerate eigenvalue E(A) 

H(A)IA >= E(A)IA > . (1) 

The eigenvalue will remain non degenerate as A varies in an open neighborhood in 

parameter apace. The eigenvector lA > is determined only up to a phase, which can 

be different for different A. We define the gauge potential 

A= A.(A)dAi = i < AldiA >= -i(d < AI)IA >, (2) 

where d denotes differentiation in A, or more explicitly 

Ai(A) = i < Al 8~iiA >= -i (a~• <At) lA >. (3) 

A change of phase 
lA >-+ lA > e-i,II(A) {4) 

induces a gauge transformation 

A-+ A+d/:f. (5) 

Aa defined, the gauge potential ia real, since the eigevectora are normalized. The 

corresponding gauge invariant field atrength is 

F = dA = i(d < Al)diA >, (6) 

or more explicitly 

F;; = i (8~1 <AI) (8~1 IA >) dA1 
1\ JAi. (7) 

Remember that exterior differentials anticommute and that J2 = 0. From now on we 

shall understand products of differentials to be exterior products and omit the wedge 

sign 1\. 

If the eigenvectors lA > are not normalized, (2) is replaced by 

A = i < AldiA > -(d < Al)jA > 
2 <AlA> 

(8) 
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and (6) bcwmca 

F = 4A = 8 < .\;.\ > ((d < ll)dJl > 
( 4 < lUll > < lldJl >) 

<All> . (&) 

Theae upreuion• are 10metima more convenient for actual computation~ &baa (2) 

and (6). One C&A POW c.onaider more aeneral aauae trandormalioDI 

I.\ >-.I.\> IC(lW' I 

i ' A--.. A- -din J 
2 ~· 

(10) 

(11) 

where C may have modulut different from one. Here and in &be 'illowina the bar 

denolet complex conjuaation. 

h ia obviout, from (2) O&" (8), that, if the veclon ll > C&A be cho.en to have 

real component• in a finite neishborbood of parameter 1pau, &ben A wiU YaDiab and 

c.onaeq~ently F will aJao vaniab. 

In quantum mechanict, a pbyaicaJ alate ia repreaented by a ray of DOBA Y&lliahina 

vectora differing by a c.omplex proportionality factO&". It ia deu &bat the above po­

tential cannot be defined on the •pace of ray1, one needt the Hilbert 1pace of vecton, 

or at leut the •pace of normali:Kd vector~. One C&A deacribc a ray by ch0011ina a 

reprCKntative veclO&" belon&ing to it, but &hi• choice ia obvioutly not unique. Tho 

arbitrarineu &ivet riae to the aauae tranaformation (li) or (11), different choieet of 
reprc:Kntative c.orreapond to different gauget. On the other band, the fidd 1&rengtb 

F i• sause invariant. Tbia meant that it muat be pouiblo to define it OP the apace of 
raya it&elf. 

Con&ider a vector I > in the ray c.orreapondin& to a aiven eigenvalue E(l). It bu 

the form 

I>= t/Jil >, (12) 

where t/J ia a non vaniihing c.omplex number and I.\ > ia a particular vector which we 

chooae u repreaentative for the ray. A different choice of repreaentative 

ll >'= (((llr'll > (13) 

will determine the aame ray. The aame vector (12) .will now be given by 

I >= t/J'I..\ >', (14) 

where 

t/J' = ((..\)t/J. (15) 
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By lcUin& &be complex function ((.\) depend on l we have explicitly allowed the 

f08iibili&y that, for different l, we chanse the repreaentalivc by a different fador. 

While .\label• &be variout ray•, tJ. ia a coordinate which diatin&Ui•hea different vector~ 

io a particular ray. For aiven l, (16) i• a chanac of coordinate. correapondin& to the 

chanae of baai• (13). The lenath of &be vector (12) ia aiven by 

lo(tJ., ~.l) =< I >= lt/-11 h(l), 

where 

h(l) =< lll > . 

Under &he lran~formation (13), h chanaet into 

We define tho one-form 

A'(l) = IC(l)r1 l(l). 

< l!dll > 
< 1"1 > =din¥+ < ll.\ > 

""" <I> 

and the complex conjuaato 

(4 < ll)ll >. 
(4 < 1)1 > = llln~+ < lll > •= <I> 

(16) 

(17) 

(18) 

(19) 

(20) 

They aro invariant under &be aausc tranaformalion (13), (IIi) and 10 ie the l'eal com-

binatioo 

i i "' B = -(,- o) = -din :r +A. 
2 2 'I' 

(21) 

A• we •halltce in Section 3, in mathematicallanauasc we arc dealin& here with 

a line bundle. The ray• correapondina to phyaical atatea are complex linea in Hilbert 

apace. The 110& of all vecton i• the collection of all point. of all linea, a line bundle. 

The aet of all ray1 i• the ba10 of the bundle, each ray ia u fiber of the bundle. The 

eisenvector correapondin& to a siven eigenvalue, u l varies in parameter space, spans 

a auh-bundle of tho total bundle of all vectora. The one-form t1 is a connection form 

on thia 1uh-bundle and ita vanishing definea parallel transport, i.e. it uwciate& to a 

vector in a given ray a vector in a ray infinitesimally close to it. If we limit ourselves 

to normalized vector~, the coordinate t/J in the ray mu&t have ab&olute value one. The 

vectors in a given ray differ just by a phase, which can be identified with an element 

of the group U(l). One apeaks then of a U(l) bundle, rather than a line bundle. 
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To illustrate the above, we consider the standard example of a 2 x 2 Hermitian 

matrix (two level system, spin l in magnetic field) 

H(i) =X 0 i = ( ~a ~I -a,) 
~I +i~a -~a • 

{22) 

The eigenvalues are ±~,where~= jij. Consider, for instance, the eigenvalue+~. 
One can take as eigenvector 

( ~+~a) 
li>= ~~ +Ua . 

Thi1 eigenvector i1 not normalized 

< iii >= 2~(~ + ~.). 

It i1 very easy to apply {8) and {9) with the re1ult 

A= _! Aa~a- Aa~a 
2 A( A+ Aa) 

and 

F= 
1 AadAadAa + A,dAadAa + AacUa~a 
2 A1 

{23) 

(24) 

{25) 

(26) 

(remember that exterior difrerentiall anticommute). In tenn1 of the UBualazymutbal 

angle • of spherical coordinates 

and polar angle 8 

the gauge potential is 

Aa +iAa ~-
e - ../Af +AI 

A3 = Acoa8, 

0 2 8 .I.J. A= -liD - ...,. 
2 

(27) 

(28) 

(29) 

Equations (25) and (26) have the form of the gauge potential and the magnetic 

field of a Dirac point monopole of strength -l situated at the origin of parameter 

space. The gauge potential is not defined globally, as made clear by the singularity 

(Dirac string) along the negative Aa axis. The normalized eigenvector is 

1 (A+Aa) (coal) 
..j2A(A + A3 ) Aa + iAa = e~sin ~ · 

(30) 
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The eigenvector (30) has a phase ambiguity on the negative ~3 axis, 8 = 1r. If 

one multiplies (30) by the~ dependent phase e-~, one obtains the new normalized 

eigenvector 
1 (~I- i~a) _ (e-~coa ~) 

..j2~(~- ~a) ~- ~~ - sin I · (31) 

Now the phase ambiguity is on the positive ~~ axis, 8 = 0. The corresponding gauge 

potential has a aingularity on the positive ~~ axis and is given by 

A+~= !~ad~~-~~~~ 
2 ~(A- Aa) • 

where, as one can easily see from (27), · 

~ = ~~d~a- ~~d~a 
~:+AI 

(32) 

(33)· 

The new potential i1 obtained from the old one by a singular gauge transformation. 

The gauge function • ie multivalued and undetermined along the entire A3 axis. The 

curvature F given by (26) is independent of gauge transformations. 

Th~ origin of the string-like singularity can be understood as foUows. There is an 

exceptional point X = 0 in parameter space, where the two eigenvalues ±A coincide. H 

we remove thia point of degeneracy, parameter space acquires a non trivial topology. 

From the expression• (30) or (31) for the normalized eigenvector one can see that, 

once the phase i1 fixed, the eigenvector depends only on the direction of the vector X. 
Therefore we are really dealing with a U(l) bundle having as base a sphere around 

the origin in X 1pace. The situation is exactly the same as for the Dirac monopole. 

Since the base manifold is topologically non trivial, the U(1) bundle can also be non 

trivial. 

H we move along a closed curve C in parameter space, atarting say at the point 

Xc,, a vector 

lio > eiao (34) 

of the fiber at Ao can be parallel transported in the U(1) bundle and wiD come back 

as the vector 
lio > el(oo+Aa) (35) 

of the same fiber at Ac,, where 

~a= £oo= £A, (36) 
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aincc t/1 = c"" and pualld hauaport IDC&DI B = 0. By Slokca' theorem thia ua be 

&rauformed into 

£.t=f.F, (37) 

where the aurfacc s hu &he curve a .. ita bouni!uy, a = 85. lA &he cx&lllple 

dcacribed above, AQ cquala &he maauctic 8u1t throuah tho aurfacc S of tho mapctic 

field of a Dirac monopole of atreuath - i at th oriain. EquivaiCD&Iy, it cquala -l 
timca the aolid anale corrcapondina to. the aurfacc S u aecn from the oriai11. Obacrvo 

that the aurfacc s ia not uniquely dctenniued by· the curve a. If s ia deformed 

&moothly the aolid angle rcmaiua the aame until the aurfacc aoca &hrouah the oriain 

when the aolid angle changca by :U•. Then AQ chanaca by =f2• 10 &hat &he phaac 

c•6
"' ia unaJrected. In aeueral, tho vector obtaiued from a aivcn vector by pualld 

lranapod alooa a do.cd curve ia unique: it dilfera from tho &iven vector by the (non 

intearable) phaac factor c86
,., called Berry'• phuc, which ia of completdr acomctric 

nature. Berry (H) baa 1hown that thia acometric phuc factor uiaca ia a variety of 

eumplca in addition to the weU knowll dynamic phaac factor 

0 -l/." •llC•I)oll (38) 

when a quantum mechanical ayatem ia trau&ported adiabatically alona a doacd curve 

in parameter apace. Tho mathematical interpretation in &erma of a U(l) bundle ia 
due to Bury Simon (16). 

In the ned acctiou we shall ace aome acncral definition• and propedica of line 

bundiCi. The example of thia acction can provide a concreto reference. 
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S. Line Bundle• and U(l) bundle• 

Conudcr a complex manifold M. In au open neighborhood we cap use complex 

coordinatca &1, Ia, ···ln. A line" bundle over M auociatca a complex line u fiber to 

each point of the buc M. Let the complex number t}l be a coordinate for the fiber. 

A coauaection ia a one-form"' whc»c vani&hin& definca parallel tran&port of the (one 

dimen&ioPal) complex vecto111 of the fiber. In local coordinatea one cap write 

w=J++at}l, (39) 

where a ia a one-form on M. Let there be a metric for the line bundle, aiven in local 

coordinatca by 

AI = lt/111 A( a, I), (40) 

where A ia a rcaiiiOD vaniahina fuaaction. A metric compatible connection utisfiea 

A=O 

when tho vector in the fiber ia pualld transported 

Sillcc tJ1 ia ubitruy, &hie &ivca 

#+at}I=O, 

d~+A-/1=0. 

dA- (a+ A)A = o 

(41) 

(42) 

(43) 

(44) 

u tho conditioa for metric compatability. We require a to bo of type (1,0), which 

mcana &hat it contain~ oDiy the dilferentiala dta, • · · cltn and not dE.,· ··din. Then the 

metric compatibility cquatioll acparatea into the two equation• 

with aoluliona 

8h=ah, 

Dh = Ah, 

a= h-18h = 81nh, 

6 = h-'Dh = Dlnh. 

We recall here lbe well known definition• 
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(45) 

(46) 

(47) 

(48) 



and the relationa 

Observe that 

.8 
8 = dt'8ti' 

":' 

d= 8+8, 
.8 

8 = dl' 8li 

~ = aa = aa = a8 + 8a = o. 

8+ a= dlnh. 

The curvature two-form F can be defined from the equation 

dw + 8w = -iFt/1, 

(49) 

(50) 

(51) 

(52) 

where the left hand aide ia the covariant differential of w. Aa defined, F ia real and 

equal• 

F = idS = -ida = dA, (53) 

where we have defined an equivalent real gauge potential 

A= !ce- a>= ie- !din h. 
2 2 

(54) 

Using (53) we see that the cUI'V&lUI'e ia given in terma of the metric by 

F = i8Binh =~(sat.- 8
":"). (55) 

Clearly the connection form 8 ia more convenient if qne ia interested in analiticity, A 

if one ia interested in reality properties. A correspond. to the real gauge potential of 

Section 2. 

By definition the curvatUI'e two-form satisfies the Bianchi identity. 

dF=O, (56) 

i.e. it closed. Normalized by dividing it by -2w, the curvature ia called the Chem 

form and its integral over a closed surface in M gives an integer, the Chem number. 

A line bundle is a vector bundle, the fiber is a one-dimensional vector space, in 

our case complex. A change of basis in the vector space is a linear transformation, in 

our case it changes the coordinate t/1 into 

.P'=(t/1, (57) 
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where ((t) is a non vanishing complex number, in general different for different fibers. 

Since the metric k must be invariant, h must change into 

,.. = "r, "· 
Corresp~mdingly e changes by a gauge transformation into 

and we have 

e' = Blnh' = e- Bin( 

a·= a -Bin{, 

I idln' A=A-- -, 
2 \.' 

w' = (w, fil = {iii. 

(58) 

(59) 

(60) 

(61) 

(62) 

The null vector of the fiber remain• null if we make the above change of coordinates. 

The null vector also re~aina null by parallel transport. The null vectors of all fibers 

form the null section, which ia defined globally. For a nonvanishing vector t/1 the 

metric k never vanishes. If t/1 ia nonzero we can define the one-form 

a= !w = dlnt/1 + e = ~;-•a~s, 

"' 
(63) 

where differentiation operates now also on t/1. Under the transformation (57), (58), a 

ia invariant and so ia the real combination 

i i 
B =-(a- it)= -(8- 8)1nk. 

2 2 
(64) 

The curvature (53) ia also given by 

F =dB =ida= -ida. (65) 

The following example is relevant for Section 2 and illustrates also very clearly an 

important point. 

Consider ann+ !-dimensional Hilbert space whose vectors have complex com­

ponents .z; = Zo, z~o · · · z,. A physical state is described by a ray of non vanishing 

vectors differing from each other by a complex proportionality factor. The space of 

all rays is n-dimentional complex projective space Pn(C). Since the vectors of a ray 

are non vanishing, for a given ray at least one of the coordinates will be different from 

zero, say z;. By continuity z; will be noa vanishing for neighboring rays as well. The 

rays of Pn(C) for which z; does not vanish form an open neighborhood U; of Pn(C). 
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La U; ooe C&A uac u local coordioatca b P,.( C) the n ratiooa 11o/ 11;, 111/ 11; • • • -.../ 11;, 

omiUioa 11;/•; which equal. B. The cotire P,.(C) ia covered ~y then+ I ociahbor­

booda U11 , U1 , • • • U,.. The eyslem ol coordioatca which ia valid io ca.cb ociahborbood 

C&Anol be extended to the cotire P,.(C), but the apace C&A be dcacribcd by uaina local 
coordinatca in each oeighborhood aod givina the lranaformation functiona in the over­

lap ol two ncigbborbooda. Alternatively, one could uac Zo,lla, • • ·~~n u bomoge.ncoua 

coordioatca. 

There ia a natural line bundle over P,.(C). It baa P,.(C) u baac and the fibu 

over a point of P,.(C) conaiata ol all vectora bcJongina to the ray uaociated to that 

point. It ia convenicot to take out the nuU vector ol ca.cb ray, tbeo the oaturallioe 

buodle C&A be ideotified with the origioal llilbert apau mioua tho ouU vector. The 

bermitcao metric: of the llilbcrt apau 

1 = l.rol1 + l•al1 + ... + , ... ,. (66) 

induc:ca a natural metric: oo the lioe bundle. For inatanc:c ia U11 , uaiaa local coordiaatca .. .. .... 
'• = -,ta = -,·· ·t.. = -, .ro .ro llo 

(87) 

we have 

" = l.rol1 
(1 + 1tal1 + ... + 1t .. l1). (68) 

Compariaa with (40), we CLQ say that, ia a apccial aauao, Zo = ¥ ia the c:oordioate 

for the fiber and 

h = I + 1tal1 + · · · + jt,.j1
. (89) . 

Equa.tiona (54) and (66) now aive, for tho real aauae poteatial, 

• A = -(8- 8)1nh 
2 
if·dt-t·dl 

-2 l+l·t (70) 

and for the c:urvatur~ form 

F = dA = i-1
- (dl·dt _ di·H·dt) 

l+l·t l+l·t . (71) 

Up to a factor tbia ia the Kibler form uaodated with the well known bcrmitean 

.Ubini-Study metric: on P,.(C)(P,.(C) ia a Kibler manifold) (2). We have uaed the 

abbreviation 
n 

r. dt = L:t,dt, (72) 
i=l 

11 

.: .. , 

and 10 on. 

La a differcot aauae A ia replaced by 

A' = 1((&)1-1 (1 + f ·e) 

= luol1 + lual1 + · · · + lu..l1
, 

where we have defined the e depcodeot vector 

Now 

1 e, e .. 
Uo = ((&)'u' = ((t) ....... = wr 

A'= !ca-8)JnA' 
2 

- ! tioduo + u . du- (Uod11o + u • dU) 
- 2 UoUo + G • u . 

The aauae illvariant field atrenath C&A therefore be wriUea alw u 

F = dA' = ! _1_ (dU. du - Si. du u. dii) 
, 2u·u Si·u ' 

where, with a chanae ia aolatioa, 

u ..... = tu.c~ut 
i..O 

etc:. 

(73) 

(74) 

(76) 

(76) 

(77) 

We have iatroduc:cd aauae trandormatioaa u operatiaa OQ the fiber coordiaate 

u a c:oaaequeac:c of a c:hanae ia the baaia vector of the fiber. They are also caseatial 

ill &luin& toaether the Joc:aJ piec:ca of the bundle by providia& the transition from OQe 

opea aeighborhood to another. For inatanc:c, in the aeiahborhood U1 . we can use local 

coordinatca 
llo JJa lln ., = -. •a = - ....... = -
lla lla ,r;, 

(78) 

and ~rite 

A:= Ill• I' (I+ l•al1 + · · ·1• .. 11). ' (79) 

In the overlap of U0 and U1 both .ro &lid ,r;a are different from zero. The same 

vector IIQ,ll1 • • ·11n can be aaid to have fiber coordinate 11o (for Uo) &lid ,r;l (for U1) • 

These two are obtained one from the other by the gauge tr&ll&formatioa 

liJ = 9JoZo 1 

12 
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where the Atransition function" 

'· -~¥: 

1 
!ho = ta = ;.- (81) 

can be expressed in terms of the local coordinates t of U0 as well u in terms of the 

local coordinates • of Ua. In general, in the intersection of U, and U; one can use u 

fiber coordinates .p, or .P;. related by 

tPi = 9iitPi· (82) 

For consistency the transition function• !Jii must aatiafy the cocycle conditiona 

9ii9Ji = 1 in u,nu1, (83) 

!Iii= 1 (84) 

and 

9ii9J•9w = 1 in U,nU;nu •. (85) 

Finally, observe that the gauge invariant real form B can be written in term. of the 

homogencoua coordinates as 

iJ·o-;c·dJ 
B=-----

2 i·il 
(86) 

and the curvature as 

F =dB= i-1- (dJ. ,u _ dJ · 11 J · dz) 
l·il •·. . 

(87) 

Here again, the summation index run1 from 0 to n, u in (77). 

The similarity of (75) and (76) with (8) and (9) ia obvioua. In the example of 

Section 2 the Hilbert apace has two complex dimensions, the projective space of raya 

is P1(C) and hu one complex dimensions (P1(C) ia topologically equivalent to the 

tw<rdimensional real sphere S2). The eigenvalue E(..\) corresponding to a point ..\in 

parameter space determines a ray of eigenvectors. Thus, u A varies, the eigenvalue 

determines a map from parameter apace into P1(C). More precisely, as we have seen 

above, this is a map m from a two sphere around the origin in parameter apace into 

the space of rays P1 (C). By this map, the natural bundle over Pa(C) becomes a line 

bundle over the two-11phere in parameter apace. 

If we normalize the Hilbert apace vectors we obtain a U(l) bundle of phases. 

Notice that the set of normalized vectors of the tw~imenaional Hilbert space is 
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topologically equivalent to a three-sphere Sa. H the map m can be e;x:tended to a 

map from the two-11phere in parameter space into this Sa, the U(1) bundle will be 

trivial. This would require that it be possible to define globally for all ..\ the phase of 

the normalized vectors. 

The generalization to a higher dimensional apace of rays is obvious. Given an 

eigenvalue E(..\), one hu a map from parameter apace into the projective space of 

raya. By thia map, the natural line bundle over the space of rays becomes a line 

bundle over parameter apace: H we normalize the Hilbert space vectors, we have a 

U(1) bundle of phases. Criteria can be given (16) for the nontriviality of this U(1) 

bundle. 
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4. CopduBion. 

Aa we have accn ia aome delail, the non intearable qua.utum phuc baa a aatural 

mathematical deacriptioo iD terma ol a liae buadle. Aa mentioned in the iDtroductioa, 

the concept of line bundle ahowa up in a aumber of other phr5ica problema. 

Consider, for instance, the bo.ooic atrioa. Amplitudea are obtained by puform­

iaa a functional iotearatioo over all world ahccta which deauibc the pouible apace 

time evolution of the atrioa. Ia the Euclide&A formulation one mull iotearal.c over 

all R.iemaoa audacca of dift'ereat aeaua. For a aiveo acoua 11 (number of haodlea) a 

Riemann aurfacc ia dctermiaed up to conformal equivalence br 3g - 3 complex pa­

rameter• 11', the coordioatea of the moduli apace. BecalliC of the two-dimenaiooal 

conformal in variance of the theory, the functional iatearal reducea to u iatearal over 

moduli apace. The intearUid Z(l,', j'), called the •partitiou fuuctiona, baa bCCA the 

object of inteuaive atudr iu recent time. lu aeueral, it ia uot reallr a fuuctiou, rather 

it ia a aectioo of a poteutiallr nontrivial line bundle havioa moduli 1pacc aa buc. 

Only when certain cancellaliooa of Ulomaliea OCClU, ia Z trulr a function that can bo 

iotear.:ted to aive phyaically acceptable reaultal12, 13). 

A cla11ic problem in the theory of R.icmUia aurfacca, which comea up repeatedly 

iD atria& theory, ia the ltUd)' of the fuoctiooa OD a &iVCD ft.iemaac surface aa chara­

terizcd .,, .their &erOI Uld aioauJaritiea. Thia iavolvca th.e theory of diviao.-a lor which 

the concept of line bundle is a nallUal tool. A .-elated problem ia that of the cluai­

ficatioo of dilfe.-eot apia at.-udurca oa a R.icmaaa aurface, impodUit fo.- the atudy of 

supentrinaa Ill). 

In a oonabeliao gauae theory with chiral apioora, aauae invariance may be 1poiled 

by the occurrence of Ulomalica. In the Hamiltonian formulation thcae IUiomalica man­

ifest themaelvea u an Ulomaloua Schwinger term in the commutator of the aeacratora 

of aauae traoaformationa. Thcae Schwinaer terms can be interpreted &I the ClUYalure 

two-form of a auitable line bundle 17, 8). 

Finally, let me mention tbat line bundlea over phuc apace occur u & fint 1tep 

(prequantization) towarda the quanti:&ation of a dynamicalayilem. If the phue 1pace 

ia topologically non trivial, the line bundle can alao be non trivial. Quantization can 

then be performed com;iatently only if certain parameters upon which the Hamilto­

nian dependa take quanti:&ed valuea (the&e parameters can be for inlilance couplina 

conataoli, massea etc.). Typical examplea are the value of the maanetic charge of a 

Dirac monopole and the value of the a pin of a particle (6, 17). 
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