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1, Introduction

I would like to describe in this lecture some aspects of geometry which have
become relevant to physics during the past few years. ‘The importance of differential
geometry, topology and of concepts such as that of connection and curvature on
fiber bundles has been recognized for some time. These concepts are important, for
instance, in the study of classical solutions of Yang—Mills theory and relativity. More
recently, a knowledge of the theory of line bundles and U(1) bundles has become
an essential tool for the understanding of a number of subjects. Among them are
the anomalies in quantum field theory and string theories and various properties of
Riemann surfaces and their moduli spaces, which are relevant for string theories.
In this lecture I shall try to outline, by means of a simple example, some basic
facts about line bundles for the inexperienced physicist. The best known physical
example would be the Dirac point monopole. Instead, I shall describe the quantum
mechanical phenomenon called Berry’s phase, where the same mathematics emerges,
without reference to physical monopoles. No new results will be presented. My aim is
to be as clear and pedagogic as possible, even at the cost of mathematical rigor. Only
some familiarity with exterior differentiation is assumed. I shall be satisfied if T have
aroused enough éurioaity to motivate the reader to look into the appropriate literature.
Among the mathematical references {1-5], Refs. [2] and [3] are written for physicists
and are very readable. Actually, 1], [4]) and [5] are also quite readable, if one is willing
to make a little effort. I quote only a few physics papers on anomalies [7-9), on strings
[10-13] and on Berry’s phase [14-16], chosen because they are representative of the
use of the mathematical methods mentioned above. Reference [6) is a collection of
papers and lecture notes and contains numerous references to earlier literature. A

rather mathematical introduction to geometric quantization is given in [17).

This lecture is dedicated to T. D. Lee on the occasion of his 60th birthday. It is ‘

a small way to express my admiration for his qualities as a scientist and as a person

and my gratitude for the friendship he has shown me on many occasions.

2. Non Integrable Quantum Phase

Let H(A) be a quantum mechanical Hamiltonian which depends upon a certain
number of parameters A = (A, A;,---A) and let {A > be the normalized eigenvector
corresponding to a given discrete isolated non-degenerate eigenvalue E())

HQ)A >= EQ)A > . (1)

The eigenvalue will remain non degenerate as A varies in an open neighborhood in
parameter space. The eigenvector |A > is determined only up to a phase, which can
be different for different A. We define the gauge potential

A= AA)dXN =i < Ad]A >= —i{d < A})|A >, @)

where d denotes differentiation in A, or more explicitly

. L {0
A(A)=i< ,\|W|,\ >=—i (ﬁ: < Al) A>. 3)
A change of phase
P> A> e ©(4)
induces a gauge transformation
A— A4+ dp. (5)

As defined, the gauge potential is real, since the eigevectors are normalized. The
corresponding gauge invariant field strength ia

F=dA=i(d < A)d|A >, ' (6)
or more explicitly
Fyj=i (a—l;; < Al) (%p\ >) dX¥ AdN, (7

Remember that exterior differentials anticommute and that d® = 0. From now on we
shall understand products of differentials to be exterior products and omit the wedge

sign A.
If the eigenvectors |A > are not normalized, (2) is replaced by

i <AdA > —(d < M)A >

b 8
2 <AA> ®
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and (6) becomes

P=dA=i— ((d < M)A > ®)

(A< ADA > < MdA >
<AA> ’

<AAr>

These cxpressions are sometimes more convenicat for actual computations than (2)
and (6). One can now consides mose general gauge transformations

A >— 2> (N1, (10)
A-—oA—%dln%, )

where ( may have modulus diffesent from one. Here and in the following the bar
denotes complex conjugstion.

It is obvious, from (2) or (8), that, if the vectors |A > can be chosen to have
real componeats in a finite ncighborhood of pasrametes space, then A will vanish and
consequeatly F will also vanish.

Jo quantum mechanics, & physical state is sepsescated by a say of non vanishing
vectors differing by & complex proportionality factor. It is clear that the above po-
tential cannot be defined on the space of rays, one needs the Hilbert space of vectors,
or at least the space of normalized vectors. Ounc can describe & ray by choosing a
sepresentative vector belonging to it, but this choice is obviously not unique. The
arbitrariness gives risc 1o the gauge transformation (5) or (11), different choices of
represcnlative correspond to diffescat gauges. On the other hand, the ficld strength
F is gauge invariant. This mcans that it must be possible to define it on the space of
tays itself. '

Consider a vector | > in the ray corresponding to a given cigeavalue E(A). It bas
the form

I>=¢r>, (13)

where v is a non vanishing complex numbers and |A > is a pasticular vector which we

choose as representative for the ray. A different choice of represcntative

A >'= KA > (13)
will determine the same ray. The same vector (12) will now be given by
|>= WA >, (14)
where
¥ = (). : (15)
3

By ictting the complex function {(A) dcpend on A we have explicitly allowed the
possibility that, for different A, we change the sepresentative by a different factor.
While A labels the various rays, ¢ is a coordinate which distinguishes different vectors
in a particuler say. For givea A, (15) is a change of coordinates corresponding to the
change of basis (13). The leagth of the vector (13) is given by

k(¢,$,2) =< l >= Wi* h(N), (16)
whese
AA) =<AA>. (17)
Under the transfosmation (13), A changes inte
M) = KON M), | 19)
We dcfine the one-form v
_ <> _ < AldjA >
’_'2%1;_'"""% <A > (19)

and the complex conjugate

a=“<m>=dln$+§d<'\l)l'\>. 20)
<|>

<A >

They are invasisnt under the gauge transformation (13), (15) and so is the real com-

B=%(a—a)=§dln§+A. @)

bination

As we shall sce in Section 3, in mathematical language we are dealing here with
a linc bundle. The rays corresponding to physical states are complex lines in Hilbert
spoce. The set of all vectors is the collection of all points of all lines, a line bundle.
The sct of all rays is the base of the bundle, cach ray is as fiber of the bundle. The
cigenvector cossesponding to a given cigenvalue, as A varies in parameter space, spans
a sub-bundle of the total bundle of all vectors. The one—form o is a connection form
on this sub-bundle and its vanishing defines parallel transport, i.e. it associates to a
vector in a given ray a vector in a ray infinitesimally close to it. If we limit ourselves
to normalized vectors, the coordinate ¢ in the ray must have absolute value one. The
vectors in a given ray differ just by a phase, which can be identified with an element
of the group U(1). One speaks then of a U(1) bundle, rather than a line bundle.



To illustrate the above, we consider the standard example of a 2 x 2 Hermitian
matrix (two level system, spin } in magnetic field)

- A M —.‘x,)

HQR)=X.3= (A. it o (22)

The eigenvalues are 1A, where A = 'Xl Consider, for instance, the eigenvalue +A.

= A+,
A>= .
o (212)

One can take as eigenvector

This eigenvector is not normalized
< XX >=2A(A + Ay). ' (24)

It is very easy to apply (8) and (9) with the result

10,2 = Aad)y

A==3T30Fn) (25)

and
Fe _%A.dx;d,\. + A,d::d), + AgdAydAy (26)

(remember that exterior differentials anticommute). In terms of the usual azymuthal

angle ¢ of spherical coordinates

EEE N (1)
‘//\{ + A} .
and polar angle 8 :
As = Acos @, (28)
the gauge potential is :
A = —sin? g dé. (29)

Equations (25) and (26) have the form of the gauge potential and the magnetic
field of a Dirac point monopole of strength -—-} situated at the origin of parameter
space. The gauge potential is not defined globally, as made clear by the singularity
(Dirac string) along the negative Ay axis. The normalized eigenvector is

W(Q:TA,) = (::3;) (30)

1A

The eigenvector (30) has a phase ambiguity on the negative A; axis, 8 = n. If
one multiplies (30) by the A dependent phase e~*, one obtains the new normalized

eigenvector )
e cos §

Jz_u—%ﬁ(x;:f\:z)‘( sin 8 ) (31)

‘Now the phase ambiguity is on the positive Ay axis, § = 0. The corresponding gauge

potential has a singularity on the positive A, axis and is given by

, _ 1 0ddg - 2d)
A+“_2_——«\(4\—As) , (32)

whete, as one can easily see from (27),

Aiddg — Agd)y
A+y

The new poteatial is obtained from the old one by a singular gauge transformation.

d = (33)

The gauge function ¢ is multivalued and undetermined along the entire A, axis. The
curvature F given by (26) is independent of gauge transformations.

The origin of the string-like singularity can be understood as follows. There is an -
exceptional point X=0in parameter space, where the two eigenvalues 1+ ) coincide. If
we remove this point of degeneracy, parameter space acquires a non trivial topology.
From the expressions (30) or (31) for the normalized eigenvector one can see that,
once the phase is fixed, the eigenvector depends only on the direction of the vector X
Therefore we are really dealing with a U(1) bundle having as base a sphere around
the origin in X space. The situation is exactly the same as for the Dirac monopole.
Since the base manifold is topologically non trivial, the U(1) bundle can also be non
trivial.

If we move along a closed curve C in parameter space, starting say at the point
;\.o. a vector

o > e (34)
of the fiber at Ay can be parallel transported in the U(1) bundle and will come back

as the vector

P > eflestae) (35)
of the same fiber at ), where .
Aa fc da fc A, (36)
6



since Y = ¢** and parallc) transport means B = 0. By Stokes' theorem this can be

foA=/’F. (1)

where the surface S hae the curve C as its boundary, C = 8S. In the example

tranformed into

described above, Aa equals the magactic flux through the surface S of the magnetic
field of a Dirac monopole of strength —} at th origin. Equivalently, is equals —}
times the solid angle cosresponding to the surface S as seen from the origin. Observe
that the susface S is not uniquely detesmined by the curve C. U S is deformed
smoothly the solid angle remains the same until the surface goes through the origin
whea the solid angle changes by t4x. Then Aa changes by F25 so that the phase
¢** is unaficcted. In general, the vector obtained from & givea vecior by pasallel
transport along a closed curve is unique: it differs from the given vector by the (non
integrable) phase factor ¢#2®, called Berry's phise, which is of completely geometric
nature. Berry [14] has shown that this geometric phase factor arises in a varicty of
examples in addition to the well known dynamic phasc factor

b I B (38)

when a quantum mechanical system is transported adiabatically sloag a closed curve
in parameter space. The mathematical interpretation in terms of & U(1) bundle is
due to Barry Simon 18}

la the next section we shall see some general definitions and properties of line
bundles. The example of this section can provide a concrete reference.

3. Line Bundles and U(1) bundles

Consider a complex manifold M. In an open neighborhood we can use complex
coordinates &;,83, - £,. A line bundle over M associates a complex line os fiber to
cach point of the base M. Let the complex number ¢ be a coordinate for the fiber.
A conncction is & one-form w whose vanishing defines parallel transport of the (one
dimensional) complex vectors of the fibes. In local coordinates one can write

w=dp+6y, (39)

where © is a onc—form on M. Let these be a metric for the line bundle, givea in local
coordinates by

k= vl (), (40)

where A is a xcal non vanishing function. A metric compatible connection satisfies
dk=0 (41)

whea the vector in the fiber is parallel transposted

&+ 6y =0, (42)
d} + 6§ =o0. | (43)

Since ¥ is asbitrazy, this gives
dh— (8 +8)h=0 _ (44)

as the condition for metric compatability. We require © to be of type (1,0), which
means that it contains only the differentials diy,-- - dt, end not df,,-- - df,. Then the
metric compatibility equation separates into the two equations

8h = ©h, (45)
5h = O, (46)
with solutions
© =h7'6h = 8lnh, (47)
8 =h'8h=8Ih. (48)

. We irecall here the well known definitions



d=28+3,
i 9 X
8=digy, o= dF o (49)
and the relations
&£=0=8=05+b8=0. (50)
Observe that '
6+6=dmnh . (s1)

The curvature two-form F can be defined from the equation
dw + Ow = —iFy, (52)

where the left hand side is the covariant differential of w. As defined, F is real and
equals
F =id8 = —id® = dA, (53)

where we have defined an equivalent real gauge potential
=2(0-8)=i0 - 2dlnh. (54)
2 2
Using (53) we sce that the curvature is given in terms of the metric by
F=i681nh=%(88 —M).

. (55)

Clearly the connection form © is more convenient if one is interested in analiticity, A
if one is interested in reality properties. A corresponds to the real gauge potential of
Section 2.

By definition the curvature two—form satisfies the Bianchi identity
dF =0, (56)

i.e. it closed. Normalized by dividing it by —2x, the curvature is called the Chern
form and its integral over a closed surface in M gives an integer, the Chern number.

A line bundle is a vector bundle, the fiber is a one—dimensional vector space, in
our case complex. A change of basis in the vector space is a linear transformation, in
our case it changes the coordinate ¢ into

¥ =(¥, (57)

where ((t) is & non vanishing complex number, in general different for different fibers.
Since the metric k must be invariant, A must change into

K= (58)

Correspondingly © changes by a gauge transformation into

©' =8lnh' =6 —8lan( (59)
and we have
é’:é—&ln{, (60)
i_ 4 80 €
A=A 2dlnf, (e1)
o =(w, & =C(o (62)

The null vector of the fiber remains null if we make the above change of coordinates.
The null vector also remains null by parallel transport. The null vectors of all fibers
form the null section, which is defined globally. For a nonvanishing vector ¢ the
metric k never vanishes. If ¢ is nonzero we can define the one-form

o= %w=dm¢+e;h-‘ak, (63)

where differentiation operates now also on ¢. Under the transformation (57), (58), o
is invariant and so is the real combination

B= %(w—&): %(8—8)lnk. : (64)
The curvature (53) is also given by

F =dB = ido = —ida. (65)

The following example is relevant for Section 2 and illustrates also very clearly an

important point.

Consider an n + 1-dimensional Hilbert space whose vectors have complex com-
ponents z; = zo,%),---Z,. A physical state is described by a ray of non vanishing
vectors differing from each other by a complex proportionality factor. The space of
all rays is n-dimentional complex projective space P,,(C). Since the vectors of a ray
are non vanishing, for a given ray at least one of the coordinates will be different from
zero, say z;. By continuity z; will be non vanishing for neighboring rays as well. The
rays of P,(C) for which z; does not vanish form an open neighborhood U; of P.(C). .

10



Io U; cae can use as local coordinates for FP,(C) the n sations 30/3;,3,/3;- - - 3n/3;,
omitting 5,/3; which equals 3. The entite P.(C) is covered by the m + 1 neighbor-
hoods Uy, U,,- - U,. The system of coordinates which is valid in each neighborhood
cannot be extended to the entire F,(C), but Lhe space can be described by using local
coordinates in each ncighborhood and giving the transformation functions in the over-
lap of two neighborhoods. Alternatively, cne could use x, 5y, - - 5, as homogencous

coordinates.

There is & natural line bundle over P,(C). It has B, (C) as base and the fiber
over a point of P,(C) consists of all vectors belonging Lo the ray associated io that
point. It is convenient to take out the null vector of cach ray, then the natural line
bundle can be identified with the original Hilbest space minus the null vector. The
hermitean metric of the Hilbert space

k=lnl® +al +-- 4 |a) (66)

induces a natural metsic on the line bundle. For instance in Uj, using local coordinates

5 n I
=2 yg=—, b= = 87
‘TR n ' (67)

we have
k= feol (4 0 4o 4 eaf?). (68)

Comparing with (40), we can say that, in s special gauge, 2o = ¥ is the coordinate
for the fiber and

A=1404" +-- + .. (69) .

Equations (54) and (55) now give, for the real gauge potential,

A=%(8—8)lnh
_if-dl—l-d[ 10
T2 a1+l (1)
_ and for the curvature form
| di-¢l-dt
F—dAf—"tm(d[-dl——l—_*_T‘—). ('")

Up to a factor this is the Kahler form associated with the well known hermitean
Fubini-Study metric on P,(C)(R,(C) is a Kihler manifold) [2). We have used the
abbreviation N

{.dt= ic.»dt.- (72)
i=l

1

and so on.

In a diffcscat gauge A is replaced by

M= KO0+
= luo" + 'ull’ +ot lunln ) (73)

where we have defined the ¢ dependent vector
l ‘| ‘n
= =7 I et s e = —— : 74
1 R B (0] ™
Now

A =§(a—6)m.'
=§ﬂm+a-du—(uodno+u-dﬁ)

. 2 doug+l-u (75)
The gauge invariant ficld strength can therefore be written also as
a8V [ G-duu-di
F=daA ’—-za-u(du du sy I ~ (768)
where, with & change in notation,
8-du=Y didy )
i=0

etc.

We have introduced gauge transformations as operating on the fiber coordinate
as a consequence of a change in the basis vector of the fiber. They are also essential
in gluing together the local pieces of the bundle by providing the transition from one
open ncighborhood to another. For instance, in the neighborhood U, we can use local

coordinates
= _h  _&
n = ' L7 31' 8n ) (78)
and write
k=|al (0 +isf +---1saf?). ¢ (79)

In the overlap of Up and U, both z and 2, are different from zero. The same
vector zg, %) -+ - z, can be said to have fiber coordinate zo (for Up) and z; (for Uy).
These two are obtained one from the other by the gauge transformation

%1 = 0%, * (80)

12



where the “transition function”
1
o=t = " (81)

can be expressed in terms of the local coordinates t of Uy as well as in terms of the
local coordinates s of U;. In general, in the intersection of U; and U; one can use as
fiber coordinates ¢; or y;, related by

¥i = gi;¥;. (83)

For consistency the transition functions g;; must satisfy the cocycle conditions

gijgi =1 in U;nUy, (83)
=1 | ()

and
gigingwi =1 in UynU;nU. (85)

Finally, observe that the gauge invariant real form B can be written in terms of the
homogeneous coordinates as :

$8-dzs—z-d2
B"i I X (86)
and the curvature as
F=w=e—‘—-(dx-dz-uﬂ’—'). (87)
-3 E-3

Here again, the summation index runs from 0 to n, as in (77).

The similarity of (75) and (76) with (8) and (9) is obvious. In the example of
Section 2 the Hilbert space has two complex dimensions, the projective space of rays
is P,(C) and has one complex dimensions (P,(C) is topologically equivalent to the
two—dimensional real sphere S3). The eigenvalue E(A) corresponding to a point A in
parameter space determines a ray of eigenvectors. Thus, as A varies, the eigenvalue
determines a map from parameter space into P;(C). More precisely, as we have seen
above, this is a map m from a two sphere around the origin in parameter space into
the space of rays P,(C). By this map, the natural bundle over P,(C) becomes a line

bundle over the two-sphere in parameter apace.

If we normalize the Hilbert space vectors we obtain a U(1) bundle of phases.
Notice that the set of normalized vectors of the two-dimensional Hilbert space is

13

0y

topologically equivalent to a three-sphere S3. If the map m can be extended to a
map from the two-sphere in parameter space into this Ss, the U(1) bundle will be
trivial. This would require that it be possible to define globally for all A the phase of

the normalized vectors.

The generalization to a higher dimensional space of rays is obvious. Given an
eigenvalue E()), one has a map from parameter space into the projective space of
rays. By this map, the natural line bundie over the space of rays becomes a line
bundle over parameter space. If we normalize the Hilbert space vectors, we have a
U(1) bundle of phases. Criteria can be given [16] for the nontsiviality of this U(1)
bundle.

14



4._Conclusion,

As we have scen in some detail, the non integrable quantum phase has a natural
mathematical description in terms of a line bundle. As mentioned in the introduction,
the concept of line bundle shows up in a number of other physics probjems.

Consider, for instance, the bosonic string. Amplitudes are oblained by pesform-
ing a functional intcgration over all world shects which describe the possible space
time evolution of the string. In the Euclidcan formulation one must integrate oves
all Ricmann surfaces of diffesent genus. For a given genus g (number of handles) a
Ricmann surface is determined up to conformal cquivalence by 3g — 3 complex pa-
rameters y*, the coordinates of the moduli space. Because of the iwo—dimensional
conformal invariance of the theory, the functional integral seduces to an integral over
moduli space. The integrand Z(y', '), called the “partition function®, has been the
object of intensive study in recent time. In general, it is not really a function, rather
it is & section of a potentially noantrivial line bundle having moduli space as base.
Only when certain cancellations of anomalies occur, is Z truly a function that can be
integrated to give physically acceptable sesults (12, 13}

A classic problem in the theory of Riemann surfaces, which comes up repeatedly
in string theory, is the study of the functions on a given Ricmang surface as chara-
terized by their zeros and singularsitics. This involves the theory of divisors for which
the concept of line bundie is & natural tool. A sclsted problem is that of the classi-
fication of different spin structures on a Riemana surface, important for the study of
superstrings [11).

In & nonabelian gauge theory with chiral spinors, gauge invariance may be spoiled
by the occurrence of anomalies. In the Hamiltonien formulation these anomalics man-
ifest themselves as an anomalous Schwinger term in the commutator of the generators
of gauge transformations. These Schwinger terms can be interpreted as the curvatuse
two—form of a suitable linc bundle (7, 8}.

Finally, let me mention that line bundles over phase space occur as & fisst step
(prequantization) towards the quantization of a dynamical system. if the phase space
is topologically non trivial, the linc bundle can also be non trivial. Quantization can
then be performed consistently only if certain parameters upon which the Hamilto-
nian depends take quantized values (these parameters can be for instance coupling
constants, masses etc.). Typical examples are the value of the magnetic charge of a

Dirac monopole and the value of the spin of a particle [6, 17].

15

- &

I wish to acknowledge numerous instructive conversations with O. Alvarez, 1.
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