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Abstract 

The energies and energy spectra of the positron and elec
tron beams emerging from the SLC Linac must be carefully 
maintained so that the beams can be transported through the 
Arcs to the Final Focus without phase space dilution and also to 
specify the collision energy. A fast feedback system has been de
signed and constructed to control these parameters. The energies 
and energy spectra are measured nondestructively using position 
monitors and synchrotron radiation width monitors. The con
trols consist of RF phases in the Damping Rings, SLED timing, 
and RF amplitude. Theoretical aspects of the feedback process, 
algorithms, and operational experience are discussed. 

Introduction 

The energy of the Stanford Linear Collider (SLC} is deter
mined by the acceleration of electrons and positrons in the 3 
kilometer SLAC Linac. The desired energy stability is ±0.1% 
(50 MeV at full beam energy), while the required energy spread 
(of a single pulse) is 0.2%. These parameters are required tore
duce dispersive effects in the Arcs and Final Focus and to specify 
the interaction energy. 

The required stability will be achieved using a feedback sys
tem schematically depicted in Fig. 1. The electron and positron 
energies E± and energy spreads t::.E / E are measured on a pulse
to-pulse basis at the interface between the end of the Linac and 
the beginning of the North and South Arcs. A microcomputer 
analyzes these measurements and computes control settings for 
upstream correctors to guide the next pulse through the Linac. 
Error handling, stability and convergence monitoring, and pos
sible operator intervention are performed via the standard SLC 
control system1 architecture using the host VAX 11/780. 
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Fig. 1. Overview of the energy jitter/energy spread feedback 
system. 

Monitor and Control Systems 

Figure 2a illustrates the constituents of the monitor
ing/control system. The central element in this system is the 
Intel 86/30 microcomputer which communicates with the mon
itoring hardware, the control hardware, and the host VAX. It 
handles calibration, data acquisition and reduction, error han
dling and control functions. The VAX is used to poll the micro 
to monitor continually the feedback processes as well as to study 
in detail the pulse-to-pulse deviations and corrections. 

The basic measurements are performed in a dispersive re
gion (71 ~ 70 mm) just downstream at the end of the Linac 
(whose primary function is to steer electrons (positrons) into 
the North (South) Arc). The beam energy is determined by the 
charge centroids measured by a set of (strip-line) beam position 
modules (BPMs). The position of this centroid in the horizontal 
plane is determined both by the launch conditions (x and x') into 
the Arcs and by an energy change in the beam. The microcom
puter unravels these effects using the three BPM readings and 
calculates the beam energy shift. This provides the monitoring 
signal for the energy stability feedback. 
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Fig. 2. Monitor and control elements of the energy jit
ter/energy spread feedback system. 



The beam energy spectra (separately for e- and e+) are 
measured via the Wiggler configuration2 illustrated in Fig. 3. 
The beam undulates in the vertical dimension, emitting X-rays 
in a vertical swath whose lateral extent measures the energy 
spectrum of the beam. The X-rays are detected by their impact 
on a phosphorescent screen; the light emitted by the screen is 
picked up by a TV camera and then digitized to abstract the 
width (in energy) of the beam. A typical measurement of tl,E / E 
is shown in Fig. 4. 
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Fig. 3. Schematic of the X-ray Wiggler system used to mea
sure uE/ E in the Arcs. 

The technique to vary reliably the Linac en~rgy on a pulse
to-pulse basis is illustrated in Fig. 5. Here the control variable is 
the RF phase of one (arbitrary) klystron (with~ 250 MeV peak 
accelerating energy); the beam energy displays the expected si
nusoidal behavior. As shown in Fig. 2, the design for the energy 
feedback system will utilize sub-booster phases for klystrons at 
the end of the Linac. As a simple phasing also affects the energy 
spread of the beam, two separate phases are varied so as to buck 
each other, causing the energy to vary with minimal effect on 
the energy spread. 

An illustration of the variation of the energy width as a 
function of phase is given in Fig. 6. While the position of zero 
phase is arbitrary, the appearance of a minimum in the spread as 
well as an approximately parabolic form as a function of phase 
are features expected quite generally. As shown in Fig. 2, two 
separate phases will be involved for e- and e+; we plan to use 
the phase of the North and South Damping Rings (DR), t/JER• 
as independent control variables. 
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Fig. 4. Typical measurement of the energy spectrum for an 
individual bunch using the X-ray Wigglers (with the 
beam-off background distribution subtracted). The 
energy is measured relative to 47 GeV. 
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Fig. 5. Measured Linac beam energy as a function of the RF 
phase of an individual klystron. 

Finally, we note that only one control variable is specified 
above for the energy feedback (the Sector 29/30 sub-booster 
phase). An independent control is required so that thee- and e+ 
energies are separately variable: we choose the control variable 
to be the position of the positrons on the SLED timing curve3 

(the electrons are then constrained to follow 60 nsec later). This 
position in time can only be varied by the VAX, as each of the 
29 Linac Sectors must change in lock-step; however, the host ar
chitecture prevents the feedback microcomputer from addressing 
the individual Sector microcomputers except through the VAX. 
Thus this part of the control loop will be exercised at a slower 
rate than the part directly controlled by the feedback microcom
puter. 

The Feedback Process 

To date the energy and energy spread feedback processes 
have not been turned over to closed loop control. Even so, con
siderable experience and understanding have been achieved. As 
shown in Fig. 7b, the energy jitter pulse-to-pulse is measured 
to be ::::. 0.1%. However, on the scale of tens of seconds ex
cursions 2-3 times this jitter are common, as illustrated in Fig. 
7a. We understand these slow energy variations as arising from 
(unavoidable) klystron faults. 

If E is the average energy gain of one of the 29 Linac Sectors 
(each of which is 100m long with 8 klystrons), typically about 
2 GeV, the energy gain in the Linac, ELinac. is 

ELintJe = 27 X E + 2E COS</>, 
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Fig. 6. Measurement of the bunch energy spread, UE/ E, as a 
function of the RF phase of the Linac. 
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Fig. 7. Measurements of the pulse-to-pulse energy jitter of the 
Linac as a function of time without feedback. 

where 4> is the phase of the next to last Sector (29) and -4> is 
the phase of the last Sector. The positron energy gain is 

E+ = Eo+ ELinGc cos wtR X SLED(t+). 

Here SLED(t+) is the energy function3 describing the relative 
energy gain as a function of the position of the positrons in time 
on the SLED curve; Eo is the energy of the beam in the Damping 
Ring, typically 1.15 GeV. The energy gain for electrons is 

E- =Eo+ ELinac cos 1/JoR x SLED(t+ + 58.8 nsec), 

since the electrons follow at a fixed time after the positrons down 
the Linac. Hence by varying 4> and t+ and taking advantage of 
the non-linearity of the SLED curve, we may independently vary 
E+ and E-. The energy spectra of the two beams are controlled 
by adjusting 1/JER to place the bunches appropriately on the RF 
wave form such that longitudinal wakefields and the cosine cur
vature of the RF field roughly cancel (to yield a small energy 
spread). Aside from routine problems involving robustness of 
the monitoring/control processes, no difficulties have been en
countered in implementing the energy feedback process. 

In contrast, study of the energy width as a function of beam 
intensity has revealed some complexities. The bunch length as 
measured4 by a streak camera in the Linac increases with beam 
intensity, and the measured energy spread of the beam similarly 
increases (see below). The energy spread increase is not incon
sistent with that expected for the observed bunch lengthening, 
which occurs in the Damping Ring system. 

Another complication arises from unexpected rapid changes 
in the width for changes in the overall Linac phase as small 
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Fig. 8. Measurement of the energy width, u E / E, as a func
tion of time for two different Linac intensities. 

as 1-2°. Model calculations using wakefield simulations suggest 
minima in the energy width that do not change appreciably for 
5-10° variations in phase. We presently believe that the narrow 
energy widths currently measured may be due to cancellation 
effects of the true energy spread in the beam with energy-position 
correlations in the dispersive region of the Arcs. 

In Fig. 8 we show the measured energy .width for individual 
pulses at two different beam intensities as a function of time. 
The large widths observed in Fig. Sa correspond to time periods 
when individual klystrons were in the process of cycling, giving 
rise to an unstable beam. The data in Fig. Sb indicate both the 
level of reproducibility when klystrons are stable and the overall 
increase in width when beam current increased. 

With both energy and energy spectrum systems behaving 
reasonably close to design goals, it is planned to turn on these 
feedback systems in closed loop form soon. 
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