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ABSTRACT 

The problem of linear mode conversion in a weakly inhomogeneous medium is 

posed and solved by phase-space methods. The PDEs for the two coupled modes are 

transformed to a simple first-order ordinary differential equation by a canonical 

transformation, wherein the two dispersion functions become essentially a locally 

conjugate pair of coordinates. 

*This work was supported by the U.S. Department of Energy under Contract No. 

DE-AC03-76SF00098. 
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Wave propagation problems have traditionally been solved either in physical 

4-dimensional space-time (x-space) or in terms of Fourier transforms (k-space)" Yet, 

because the Hamiltonian ray equations describe orbits in a-dimensional phase space, 

one would expect that more general coordinates would sometimes be of use. 

Such is the case in the problem of linear mode conversion, when the 

components D;j(k,x) of the wave dispersion tensor have spatial variation in different 

directions [1 ]. To introduce notation, let us first use reduction techniques [2] to make D 

a 2x2 matrix field, assumed to be Hermitian: 

(

D
8
(k,x) 

D(k,x) = 
0 

Tt (k,x) 

rt(k,x) 

(1) 

Here Da and Db are the respective dispersion functions for two modes, a and b, while 

Tt is the (small) coupling. Typically, for a ray of mode a, whose orbit is generated by 

Da(k,x): 

dx~ aDa 
~= --
da ak 

a ~ 

dk aoa 
--1!. = +-
dcra ax~ 

(2) 

and lies on the ?-dimensional manifold Da(k,x) = 0, the other dispersion function Db is 

irrelevant, so long as Db * 0. 

However, if a ray of mode a pierces [at the point (kc, xc)] the ?-dimensional 

manifold Db(k,x) = 0, it will transfer wave-action to mode b, mediated by the coupling 

parameter Tt· Using x-space eikonal methods, we have shown [2] that the transmission 

ratio (transmitted intensity/incident intensity) is given by 
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in terms of the Poisson Bracket 

aoa aob 
{0 ,OJ=--

a ax~ ak 
~ 

and the coupling 11. both evaluated at the conversion point (kc, xc). 

(3) 

(4) 

The appearance of the Poisson Bracket (4) in the result (3) suggests that this 

problem could benefit from phase-space methods. We shall demonstrate that this is 

indeed the case, allowing for an extremely simple derivation of the result (2). 

We first localize the problem about the conversion point, by expanding Da, Db, 

and 11 in a Taylor series, and keep only the leading terms. Thus Da and Db are linear 

. in the first derivatives, evaluated at (kc, xc): 

(i=a,b) 

while the leading term in 11 is its value at (kc.xc). 

The wave field Z (x) = (Za(x), Zb(x)) satisfies [3] the field equation: 

D(k ~ - i _a, , x) • Z(x) = 0 , ax (6) 

) which is a set of two coupled linear partial differential equations. The operator 

K = -i _a, satisfies ax 
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[x~, R ] = i &'- , 
v v 

(?a) 

corresponding to the Poisson Bracket 

{x~. k} = 8L . 
v v 

(?b) 

A general canonical change of coordinates has the form: 

(i = 1 ,2,3,4) (Sa) 

with 

(8b) 

Then the Hamiltonian equations are form invariant, and we have, for mode a, 

dpi aoa(q,p) 
-=+ 
d<ra aqi 

(9a) 

where Da(q,p) is the original dispersion function in terms of the new variables: 

(9b) 

Let us now choose 
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(1 0) 

i.e., Da(q,p) = - p1 • Then (9a) yields 

(11) 

in other words, q1 is the orbit parameter of mode a. 

Next we choose 

(12) 

with a a constant determined by (Sb): {q1, P1} = 1. This yields a= s-1, where B = 

{Da,Db} evaluated at (xc.kc). Then, similarly to (11 ), we have 

i.e., p1 is (within the factor B) the orbit parameter of the converted ray of mode b. Thus 

q1 and p1 are not only conjugate, but are the natural phase-space coordinates based 

on the two rays. 

The dispersion matrix now reads 

, 
D (p,q) = (14) ,. 
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The field equation (6) now reads 

D (p -+ - i ~ , q) • Z (q) = 0 , aq (15) 

where Zi(q) is related to Zi(x) by a metaplectic transformation [4], which need not 

concern us here. 

Using (14) in (15), we have 

{

; a~.<q)ldq1 + ~ ;<ql = o . 

Tl* Za(q) + Bq1 Zb(q) = 0 

(16a) 

(16b) 

Eliminating Zb, we have the first-order ordinary differential equation: 

(17) 

whose solution is 

(18) 

with f arbitrary. 

The amplitude transmission ratio R is defined to be 

(19) 
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i.e., the amplitude of mode a is compared at equallq11 distances from the conversion 

point q1 = 0. From (18) we find 

(20) 

Choosing the proper sign for causality, we finally obtain 

2 2 
T = IRI = exp[- 21t 1111 /IBI]. (21) 

Comparison of this derivation with our previous x-space approach shows how 

, remarkably simple the phase-space method is. 

We are indebted to Robert Littlejohn for introducing us to metaplectic techniques. 
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