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A level density formula including low-energy rotational levels for
nuclei with axially symmetric deformation is tested with neutron resonance

data for lanthanide and actinide nuclides. The calculations with the miero-
scopic theory includingvnuclear pairing utilize deformed single particle

levels of Nilsson et al. The experimental data for the actinide nuclei and

‘part of the lanthanide nuclei are consistent with a theery which includes
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collective rotational levels. The derivation and applieabi;ity of a level

density formula which includes collective rotational levels are discussed.
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1. Introduction

. (
The experimental information on the nuclear level densities of

statically deformed nuclei comes principally from neutron capture resonance
measurements., The experimennal nuclear level spacings determined from the
resonance experiments have been compiled by several groups 7). This

information is summarized in Tables 1-4. A number of attempts have been

made to analyze the neutron resonance data with a Bethe type formula containing

phenomenological modifications to account for nuclear pairing and shells4).

In addition, Ericsons) has analyzed several lanthanide and actinide level
densities in terms of a unified model which included both particle excitations

. . : . . . 50 . . .
and collective excitations. However, in this analysis”) the particle excitations

‘were calculated on the assumption. that the single particle levels are equally

spaced. ' ' : -

The purpose of the present papér is tp‘make an np-to~dat; comparison
of the experimental‘levél spacings of statically deforméd nuclei with tne
corresponding spacings calculated with a microscopic_theory of interacting
Fermions6) and realistic sets of Single'particle levels. The microscopic -

theory in the present calculations gives the number of particle or intrinsic’

states and each of these states serves as the parent of a rotational band as

- in the Ericson calculation.
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2, Caléulatioﬁal Procedure

The theoretiqal calculations of the level density were performed for

nuclei with axial symmetry which implies that the particle states can be

characterized by the guantum number which repreéents the total projectiqn
.of tﬁe particlé angular moméntum on the nuclear symmetry axis, ihe projection
\
2 for a given pafticle’state resulté from combining the projections of all
the unpaired singlé particle excitations., Thévdensity of particle states of
PR ' 4 . <

a particular {! is approximated by a normal distribution,

. . . ’

intr

Oner B = Lo @/ @rop® @)Y exp (- 0772012 m) ] (1)

where wintr(E) is the total density of particle or intrinsic states of both

parities. The state density win

tr(E) and spin cutoff factor OHZ(E) are calculated

_with a microscopic theory including nuclear pairing by a method outlined
4,7

previously ) In the present context, 0”2(E) is defined by,

2 a2 1 2 .2 1 .E: 2 2,1 )
Ot EY = TAT = 3 ;Z i sech® (3 B E) + /0 ;" sech™ (3 B By (2)
- ] o 1 L

where f, Epi and Eni are.the inverse of the_tgmperature‘T,\the proton quasi-
particle energy and the neutron quasipartiCle.energy, respectively. The
quantity GHZ(E) is analogous to the spin éutoff factor OQ(E) for“a spherical
nucleus, except for an axiélly deformed nucleus, 0"2(E)'is related to the totél
projectioﬁ'of the particle angular momentﬁm on the'nucleér symmetry axis. The
éﬁantit§4€m is the moment-of-inertia about an axis parallél to the symmetry axis.r
In the preseﬁt:caléulation we assume that each.parficle state characterized
" by IQI has é‘rotational band built upon it. -For this assumptionito be valid the

particle degrees of freedom must be completely decoupled from the collective -
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rotational degrees of freedom. If the contribution of states with K # @ is

small at the neutron bindihg energy, then one may assume'K-= 2, where K is

the préjection of the total angular momentum I on the nuclear symmetry

axis. This approximation neglects all the vibrational excitations. The

level density for a speéific I is then obtaineds's).by suﬁming over all

,

particle states with |K| < I,

P(EI) = 5: Pintr (£ - Erot(K’I)'K]
: "TKSI

(3)

where ErotiK,I) is the rotational energy expended for a rotational level I

built on a particular K. value. A level is characterized by a positive value

of ) (or K) and only values equal to or greater than zero are included in the

sum, -The fact that the particle states are degenerate with respect to the

sign of i (or K) is a result of rotational invariance for axially symmetric

nuclei.

If one assumes that the rotational energy ErotKK,I) is

- to the total excitation energy, then eq. (3f may be rewritten,

o : : I(I + 1) - K2
p(E,I) v ?: wintr}E,K) exp. [— > - ]-
Kk <1 , 20) 7 (E)

N

where qlz(E) ==3117h2 and 31 is the moment-of-inertia about an

to the nuclear symnfetryaxis° With the assumption that K = 1,

small compared

(4)

axis perpendicular

the quantity

Wingy (s given by ey. (1) is substituted into eq. (4) to give,
_ | “ K=+1 , X
p(E,I) = [1/(81r);20" B ] w, . (E) Z exp |- —K _ I(I+1)-K )
r 2 2

( K=-1
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N

where the sum egtends from ~I to +I and an.additionalvfactor of %-is introduced.

This gives the proper weight to the K = O bands, since for a given I, only
one-half of the K = 0 bands contributes)o For small values of I where the

exponential term in eg. (5) is near unity, the sum in eq. (5) is approximately

N

equal to 2I+1 and eq. (5) reduces to,

o(E,I) ~ [(21 + 1)/(8m)1/? op®l e, ® . (6)
: intr ]

. . . \ 4 ' .
This equation is to be compared to eq. (3) of the previous paper ) where in the
same approximation the spin dependent level density for avspherical nucleus is

\

given by,

/2

o€, 1) ~[@e1+1/6mY23®] w®m . | 7)

The latter equation for spherical nuclei contains an extra factor of OZ(E) in

the denominator. This factor is discusSed in the following paragraphs.

Equation (7) is derived for spherical,nuﬁiei on tﬁe basis thét ho ) ’
rotational states contribute'to the state density and, hence,.w(E) in eq. (7)
is the total state dehsity. In contrast to eq. (7), eq. . (6) is derived on
. the basis thaqiparticle and ;otational states contribute to the state density.

The intrinsic state density‘wi r(E) is only that part of the total state

nt
density coming from the particle states. When rotational‘states are included

for deformed nuclei, the total state density is given approximately by,

~ 2
WE) ~ ow (B o TE ©

5 _
where qL(E) ranges from 35 to 65 for nuclei with A values ranging from 150 to

250, rigid-body moments of inertia and excitation energies equal to the neutron

binding energy.
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Equatioh (8) is derived from the rotational partition function in the
approximation that the particle and rotational energies are independent; The
total state density, including particle and rotational states, for a deformed

nucleus with axially symmetry is to good approximation given by,:

©  2I+1 ,
1 . .
w(E) .= 5! Z Z wintr'[E - Erot(x'I)]\ B ' (9)
I=0 =1 '

N

is a symmetry number for axially symmetric nuclei due to

)

N+

bThe,factor of
in§ariance with respect to rotation of 180° about an axis perpendicular to

the symmetry axié. Due,to this proﬁérty, only. one—haif of the particle

Statgs se?ve as pérent levels for the ba;ds of rétatidnal levels. The

individual leVelé in the yotationél band built onveach.pérticle level are

1apelled by X; The sum in eq. (9) runs over all angular/momentﬁm valuesi1=o to

1=§. In addition; for’eachvlevel X with angular momgntuﬁ I, there are 2I¥i

eigensﬁates cbrrespondiﬁg:tq the same magnitude of théjrotational enérgyl i;e.,

each rotatiohal\level,has a degeneracy of 2I+l. if the ;otatiOnél energy
rot(I) given by | |
R 12 o S -
R | ‘Ero't(__I) = Z,l— I(I + }) | L . (10)

is small compared to the tofal energy E, then eq. (9) may be fewfitteh as

i 2I+1

o E_ (D] IR
WE) S () Z Z ‘exp ["‘E‘i“" . avn-

I=0 X=1

with the (2I+1) degeneracy factor and the rotational energy of eq. (10), one

\

may rewrite eq,-(ll) as follows

~ 1 Z h® 1(1+1) -
w(E) 3 wintr(E) = (2I+1) exp [—- —_281'1' | ] | . (12)
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—~

If h2/2§1T is small éompared to unity, the sum in eq. (12) can be replaced by
an integral. On integration of this expression, one obtains.eq. (8).
Equation (5) may now be rewritten in terms of the total state'density,
K=+I »
. : L 2 :
p(E, 1) = [1/(8M 7 o)(E) o) "(E)] w(E) exp {-

=-1

K2 1(1#1)-k?

. (13)
2otm 20 m)

This equation is analogous to eq. (3) of the previous. paper and in the limit of

small I gives,

pE, 1 = [@I+/6eNY @ o’ ®]e® . (14)

~
. ° 4
. .

Equation (14) is analogous to the spherical nucleus result given by eq. (7).

Since eq. (13) contains the total state density, it satisfies the condition

4
that Jgn (21+1) p(E,I)- = w(E), just as does eq. (3) of the previous paper ).

. B 5 e
However, w(E) in eq. (13) is equal to G} wintr(E).

In performing calculations of the level density for .a deformed nucleus
of particular angular momentum I and both parities, we use eq. (5). The

intrinsic or*particle state density ws r(E) is calculated with the microscopic

nt
theory with values of the nuclear pairing energies given in the previous paper4).
The microscopic theory is used also to compute 0"2(E) by way of eq. (2).‘ Values

2 : . ' : . .- :
of gy (E) are calculated with the rigid-body moment-of-inertia. Although this

\

assumption leads to an upper limit for OLZ(E), values of p(E,I) are not
. \ .
very sensitive to'qL(E) for small I. The energies of the single particle levels

7

were calculated for quadrupole and hexadecapole deformations with a program and

. 9 L .
parameters of Nilsson et i£° ) In addition, some calculations were performed
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!

with the single bérticle levels of Nix Sgigl.lo) and the single particle levels

' . , - , - 11 : : . ’
calculated with the revised parameters of Tsang et al. ). For the odd particle
system, the statistical functions were calculated for the adjacent even-even

nucleus and then the energy scale was shifted by an energy equivalent to that

required to produce one quasiparticle.
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3. Results and Discussion

The results of the theoretical calculations are summarized in Tables
1-4. In each of these tables both the experimental data and the results of}
the theoretical calculations are presented in terms of level spacings. The

level spacing D in eV for a single parity is defined in relation to eq. (5) by,
D(eV) = 2de6 [p(E, I~ l) + p(E +»1)] | " (15)
i e = /Lp(E, o 7 p r\Io P} v v

‘where each level density is defined in terms of the number of levels per'MeV
offa particular angularrmomentum and both parities and I, refers to the target
spin, The factor of 2 in eq; (15) is a result dfvthg assumption that £he number
of levels of each périty afe equal4)° All oflthe values of Dtheo.for
the défbfmed nuclei are calculated with egs. (5) and (15), whereas for the
spherical nuclei the formaiism in the pre?ious paper"is u$ed4)°

The rétios of Dtheo,/Pexp, for deformed nuclei in the mass regions
_150 <A< 185>and A > 228 are plotted as solid §ymbols‘in fig; 1. The
'theoretiéal ;pacings for these nuclei as well as for ?BSOs.and 196Pt were
calculated with.single particlg levels genefated with the deformations énd» .
parameters of Niléson EE_Elfg)° The ratios of Dtheoo/Dexpo for spherical
nuclei in the mass region 186 S A < 208 are plotted as opgn’symbols in fig; 1.
Again the theoretical spacings for the spherical nu?lei we?e calculated wifh

v . . . 9
single particle levels generated with the parameters of Nilsson et al, ), however,

no enhancement due to the collective rotations are included in Diheo. ®
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The queétionlof/the sensitivity of Dtheo} to a.particular set of
single particlé'lévels was investigatéd by performing calculations with single
particle ievelgrcalchiated by Nix gg_ii.lo)vand‘with.siﬁglé'particle levels
calculated with the deformations'and parameter; of Tsaﬁg»g&_g},ll). The
results are ?bmpéred in Table 5 and are quite similar. . ' .

In the‘preseht fdfmulation, any enhancement in~the level densit& due-
to vibrations has.been neglected. For the case of an:axiglly syﬁmetrie nucleus,
the enhancement in the levei-density due to vibratiOnsvis calculable with the
same type of formalisﬁ as thafldiscﬁSSédufor rotations and is given abprOximately
. by8) [1 - exp (- hw/T) 179, The exponential féCtor is‘fbr a vibrational mode
~with. g-fold deéénéracy; The prédicted enhancementrin the.leVel dehsity deéends
on the ratio of hw/T and g. For heavy nuclei, hw/T is éf the order of 1 to 2.
Hence, fhe enhancements in the level density for.ﬁeavyrﬁUClei due to vibrationai
excitations is expected to be an order of magnitudé less than that due to
. rotations. o

In adding the collective rotgfional levels to the_intfinsic,or particle
level density, one is éoncerned about the redundance in the t&o ﬁypes‘o?‘degrees
of freedom. One knows‘thaﬁ at low excitation ene;gy,'éach intrinsié level has
' bﬁilt uéon it a rotationa1 5and.' At fhese‘loﬁ enérgies; éhe nucleus has a _'
well-defined deformation and one can clearly separate the particle and ;qlléctive
mdtion. Howévér, as the temperature'ahd excitafion energy increase, it is‘
propably no longer a good approximétion tq_éssume thaﬁ fhe';article and
collecpivé degrees of freedom are ihdependent of each O£hér.v In the limit
where the temperature is very large and the particle and collective degrees

t

of f%eedom are thoroughly mixed, then win-r(E)'contains'ail of the\availabie

- states and there is no enhancement in the level density due to collective rotations.
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fhe question remains as to whe£her the level Aensity will be enhanced
for deformed lanthanide and actinide nuclei at excitation enérgies corre- |
sponding to the neutron binding energy where the tempefafure‘is abcut 0.5 Mev,
It has been estimateds) that at a nuclear témperature of the order of 4OA-'1/3 §
~MeV (where 8 is.the deformaﬁion)bthe fluctuations in the nuclear orien£ation
becomes so large that it is not meaningful to speak of a separation*of the
rotational and intrinsig ﬁotion.' For the actinide nuélei this éééiﬁéte'of_
1.6 MeV for this nuclear temperature is Qell in excess of the actual temperature
of 0.5 MeV at‘the néutfpn biﬁding energy. The good agfeement between the ‘
expérimehtal spécings and the theoretical spacings (egs.. (5) and (15))‘forvthe
actinide nuclei supports the general validity of the formalism described in
this.paper where collective rqtations are added to\the level density for
axially deformed huclei.’ Iﬂ the limit where no enhancement in the
level density due to coilective,rotations is includéd, [£his calculation
assumes W(E) = wintr(E) and makés use of.eq. (13) ], the‘éxpérimental spacings

of the actinide nuclei are not éven reproduced when thegbairing gap parameters

are reduced to zero,

. )’ -

The results for the nuclei in the mass region 150 < A < 185 are somewhat
ambiguous. Although the lighter lanthanide nuclei appear to require the enhance-
ment . in the.level-denSity associated with the rotational levels, the heavier
lanthanides require only a partial enhancement in the level density. One -
puzzling feature . is the decrease in the ratio D /D with A in the

: theo.” "exp.
A region, 150 < A < 185.. Although the magnitude of this ratio can be shifted

up or dowﬁ'by varying the pairing gap pafameters, the downward trend remains.

As an example of the influence of pairing, an increasé in the gap parameters
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" of 15% increases the ratios of D, /D by approximately a factor of 3.

theo.” “exp.

The trénd'j.n the ratio D /D observed for the la_nthanide nuclei may

theo.” “exp.

possibly reflect a deficiency in the various sets of theoretical single particle
levels used in the calculation of the patticle state'deQSity. Similiar’

calculations need to be done with other sets of theoretical single particle

\

levels.
. ‘ 9%_, :
The transitional nuclei 184W,'lSS,Os and‘l 6Pt represent interesting

cases where the theoretical spacings are much too small when calculated on’

the basis'of a deformed‘nucleus formalism (egs. (5) and (15)). HdWever, the ‘

. , ' 196_ . .
agreement with experiment is good for 18805 and 1 Pt if these nuclei are

Dtheo./Dexp;

-are near unity fqr these nuclei when spherical singlé'parﬁicle levels are

used. 'This result may be due to the fact that these nuciei~are very soft to

éhanges in shape. By the time the neutron and proton numbers are increased

- sufficiently to reach 1'96Pt, the nuclear potential energy surface hés become

. . . 9 " - -
very shallow with slight minima at oblate and prolate deformations 'll). However,

the depths of these minima are only about 1/4 MeV. The criterion for the

temperature at which the enhancement in the level density due to rotations

’ oo ..

vanishes for these soft nuclei must be substantially different from the-
. ‘ \ . . - \

criterion discussed earlier for rigidly deformed nuclei where the minimum in

-the potential energy is of the order of the neutron binding energy. For these

soft transitional nuclei, an excitation energy corresponding to the neutron

binding energy may give a nuclear temperature sufficiently high,vsuch that’

there is not a well defined deformation and, hence, no observable enhancement

_in the level density due to collective rotations.
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In summary, the neutron resonance épacings give information on the A
dependence of the hdclear level'dénsity at an almost fixed excitation energy.
Althbugh the rathé£_low excitation eneréy.is advantageéué for teéting
theoretical modelé for the éffects of nucleér shells aﬁd structure, it is -
disadvantageous in that a number of factors cén éubstantially alte? the
theoretical level density. We haveApresented evidence f;om comparisons of
-experimenfal and theoretical neutfon resonance spacings in sgpport of a .level
density formula which™ includes léw;energy'rotational levels. The evidéncé
is somewhat convinéing for the actinide nﬁclei where.the‘microscopic state density
_ calcuiations were performed with three diffg;ent sets of single particle
levels. Tﬁe eviéence for the rotational énhancement for the lanthanide #ucléi
is les$ definitive where célculations»have been performed'pnly for Nilsson
single particle levels. Thegretical>célculati0ns with single particle levels

"from other potentials are needed.
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Table 1. Experimental and theoretical level spacings _6f even Z-even N Qeformed nuclei.j
Target = I,/ | 5325232(1 * % m niv (a) Dexp (:)1 ‘ev (c) ?gh::;é 9
lem g-- llszsm 2-,3- 8.27 1.3 1.3 1.3 1.1 6.2
13564 %-- 15654 1-,2- 8.53 2.1 2.0 1.9 1.1 6.5
1574 %’- \158Gd 1-,2- 7.93 12 6.1 6.0 2.1 6.3
161, §.+ 162, 2+, 3+ 8.20 2.1 2.6 2.9 0.7 6.7
163, > 164, 2-,3- 7.66 11 9.6 9.6 1.2 6.6
167y , %-+ 1685, 3+,4+ 7.77 3 4 4.1 0.4 6.7
171 %__ 172 0-,1- 8.02 7.2 6.5 0.7 6.9
1734, % - 174, 2-,3- 7.47 7.8 8.4 0.8 6.8
1774¢ %-- 178¢ 3-,4- 7.63 2.9 3.2 2.4 0.4 7.0
i79Hf .% + 180y 44,5+ 7.39 4.0  5.8 EE 0.7
183, | 4% - l‘84w 0-,1- 7.41 © 15 16 12 0.7 8.0
187, _ , _% ) 1880§ 0-,1- 7.99 14 9.1 0.09 9.3
1955 ‘ %" 1965 0-,1- 7.92 18 19 12 0.1 8.5
229, % + 230y, - 2+, 3+ 6.79 1 0.58 -.66_ 10.56 5.6

(continued)

—pT

9Tez-19T



Table 1. (continued)

Creeagm SmER g alg 2 e BT Dy,
233y % + 23-40’ 2+,3+ 6.84 0.99 0.61. 0.34 6.0
'?3'T’>U _;_ _ 1236 3-,4= ‘ 6',455 . 0.67 0.53 0.43 6.2
239 '%+ 240, 0+, 1+ 6.53 2.3 2.4 2.3 6.6
241, §+ 242, 2+,3+ 6.30 1.2 1.7 - 6.7
245, 14 246, 34,4+ 6.45 1.5 1.2° 7.2

%pata compiled by Lynhl),

b

Data compiled by Vonach\gg_gl.

Data compiled by Babaz).

3

).

dCalcillated with deformed single particle levels of Nilsson gE_gl.g). The theoretical spacing is for two

" spin. states:

-1~

9TEC-1dT



Table 2. Experimental and theoretical'level spacings of even Z-odd N deformed nuclei.

Target I Compound + }v - EX \ exp in eV | ?Theo
o Nucleus 2 MeV (a) . () (c) in ev
150gn 0+ Blen %—+ 5.59 24 68 135
152~Sm os 153Sm _2_ + 5.87 60 52' 75,
154 o8 155 %'+ B '5L81 ' ) 115 90
15254 0+ 1536a 2+ 649 ©11.5 25
15455 or 155, | %_+ 6. a5 10.2 28
156¢q 0+ 15764 % + 6.37 75 47 30
158, 0+ 1594 %_+ 5.94 85 60
16053 0+ 1614 >+ 5.63 170 100
156, o+ - 157, %—+2 6.98 3.4 6
1585, — 0+ 159, % s . .83 30 o
160, 0+ 161y, % + 6.45 11 13
162p, 0+ 163p, - S+ .27 130 . a2 72 15
164, o 165, %i+ ’5_51- . 200 © 50
162Er 0+ 163Er % + 6.91 7.1 6.9 ki

(continued)

_9'[_

9TeZ~TH1



Table 2. (continued)

Target I,m ‘Compound 1 o+ 1 B - . Pexp i e.v ' o ?Thelod

: Nucleus o 2 . MeV - (@) (b) (c) in eV
164, v.o¥_' - 165, | % + 6.66 17 22 5
"166Er | 1- o+ 167, l%j; 6.44 .47 38 7
-;§8Er , o+ . 169, %-+ 6.00 R 100 95 _. 15
‘170Er ‘ - 0+ ' ller %-+ 5.68 ‘ ‘ | - 155 . 27
168Yb | o+'.: \‘ 1694y, %—+ 6.87 20 3
170Yb v0+ ‘ 17}Yb %.; 6.62 | 22 . 37‘ 5
172, B 173, %_+ 637 : . 75 63 . 9
174, " or 1754, : %_+ | 5.82 | 250 . 164 25
1764, 0+  ‘ 177¥b _%.+ _ 5.56 - 250 ‘\rss _ | 40
.;;74Hf - d;-\ 1.-175Hf ; %‘+'» ess 16 L
1764¢ - 0+ Y17 g¢ -%-+ -6.38 o 41 32 8

| 178,¢ o+ 179va %‘ + ‘ 6.10 s _ 64 16
iSOHf - o+ - l81ﬁf %—f _6.70 ’ o 140 -~ 125 30
230, o, 2315 '%_+ | 5.12 . | 11 | 7.7 - 22

-, T=-

.

9TEZ~19'1

(continued)
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) Table 2. (continued)
Target I.,mw Comp ound_ t l,, m ‘E* DeXp o eV ]?Theo
o . Nucleus 2 MeV (a) (b) (c) in. ev
232, 0+ 233y, -;- + 4.79 17.5 12.4 16.7 40
23211 0+ 233, % + 5.74 7.6 14.2 4.2 s
234y o+ 235y % + 5.31 13 18 12.3 12
. - .
236, o+ 1237 % + 5.12 " 17 27 15.4 18 .
238, 0+ 23% % + 4.80. 17.7 | 18.1 20.8 ’30\
238, . o+ 239, . | % + 5.66 13 16 1.7 8 %
2405, o+ 2415, —;- + 5.24 13 14 12.5 17"
242, o+ 243;, %+ 5.04 15 26
._24_4Cm_ o+ 245, -21- + 5.52 13 20 14 18 N
Moo e M L. e e a
24é¢m or 249Cm\' %+ 471 [ 130

aData compiled\by Lynnl)n

dCalculated with deformed single particle levels of Nilsson gf_gl.g). The theoretical spacing-is for -one

spin state.

bData compiled by Babaz).

“Data compiled by Vonach g£-2£.3),~

91€C~14d1
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Table 3. Experimental and theoreticalylevel spacings of odd Z-even N deformed_nuclei.

Target I ,m Compound I+ 3,7 B” e “Theo

rge o' Nucleus o T 2! MeV (a) (b) - : (c) in eV
176Lu 7- 177Lu —12—3 -, 12—5 - 7.07" 2.3 2.4 . 2.3 / 0.14
22 s M3y % -2 6.38 0.6 0.3

aData"compiied bY'Lynnl)°

b
Data compiled by Babaz).

CData compiled by Vonach 93_3133)01

dCalculated with deformed single particle levels of Nilsson 95_3539).

7 b
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Experimental and theoretical level spacings

N

© 237

Table 4. of odd Z-odd N-deformed nucleif
Target” I, Eﬁ’é‘i’iﬁl‘d Iyt | ﬁ;v (a) DexP(S ‘eV’ (c) lzih:\ol
151p, | §-+ T 2+,3+ 6.31 0.75  ° 0.72 0.7 1.3
, |
1534, ' %-+ 1346, 24,3+ 6.44 1.4 1.3 - 1.1 o 1a
lSéTb %-+ 'léoTb‘- 14,2+ 6.38 3.9 4.3 4.2 1.0
16540 _%-- 16646 3-,4- 6.24 6.1 5.7 . 5.5 0.3
169 %-+ 1700, O+, 1+ 6.59 6.0 6.6 - 7.3  0;4
175, %ﬁ; 176, 3+,4+ 6.29. 3.7 3.6 3.0 0.3
181, %_+' 182, 3+;4¢ 6.06 4.4 4.3 4.3 0.1
231, 3. 232, 1-,2- 5.56 1.0 0.4 o
233p4 2 - 234, 1-,2- 5.20 0.8 10 . E 0.9
Np §f+ : 2}238N§ 24,3+ 5.48 ' 0;72_ - 0;67 - o;s
241, g;_ 242, 2-,3- 5.53 0.77  0.58 "/' o 0.7
243 im g;— 244Am/- . 2-,3- 5.36 14 15 | i.o.

%pata compiled by Lynn_l)°

'bData»compiled by Babaz),

. o3,
“Data compiled by Vonach et al. ).

. : ‘ 9
~dCa1culated-with deformed single particle levels of Nilsson et al. ).

9TET—1Id1



‘Table 5. Comparison of experimental and theoretical level -spacings for three sets

of single particle levels.

4 b . .
Target 1 ﬁ Compound I +‘l'“ E* exp }n ev : DTheo in ev
g o’ Nucleus o~ 2’ MeV (a) (b) (c) (d) (e)
. AN
. 5 7 | .
2290, % + 30mm 24,3+ 6.79 0.58 0.60 0.56 0.55
235 % - 236, 3-,4- 6.55 0.67 0.53 0.43. 1.0
2415, % + 2425, 24,34 ! 6.30 1.2 1.7 1.8 2.4
2850 %+ - 245, 34,4+ 6.45 1.5 1.2 1.0
a . 2, -
Data compiled by Baba™).

Ppata compiled by Vonach gg_g£.3)o

: _ 9
“Calculated with deformed single particle levels of Nilsson et al. ).

: ' ' 11
dCalculated with deformed single particle levels of Tsang et al. ).

\

10

eCalculated with deformed singie particle levels of Nixjgg al. ).

© 9Tee-19T |
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. - : Figure Caption -

Fig. 1. The ratios of the theoretical spacings to the experimental spacings
are plotted as a function of mass number. The points represented by

solid symbols are for calculations of Dtheo based on single particle

levels calculated for.defqrmed nuclei with the deformations and pardmeters

9 : : . . A o ,
.of Nilsson et al. ). The actual calculations of Diheo, 2re performed with

egs. (5) and (15). The open symbols are the same except for spherical

nuclei where Dtheo is calculated with the equations for spherical nuclei

7

. .y -4 : R
in the previous paper ). . ,
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LEGAL NOTICE

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Atomic Energy Commission, nor any of their employees, nor
any of their contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents
that its use would not infringe privately owned rights.
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