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ABSTRACT: 

The simultaneous creep and densification of glass powder compacts was 
studied as a function or low applied uniaxial stress, temperature, and 
particle size. The creep rate can be expressed as the sum of the 
contribution from the applied stress that varies linearly with stress, and 
a contribution due to anisotrQpic densification that varies linearly with 
the densification rate. For a constant applied stress, the ratio of the 
creep rate to the densification rate is almost independent of both 
temperature and density. While these observations are consistent with the 
model of Scherer for the viscous sintering of glass, other observations 
show significant deviations from the model. Both the densification rate 
and the creep viscosity, which has an exponential dependence on porosity, 
show much stronger dependence on density compared with theoretical 
predictions. 
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I. INTRODUCTION 

The early work on the sintering of glass originated from the theory of 

viscous sintering by Frenkel. 1 Using a simple energy balance, i.e. that 

the energy dissipated by viscous flow is equal to the energy gained by the 

reduction of surface area during sintering, Frenkel derived equations for 

the neck growth between two glass spheres and for the shrinkage of a row of 

glass spheres. A numerical error in Frenkel's analysis was corrected by 

Eshelby. 2 The predictions of Frenkel's analysis have been supported by the 

experimental results of Kuczynski, 3 Kingery and Berg, 4 and Kuczynski and 

Zaplatynski.~ Using Frenkel's energy balance concept, Mackenzie and 

Shuttleworth6 developed a theory for the sintering of glass based on a 

simple model consisting of isolated, spherical pores of the same size in a 

dense matrix. Mackenzie and Shuttleworth's analysis is therefore strictly 

applicable to the final stage of· sintering. 

Experimentally, Culter and Hendricksen7 have pointed out the effects 

of particle shape on the sintering of glass. They found that compacts of 

crushed, jagged particles sintered as much as 5 times faster than compacts 

of spheroidized particles of the same size. They attributed the faster 

sintering rates of crushed particles to the sharper radii at points of 

contact between the particles. Giess et a1 8 •9 have investigated the 

effects of particle shape on shrinkage anisotropy during sintering of 

cordierite-type glass powders. For jagged (ball-milled) and spheroidized 

powders uniaxially pressed into right cylinders, they found that both types 

of particle compacts exhibited about the same 0.7 anisotropy of the ratio 

of the axial to the·radial shrinkage, but that spheroidizing reduced the 

shrinkage rate. Anisotropic shrinkage appears to be not a simple particle 

shape effect but may be related to particle packing and size distribution 

in the axial and radial directions. 

.. 

.. 

• 
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10-12 . Using Frenkel's energy balance concept, Scherer. cons1dered a 

model that applies to the entire densification process but assumed a 

particular geometry consisting of cylinders connected into a cubic array. 

This model may not resemble the microstructure of an actual powder compact 

but it is believed to provide a reasonable representation of the structures 

of such materials as flame oxidation performs, 10 phase-separated and 

1 h d 1 11,15 . i 1 16 eac e gasses, and 1norgan c ge s. In spite of the geometry of 

the model, the predicted sintering kinetics agree very well with the 

1 predictions of Frenkel's analysis for neck growth between spheres, and 

with Mackenzie and Shuttleworth's analysis6 for the sintering of closed, 

isolated pores. Scherer's model appears therefore to have broad 

applicability. The model has also been applied to the sintering of a body 

with a bimodal pore size distribution, 13 to the sintering of a porous glass 

layer on a rigid substrate, 14 and to the sintering of glass subjected to 

17, 18 applied stress. 

sintering of glass. 

Recently, Rabinovich 19 has compiled a review of the 

The effect of small, controlled uniaxial stress on the sintering 

behavior of glass powder compacts has not been investigated experimentally 

before. This paper seeks to address this problem. It describes the 

simultaneous creep and densification behavior during the sintering of glass 

powder compacts using the loading dilatometer technique 20 in which a small, 

measured uniaxial stress is applied to the sintering compact. The 

dependence of the creep rate and densification rate on applied stress, 

temperature, and particle size is explored. In addition to providing a 

better understanding of sintering and creep phenomena in glass, this work 

will also be relevant to glass systems in which transient stresses develop 

during sintering, such as multilayer ceramics and composites. Two of the 
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present authors have previously developed and applied the loading 

. 21-23 dilatometer technique to the sintering of polycrystalline ox1des, in 

which matter transport occurs by diffusion. 

II. EXPERIMENTAL PROCEDURE 

* A commercial soda-lime glass powder was used in this work. The 

powder was first air-classified to obtain narrow size fractions and these 

were examinined using a scanning electron microscope to determine their 

average particle sizes. These size fractions, denoted A, B and C were then 

selected and their average particle sizes were determined more accurately 

by counting the length intercepted by about 200 particles. The average 

particle sizes of A, Band C were 4~m, 8.5~m, and 33~m. respectively. 

** Carbowax (8 vol%) was used as a binder in the compaction of the 

powder, since samples pressed without a binder were too weak for the 

sintering experiments. The carbowax was dissolved in chloroform, then the 

required amount of glass powder was dispersed in the solution, and the 

mixture was stir-dried. The powder was lightly ground in an agate mortar 

and pestle and uniaxially pressed at -20 MPa into cylindrical compacts (6mm 

diameter by 6mm) with relative green densities of 0.55 ± 0.01. 

Compacts were sintered in air for -2 to 3 hours in a loading 

dilatometer. 20 Loads can be held constant to within ±0.5% for the duration 

of the experiment. Typically, the sample was placed in position between 

the pushrods of the dilatometer and then introduced into the outer zone of 

the furnace to allow burnout of the binder. The binder was removed by 

increasing the temperature of the sample by 50°C every 10 minutes up to 

* Owens-Illinois, Perrysburg, OH 43551 

**Union Carbide Corporation, New York, NY 10017 
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-350°C. After 30 min at this temperature, the sample was quickly 

introduced into the hot zone of the furnace. The load on the compact was 

applied rapidly and the axial shrinkage and temperature were recorded 

continuously. The mass and dimensions of the compacts were measured before 

and after they were sintered, and the final densities were measured using 

Archimedes' principle. In a separate set of experiments, sintering was 

terminated after times between 0 and 3 hours. The dimensions of these 

compacts were measured using a micrometer and the fracture surfaces were 

examined using scanning electron microscopy. 

Generally, powder A (4~m) was used to explore the effects of applied 

stress and temperature. To explore the effects of stress, experiments were 

performed at 605°C and under stress of 0 to 30 kPa, while to explore the 

effect of temperature, experiments were performed at 580°C and 605°C and 

subjected to a stress of 9 kPa. Powders A, B and C were used to 

investigate the affect of particle size at 605°C and under a stress of 9 

kPa. 

In the dilatometer, a spring was used to maintain contact between the 

pushrod and the sample, and this exerted an additional force on the sample. 

This spring force was measured as a function of distance moved by the 

pushrod by replacing the sample with a sensitive strain gage. It was 

required to measure this force in only one experiment, since the initial 

length of the sample varied by less than 1% and the dilatometer measuring 

devices could be kept in a single position, initially, for all experimental 

runs. 

X-ray diffraction measurements were performed on the glass powder and 

on the sintered material. For these, the sintered compacts were crushed 

and ground into a fine powder using a mortar and pestle. 

-1 
was used at a scanning rate of 1° 29 min .• 

CuK radiation 
.a 
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The density of the bulk glass was also measured. About 10g of glass 

powder was placed in a platinum boat and heated to 1300°C at a rate of 

-15°C/min, in a nitrogen atmosphere. After -20 min at this temperature, 

the sample was slowly cooled to room temperature. The glass sample was 

then removed and its density measured using Archimedes' principle. 

III. DATA ANALYSIS 

The creep and densification strains were measured using a methodology 

described by Raj. 24 According to Raj, the creep strain rate, E , and the c 

densification rate, 
. 
e: • p 

are given by the relations: 

~ = (2/3)(~ - ~ ) c z r ••• ( 1) 

€ = p/p = -(~ + 2~r) p z ••• ( 2) 

. 
where e:z and e:r are the axial and radial strain rates and p is the relative 

dens! ty. If the sintering compact is subjected to an applied, axial 

stress, az' then the mean hydrostatic stress, ah, experienced by the 

compact is 

••• ( 3) 

where r is the sintering stress (pressure) due to reduction in surface 

area. 

The experimental measurements provided data for the change in length 

and radius of the sample with time. These data were converted to true 

strains by using the definitions appropriate for large deformations. If 

L(t) and R(t) are the time dependent length and radius, respectively, of 

the 

and 

sample then, e: and e: may be written as z r 
• e: z 

d[ln (L/L0l.J. 
dt • •• ( 4) 



• e: r 
= d[ln(R/R01J. 

dt • 0 0 ( 5) 

where L0 and R
0 

are the initial length and radius, respectively. 

In each experiment the applied load on the sample consisted of two 
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parts.: a constant load, P, due to an electromagnetic loading device, arid a 

load, S, due to the dilatometer spring that is required to maintain contact 

between_ the pushrod and the sample. The load S decreased approximately 

linearly with shrinkage of the sample and may be expressed as 

where s0 and C are constants derived experimentally and ~L L0 -L 0 

The cross-sectional area, A, of the sample changed with time, and is 

2 given by A=~R . Using equation (5) then 

A= A exp(2£ ) •.• (7) o r 

where A
0 

is the initial cross-sectional area of the sample given by 

2 
A0=~R0 o 

Now the axial stress on the sample is given by 

az = (P + S)/A ••• (8) 

In these experiments, since A decreased with time, the decrease in s 

had a beneficial effect in reducing the magnitude of the change in a with z 

time. Using equations (6)-(8), 

az = [P + S (1-C+Cexp(e: ))]/A exp(2e: ) o z o r 0 •• ( 9) 

IV. RESULTS 

... The X-ray diffraction results showed no traces of crystallinity in the 

... 
samples before or after sintering. The complications of any amorphous to 

crystalline phase changes can therefore be eliminated from this work. The 

density of the bulk glass obtained by melting the glass powder was 2.43 ± 

0.01 Mgm- 3, and this figure will be used as the theoretical density. 

Friction between the pushrods and the sample led to a small deviation from 
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cylindrical geometry in a narrow region of the sample near its contact 

surfaces. The diameter near the contact surfaces was slightly larger than 

that along the rest of the sample. These deviations from cylindrical 

geometry were small in all experiments and decreased with increasing 

applied load. The difference between the diameter at the contact surfaces 

and the average diameter of the sample, obtained from the length of the 

sample and its density, was less than 3% at the end of any experiment. 

Frictional effects between the pushrods and the sample are therefore 

relatively insignificant. Figure 1 shows the results for the load, S, due 

to the dilatometer spring vs axial shrinkage, 6L/L0 ~ The magnitude of S 

decreases from -0.12 N to zero for a sample shrinkage of 0.35. 

Binder burnout was followed by having the dilatometer pushrod in 

contact with the sample, using the spring load only. The shrinkage of the 

sample (-2%) occured_ smoothly and was consistent with the value expected 

from the binder content (-8%). The amount of binder removed from the 

compact was -95% of the value obtained from experiments on the loose 

powder. 

The effects of applied stress, temperature, and particle size are now 

discussed separately in the following sections. 

IV.(a) Effect of Applied Stress 

Experiments were carried out on glass sample A, having an average 

particle size of 4,l.lm and at 605°C under a total load -(P + S) as outlined 

earlier. Figure 2 shows the axial strain, e: , versus time for values of P z 

between 0 and 0.75N. A load of 1N on the sample represents a stress of 

35 kPa on the green, unsintered compact and t = 0 represents the beginning 

of shrinkage. The load was applied quickly at t = 0 and the sintering 

temperature was reached after t = 8 min. Each curve is the average of two 
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runs under the same conditions and each is reproducible to within ±2%. It 

is seen that at any time, t, the axial strain increases with increasing 

load. 

Figure 3 shows the results for E vs the radial strain, E , determined z r . 

by sintering for times between 0 and 2.5 hours. Each experimental point 

was obtained using a different sample, and the binder burnout and 

experimental procedure for each was the same. 

At low loads, Ez is approximately proportional to Er, but above loads 

of -(S + 0.25)N, the curves are slightly concave downwards. The curve 

denoted "0" is for a sample sintered without a spring load, i.e. the 

dilatometer pushrod was very near but not in contact with the sample. This 

sample shows a small amount of anisotropic densification, and the 

anisotropy ratio k = (e /e ) = 1.28. z r 

The results for E and E were obtained from Figures 2 and 3 and c p 

equations (1) and (2). A least squares technique was used to fit smooth 

curves through the results of Fig. 3, then at any t, both E and E were z r 

obtained. Figure 4 shows the results for E vs t for three loads used. c 

The densification strain was converted to relative density, p, and the 

results for p vs t are shown in Fig 5. It is seen that the applied loads 

caused extensive creep but had almost no effect on the densification. A 

small increase in density was observed, as shown in Fig 5, but the 

magnitude of this increase was within the limits of experimental error. The 

final value of p = 0.95 calculated from the shrinkage kinetics was within 

-2% of the value found using Archimedes' principle. The negligible effect 

of applied load on the densification process can be understood from 

equation (3), if Oz/3 is less than -5% of E. Assuming the surface tension 

-1 of the glass is -0.3 Nm and a mean pore radius of -G/3, where G is the 
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particle size (-4 ~m) then E --200 kPa, while the maximum value of a 13 is z 

--10kPa. 

Since az has a significant effect on e: , it is interesting to plot a c z 

as a function of time (or density), using equation (9). From Fig 6 it is 

seen that a is nearly constant (to within -2%), and this results from the z 

counterbalancing effect of the changes in the spring load, S, and the 

cross-sectional area, A. 

By fitting smooth curves to the results of Fig 4 and 5, and 

differentiating, the relative densification rate, pip, and the creep rate, 

• e:c, were obtained as a function of p (or t). For rigorous analysis of the 

data it is required to have results for pip, and € , vs p at a constant c 

value of az. Since Fig 6 indicates that az is indeed nearly constant, no 

correction was necessary for these experiments. Figure 7 shows the results 

• • • for pip and e: vs p. The results for pip were evaluated for the sample c 
• under the applied load, S, and e: was evaluated at a values of 9, 18, and 
c z 

27 kPa. The value of e:c increases by a factor of -2 between az values of 9 

and 27 kPa, while the effect of az on pip is negligible. The explanation 

for this is that ~c is linearly dependent on az, while ~lp depends on (azl3 

+ E) • If a << E then the effect of a on pip is negligible. z z 

IV.(b) Effect of Temperature 

The experiments were carried out at 605°C and 580°C, using the glass 

powder sample, A (-4 ~m) and a .load of (S + 0.25)N, where S is the spring 

load. Figure 8 show the results for the axial strain, e:z, vs time, t. As 

for many glass systems, it is seen that a small change in temperature can 

lead to extensive changes in the shrinkage (or densification). The need 

for precise temperature control during studies on the sintering of glass is 

therefore emphasized. 
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The results for p/p and Ec were calculated using the same procedure as 

that outlined in Section IV(a) above. Generall~, ~/p and ~c' at any p, 

increase with increasing temperature. This can be explained in terms of a 

decrease in the viscosities for densification and creep with increasing 

temperature. The most significant result is shown in Fig 9, where the 

ratio of ~ to ~/p is plotted vs p at 580°C and 605°C. It is seen that c 

this ratio is almost independent of temperature and density. The constant 

value of £ /(p/p) indicates that both the creep process and the c 

densification process have the same temperature activation energy. Such a 

finding is quite plausibl~ since both creep and densification occur by the 

same mechanism of viscous flow. 

It is worth noting the contrasting effects of uniaxial (or shear) 

stress and temperature on creep and densification in glass. The creep 

rate, ~c' is found to be linearly dependent on oz' while p/p depends on the 

mean hydrostatic stress (a 13 +I), where I is the sintering stress due to~ z 
• reduction in surface area. Thus, Ec increases much faster with oz' 

compared to p/p. On the other hand, temperature changes ~ and p/p by the c . . 
same amount, and cannot, therefore, be used to vary the ratio E /(p/p). c . 

IV.(c) Effect of Particle Size 

The experiments were carried out at 605°C and under a load of 

(S+0.25)N, where S is the spring load, using three powder fractions A, 8, 

and C having average particle sizes of 4, 8.5, and 33 ~m, respectively . 

Fig 10 shows micrographs of A, 8, and C, and it is seen that the particles 

have angular shapes typical of crushed glass. 

Figure 11 shows the results for the axial strain, E vs time t for 
Z' ' ' 

samples A, 8, and C. It is seen that at any t, the value of E increases z 

as the initial particle size, G, of the compact decreases. Figure 12 shows 
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the results for £ vs the radial shrinkage, £ • The £ values are z r . z 

approximately proportional to £r and the slopes of the lines increase with 

increasing G. 

The creep rate, i , and the densification rate, ~lp were calculated c 

using the procedure outlined in Section IV(a). Figure 13 shows the 

• • • results for £c and pip vs p for samples A, B, and C. The results for £c 

were evaluated at a constant stress, a , equal to 9 kPa. It is seen that, z 

at any p, both pip and ~ increase as the particle size, G, decreases. In c 

addition the curves for pip and ic appear to have similar shapes. 

V. DISCUSSION 

It is instruct! ve to compare the experimental results of this study 

with the predictions of·models for viscous sintering of glass. The 

analysis of Scherer 17 appears to be well suited to this comparison. The 

model 10 assumed a particular geometry, consisting of cylinders arranged in 
~ 

a cubic array. Sintering occurs as the cylinders reduce their surface 

area, becoming shorter and thicker. 

The low stresses used in these experiments have almost no effect on 

the densification behavior of the sample. According to Scherer's analysis, 

the densification rate (under no externally applied load) is given by 

• 1 I 3 ( 2- 3c X) pIp .. ( kIn )[ ( 31T) . I 2 ]--"----';.._,....___ ••• ( 1 0) 
(xl/3(1-cx)2/3) 

where n is the viscosity of the bulk glass, c is a constant equal to 

812131T, x is equal to all where a is the radius and 1 is the length of the 

cylinders of the model unit cell, and k is a constant given by 

••• ( 11 ) 
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In equation ( 11), Y is the surface tension of the glass, and 1
0 

and p
0 

are 

the initial length and relative density, respectivley, of the unit cell. 

In figure 14, the results for p/p for sample A sintered at 605°C (see 

Fig 7) are compared with the predictions of equation (10). The constant, 

k(3n) 113!2n, wa~ arbitrarily chosen to give agreement between theory and 

experiment at p = 0.8. It is seen that the variation of p/p far exceeds 

the prediction of Sherer's model. The deviation between theory and 

experiment is not due to the binder burnout process, since a number of 

samples compacted without binder (and handled very genlty) showed similar 

densification behavior. One factor which may give rise to this deviation 

is the presence of a wide pore size distribution in the samples. As shown 

by Scherer, 13 the slope of p/p is sensitive to the pore size distribution. 

A mixture of pore sizes causes densification to be initially faster and 

finally slower than the unimodal case. Although mercury penetration 

porosimetry data.are not available for the samples, the micrograph shown in 

Fig 15 for a compact sintered to a relative density of 0.8 does indeed 

indicate a distribution in pore sizes. Figure 15 also indicates that the 

pore morphology is strongly lenticular, and this may also contribute to the 

deviation between theory and experiment. The pore morphologies assumed in 

Scherer's mode1 10 and in the Mackenzie and Shuttleworth model 6 are 

drastically different from that of Fig 15. 

For the creep data, the functional dependence of € on a may c z 
• be explored by replotting the data of Fig 7 as e: vs a at different values c z 

of p. Thi~ is shown in Fig 16. It is seen that ~ increases linearly with c 

az, in agreement with predicted stress dependence for a Newtonian viscous 

flow mechanism. An interesting aspect of the creep data is that they 

extrapolate to a significant value at a a 0. This extrapolated creep 
z 
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. 
rate, € , depends on the compact density. a In fact, if Ea is plotted versus 

the relative densification rate, ~lp, an approximately linear relationship 

is evident, Fig 17. Thus at any p, the observed creep rate can be written 

as 

••• ( 1 2) 

. 
where E represents the contribution from the applied stress a • Equation a z. 

(12) can also be written as 

* + a In z ••• ( 1 3) 

* where D is a constant equal to 117, and n is the effective creep viscosity 

at density p. 

A source of the extrapolated creep rate term, Ea' is anisotropic 

densification due to non-uniformity in the compact microstructure. As seen 

in Fig 3, the sample sintered under zero load (curve 0), shrinks somewhat 

faster in the axial direction, with k = E IE = 1.28. According to z r 

Scherer, 17 the axial strain rate of the sample is 
. . 
Ez = Efz + aziF ••• ( 1 4) 

and the radial strain rate is 

••• ( 1 5) 

where Efz and ~fr are the "free" strain rates in the axial and radial 

directions for a sample under zero load. The function F is the resistance 

to flow (or "effective modulus"), given by 

F = 3np/(3-2p) ••• (16) 

where n is the viscosity of the bulk glass. The function N is the 

"effective Poisson's ratio", given by 

N q 0.5 [pl(3-2p)J 112 
••• ( 1 7) 

.. 
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The functions F and N should be tensors in an anisotropic body, but that 

refinement is omitted to simplify this discussion. The creep rate found 

from equation (1) due to Raj 24 can then be written as 

€ = (2/3)(ef -~f ) + (2/3)(1+N)a IF c z r . z 
0 •• ( 1 8) 

The creep rate found from Raj's method is seen to include a contribution 

from anisotropic densification of the sample. Equation (18) is similar to 

the experimentally derived relationships of the equations (12) or (13), 

with 

and 

. 
€ a 

* n = 3F/[2(1+N)] 

The densification rate is, from equation (2) 

p/p ~ -(€fz+2€fr) - (1-2N)az/F 

• •• ( 1 9) 

••• ( 20) 

••• ( 21 ) 

For the experim.ents of the study, the low applied stresses have almost no 

effect on densification as outlined earlier, so equation (21) may be 

written as 

p/p • -<€fz+2ifr) 0 •• ( 22) 

The slope of Fig 17 is given by equations (19) and (20) 

et • • , e • 

€ /(p/p) = -(2/3)(€f -E:f )/(Ef +2€f ) a z r z r • 0 • ( 23) 

Figure 3 suggests that 

e:f .. 1.8€f z . r ... ( 24) 

for the sample sintered under zero load. Then from equation (23) 

E I (fJI p ) .. -0 • 1 4 ••• ( 25 ) a 

From Fig 17, the experimental value of this ratio is -0.14 in excellent 

agreement with equation (25). Thus Fig 17 follows directly from Figures 2 

and 3 and this is consistent with Scherer's model. 
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From equations (18), (22), and (24), the ratio ic/(p/p) plotted in Fig 

9 is 

(2/3)(k-1)~fr + (2/3)(1+N)az/F 

(2+k)€fr 

This ratio is constant, since 17 

•• 0 ( 26) 

•••. < 27) 

The quantity plotted in equation (26) is expected to be independent of 

temperature since ifr and 1/F are both inversely proportional to viscosity. 

The particle size dependence of p/p and € shown on Figure 13 can now c . 

be explained. The densification rate at any p is proportional to the mean 

hydrostatic stress, ah' given in equation (3). Thus 

p/p = constant(a /3 +E) ••• (28) z 

since a 13 << E, then z 

p/p m constant(E) ... (29) 

Since the quantity E is inversely proportional to the mean pore radius, r, 

which in turn varies as the scale of the system i.e. the particle size, G, 

of the powder, then p/p should be proportional to 1/G. This is indeed so, 

as shown in Fig 18, where p/p is plotted vs. G IG, where G
0 

= 33 ~m. The 
. 0 

small deviations in this figure at GIG a 1 might be due to the a 13 term 
0 . z 

in equation (28). 

According to theory, the creep rate should depend on the load-bearing 

fraction of the cross-sectional area and be independent of particle size 

for mass tranport by a viscous flow mechanism. The observed dependence of 

icon G might be due to anisotropic densification. From Fig 17, it is seen 

that the extrapolated creep rate, £ due to anisotropic densification is a• 

given by 
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(p/p)/7 ••• ( 30) 

Then from equation (12), the creep rate contribution, c: due to the applied 
(1 

stress, cr , is z 
• c: 

(1 
• •• ( 31 ) 

Figure 19 shows f. vs 1/G at three valuesof p, assuming that equation (30) 
(1 

applies for all G. 

size. 

The curves for £. are indeed independent of particle 
(1 

* The effective viscosity for creep, n , is defined from equations (12) 

and ( 13) as 

* n = (1 le z (1 
••• ( 32) 

and its dependence on density can be calculated from the results of Fig 16. 

. 
For crz = 9 kPa, the data for c: are plotted vs porosity, p = ( 1-p) as shown 

(1 

in Fig 20. The results show that n 

on P (or p) and can be expressed as 

* n = n exp(-a. P) e 

* has a strong exponential dependence 

••. ( 33) 

where a. = 11.2 ±0.02, and n is the viscosity of the bulk glass. The value e 

of n found by extrapolating the data of Fig 20 to zero porosity is 

10 -2 * (1.3±0.01)x10 Nm s. The creep viscosity, n, can also be found from the 

data of Fig 19 and remarkably good agreement with the results of Fig 20 is 

found. 

From equation (18) it is evident that according to Scherer's theory, 

* n can be expressed as 

* n = 3F/2(1+N) ..• ( 34) 

* The value of n was calculated as a function of p using equations (16) and 

(17), and the bulk viscosity, n, was arbitrarily chosen to give agreement 

with the experimental results p = 1. Figure 21 shows a comparison between 

* the experimental and theoretical values for n In plotted as a function of 

porosity. The difference is quite spectacular. Equation ·(34) may be 
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adequately approximated a~ 

* n == n exp(-a.tP) ... (35) 

where ~ = 2.4. The value of a.t is nearly 5 times lower than the 

experimentally derived value of 11.2. The difference between the two 

values may originate in the strongly lenticular shape of the pores in the 

present glass compacts, as evident in Fig. 15. Indeed, lenticular pores 

will tend to increase a.. The lenticular'pore shape'may also have led e 

to the other surprising feature of the results, namely the direction of 

the shrinkage anisotropy (Fig 3). Geiss et a1
8•9 found that the shrinkage 

was less in the axial direction, which is the direction of pressing during 

preparation of the samples. However, the samples used in the present study 

showed the opposite behavior. It is likely that the pore orientation that 

caused that anisotropy may also allow greater compliance in the 

z-di recti on. 

Further experimental work is in progress to determine whether the 

* strong dependence of p/p, and n on p is a general result and how these 

quantities depend on anisotropic densification,· pore morphology, and pore 

size distribution. 

VI. CONCLUSIONS 

The loading dilatometer technique has been used to investigate the 

creep and densification behavior of glass powder compacts. This is the 

first time that the effect of small, controlled uniaxial (or shear) stresses 

on the sintering of glass has been systematically studied. 

The creep rate can be expressed as the sum of a contribution from the 

applied stress that varied linearly with stress, and a contribution due to 

anisotropic densification that varied linearly with the densification rate. 

At a constant stress, the ratio of the creep rate to the densification rate 
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was found to be independent of both density and temperature. These observa-

tions are consistent with Scherer's model for the viscous sintering of glass. 

The dependence of the densification rate, p/p, and the creep 

* viscosity, n , on density, however, showed very drastic deviation from 

Scherer's theory. The strong dependence of p/p on density may be due to 

* the pore size distribution in the samples. The creep viscosity, n , was 

also found to have a strong dependence on porosity, P, and can be expressed 

* by an equation of the form n = n exp(-11.2P). where n is the viscosity of 

* bulk glass; according to Scherer's model, n - n exp(-2.4P). The 

difference is thought to result from the lenticular pore shape in the 

samples, which may also have caused the unstressed samples to shrink 

anisotropically. The bulk viscosity, n, was 1.3x1o10 Nm- 2s. 
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LIST OF FIGURES 

Figure 1. The load applied to the sample by the dilatometer spring vs 
axial shrinkage of the sample. The spring lOad is required to 
maintain contact between the pushrod and the sample. 

Figure 2. The axial strain vs time for glass powder fraction, A, sintered 
at 605°C under different applied axial loads (in newton). The 
quantity S represents the spring load of the dilatometer. 

Figure 3. The axial strain vs the radial strain for the experiments 
described in Fig. 2. The curve labelled '0' is for a sample 
sintered under zero load. 

Figure 4. The creep strain vs time calculated from Figs. 2 and 3, and Eqn. 
(1). 

Figure 5. The relative density vs time calculated from Figs. 2 and 3, and 
Eqn. ( 2). 

Figure 6. The applied axial stress vs time for the loads used (shown in 
newton). 

Figure 1. The creep rate and densification rate vs relative density for 
the constant axial stresses (shown in kPa). The densification 
rate was almost independent of these low stresses used. 

Figure 8. The axial strain vs time for glass powder fraction, A, sintered 
under an axial load of (S+0.25)N at 580°C and 605°C. 

Figure 9. · The ratio of the creep rate•to the densification rate vs 
relative density for the experiments described in Fig. 8. 

Figure 10. Scanning electron micrographs of powder fractions A, B, and C 
having average particle sizes of 4, 8.5 and 33 ~m. respectively. 

Figure 11. The axial strain vs time for glass powder fractions A, B, and C 
sintered at 605°C and under an axial load of (S+0.25)N. 

Figure 12. The axial strain vs the radial strain for the experiments 
described in Fig. 11. 

Figure 13. The creep rate and the densification rate vs. relative density 
for the experiments described in Fig. 11 at a constant axial 
stress of 9 kPa. 

Figure 14. Comparison of the experimental results for the densification 
rate vs. relative density with the predictions of Scherer's 
model given in Eqn. ( 1 0) • 

Figure 15. Pore microstructure of glass powder fraction, A, sintered at 
605°C to a relative density of -0.8. The axial load used was 
(S+0.25)N. 
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Figure 17. The extrapolated creep rate vs the densification rate using the 
data of Figs. 7 and 16. 

Figure 18. The densification rate vs the inverse of the particle size of 
the glass powder plotted from the data of Fig. 13. G 33~m. 

0 

Figure 19. The creep rate, due to an applied axial stress of 9 kPa, vs the 
inverse of the particle size of the glass powder plotted from 
the data of Fig. 13 and Eqn. (31 ). G

0 
= 33~m . 

Figure 20. The creep rate due to an applied axial stress of 9 kPa, vs 
porosity, using the data of Fig. 16 and Fig. 19. 

Figure 21. The ratio of the creep viscosity to the bulk viscosity of the 
glass found from the experimental results of Fig. 20 and 
compared with the predictions of Scherer's theory given by Eqn. 
( 34). 
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