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Channeling Characteristics of Flow and Solute Transport 
through a Rough-Surf~~e~ .. Fracture 

ABSTRACT 

Y. W. Tsang, C. F. Tsang; _F.; V. Hale 

Earth Sciences Division 
Lawrence Berkeley Laboratory 

University of California 
Berkeley, California 94720 

L. Moreno and I. Neretnieks 

Department of Chemical Engineering 
Royal Institute Of Technology 

Stockho,lm, Sweden 

Calculations for ,the flow and solute transport through a single rough-surfaced frac

ture are carried out. The fracture plane is discretized into square meshes to which vari

able apertures are assigned. The spatially varying apertures- in the single fractures are 

generated using geostatistical methods, b~ed on a given aperture density distribution 

and a specified spatial correlation length. Constant head boundary conditions are 

assumed for the flow in the single fracture. The fluid potential at each mesh intersection 

is computed and the steady state flowrates between all adjacent meshes are ·obtained. 

The calculations for flow in two-dimensions show that fluid flows unevenly in a single 

fracture, and that it takes place in a few preferred paths. The solute transport is calcu

lated using a particle tracking method. The channeling characteristics of fluid flow and 

solute transport phenomena as a function of the fracture geometry ( aperture density 

distribution and spatial correlation length) is demonstrated; and the implication to 

experimental measurements are discussed. The two-dimensional solute transport results 

are then interpretated in terms of a one-dimensional channel model: a sys.tem of indepen

dent variable-aperture channels acting as flow paths for the solute transport. The result 

that the two-dimensional breakthrough curves are reproducible by the one-dimensional 

conceptual model sheds much light on the potential utility of the simple one-dimensional 

channel model to interpret flow and solute transport in both two- and three-dimensional 

fractured systems. This approach entails an enormous saving of computation effort. 
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INTRODUCTION 

In flow through low permeability fractured media, for both the laboratory and field 

scales, there are evidences that flow takes place in a limited number of preferred paths. 

This kind of channeling phenomena have been observed in both the flow through a sin

gle fracture (Pyrak et al., 1985; Abelin et al., 1983; 1985; Bourke, 1987) and in a mul

tifractured medium (Neretnieks, 1985). Where channeling of flow through fractures is 

observed, it is clear that a porous medium description will be quite inadequate in 

representing the fluid flow behavior in the medium. Under these circumstances, we have 

described a theoretical approach (Tsang and Tsang, 1987) to treat the fluid flow as 

through channels. These channels have variable apertures along its length, the apertures 

of all the channels obey a given aperture density distribution function, and the spatial 

variation of the apertures along each channel is governed by the same spatial correlation 

length, >-.. We have made the further assumption that the width of the channels is typi

cally one spatial correlation length, and that the apertures within the channel width take 

on a constant average value. Such an assumption reduces the flow problem to one of 

flow through a system of one-dimensional, tortuous channels with variable apertures 

along their lengths. 

The basic hypothesis of the channel model is that for a given experiment the data 

may be analyzed as if flow and transport had taken place in a system of channels that 

are statistically equivalent, that is, the channels are described by the same aperture den

sity distribution and the spatial correlation length. The channels generated from a given 

aperture density distribution and spatial correlation have the property that their 

volumes per unit length are similar, yet the flow rates and residence times of tracer can 

vary over a range of several orders of magnitude, due to the finite probability of the 

occurrence of very small apertures along some of the channels (Tsang et al., 1987). This 

channel model which describes flow and transport in two and three dimension by a sys

tem of independent one-dimensional channels simplifies the computational effort enor

mously. Current approaches for calculation of steady flow in a heterogeneous medium 

involve discretization of the medium into an appropriate mesh of nodes and elements, 

then solving the Laplace equation for fluid potentials. For large scale problems in two 
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and three dimensions, this often demands the handling of very large matrices and may 

exceed the storage capacity of even large computers. When storage is not a problem, the 

computation may still be prohibitively time consuming. The conceptual channel model of 

interpreting flow and transport data in terms of one-dimensional flow paths was 

in tended to sidestep these computation difficulties. by incorporating as much physics as 
\ 

possible into the model. The notion of solving directly for the flow paths of a hetero-

genous medium, as opposed to the conventional way of solving for the fluid potentials, 

has also been suggested by Narasimhan (1985). 

In the present work, we present our investigations of flow in two dimensions, 

corresponding to the physical situation of flow in single fractures. The purpose of this 

paper is three-fold. First, by solving for the flow exactly by Laplace equation in two-

dimensions, we would like to understand the flow characteristics in single fractures and 

to identify the key parameters that control the channeling flow pattern, thus affording a 

way to interpret single fracture field and laboratory experiments by Pyrak et al. (1985), 

Abelin et al. (1983, 1985) and Bourke (1987), all of which exhibit channeling behavior. 

Second, the results of the present calculations in two-dimension shed light on the vali

dity of some of the simplifying assumptions in the conceptual channel model (Tsang and 

Tsang, 1987), where we proposed one dimensional channel representation of flow in both 

two- and three-dimensions when in terpretating data. Third, since the preferred flow 

paths or channels in three dimensional fractured media are probably composed of con-

nected paths in system of intersecting single fractures, the implications of our present 

two-dimensional calculations on field tests in three-dimension will be discussed. 

FLOW AND TRANSPORT IN TWO DIMENSIONS 

Fracture Aperture Generation 

Here we outline the numerical model to calculate the fluid flow and solute transport 

through a single fracture with variable apertures. The fracture plane is partitioned by 

grids with a different aperture assigned to each square enclosed by grid lines. The 
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assignment of the apertures is by means of geostatistical method which generates two

dimensional field of a correlated distributed parameter. Little data is available on the 

actual distribution of apertures in a single fracture. Surface profiling measurements on 

12 em cores of a natural fracture in granite (Gentier, 1986) seem to indicate that the 

apertures follow a gamma distribution (Tsang and Tsang, 1987). Apparent apertures 

that have been observed in cores or well logs measured by Bianchi and Snow (1968); and 

apertures derived from permeability tests in granite (Bourke et al., 1985) were found to 

follow a lognormal distribution. For the purpose of this study, the exact form of aper

ture density distribution and covariance function are not critical, we chose a lognormal 

distribution for the variable apertures in the plane of the single fracture and exponential 

function for the spatial ·covariance of the apertures. We used the numerical code 

COVAR (Williams and El-Kadi, 1986) to generate different aperture values in the frac

ture plane divided into square meshes. COVAR uses the matrix decomposition method 

to generate the log-normally distributed values of fracture apertures, b, which are first 

transformed to the normal distribution, Y, 

(1) 

The values of Y are estimated from, 

Y=L.t:+v (2) 

in which v is the mean of Y, E is a vector N [0,1] (i.e., normally distributed with mean of 

zero and standard deviation of 1), and Lis defined in terms of the covariant matrix 

(3) 

Equation (2) represents the generated process because the mean is given by 

E [Y]=LE [E]+v=v (4) 

and the covariance is given by 

(5) 

m which E stands for the expected value. We used the exponential form of the covari

ance function 
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(6) 

m which u2 is the variance of Y, r is the separation lag, and a is the autocorrelation 

parameter which has the dimension of inverse length. The exponential form of (6) indi

cates that quantities within distance on the order of 2/ a will be correlated and thus we 

may define the correlation length, A to be 2/a. The form of (6) indicates that the 

covariance chosen is isotropic. An anisotropic form of the covariance function may also 

be chosen. 

Figures 1 and 2 show eight realizations of statistically generated apertures with 

identical mean and variance of the log-normal aperture density distribution: the mean 

v=1.7 , and the square root of variance u=0.43. The mean corresponds to an aperture 

of 101.7 = 50 Jlm. The square region of unit length in linear dimension therefore 

represents a single fracture with spatially correlated variable apertures as a flow region. 

Figure 1 differs from Figure 2 only in the spatial correlation length of the apertures. The 

correlation length is expressed in terms of a fraction of the linear extent of the square 

generated region. The spatial variation of the apertures in Figure 1 correspond to a 

correlation length, A, of 0.1 of the linear dimension of the fracture flow region, those in 

Figure 2 all correspond to a A, of 0.4 of the linear dimension of the fracture flow region. 

The variation of the apertures is represented by the different shading in Figures 1 and 2, 

the darker the shading, the smaller the aperture. That the spatial correlation of the 

apertures are different in Figures 1 and 2 is quite apparent. 

Fluid Flow Calculations 

The fluid flow through these variable-aperture fractures shall be calculated for the 

constant pressure head boundary conditions: with reference to the geometry as shown in 

Figure 3a, the left boundary is kept at a higher potential P 1, the right boundary at a 

lower potential P 2, with the no flow conditions imposed on the upper and lower boun-

daries. The steady laminar velocity of a viscous incompressible fluid through a pair of 

smooth parallel walls separated by a distance b satisfies the equation (e.g., Snow, 1965), 

(7) 

• 
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where vis the Darcy velocity, J.L the dynamic fluid viscosity, and P is the fluid pressure. 

Then the volumetric fluid flow is, 

(8) 

where the pressure drop is Ll P over a length of L and W is the extent of the parallel 

plates normal to the pressure variation. Equation (8) may be applied to each of the 

squares enclosed by the grid lines such as shown in Figure 3a. In this regard, we assume 

that the ratio of aperture to the grid spacing is much smaller than 1, so that conver-

gence or divergence in flow lines near the boundary between two grid squares does not 

change the simple relationship given in Equation {8). Figure 3b shows a schematic 

diagram of two adjacent nodes with apertures hi and bj respectively. When the 

volumetric fluid flow rate from node i to node j is Qij' we can write down the expression 

for the pressure drop from node i to node j, 

___ Q_.:ij ___ + Qij 

1 b3 2 1 3 2 
--

0 Lly- --b· Lly-
12p 1 .Llx 12p J Llx 

[ Llx ( 1 1 ] =Q-· 6p- -+-) 
IJ _Lly h·3 h·3 

I J 

(9) 

where Rij is the resistance to flow between nodes i and j. The mass balance at each node, 

i, may be written as 

{10) 

Except for the nodes at the left and right boundaries of the fracture region, the pressure 

at each node is an unknown to be solved. The system of Equations {10) with the pres-

sures as unknowns is solved using a sparse matrix solver (NAG Library of Mathematical 

Routines). The solutions of the system of equations yield the pressure at each node, and 

flow between adjacent nodes is then calculated using Equation {9). 
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Equation (10) has the same form as the Kirchhoff's first rule for solving electrical 

currents, which is not surprising since the equations governing the flow of electrical 

currents and hydraulic flow are identical. There is a one-to-one correspondence between 

the electrical current and the fluid volumetric flowrate, the voltage drop and the pres

sure difference, and the electrical resistance and the fluid resistance as defined in Equa

tion (9). So the problem of solving for the fluid flow through a variable-aperture single 

fracture is equivalent to solving the electric current through a network of resistances. 

Figure 3c shows the electrical resistance analog of the fluid flow between adjacent nodes 

shown in Figure 3b. 

Solute Transport 

After the steady state fluid flowrates are obtained, the solute transport through the 

fracture is calculated using a particle-tracking technique (Schwartz et al., 1983; Robin

son, 1984). A large number of particles are introduced in the known flow field at the 

fracture inlet (i.e., the left boundary of the square flow region as shown in Figure 3a). 

Particles coming to an intersection are distributed in the outlet branches (resistors) with 

a probability proportional to the flowrates (electrical current). Each particle is followed 

through the network of resistors. The residence time for the particle to traverse from 

one node to the next is determined by the flowrate between the adjacent nodes and the 

volume involved, 

(11) 

where n is half the number of branches at each node. In our choice of square mesh, n 

equals 2 .. Summing the residence times tij traversed by the particle over the entire path 

from inlet to outlet (i.e., the right boundary of the square flow region in Figure 3a) gives 

the total residence time of the particle. In this calculation, we focus on the effects of the 

different residence times along the different pathways on the dispersion of tracer tran-

sport through the fracture. We therefore do not include the effects of molecular diffusion, 

matrix diffusion or local dispersion within each channel in our calculations. 
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RESULTS 

Fluid Flow 

Solutions of Equations (9) and (10) yield the pressure at each nodal point and the 

volumetric flowrate between adjacent nodes. The plots in Figures 4 and 5 correspond to 

the flowrates in the fractures with aperture variation as shown in Figures 1 and 2 respec

tively. Figures 4a through 4d display flowpaths for apertures with spatial correlation 

length 0.1, and Figures 5a through 5d are for cases with correlation length of 0.4. Hence 

the aperture variation in Figure 1a gives rise to the flowrate distribution displayed in 

Figure 4a, and that of Figure 2a gives rise to powrates in Figure 5a, and so forth. The 

flowrates between the nodes vary over several orders of magnitudes, the large range of 

v~lues arise from the fact that the local resistance to the fluid flow varies as the inverse 

of the local aperture raised to the third power, and the lognormal distribution of aper

tures originally assumed for the fracture plane already takes on a wide range of values. 

To display the variation of the large range of flowrates over the entire fracture, the 

volumetric flowrates are plotted in Figures 4 and 5, where the thickness of the lines join

ing nodes is made to vary as the square root of the flowrate; the thicker the lines, the 

larger the flowrates. The plots in Figures 4 and 5 show the following features. One, they 

all display the preferred paths of large volumetric flowrates that are formed because of 

the variation of the apertures within the single fracture plane. Two, the different spatial 

correlation of the variable apertures gives rise to different flow patterns. Figures 4a 

through 4d display flowpaths for apertures with spatial correlation length 0.1, and Fig

ures 5a through 5d are for cases with correlation length of 0.4. We note that there is a 

tendency for all the flow paths of large flowrates to coalesce into a "channel" on the 

order of one spatial correlation length in width, and the spacing between these large 

flowrate "channels" also is on the order of the spatial correlation length of the fracture 

apertures. 
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Particle Tracking 

Solute transport phenomena are investigated by tracking the particles advected 

through the fracture. Recall that the boundary conditions employed to solve the flow 

through the system is the constant head boundary condition, that is, all the nodes on 

the left hand boundary (Fig. 3a) are maintained at the higher pressure P 11 and all the 

nodes on the right boundary are maintained at the lower constant pressure P 2. Particles 

are let in at the left hand boundary and collected at the right hand boundary. A plot of 

the number of particles collected at all the outlets on the right hand boundary at 

different arrival times constitutes the breakthrough curve. Calculations have been carried 

out for total number of input particles ranging from several hundreds to 10000 in order 

to investigate the effect of the number of particles on the breakthrough curves. We 

found that calculations using 1000 particles are more than adequate since they already 

yield breakthrough curves that have very little spurious artifacts due to the finite 

number of particles employed. The breakthrough curves for total number of 1000 parti

cles are indistinguishable from those with 10000 input particles. 

Not only are we interested in the tracer breakthrough curves, but we are particu

larly interested in the manifestation of the channeling phenomena in tracer measure

ments. Therefore, in Figures 6 and 7 we present the spatial distribution of the tracer col

lection in the outlets. The horizontal x-axis corresponds to the spatial axis of the right 

(exit) boundary in Figure 3a. The origin on the horizontal axis in Figures 6 and 7 

corresponds to the bottom right corner of the flow region in Figure 3a; and x=l.O 

corresponds to the top right corner of the flow region. The vertical axis in Figures 6 and 

7 gives the number of particles collected at the exit co-ordinates. The results are shown 

for a total number of 2000 input particles. Note the patterns of the histograms in Fig

ures 6 and 7 and, in particular, the relationship of their shapes with the different spatial 

correlation lengths of the fracture apertures which are 0.1 and 0.4 respectively. We can 

perhaps see a trend of the tracer concentration distributed spatially in "channels" of 

spatial width on the order of a spatial correlation length and spaced also on the order of 

one correlation length. 
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In general, the breakthrough curves of tracer transport in two dimensions through 

these variable-aperture fractures have a fast rise at early times, since the majority of 

particles take the fast flow paths; then there is a long tail in the breakthrough curve due 

to a small fraction of particles meandering through the fracture, including in their 

flowpaths many sections with extremely small volumetric flowrates. To see the tracer 

breakthrough characteristics as a function both of time and space, we did the following. 

The times at which 25%, 50%, 75%, and 100% of the particles have arrived at the exit 

boundary are denoted respectively by t0.25, t 0.5, t 0.75, and t1.o· Figures 8a through 8d 

show the spatial distribution of particles collected at times t 0.25, t 0_5, t 0_75 and t1.o respec

tively. Each figure is a contour plot of the number of particles. The x axis represents the 

spatial axis of the left hand boundary in Figure 3a, which is the boundary for inlets. The 

y axis represents the spatial axis of the right hand boundary, which is the boundary for 

outlets. In experimental measurements, information as to the position of the outcoming 

tracer at different times can be gathered; hence the y coordinate of the tracer concentra

tion in Figure 8 correspond to the kind of data that may be collected if channeling 

phenomena are present. On the other hand, the position from which the outcoming 

tracer originates is contained in the x coordinates in Figure 8; this information can be 

obtained experimentally only when different tracers (e.g., different dyes) are introduced 

at different locations at the input boundary. The contours denote the particle number 

densities that enter or exit the single fracture. Contour curves of the same nature as Fig

ure 8, but only at t1.o are displayed in Figures 9 through 11 for different realizations of 

spatial aperture distribution. We have labeled this kind of plot as "transfer matrix", 

since it contains the information involving the transfer of particles from the entrance 

boundary to the exit boundary. Figures 8 and 9 are contour plots of the transfer matrix 

for two different realizations of aperture variation with the spatial correlation 0.1, and 

Figures 10 and 11 are for realizations with the spatial correlation 0.4 of the linear dimen

sion of the flow region. The contours in Figures 8, 9, 10 and 11 are derived from the 

aperture distribution as shown in Figures 1c, 1d, 2b, and 2d respectively. The channeling 

phenomenon of tracer transport in a single fracture with variable apertures is well 

demonstrated in these figures: the fast flow paths for tracer transport tend to coalesce 
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in to ''channels" with width and spacing on the order of one spatial correlation length. A 

comparison of Figures 8 and 9 with figures 10 and 11 clearly shows the difference 

between the cases with correlation 0.1 and 0.4. This kind of plots of measurable data 

may be a means to estimate the spatial correlaticm lengths of the system. 

Figures 12 and 13 show the percentage of the particle breakthrough along the exit 

line as a function of time normalized to the mean residence time, tm, for four realizations 

of spatial correlation 0.1 and 0.4 respectively. Here tm is calculated by taking the average 

of all the residence times of the 2000 particles. It is interesting to note that firstly the 

different realizations give similar values within a narrow band, and secondly the results 

for spatial correlation of 0.1 and 0.4 are similar, so that one may suggest that such a 

plot is insensitive to the spatial correlation length. 

INTERPRETATION OF 2-D RESULTS BY THE 1-D CHANNEL MODEL· 

It is of interest to know the aperture values along the flow paths actually taken by 

each of the particles. Our calculation involved tracking 400 particles through the single 

fracture, grouping them in quadrants according to their residence times within the frac

ture. Statistical analysis were done on the apertures along the actual flow paths. The 

mean and standard deviation on the logarithm of the apertures were computed. Calcula

tions were carried out for all eight realizations of the single fracture (Figs. 1 and 2) and 

the results are tabulated in Tables 1 and 2. Although all eight realizations were gen

erated with the same aperture density parameters (mean, logb0 =1.7, and standard devi

ation, cr=0.43), Table 1 shows t~at mean and standard deviation of actual log aperture 

values in the fracture for these realizations can be quite different from each other. It 

also show that apertures along the particle flow paths take on a larger mean and smaller 

standard deviation than the apertures over the whole fracture. We note that the dis

tinction between the "fast" and "slow" particles is that the variance of the aperture dis

tributions of the actual flow paths taken by the particles seem to increase for the 

"slower" particles. The larger variance implies that a larger range of apertures, both 

large and small, are present along the particle flow paths. However, it is the occurrence 

of the small apertures that gives rise to the large residence times and makes the particles 



- 12-

"slow." Although the fastest particles have the largest mean and smallest standard devi

ation, the variation of the mean and standard deviation among the quadrants are not 

large, and the values in Tables 1 and 2 indicate that average values of the mean and 

standard deviation can be used to characterize the log apertures along the flow paths of 

all the particles, be they slow or fast. We also calculated the aperture density distribu

tions for the flow paths and for the fracture, for the eight realizations. Figures 14 and 15 

show typical normalized aperture density distributions for the fracture (broken curve), 

and for the particle flow paths (solid curve). These figures illustrate clearly that the 

smallest apertures are avoided in two-dimensional flow through a fracture. However, it 

is also important to note that the particles cannot avoid the small apertures entirely. 

In our earlier work (Tsang and Tsang, 1987), we used a system of one dimensional 

channels, statistically generated with a given aperture distribution and a spatial correla

tion length, to interpret the fluid flow and solute transport in two- and three-dimensions. 

We apply the methodology outlined there, employing a lognormal aperture distribution 

with parameters for the actual particle paths as given in Tables 1 and 2 to generate a 

system of one dimensional channels. The tracer concentration transport as a function of 

time, assuming a step function tracer input are plotted in Figure 16 for the fractures 

corresponding to Figures 1 and 2. Only 7 realizations are plotted, with the omission of 

the case shown in Figure 2b, where the channel is too close to the upper no-flow boun

dary, resulting in an aberration of the aperture density function. When Figure 16 is com

pared with Figures 12 and 13, which show breakthrough curves derived from particle 

tracking in two-dimension, it is found that the breakthrough curves shown in Figure 16 

from the one-dimensional calculation fall within the same range as those from two

dimensional calculations in Figures 12 and 13. Furthermore, the shape of the break

through curves are also similar, with fast rise at early times and a rather long tail. To 

facilitate the comparison between the one-dimensional and two-dimensional calculations 

we plot them together in Figure 17. The filled dots are results for the averages of the 

two-dimensional calculations for the seven realizations. The open circles are the aver

ages of the one-dimensional channel model calculations using the aperture density distri

butions given in Tables 1 and 2. The vertical bars give the limits of the spread of the 
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values of the seven realizations. The agreement between the one- and two-dimensional 

calculations is good. Since this kind of plot is a measure of dispersivity of tracer tran

sport through the fracture, our results seem to indicate that the variable•aperture, one

dimensional channel model can reproduce the two-dimensional tracer transport disper

sivity. 

We also took the aperture density distribution from Tables 1 and 2 and con

structed a system of constant-aperture channels and computed the breakthrough. This 

is the traditional bundle of flowtubes channel model (for example, Neretnieks,1983). The 

results are shown as open squares in Figure 17. Finally if the entire fracture has only 

one constant aperture, then the plot in Figure 17 would be a step with tracer concentra

tion equals 0 before t/tm =1 and 100% after, implying a piston flow with zero disper

sivity. The results for the tracer breakthrough through such a parallel plate representa

tion of a single fracture are shown as open triangle in the figure. 

Table 3 presents the mean residence times from the different calculations for a 

number of realizations. The second column gives the expected values obtained by divid

ing total fracture aperture volumes by the calculated mean flowrates in two dimensions. 

The third column gives the mean particle residence tiines from the breakthrough curves 

derived from particle tracking in two dimensions. These agree within a few percent of 

the values in column 2. The fourth column gives the mean residence times from the 

breakthrough curves derived from the one-dimensional variable aperture channel model. 

we note that the mean residence times are within factor of 2 as those derived from the 

actual two-dimensional transport. The last column gives the mean residence times 

obtained from the breakthrough curves derived from a system of constant-aperture 

channels. The mean residence times in this last column are typically two or three orders 

of magnitude smaller than that predicted from both the two-dimensional and one

dimensional variable aperture channel calculations. This is easy to understand since in 

the constant aperture channel representation, the larger the aperture, the shorter the 

residence time, therefore the average is heavily weighted by the residence times of the 

largest constant aperture channels. 
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DISCUSSIONS 

Flow in Single Fractures 

The calculated flow patterns shown in the previous section bear strong resemblance 

to field observations made on a single fracture by Bourke (1987). Packer tests were car

ried out in a single granitic fracture with dimensions of about 2 m in a Cornwall quarry. 

Five boreholes are drilled in the plane of the fracture. By packing off 8 em sections of 

each borehole, pressure interference tests between adjacent boreholes were performed. 

Based on observed communication between different sections of the five boreholes, it was 

deduced that there is strong flow channeling in the single fracture (Figure 18). Two 

major flow channels were observed, with only about 10-20% of the fracture plane parti

cipating in the flow. This observation can be understood in terms of our model. 

Pyrak-Nolte et al. (1987) studied apertures of a single fractures in 5.2-cm core sam

ples in the laboratory. They injected molten Wood's metal into the single fracture and 

let it solidify, then they opened up the fractures and examine the two fracture surfaces 

using a scanning electron microscope. Composites from SEM micrographs of fracture 

surfaces allow identification of the areas that are open to flow, as indicated by white 

areas in Figure 19. The black shading in Figure 19 indicates contact areas with zero 

fracture aperture. Note the resemblance of the general character of Figure 19 to that of 

Figure 2, where we show statistically generated variable apertures in a single fracture, 

with spatial correlation length of 0.4. One feature in Figure 19 is the "pools" of open 

apertures (white areas) available for fluid flow. However, the open areas only indicate 

that the apertures are non-zero, they contain no information as to the magnitude of the 

apertures, and hence the large "pools" in Figure 19 do not necessarily imply areas of uni

formly large flow rate. On the other hand, Figure 2 does contain information on the 

magnitudes of the apertures and thus fluid flow may be derived as shown in Figure 5. In 

our model, these "pools" of open apertures observed experimentally (Fig. 19) results in a 

localized group of intersected flow paths (Fig. 20a). Such patterns are typically found in 

Figures 4 and 5. Such a situation as shown in Figure 20a can also be represented by 

flow along streamlines through the pools as shown in Figure 20b. In Figure 20b, the 
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longer the streamlines, the slower are their flow velocities, and the flow velocity is never 

zero. However, if the velocity in the pool is very small, then the pool becomes essentially 

a static reservoir of water, whose· main role is not to provide streamline paths, but to 

exchange solute with the major flow line by diffusion (Fig. 20c). These "stagnant pools" 

were proposed by Neretnieks (1985). Our present calculation does not take account of 

the process represented in Figure 20c. 

Now let us compare exit tracer mass flowrates for spatial correlation, A equals 0.1 

(Fig. 6) and those for A equal to 0.4 (Fig. 7). The spacings between locations of max

imum mass flowrate and between locations of zero mass flowrate appear to bear a rela

tionship with the spatial correlation of the variable apertures in a single fracture. Hence 

to obtain a crude estimate of the correlation length one may monitor the spacings of 

tracer exit points along a fracture trace in the ceiling or wall of a drift. a drift. However, 

the duration of the experiment should be long enough for exit concentrations to reaching 

a stationary value or a value comparable to the inlet concentration. The transfer matrix 

patterns (Fig; 8-11) also suggest that useful information such as the relevant spatial 

correlation length which governs the spacing of flow channels may be obtained from 

experimental setup which aims at "line measurements" rather that "point measure

ments". The transfer matrix may be constructed if experiments are performed with a 

line of input points on the high-pressure side of the single fracture and a line of observa

tion points on the opposite low-pressure side. Different tracers are then injected at 

different points in packed-off sections along the input line, and long-term tracer observa

tions are made along the exit line. 

It is also of interest to measure and compare the distribution of fluid flowrates with 

that of tracer mass flowrates along an exit line, when tracer is released at one. point on 

the high- pressure input line. Generally they are not the same. Our calculation for the 

fracture with the aperture variation of Figure 1a gives results as shown in Figure 21. 

The calculation is for tracer released at only one location (y=. 77) on the en try line of 

the fracture. In Figure 21, the unfilled bars denote the relative fluid flowrates along the 

exit line, and the filled bars give the relative mass flowrates. Abelin et al. (1985) moni

tored fluid and tracer arrivals along a single fracture trace in the ceiling of a drift in the 
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Stripa mme. The collection points of fluid and tracer were placed at 0.7m interval. 

Tracer was injected through a bore hole into the single fracture at a point about 5m 

above the drift ceiling. It was found that both fluid and tracer emerged only at a few 

spots along the fracture trace, with about 90% of the flowrate carried by less than 20 % 

of the 0.7m observation sections. Furthermore, at a number of observation point where 

large fluid flowrate were obtained, no tracer was observed. If the tracer had been 

released all along the input line, the fluid flow exit distribution will be similar to tracer 

exit distribution after a time period much longer than the tracer mean residence time. 

In this regard it may be suggested that the fluid flow exit patterns may be more useful 

in determining fracture spatial correlation lengths which controls the flow pattern when 

channeling is present. 

We would like to make some general remarks in the "relevant" spatial correlation 

length that controls the channeling flow pattern. The two-dimensional calculations 

presented above show that the spatial correlation of the apertures controls the width 

and spacing of the flow channels. If the spatial correlation length is very small compared 

to the dimension of the flow region at which measurements are taken, channeling 

phenomena should disappear and porous medium behavior should prevail. The fact that 

there exist experimental evidences of flow channeling in scales ranging from centimeters 

in the laboratory to meters and tens of meters in the field suggests to us that at different 

scales of measurement, the "relevent" spatial correlation length that governs the chan

neling flow pattern is on the same order of magnitude as the measurement scale. In 

other words, if the aperture variation in a single fracture were a fractal (Wang and 

Narasimhan, 1987; Brown, 1987), then at larger and larger measuring scale, larger and 

larger irregularity is encountered, and it is the largest possible irregularities on the scale 

of measurement that control the flow pattern. 

Implications of Results on Flow in Multi-Fracture Systems 

In our earlier work (Tsang and Tsang, 1987), we hypothesized that the flow in sin

gle fractures and the flow in intersecting multi-fracture systems may be analyzed on the 

same basis; i.e., as flow along one-dimensional channels of variable aperture. From the 
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discussions above, we demonstrated (Fig. 17 and Tables 1 through 3) that the flow and 

tracer transport in two-dimensional single fracture can be represented by transport 

through variable-aperture, one-dimensional channels for the cases considered. 

For the multi-fractured systems, the channel width is still expected to be of' the 

order of the aperture correlation length in the single fracture. Spacing between channels, 

on ·the other hand, would depend more on fracture spacings and characteristics of 

different fracture sets. Thus it is expected to be much larger, of the order of fracture 

spacings. In the case of very tight systems where many of the fractures are not hydraul

ically conducting, the channel spacing should be even larger, of the order of the spacing 

of conducting fractures. The spacing of these conducting channels defines the effective 

spatial correlation length for flow and transport in three dimensions. 

With the above comment on the effective correlation length, many of the results 

and discussions on single fractures in prevtous sections are directly applicable to the 

multi-fracture media. Thus the usefulness and importance of making tracer measure

ments with line tracer injection and line or areal observation of tracer emergence is obvi

ous. This kind of measurements should enable one to make transfer matrix plots and 

may give an indication of the effective correlation length. If channeling is of primary 

importance in a particular flow system, then the spacing between conducting channels, 

which is related to the effective correlation length, is a key parameter. This information 

cannot be obtained by point measurements readily. Hence areal or line fluid flow and 

tracer emergence measurements with a number of injection points with different tracers 

will be very relevant. 
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Table 1. Statistics for apertures along actual particle paths, and for the entire fracture 
of Figures la-d. 

Correlation 
Realization 511 Realization 512 

).. =0.1 
Mean Standard Dev. Mean Standard Dev. 

(log b0) (a) (log b0) (a) 

Fracture 1.74 0.41 1.59 0.46 
Aperture 

Fastest 25% 2.03 0.34 1.89 0.33 
particles 

Second 25% 2.00 0.36 1.90 0.37 
particles 

Third 25% 1.99 0.38 1.89 0.36 
particles 

Slowest 25% 1.97 0.39 1.84 0.43 
particles 

All 2.00 0.37 1.88 0.38 
particles 

Correlation 
Realization 513 Realization 514 

).. = 0.1 
Mean Standard Dev. Mean Standard Dev. 

(log b0) (a) (log b0) (a) 

Fracture 1.76 0.42 1.75 ~ 0.43 
Aperture 

Fastest 25% 2.09 0.29 2.17 0.28 
particles 

Second 25% 2.06 0.30 2.14 0.30 
particles 

Third 25% 2.02 0.32 2.03 0.35 
particles 

Slowest 25% 1.98 0.36 1.94 0.37 
particles 

All 2.04 0.32 2.07 0.34 
particles 
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Table 2. Statistics for apertures along actual particle paths, and for the entire fracture 
of Figures 2a-d. 

Correlation 
Realization 541 Realization 542 

).. = 0.4 
Mean Standard Dev. Mean Standard Dev. 

(log b0) (u) (log b0) (u). 

Fracture 2.11 0.38 1.38 0.41 
Aperture 

Fastest 25% 2.43 0.32 '1.86 0.41 
particles 

Second 25% 2.43 0.31 1.89 0.42 
particles 

Third 25% 2.36 0.29 1.81 0.42 
particles 

Slowest 25% 2.33 0.34 1.61 0.43 
particles 

All 2.39 0.32 1.79 0.43 • 
particles 

Correlation 
Realization 543 Realization 544 

).. = 0.4 Mean Standard Dev. Mean Standard Dev. 
(log b0) (u) (log b0) (u) 

Fracture 1.45 0.38 1.70 0.43 
Aperture 

Fastest 25% 1.95 0.34 2.12 0.33 
particles 

Second 25% 1.93 0.35 2.15 0.33 
particles 

Third 25% 1.86 0.35 2.13 0.36 
particles 

Slowest 25% 1.68 0.39 2.04 0.38 
particles 

All 1.85 0.38 2.11 0.36 
particles 
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Table 3. Mean residence times calculated from (a) mean fracture volume divided by 
mean calculated flow rates, {b) mean article travel times from 2-D calcula
tions, {c) mean residence times from a system of statistically equivalent 1-D 
variable-aperture channels and {d) mean residence times from a system of 
constant-aperture channels. 

Run Mean Residence Time 

Expected Variable Constant Aperture 
2-D Aperture Aperture 

Channel Channel 

511 0.58 0.57 0.82 0.004 
512 1.42 1.38 1.64 0.012 
513 0.34 0.33 0.39 0.007 
514 0.32 0.30 0.41 0.006 
541 0.07 0.07 0.06 0.0005 
542 2.23 2.23 3.10 0.007 
543 0.84 0.85 1.15 0.0047 
544 0.30 0.30 0.35 

\ 
0.003 



a) Run 511 

c) Run 513 

Figure la-d. 
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b) Run 512 

0 0.5 1.0 

d) Run 514 

XBL 875-9668 

Statistically generated apertures with a spatial correlation length of 0.1 
in the plane of a single fracture of linear dimension 1.0. 



a) Run 541 

c) Run 543 

Figure 2a-d. 
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b) Run 542 

0.5 1.0 

d) Run 544 

XBL 875-9669 

Statistically generated apertures with a spatiai correlation length of 0.4 
in the plane of a single fracture of linear dimension 1.0. 
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(a) Schematic diagram for flow through a single fracture with different 
aperture values assigned to areas bounded by grid lines. 
(b) Schematic diagram for two adjacent nodes of different apertures: bi 
and bj and the fluid flow Qij between them. 
(c) Electric analog of fluid flow between adjacent nodes. 
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Figure 4a-d. 
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Fluid flow rates for the fractures with aperture variation as shown in 
Figure 1. The thickness of the lines is proportional to the square root 
of the flowrate. 
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Fluid flow rates for the fractures with aperture variation as shown in 
Figure 2. The thickness of the lines is proportional to the square root 
of the flowrate. 



-29-

a) Run 511 

60.-------------------------~ 

Q) 40 ·--·-· - ------------- -------------·-·----------------------·-·----
0> 
ro -c 
Q) 
0 ._ 
Q) 
0. 

~ 20 
:;:::; ._ 
ro 
0.. 

0 -
0 0.2 0.4 0.6 

Collection point 

c) Run 513 

0.8 1.0 

60.--------------------------. 

Q) 
Ol 
ro 
c 
Q) 
0 ._ 
Q) 
0. 

~ 20 
:;:::; 
(i1 
0.. 

0.2 0.4 0.6 0.8 1.0 

Collection point 

b) Run 512 

w.------------------------~ 

Q) 40 
Ol 
ro -c 
Q) 
0 ._ 
Q) 
0. 
Q) 20 ;g 
._ 
ro 
0.. 

04-~--~~~+-~~~~~UL~~ 

0 0.2 0.4 0.6 

Collection point 

d) Run 514 

0.8 1.0 

w.-------------------------. 

Q) 40 -·---------------------- ' 
Ol 
ro -c 
Q) 
0 ._ 
Q) 
0. 
Q) 

u 
:;:::; ._ 
ro 
0.. 

0.2 0.4 0.6 0.8 1.0 

Collection point 

XBL 875-9672 

Figure 6. Histograms of particle number as a function of position on the collec
tion line, for fractures with spatial correlation length of 0.1. 
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Figure 7. Histograms of particle number as a function of position on the collec
tion line, for fractures with spatial correlation length of 0.4. 
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Contours of particle number density as a function of tracer entrance 
location and collection location, for a fracture with aperture variation 
as shown in Figure lc at t.25, when 25 % of the input particles have 
arrived at the exit boundary. 
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Contours of particle number density as a function of tracer entrance 
location and collection location, for a fracture with aperture variation 
as shown in Figure lc at t0.5, when 50 % of the input particles have 
arrived at the exit boundary. 
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75% transfer matrix 
run 513 
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Figure 8c. Contours of particle number density as a function of tracer entrance 
location and collection location, for a fracture with aperture variation 
as shown in Figure lc at t.75, when 75 % of the input particles have 
arrived at the exit boundary. 
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Figure 8d. Contours of particle number density as a function of tracer entrance 
location and collection location, for a fracture with aperture variation 
as shown in Figure lc at t1.0 , when 100 % of the input particles have 
arrived at the exit boundary. 



+-' c 
'6 
c. 

+-' ·x 
w 

-35-

Transfer matrix 

run 514 

1.0··~ ----~--~----~--~----r---~----r---~--~~--~ 

0.6 

0.4 

0 r----+----+---~----~--~----~----~---r----+---~ 
0 0.2 0.4 0.6 0.8 1.0 

Injection point 

XBL 875-9678 

Figure 9. Contours of particle number density as a function of tracer entrance 
location and collection location, for a fracture with aperture variation 
as shown in Figure ld. 
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Contours of particle number density as a function of tracer entrance 
location and collection location, for a fracture with aperture variation 
as shown in Figure 2b. 
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Contours of particle number density as a function of tracer entrance 
location and collection location, for a fracture with aperture variation 
as shown in Figure 2d. 
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Tracer breakthrough curves from particle 'tracking in fractures with 
correlation length 0.1. Time is nor~alized to mean residence time, tm. 
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Breakthrough curves 
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Figure 13. 
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Tracer breakthrough curves from particle tracking in fractures with 
correlation length 0.4. Time is normalized to mean residence time, tm. 
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The aperture density distributions for apertures along particle paths, 
and over the entire fracture of Figure la. 
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The aperture density distribution for apertures along particle paths, 
and over the entire fracture of Figure 2a. 
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Tracer breakthrough curves from one-dimensional variable-aperture 
channel calculations for the seven realizations of apertures as shown in 
Figure 1 and 2. 
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Figure 18. Plan view of fracture with flows. into five boreholes and suggested flow 
channels {Bourke,1987). 
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Figure 19. 
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Compositive from SEM micrographs of fracture surfaces (Pyrak-Nolte 
et a!., 1987). 
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{a) Representation of flow "pool" in the electrical resistor analog. 
{b) Pools of water with flow stream lines. 
(c) Stagnant "pool" of water, having diffusive exchange with flow lines. 
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Figure 21. 
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Histogram of ftowrate (unfilled bars) and particle number (filled bars) as 
a function of exit location. 
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This report was done with support from the 
Department of Energy. Any conclusions or opinions 
expressed in this report represent solely those of the 
author(s) and not necessarily those of The Regents of 
the University of California, the Lawrence Berkeley 
Laboratory or the Department of Energy. 

Reference to a company or product name does 
not imply approval or recommendation of the 
product by the University of California or the U.S. 
Department of Energy to the exclusion of others that 
may be suitable. 
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