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Abstract 

A theory of Medium Energy (100-S000eV) Electron Diffrac-

tion (MEED) is developed from a multiple-scattering curved-

wave theory of photoelectron diffraction. It may be called "Near-

Field Expansion in Clusters". Only selected important scatter-

ing events are included and these are computed in times pro-

portional to electron wave number by using a generalized scat-

tering factor method (conventional LEED methods require com-

.. putations proportional to at least the fourth power of the wave 

number, while the "chain" method for MEED- scales as at least ,,. 
the square of the wave number). This removes the most seri-

ous barrier to a multiple-scattering analysis for surface structure 

determination. A direct summation over atoms and scattering 



paths is used, avoiding any assumptions of periodicity in the sur­

face structure. The theory allows a clearer understanding of the 

relationship between diffraction intensities and surface structure 

than heretofore possi ble. 

PACS numbers: 61.14.Dc,61.14.Hg,61.55.Fe 

I. INTRODUCTION 
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Recent efforts l to determine surface structures with photoelectron 

diffraction in the form of angle-resolved photoemission extended fine struc­

ture (ARPEFS) have led to considerable advances in the understanding of 

electron scattering in the intermediate energy (100-1000 eV) range. Three 

developments are particularly important. First, by studying the nature of 

atomic scattering factors, Orders and Fadley2 were able to reconcile the 

observed sensitivity of normal emission photoelectron diffraction to inter­

planar spacing with the localized cluster model for photoelectron diffraction 

of Lee.3 Second, new experimental measurements demonstrated that only a 

small number of atoms near the photoemitter contribute significant signal 

to the ARPEFS curves.4 And, third, a' new method of calculating curved­

wavefront multiple-scattering wavefunctions, applicable to the intermediate 

energy range has been derived.5 This last development is vital since multi­

ple forward scattering is known to be large in this energy range,6 and since 

curved-wavefront corrections must be included for forward scattering,7 pre­

cluding quantitative analysis with plane-wave single-scattering theory. 

In this paper we apply the new insight and new multiple-scattering for-

.. 
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mulas developed for ARPEFS to the problem of simulating medium energy 
\ 

electron diffraction (MEED). By "medium" energies we mean roughly 100-

5000eV. Our upper limit is determined only by our treatment of elastic 

scattering as potential scattering. At some high energy, our spherical wave 

scattering factors will converge to the Born approximation of plane wave 

scattering factors. Thus, in principle our theory should apply even into 

the energy range (10-40keV) of reflection high energy electron diffraction. 

However, we have not yet explored the energy range beyond 1000eV, prefer-

ing instead to concentrate on the more demanding range between 100 and 

1000eV. 

Among the advantages to working at electron energies above those of 

Low Energy Electron Diffraction (LEED) we emphasize one in particular: 

The angular distribution for electron scattering from ion-cores in this energy 

range becomes increasingly anisotropic with a pronounced forward peak. 

We will exploit this anisotropy in multiple-scattering calculations to reduce 

the number of scattering events considered and hence the computational 

effort. With experience, this forward peaking may also be useful in selecting 

experimental geometries that maximize sensitivity to particular structural 

features. 8 

To take advantage of the scattering anisotropy, we shall abandon the 

methods which have been devised for self-consistent, full-order multiple-

scattering in the LEED energy range9,lO,1l in favor of a simple, iterative 
.. 

cluster method. As described in Section II, an important by-product of 

this cluster method is a very direct connection to ARPEFS theory, allowing 

much of the experience gained in the study of photoelectron diffraction to 
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be applied to the MEED problem. Furthermore, as recent work in LEED 

theory demonstrates,12 cluster-type theories may be advantageous for large-

unit-cell structures and for disordered surfaces. 

Other theories exist for MEED and RHEED. The quasi-dynamical 

method,13 also used in LEED, simply ignores multiple-scattering within in-
, 

dividual layers and uses a LEED layer stacking scheme in a plane-wave 

representation. The computation time of this method depends upon the 

number of beams retained between layers and it is particularly successful 

for systems with large interlayer spacings. Unfortunately, the neglect of in­

tralayer scattering is not always justified, especially for grazing angles of 

electron incidence. The "chain" method developed by Pendry, Gard, and 

Masud14 exploits the predominance of forward scattering in the medium 

energy range by first solving the multiple-scattering in isolated chains of 

atoms, followed by a merging of the chains into layers and of layers into a 

crystal. The intra-chain multiple-scattering.computations are proportional 

to at least [max squared, where [max is the largest angular momentum in-

cluded. This is a marked improvement over the intra-layer computations of 

LEED theories, which require at least the fourth power of [max. Thus the 

useful energy range can be extended up to about 5000eV. (We explore appli­

cation of the present method to chains in Ref. 8.) Maksym and Beeby15 start 

from the high-energy limit with a RHEED theory based upon a plane-wave 

expansion of the atomic scattering and on a 2-D plane-wave representation 

coupled with numerical integration perpendicular to the surface. They have 

extended16 the method to MEED energies in the range 5-10keV by applying 

a LEED layer stacking method. 

\ , 
, , 
, , 
'j 
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We shall describe in Sec. II the conceptual framework we will use to dis­

cuss the multiple-scattering problem and to connect it to the ARPEFS the­

ory. Sec. III develops the multiple-scattering equations for an incident plane 

wave using the TS-MQNE elastic scattering method. Qualitative analysis of 

MEED intensities in terms of interference path length differences is covered 

in Sec. IV. Sec. V begins the discussion of applications of our methods by 

investigating the numerical convergence of the multiple-scattering formulas, 

while Sec. VI discusses the qualitative analysis of the MEED specular reflec­

tion from Ni(OOl). In Sec. VII we give a brief comparison to other appoaches 

to MEED intensities. 

II. CLUSTER EXPANSION TREE 

The cluster expansion multiple-scattering method is a perturbation 

method which assumes that the complete scattered electron wavefunction 

can be written in terms of a finite number of individual scattering events. 

We write the total wavefunction III as a series beginning with the incident 

plane wave, eikin·a, normalized to unit current per unit area normal to kin. 

We organize the calculation of the scattered wave into "trees" represent­

ing scattering paths connecting the scattering ion-cores, cf. Fig. 1. There is 

one tree for every atom in the surface. We call the first atom in a given tree 

the "trunk" atom of its tree. Branches of a particular tree connect a given 

atom with every atom near enough and in a favorable enough position to 

receive significant flux from it. 

Observe that, except at the trunk atom; the tree scattering for MEED 

is the same as the tree scattering for angle-resolved photoemission extended 
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fine structure (ARPEFS). The main goal of this paper is to apply the new 

theory of ARPEFS in Ref. 17 to MEED. 

ARPEFS results from photoelectron diffraction: the interference be-

tween alternative paths open to a photoelectron as the result of numerous 

elastic scattering collisions. The fine structure consists4 of oscillations in the 

form of a cosine series: 

X ARPEFS = L Ai cos( kpi + <Pi) 
i 

(1) 

where the index j runs over pairs of scattering paths. Here Ai is the product 

of the amplitude of two interference paths, <Pi is the difference in scattering 

potential phase shifts for the two paths, and Pi is the difference in the length 

of the paths. The path length difference for all pairs of paths can be written 

as 

Pi = L(ai - ai· R) = L ai(1- cos (}aR) (2) 
i i 

where the vectors ai are bond vectors between two atoms in the surface and 

R points into the detector. 

For ARPEFS, the trunk atom has been photoexcited to give an angular 

distribution of electron amplitude determined by the photoemission matrix 

element. For MEED, the trunk atom has been "excited" by the incident 

plane wave to give an elastically scattered spherical wave whose angular 

distribution is governed by atomic scattering factors. The remainder of the 

tree is formed under the same conditions in ARPEFS and in MEED with 

ARPEFS single-scattering corresponding to MEED double-scattering and 

so on. To complete the ARPEFS problem we square the tree scattering 

amplitude and then .sum over the photoexcited trunk atoms. To complete 
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the MEED problem, we must form trees for all atoms reached by the incident 

plane wave, sum their amplitudes and square to calculate the intensity. 

Thus our understanding of the physics of the ARPEFS scattering can be 

transfered to study the multiple-scattering part of the the MEED problem: 

i )we expect some of the MEED oscillations to have the form cos[ kai (1 -

cos OaR) + <Pi], where k is the electron wave number, lail = ai is the 

length of some branch of a tree, BaR is the angle between the branch 

and the direction of the detector (MEED spot), and <Pi is an ion-core 

potential phase shift; 

ii)the largest part of the scattered wave amplitude should come from pri­

mary branches connecting the trunk atom to nearest neighbor atoms 

and to backscattering atoms in the shells further from the trunk atom; 

iii )the only significant secondary and higher branches will include 

forward-scattering events at all or most of the higher order branch­

points; and 

iv)curved wavefront corrections will be required in MEED formulas as 

in the ARPEFS formulas. 7 We shall include them here via the Taylor 

Series Magnetic Quantum Number Expansion Method (TS-MQNE).5 

We can also expect to find important differences between the ARPEFS and 

MEED problems. The coherent illumination of the surface by the incident 

electron beam results in many more interference pairs than are possible in 

ARPEFS. In the next section we develop our multiple-scattering equations 

for MEED from the ARPEFS model so that we can explore a path length 

difference analysis for MEED. 
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III. TAYLOR SERIES, MAGNETIC QUANTUM NUMBER 

EXPANSION FOR AN INCIDENT PLANE WAVE. 

In this section we give the formulas for the scattered wave emanating 

from each branch point (atom) in one cluster tree, tracing through a con-

nected, arbitrary set of bra.nches. In the next section we shall sum o¥er all 

the branch points and discuss the resulting interference. 

We label the trunk atom by 0, the vector from the coordinate origin to 

the trunk a.tom. Thus a single-scattered wave tPo(r) emanates from O. The 

vector a runs between the trunk atom and second-scattering atom, along a 

primary branch of the tree; similarly b connects second and third scattering 

atoms. Note that these vectors are "bond" vectors: the coordinates of the 

triple-scattering atom are given by 0 + a + b. The scattered wavelets will 

be subscripted by the vectors defining the path of the electron, e.g. tPOab. 

We adopt the coordinate axes of Ref. 7, appendix B: the scattering angle 

between a and b will be written 8a b and the dihedral angle between the plane 

containing the vectors 0 and a and the plane containing the vectors a and b 

will be ¢Oab. To aid in building up to the multiple-scattering case we shall 

use spherical harmonics from the outset, rather than the simpler Legendre 

polynomials. This requires us to introduce a reference axis x which we might 

select in the plane of the surface. It will not appear in the final formulae. 

We will build directly upon the results of Ref. 7. A plane wave with 

propagation vector kin scatters from the trunk atom, which we assume to 

be represented by a spherically symmetrical muffin-tin potential, to give 

Imax I 

tPo(r) = eikin'0L: L: TI(k)41ri'hICkr')l'im(r')Yi:nCkin). 
I=Om=-1 
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Here we use r = 0 + r', 

for partial wave phase shifts Ol( k), spherical Hankel functions (outgoing 

spherical waves) hi, and spherical harmonics Yim. The factor eikin·Q gives 

the phase of the incident wave at the center of the scattering potentiaJ.. This 

equation is valid anywhere outside the muffin-tin radius. 

At our detector (e. g. LEED screen), at position r' = R, we can replace 

hl(kr') by its asymptotic form: 

klR - 01 ~ 1(/ + 1) 
(3) 

IRI~IOI 

and recall the scattering amplitude for atomic potentials: 

1 1m"" I A A 

f(OkR, k) = ik L L TI(k)41l'Yim(R)Yim(kin) 
I=Om=-1 

to write 

This is the familiar form for the scattered wave from a central potential. 

The distance IR - 01 has been expanded as R - R· O. This completes the 

single-scattering problem: once the partial wave phase shifts are known, the 

scattered wave can be calculated. 

For a double-scattering event, the second atom is likely to be too close for 

the asymptotic condition, Eq. 3, to apply. Therefore we must consider the 

wave incident upon the second potential to be a series of spherical waves, 

ilhl(kr')Yim(i,l). The contribution at the detector of one of these partial 
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waves to the wave double-scattered by atoms 0 and a may be written with 

the aid of Eq. (39) in Ref. 5 as 

I 

1/J~'::(R) = L Nlm,R~m(O, 8kina, 7r - <PXkina) 

m'=-I 

1-lm'l eika ikIR-O-al 
X "" c

p"
m,eim'4>O&R e nOo (k a RA) 

L.J a ikIR_O_al.l'p'm' , , 
p'=O 

where N'm is the normalizing coefficient for spherical harmonics, R~'m is a 

rotation matrix element taking our coordinate system from zllkin to zlla, 

and c~'m' is a Taylor series coefficient, all defined in Ref. 5. The function 

F:,~, (k, a, R) is a curved wave scattering factor, a generalization of the plane 

wave scattering amplitude f(8aR). This scattering factor takes spherical 

wave components (p, m) at a source point, translates them a distance lal 

along a, scatters them from the potential at a, and gives the amplitude of 

scattered spherical wave components (p'm') into a direction R. 

Our double scattered wave equation is exact, but both the sum on m' 

and on p' converge rapidly, so we may take their limits to be m' = ±T and 

p' = T - Im'l for T small. This approximation corresponds18 to truncating 

the Taylor series. expansion of the angular part of the Fourier transform of 

i'h,(kr)Yrm(i·) about r = a. The truncation of the sum on m' may also 

be viewed as ignoring high magnetic sublevels which cannot overlap the 

scattering potential. In this view, the purpose of the rotation matrix is to 

align the scattering axis and the magnetic quantization axis. Then only 

sublevels which peak near the scattering axis are required. 'rVe refer to the 

truncation of these sums as the Taylor Series, Magnetic Quantum Number 

Expansion (TS-MQNE). 

To give the complete amplitude for double scattering from 0 and then a, 
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we must weight each partial wave by T/(k)41rYi:'n(kin) and sum over partial 

waves: 

ika eikIR-O-al T T-1m'l{ 
1Poa(R) = e a iklR _ 0 _ al eikan 'O L:: L:: eim'¢kaR ~,~,(k, a, R) 

m'=-T p'=O 

['~ mt:, T,( k )4 ~ Y,;" (kin) N'mR~'m (0, 8.i ... ~ - "'Xki. a) c~'m:l } 

The sums on I and m have been exchanged with the sums on m' and p'. 

Now the sum on partial waves can be recognized as a special case of the 

curved wave scattering factor, F;:nm'(k,a, b) with p = m = O. To further 

simplify the appearance of the wavefunction we assemble the curved wave 

scattering factors into scattering matrices: 

[F .]p'm' = (_1)lml+1m'I-lm-m'I/2 FP'm'(k a b) 
ab pm pm " , 

with a column vector for the case p' = m' = 0: 

and a row vector for p = m = 0: 

[ 
T ] p'm' A fk · a = Foo (k,kin,a). 
In p'm' 

Finally, a diagonal matrix is defined to include the magnetic quantum num· 

ber portion of the rotation matrix: 

The indices are understood to obey r ~ m ~ r' and 0 ~ p ~ r - Iml. Then 

the double scattered wave becomes 
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Once this notation is understood, higher order waves can be written by 

inspection. For example, the double-scattered wavefunction can be read as 

three phase and three amplitude terms as follows. The first phase term 

contains the phase and radial decay common to all of the scattered waves. 

It contributes nothing significant to our interference observations. The next 

term is characteristic of plane wave scattering. It gives the phase of the 

incident plane wave at the trunk atom minus the phase of the outgoing 

plane wave at the trunk atom. The presence of this term gives rise to the 

Bragg-like peaks in MEED. The third term is the extra phase and radial 

decay due to the second scattering event. The three amplitude terms may 

be read as follows. The wave traveling in the direction kin scatters into 

the direction a with amplitude f~na. The magnetic quantum numbers are 

rotated about a from kin to R by <PkinaR . Finally, the wave is translated 

along a, scatters, and exits in the direction it with amplitude fali. We have 

purposefully separated the phase terms from the amplitude terms to aid our 

path-length difference analysis. 

To create formulas for higher order terms we must insert one additional 

phase term, one <l) matrix, and one scattering matrix for each order. Thus 

the triple scattered wave is given by: 

A eikR . . - eika-iklia eikb-iklib 
lPoab(R) = _R_e,kin.O-lkR.O --a-- b 

The qualitative advantage of this formulation is the separation of am-

plitude and phase terms. The "amplitude" terms do ultimately reduce to a 

complex number, but its phase is roughly constant, approximately indepen-
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dent of both wave number and surface structure (see however Ref. 19). The 

"phase" terms have phases which depend linearly on electron wave num­

ber, the constant of proportionality being the geometrical path length for 

this wave. The sensitivity of electron scattering to surface structure can be 

directly traced to the dominance of these geometrical phase terms. 

The computational advantage of this formulation of the multi ple­

scattering problem lies in the separation of the sums on orbital angular 

momentum, contained in the various scattering factor matrices. The calcu­

lation of the elements of these scattering matrices requires work proportional 

to [max, which is proportional to k. Thus for small, fixed r, the computa­

tions are proportional to k (the square root of energy), rather than at least 

the fourth power of k (the square of energy) as more conventional methods 

demand. Furthermore, the value of r required for a given level of numerical 

accuracy is a strong function of angle and scattering distance. In fact, only 

nearest-neighbor atoms and scattering events with small scattering angles 

require the terms with r > O. For higher energies, the cone of angles which 

require higher order treatment becomes more and more narrow. 

IV. INTERFERENCE AND GEOMETRICAL PATH LENGTH 

DIFFERENCES. 

Having derived in the previous section expressions for the scattered wave 

amplitude, including curved wave multiple-scattering, we now concentr.ate 

solely on the phase of these waves. The energy dependent oscillations of the 

MEED curve are dominated by the geometrical phase shift terms and our 

discussion will ignore the rather constant phase of the "amplitude" terms 
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(scattering matrices) in this section. 

In general, the surface may have any ordered or disordered structure. In 

the disordered case, diffuse electron diffraction intensities can be calculated, 

just as the photoelectron diffraction intensi ties are calculated in any detector 

direction. We shall, however, concentrate here on simple ordered structures 

with one atom per two-dimensional unit cell and upon specular reflection. 

All of the scattered waves emanating from the cluster tree whose root is 

O-y in layer ; sum to 

'i -y = tPo., + L (tPo.,a + L (tPO.,ab + ... )) 
lal#O Ibl#o 

and the complete scattered wave is 

To see the role of two dimensional symmetry we write 

O-y = au + f3v + w-y 

where a and f3 are integers, u and v are surface net lattice vectors and w'Y 

gives the position of the 2-D net containing 0'1 for a = 0, f3 = O. The vectors 

u and v have no component normal to the 2-D net, but w may have x and 

y components to accommodate offset nets. Then 

ikR N N • 00 • 

iii s = e R 2: 2: ei(k;n-kR).(au+.Bv ) 2: ei(k;n-kR).W., 

a=-N .B=-N '1=1 

( 

. . f,T. ~ . f . x f. • + ~ e,ka-,ka.R kma k;naR aR 
kmR L... a 

lal#O 

+ 2: 2: eika-ika.Reikb-ikb.R f~na ~kinab~ab ~ abR fbR ). 

. lal#O Ibl#o 

This organization emphasizes the accumulation of phase with scattering 

order. All atoms within a tree have the phase of the root atom, 0'1' Each 
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scattering event adds a phase kr(l - cos OrR) where r is the length of the 

tree branch and OrR is its angle with the detector position. The intensity on 

a sphere at a radius R far from the diffracting surface can consequently be 

written as: 

I (X L L ei(kin-kR).(O'-O")u e i(kin-kR)-(,6-,6')v 

0',6 0",6' 

x (10 + ISragg + hRPEFS + Icomb. + Isss + Isso)· 

The two dimensional sums on 0, /3, 0', and /3' lead to the two dimensional 

Bragg condition for diffraction spots. In the following we will assume that 

these Bragg conditions are met and that we are calculating the intensity of 

a particular diffraction spot. We have grouped the cross-terms into six cat-

egories according to the geometrical dependence of the oscillating frequency 

of each term with electron wave number. Table I compares these terms and 

explicit formulae are given below. 

We group these six categories into three pairs. The first two terms, 10 

and ISragg , are the kinematic or single-scattering terms. The second pair, 

IARPEFS and Icomb., arise from interference between single scattered and 

multiple scattered waves. The final pair, Isss and Isso, contain all interfer-

ences between multiple-scattered waves. Within each of these pairs, the first 

term corresponds to interference between scattered waves with trunk atoms 

in the same layer, while the second term corresponds to interference between 

waves with trunk atoms in different layers. The six intensity contributions 

are: 
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1. /0, the atomic partial cross-sections, 

This term is the incoherent sum of the intensities of the individual 

scattered waves. It will vary with incident angle kin and exit angle R, 

but it is independent of bond angles and distances. We have written 

complex k as k = kr + iki and L"'( = (kin - R) . w"'( as the path length 

through the material to the ;th layer. 

2. /Sragg, leading to the weak third Bragg condition of electron diffrac-

tion, 

00 00 

/Sragg = L 1/J~.., L 1/Jo.." 
"'(=0 "'('::j:."'( 

00 

= 2Re L e-2k•L.., L eik(k.n-R)o(w..,-w..,,) r... •. r...' . 
k.nR k.nR 

"'(=0 "'('::j:."'( 

This term contains the interference between'scattered waves from 

trunk atoms in different layers and modulates /0 according to the 

Bragg condition for the direction perpendicular to the surface. 

3. IARPEFs, the ARPEFS-like term, 

00 

lARPEFS = 2Re L 1/J~.., L 1/Jo..,a 
')'=0 lal::j:.O 

00 • 

= 2Re L e-2k•L .., L eika..,-ika..,oR 

')'=0 la..,I::j:.O 
o f,T. ~ . f . 

x r.... . ....;k::..:.!!.n a=---=k:!!. n!..:;a:.:::R::......=.aR=:: 
kinR a 

(4) 

This contribution to the intensity arises from interference between sin-

gle scattering from a trunk atom and multiple scattering from atoms 

within that same tree. As we shall see, this term gives rise to the 
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majority of the "extra" peaks in intensity curves. The oscillation fre-

quencies present in this term are of the same form as found in ARPEFS 

and the path length differences in the phase of hRPEFS are the same 

as in Eq. 2. The path-length differences are equal to the lengths of 

tree branches, plus the emission direction dependent path aj . R. 

4. Icomb., the combination term, 

00 • • 

[comb. = 2Re L e-2kiL.., L eik(kin-R).(w..,-w..,,) 

-y=0 -y'#-y 

..• , f,kT.~ ·f· L etka..,-tka..,.R r... * ina kinaR aR 
kin ii a 

1 a.., 1#0 

This intensity arises when a single-scattered wave from a trunk atom 

in one layer interferes with multiple scattered waves from trees rooted 

in a different layer. The oscillation frequencies in this term will be 

combinations of the frequencies in IBragg and hRPEFS: the path length 

differences will be equal to the length of a tree branch plus the emission 

direction dependent path aj· R minus the offset of the two trunk atoms 

along the incident and exit directions. 

5. [SSg, where SSS stands for "scattered-wave, scattered-wave same": 

this term includes all interference between multiple scattered waves 

originating from trunk atoms in the same layer. We shall not give an 

explicit formula as it is not very illuminating. This term contains fre-

quencies equal to differences between pairs of frequencies appearing in 

hRPEFS, in other words frequencies equal to differences in the lengths 

of tree branches. 

6. [SSD, interference between multiple scattered wave.s with trunk atoms 
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in different layers. This term is similar to fsss, but the displacement 

between the trunk atoms leads to path length differences which contain 

added or subtracted Bragg components depending on the relative z 

component of the trunk atoms. 

These six "intensities" an~ not physically separable and they might aJ.so be 

called "interferences" since they need not be positive. 

This decomposition helps to focus on the nature of the structure infor-

mation in MEED. It is important to recognize that we have included all 

contributions to the MEED intensity. Thus, even including curved-wave 

and multiple-scattering effects, we can always write the MEED curve in a 

form directly analogous to the ARPEFS form of Eq. 1: 

[MEED -fo ~. 
J, = XMEED = ~ Ai(k) cos[kpi + <Pi(k)] 
o . 

) 

where Ai is the amplitude and <Pi is the phase of the product of two or more 

scattering factors and the path length differences Pi are given by 

Pi = ±2d.L cos Q + L ri,(l - cos 0Tlli). 
i' ) 

(5) 

Here d.L is some interlayer spacing, Q is the angle between incident beam 

direction and the surface normal., and rj' is the bond vector between some 

pair of atoms in the surface. In other words, the MEED intensity is a cosine 

series whose frequencies are equal to either Bragg path length differences, 

ARPEFS-like path length differences, or to a combination of these differ-

ences. This conclusion is a result of the scattering interference geometry 

alone. Specifically, it does not depend upon our particular method of calcu-

lating the scattering factors, or upon the multiple-scattering order, or upon 

.. 
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the surface ordering or, in fact, upon the energy range of the scattering 

events. 

For this conclusion to be useful for understanding the MEED intensity, 

the functions Aj and </>j must not be strong functions of k and the total num­

ber of different scattering interferences must not be overwhelmingly large. 

These criteria are only partially satisfied in the medium energy range. In the 

lower energy range, these criteria may not be satisfied at all even with the 

simplest surface structures. Before exploring the application of this analysis 

to MEED, we shall discuss the numerical convergence of our calculations in 

the next section. 

V. CONVERGENCE 

In this section we shall describe the convergence of the MEED specular 

(00) beam intensity as a function of the number of scattering events and of 

the Taylor series order. 

We control the number of scattering events in two separate ways. First, 

for each scattering event, the scattering amplitudes for the required angles 

are estimated using the maximum plane wave scattering amplitude over the 

chosen energy range. This estimate is compared to an amplitude cutoff 

criterion to select only large scattering amplitude events. For the events 

actually calculated, we find our estimates to be between 50% too high and 

20% too low. Second, we limit the total path length between the trunk atom 

and any scattering atom at the ends of the tree. Note that we specifically do 

not limit the order of the multiple-scattering perturbation series because, in 

fact, multiple forward scattering is never small in the MEED energy range. 
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The convergence in scattering amplitude cutoff is illustrated in Fig. 2. 

Starting with an amplitude just above convergence, the cutoff amplitude 

was successively reduced by a factor of 2 to yield the three MEED curves 

shown. The inset figure illustrates the convergence in multiple-scattering 

order. The energy range we have chosen here (100-550eV, corresponding to 
, 

5-121 -1 wave numbers) should be a very demanding test of the convergence 

of our method. 

The convergence in the path length difference cutoff is similar, with a 

cutoff around 13.51 being adequate to give the dominant MEED features. 

The Taylor series order convergence is illustrated in Fig. 3. The zero 

order curve is remarkably good for Ni, suggesting that this very simple 

theory may be useful for structure screening in the initial stages of a struc-

ture determination. The first and second order curves are nearly identical, 

demonstrating convergence in scattering at first order in this case. This 

rapid convergence in scattering order is in agreement with corresponding 

observations in ARPEFSP -

VI. PATH LENGTH DIFFERENCE ANALYSIS FOR CLEAN 

FCC (001) SURFACES. 

Now we wish to explore systematic features on,fEED intensities for clean 

fcc metal surfaces with the help of our analysis method. We shall divide 

our discussion into two parts. In the first part we analyze the features of 

the MEED curve for near normal incidence on the (001) face of an ideally 

terminated fcc metal. In the second part we move the angle of incidence 

away from normal and follow the changes in the character of the curves. 
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A. MEED specular intensity for fcc (001) surface. 

We begin with the intensity dependence on wave number of the MEED 

(00) beam for 4° off-normal angle of incidence, using Ni as an example, but 

we limit our discussion to those features shared by all fcc metals. We have 

selected this special case to help establish a connection between our ~nalysis 

and the analysis applied to LEED. 

1. 10 + ISragg 

In Fig. 4 we have superimposed the 10 ,10 + ISragg , and the full IMEED 

curves. The 10 curve is simply the backscattering cross-section for Ni atoms. 

The 10 + ISragg curve is the single-scattering (kinematic) result. A typical 

interference leading to these oscillations is shown in Fig. 5( a). The regular 

spacing of the crystal layers leads to a phase relation between the interference 

oscillations in ISraggwhich gives rise to Bragg peaks. 

We can associate the Bragg peaks with peaks in the IMEED curve of 

Fig. 4, but the MEED peaks are shifted and altered in amplitude, and some 

additional peaks appear between the Bragg peaks. We look to multiple­

scattering effects to describe the extra features and the modification of the 

Bragg peaks. 

2. hRPEFS 

The primary multiple-scattering in MEED is forward scattering in a nar­

row cone with width of the order of 10°-20°. Consequently, for near normal 

incidence on an ABAB. .. stacked fcc surface, the major forward scattering 

events occur between alternate layers, i. e. between even-numbered .or be-
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tween odd-numbered layers (see Fig. 5(b)). When these waves interfere with 

the trunk atom scattering, the characteristic frequency will be given by the 

path length difference between the alternate layers, i.e. four times the inter­

layer spacing counting the two layer spacings going down and two going up. 

This is very close to twice the frequency of the Bragg peaks (interference 

between every layer) because the incidence angle of 4° is so close to normal. 

These interferences belong to hRPEFS which is therefore dominated by an 

oscillation with twice as many peaks as [Bragg, as illustrated in Fig. 6 (com­

pare with Fig. 4). Half of the peaks in hRPEFS lie near Bragg peaks but 

the other half lie approximately halfway between the Bragg peaks and can 

be clearly associated with [ARPEFS. This explains the majority of the ex­

tra features in the MEED curve. For an fcc(111) surface with ABCABC ... 

stacking one would obtain extra peaks at approximately the one-third and 

two-thirds positions between the Bragg peaks. 

Such peaks have often been observed (and calculated) in LEED, espe­

cially at higher energies, but have never been explained in a simple way up 

to now. These features have been labeled20 "secondary Bragg peaks", but 

this obscures their local, multiple-scattering origin. The frequency of these 

oscillations will not follow the Bragg law: the corresponding path length 

difference is independent of the incident angle. 

We note that the maxima in hRPEFS occur at wave numbers slightly less 

than kBragg. This is a result of the two extra phase shifts which accompany 

the multiple-scattering events. First, there is an extra scattering phase shift 

when the electron wave is forward scattered: it is a large, mostly constant 

shift to lower wave number. The second phase shift is geometrical: the 

.' 
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multiple-scattering path length for forward scattering is always equal to or 

greater than the path which passes straight through. It always shifts the 

interference to lower wave numbers . 

3. Icomb. 

When a multiple-scattered wave interferes with single-scattered waves 

in other layers, an interference oscillation with a combined Bragg-like and 

ARPEFS-like frequency arises (see Fig. 5( c)), which we call Icomb:. For 

a truncated bulk fcc metal, the Icomb. intensity has large-amplitude fea­

tures when k = kBragg, but the intensity of the features is modulated by an 

ARPEFS-like oscillation. As described above, the oscillations in hRPEFS 

lag behind the Bragg peaks. In fact, the lag is more than 11'/2 for Ni atoms 

at 4° incidence: the ARPEFS oscillation is in its negative cycle near kBragg 

and the features in Icomb. are therefore large negative spikes as shown in 

Fig. 7. Recall that Icomb. and the other "intensities" are actually interfer­

ence terms: only their sum must be positive. Thus the multiple-scattering 

tends to destructively interfere with the single-scattering, reducing the size 

of the Bragg peaks. 

4. Isss and ISSD 

The strong backscattering power of Ni ensures that the interference 

structure of 4° incidence is dominated by single-scattering interference with 

single- or multiple-scattering. Thus for qualitative analysis of the near­

normal incidence curve we may ignore Isss and ISSD. In the next section 

we will encounter scattering geometries in which the multiple-scattering to 
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multiple-scattering interference becomes more important. 

B. Incidence Angle Dependence of the (00) beam intensity 

We shall examine the changes in the MEED curve and its components 

as the incidence angle increases from 4° to 44° in an azimuth containing a 

[011] direction. 

We must start with an examination of the scattering properties of Ni. 

Fig. 8 shows the angular dependence of the scattering power for Ni at two 

wave numbers, 6.5A -1 (161eV) and 10.5A -1 (420eV). The substantial con­

clusions of this section can be deduced from a careful comparison of the 

angle dependence of the scattering power to the scattering geometry. A 

strong forward peak dominates these" curves, becoming more pronounced at 

higher energy. A second lobe occurs for 180° backscattering. Also note two 

low points, at approximately 70° and 120-130°.19 Marked on Fig. 8 are the 

scattering angles () = 1(" - 2a for incident angles Q. vVe can anticipate that 

the amplitude of the single-scattered wav'es will decrease significantly for 

60° > Q > 12°, i. e. for 60° < () < 156°. 

The MEED curves for six incidence angles Q between 4° and 44° are 

shown in Fig. 9. We shall analyze these curves by decomposing them by the 

method of the preceding section. The salient features we must account for 

are i) the persistence of Bragg-like features for all angles as indicated by the 

peaks near the Bragg condition markers in Fig. 9 and ii) the introduction of 

additional features, particularly at low energies, as we approach the largest 

incidence angle plotted. 

We start with the Bragg-like features. The curves all have a peak near 
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the position expected for interference between single-scattered waves from 

each layer, but many of these apparent Bragg peaks are not "kinematic". 

' .. Fig. 10 shows 10+IBragg for the same conditions as Fig. 9. For the angles 20°, 

28°, and 36°, the small scattering power of Ni atoms at high energy for the 

angle 1r - 20: means that single-scattering is very weak. All of the interfer-

ence features involving single-scattered waves, namely 10 , IBragg, lARPEFs, 

and leomb., will thus be small. Multiple collision paths can, however, en-

ter the detector via paths that do not involve scattering through the angle 

1r - 20:: they can have significant amplitude even when single scattering is 

small. Thus the majority of the intensity in the higher energy region for the 

angles 20°-36° must originate from interference between multiple-scattering 

waves, i. e. either lsss or ISSD. 

For lsss, the path length differences must themselves be differences be-

tween pairs of ARPEFS-like path length differences. Thus the Bragg-like 

multiple-scattering features cannot be primarily due to Isss; they must arise 

from ISSD. As shown in Fig. 12, the ISSD term leads to Bragg-like features 

for all incidence angles (excepting only the highest energy Bragg condition 

in the 36° curve). 

The second characteristic of the angle dependence which we would like to 

understand is the additional features which seem to grow in at lower energies 

.. and higher angles. The appearance of new features coincides with the return 

of the Bragg peaks in Fig. 10, suggesting that in part they' originate from 
' .. , 

an increase in the single scattered waves. However, the Bragg peaks for 44° 

incidence are weaker and wider than at 4° because fewer layers contribute 

at a more grazing angle. Attenuation of the Bragg peaks highlights the 
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hRPEFS oscillations, which need not be weaker at 44° than at 4°: Fig. 11 

shows the IARPEFs features on the same scale as Fig. 9. 

The attenuation of the Bragg features also helps the visibility of the 

IssD features. As we can see from Fig. 12, the IssD peaks still have Bragg­

like peaks, but additional, higher frequency oscillations are nearly as large. 

These extra oscillations represent interferences whose periodic extensions 

have been attenuated by long path lengths. This truncates the Bragg sum 

leaving a cosine oscillation. Furthermore, the 44° geometry allows multiple 

forward scattering to occur for every layer, rather than every other layer 

as we saw for 4°. Thus the Bragg-like peaks in ISSD for 44° are shifted far 

enough away from the real Bragg peaks to give separate structures in the 

MEED curve. To summarize the character of the 44° spectrum we can say 

that the increase in the number of features follows from a more even balance 

. of multiple-scattering and single scattering (Bragg) features, combined with 

the larger shift of the IssD peaks leading to two separate sets of Bragg-like 

peaks, one kinematic and one due solely to interference between multiple­

scattering waves. 

VII. COMPARISON WITH OTHER METHODS FOR MEED 

COMPUTATION 

As discussed in the introduction, several methods have been proposed 

to overcome the barrier to MEED intensity computations. Our approach in 

this paper is rather different in that we have no direct connection to any 

particular organization of the crystal and we use a different mathematical 

formulation of the individual scattering events. 
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The cluster LEED theories are similar in spirit to our cluster MEED 

theory, in that periodicity is partly or wholly abandoned. However, dif-

ferent formulations of the individual scattering events are appropriate to 

low and to medium energies. This also applies to the RHEED-like theory of 

MEED.IS Its use of a plane-wave representation of atomic scattering leads to 

plane-wave scattering factors. The generalized scattering factors we employ 

reduces to plane-wave limits for large scattering distance and, presumably, 

large energy. 

Similar methods for computing individual scattering events based on 

rotated coordinate systems have been suggested.21 ,22 While these computa-

tional methods have not been adapted for MEED, our work here shows that 

such an extension is possible. 

\Ve should note that our present method is not restricted in incidence 

angle or energy in principle, but we are limited at low energy and high angle 

by the possibility of resonant scattering and at very high energy because the 
, 

computations are still proportional to the number of phase shifts lmax ~ kro. 

Fig. 13 compares the new calculation method with a traditional LEED 

calculation for an angle of incidence that shows high sensitivity to con-

vergence. The discrepancies in peak heights can be traced to incomplete 

convergence at the low energies used here. Our current programs require 

about 6 sec of VAX 8650 CPU time per energy point for the interval of 

Fig. 13, compared with about 9 sec for a standard non-symmetrized LEED 

program. The big gain shows up at higher energies: the computational effort 

of the present method only triples from 100eV to 1000eV, while the standard 

LEED calculation will have increased by two orders of magnitude. 

------ ----- -, 



28 

VIII. CONCLUSIONS 

We have presented two developments in the theory of medium energy 

electron diffraction. The first is computational: the efficient TS-MQNE 

method for multiple-scattering has been adapted for electron diffraction. 

The second is conceptual: we have analyzed the multiple-scattering part of 

MEED in terms of individual scattering paths. 

The computation of MEED intensities by the method we describe here 

is much more effective than the methods used for LEED whenever the scat­

tering energy or the unit cell size is large. We do not claim that our method 

is as yet the optimal one. But we have reduced the power of the functional 

dependence of the computations on energy from square to square root. Fur­

ther improvements seem possible. In particular; at some high energy the 

Born approximation will be useful, as in RHEED. Then the computatiOIis 

would become independent of energy using our cluster scheme. 

A clean low-Miller-index fcc metal surface is a worst-case choice to ex­

hibit the advantages of our method, especially with respect to unit cell size. 

On the other hand, our method scales only linearly with the number of atoms 

in the unit cell rather than proportionally to the fourth or higher power of 

that number, as with conventional LEED methods. Thus our method has 

its greatest potential in solving complex surface structures, whether ordered 

or disordered. 

Our second contribution in this paper is a different perspective on the 

electron diffraction problem, one which emphasizes the individual electron­

atom collisions. We have made an in-depth analysis of a simple fcc metal, 
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demonstrating that even the multiple-scattering interference structure in the 

MEED curves can be connected straightforwardly to scattering events. 
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TABLE 

TABLE 1. Classification of MEED Interferences. All of the structure in a 

MEED curve orginates from interferences in one of these six categories. The 

characteristic path length differences ~p are given for each category. 

Interference Trunk atoms in same layer 

fo (Atomic), 
~p= 0 

ARPEFS, 
~p = a( 1 - cos OaR) 

SSS, 
~p = Li ai(1 - cos Oa,R) 

Trunk atoms in different layers 

Bragg, 
~p = 2a.l cos a 

Comb., 
~p = 2d.l cos a ± a(l- cos OaR) 

SSD 
~p = 2d.l cos a±ti ai( 1-cos Oa,R) 
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FIGURE CAPTIONS 

FIG. 1. Multiple-Scattering Tree. The diagram shows a cross-sectional view 

of a surface with an incident beam (solid line) reaching the "trunk" atom 

of a tree, several scattered wave propagation directions ("bond" vectors) 

(dotted lines) and the exiting scattered waves headed toward the detector 

(MEED spot) (dashed lines). 

FIG. 2. Convergence of the specular (00) MEED beam intensity for elec-

trons incident 4° from normal on a Ni (001) surface. The inset shows the 

number of scattering events computed for each multiple-scattering order, 

e.g., order 3 is triple scattering. The solid curve has the most scattering 

events, while the other two curves have events with amplitudes estimated 

to be half of the solid curve (dashed line) and one fourth of the solid curve 

(dot-dash line). The intensities are multiplied by k 2 to give more even values 

across the entire momentum range. 

FIG. 3. Convergence in Taylor series parameter r for the MEED (00) 

intensity for 4° incident electrons on a Ni(001) surface. The solid curve was 

computed with r = 0, the dashed curve with r = 1, and the dot-dash curve 

with r = 2. The similarity of these last two curves makes them difficult to 

distinguish, illustrating the convergence of the Taylor expansion. 

FIG. 4. Solid curve is IMEED, the full multiple-scattering curve for specular 

reflection from Ni(001) at 4° off-normal. Dotted curve is Io+Isragg, the kine-

matic or single scattering result. Dash curve is 10 , the atom cross-section. 
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FIG. 5. Schematic illustration of three pairs of electron paths whose inter-

ference gives the dominant character of the MEED curve for near normal 

incidence on an fcc (001) surface. The first pair, (a), gives the Bragg-like 

peaks. The second pair, (b), yields ARPEFS-like oscillations. The third 

pair, (c), represents the only other type of interference between single- and 

multiple-scattering paths. 

FIG. 6. Specular MEED intensity for electrons incident 4° from normal to 

the (001) face of a Ni surface. The solid line is the full calculated MEED 

curve while the dotted curve includes only interferences similar to the in-

terference responsible for ARPEFS (hRPEFS). Bragg-like peaks occur near 

A-I A-I A-I 7 ,8.75 , and 10.6 . 

FIG. 7. The contribution lcomb. to the full IMEED, and its relationship to 

IBragg + 10 • 

FIG. 8. The scattering power 1/(0)1 for Ni atoms as a function of scattering 

angle () at 6.5A -1 (161eV) (line with circles) and 10.5A -1 (420eV) (line with 

pluses). The scattering angles 0 for various incidence angles a discussed in 

the text are marked by vertical bars. 

FIG. 9. Calcuh~,ted MEED (00) beam intensities for a range of incident 

polar angles in a [011] azimuth on aNi (001) surface. The curves for angles 

greater than 12° have been enlarged by a factor of 3. Vertical bars mark the 

positions of the ideal "kinematic" Bragg peaks. 

~, 
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FIG. 10. Components 10 + IBragg of the MEED curves in Fig. 9. The 

scale has been deliberately chosen to be the same as Fig. 9 to facilitate 

comparison. 

FIG. 11. Same as Fig. 9 except displaying hRPEFS. Note that th,e same 

scale has been used as in Fig. 9 to facilitate comparison 

FIG. 12. Same as Fig. 9 except displaying IssD. Note that the same scale 

has been used as in Fig. 9 to facilitate comparison 

FIG. 13. LEED multiple-scattering calculations for an incidence direction 

of (8,4»=(8°,45°) on Ni(OOl), (OO)beam. Upper curve: method of Ref. 10. 

Lower curve: present work. 
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