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* "CLASSICAL" ISOTHERMAL ROTATIONS OF A NUCLEUS 

L. G. Moretto 

Department of Chemistry and 
~wrence Berkeley Laboratory 

University of California 
B~rkeley, California 94720 

January 1974 

Abstract 

The properties of spherical, paired nuclei with finite angular momentum 

are discussed in terms of "classical" rotations. Rotational quantitie:s like the 

angular velocity and the moment of inertia are calculated both for the yrast 

line (T = 0) and for higher temperatures. Particular attention is paid to the superfluid 

features associated with the pairing correlation. Thre~ dif'ferent models are 

considered. The first model is characterized by a constant spacing in the single 

particle levels and by a constant spin projection, and it is treated analytically 

in the zero temperature limit. It is shown that this model leads to a very strong 

back-bending. Calculations accounting for the pairing fluctuations are shown. 

The second model differs from the first one in the spin projection distribution which, 

in analogy with a spherical shell model nucleus, is taken to be rectangular. 

Analytical calculations show that, while strong superfluid properties remain, 

the back-bending seen in the previous model disappears. The third model used is 

the shell model. Numerical calculations of the angular velocities and of the moments 

of inertia are compared with the results obtained from the previous two models. 

A remarkable agreement is observed between the Second model and the shell model. 

*' Work performed under .the auspices of the U. S. Atomic Energy Commission. 
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I. Introduction 
, 

It'has been shown that the main effect of angular momentum on the 

nuclear level density can be accounted for, on one hand by the rotational phase 

space of the nucleus as a 'whole, on the other by the unavailability of the 
" 

la lb) rotat i onal energy to e~ci te the intrinsic degrees of' f'reedom' . 'lJJis 

rotation and the associated rotational, phase space need not be associated 

with well defined rotational quantum states . In fact, such a rotation is present 

even in the case of' a spherical nucleus where no quantum mechanical rotation is 

.bl la POSS1 e. These rotationa;L features are essentially "classical" in nature 

insofar as the rotational strength is shared by all the states. Along the same 
" 

, , 
line, individual levels may not show any d~stinct rotational' characteristics, 

while the envelope of many levels shows an energy-angular momentum dependence 

typical of a rotor. This is expected to be the case for the yrast line of 

a spherical nucleus: ,the individual yrast levels may not show a rotational 

behavior individually, since they are not part of a rotational band. However 

their envelope is expected to show di,stinct 'rotational features. A similar 
, t 

consideration should hold also f'or nuclei at temperatures larger than zero. 

t 
The use of temperature as a meaningf'ul nuclear parameter has not received the 

recogni tion it may deserve. The usual obj ection is that a nucleus is" a system 

with rixed energy and not with fixed temperature. This is not quite true if 

one considers the ens~mble of nuclei produced in a compound nucleus decay (e.g. 

neutron emission) or when- an individual degree of freedom in equilibrium with the 

remaining intrinsic degrees, of freedom is singled out (e.g. the fission mode at 

the nuclear saddle point). In ail of these cases the temperature and not the 

energy is constant. In many cases it is peculiar to see a great ef'fort being 

made to calculate constant energy properties f'ollowed by an equally great effort' 
I 

to fold the same properties over distributions which are characterized quite simply 

by a constant temperature. 
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The existence of rotational features in the energy-anglilar momentum 
. ( 

isotherms allows one to extract other rotational quantities like the angular 

velocity and the moment of inertia. 

A model with uniform single particle spacing and uniform spin projection 

distribution is characterized by a constant moment of inertia whose value 

corresponds to the "rigid" value2 ). A shell model with nonuniform spacing 

and spin projection distribution still yields a "rigid" moment of inertia. 

However such a moment of inertia is not constant insofar as changes in 

temperature and in angular momentum can lead to the occupation of levels with 

widely different spin projections. In general the presence of residual 

interactions still leads to a rigid moment of inertia. Only special residual 

interactions such as those of the pairing kind produce moments of inertia 

which deviate dramat~cally from their rigid, value. Such interactions are 

responsible for a superfluid condensation which leads to a higoly correlated 

motion of the nucleons. / 

The effect of the pairing interaction on the quantum mechanical 

rotations namely: on the rotational bands of deformed nuclei has been studied 

theoretically3). The antipairing effects of angular momentum are shown to 

reduce dramatically the correlation, to increase the moment of inertia and to 

lead to a backbending in the plot of the moment of inertia versus the square of 

the angular velocity. The experimental evidence of reduced moments of inertia 

4-8) in rotational bands and the observation of backbending has been interpreted 

as evidence of the pairing correlation. 

In the pres'ent paper we are interested in determining the effect of 

the pairing residual interaction on the "classical" rotations of a spherical 
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nucleus at various temperatures and angular momenta. In particular sec. 1 

is devoted to the presentation of the formalism. In sec. 2 the formalism is 

applied to a model with constant spacing and constant single particle spin 

projection. The expressions for the yrast energies and for the T = 0 limit of 

the angular velocity and moment of inertia are derived. The extension of the 

j 

calculation to finite temperatures indicates the presence of a backbending 

in the moment of inertia-angular velocity plot which disappears as the 

temperature increases. In sec. 3 the pairing fluctuations are studied and 

the collective rotational quantities are recalculated with a new formalism 

accounting for the fluctuations. The sharp boundary between superfluid and 

normal phase is shown to disappear. 

In sec. 4 the relevance of the spin-p~ojection distribution on the 

detailed dependence of the yrast energy arid of the angular velocity upon the 

angular momentum is studied. It is shown that a rectangular spin projection 

distribution, which is a more realistic description of the actual spin projection 

distributions, implies the disappearance of the backbending even at zero 

temperature. 

In sec. 5 the Nilsson model is used to obtain a more realistic 

description of spherical nuclei and the results are compared with those 

obtained from the analytical models. 
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2. General Formali sm 

The pairing Hamiltonian used in this paper is characterized by a 

constant pairing strength G: 

H = L St at 'it - G L a~, a! 
k' 

a_ a 
k k 

, 

where ~ are the single particle energies and a~ and ak are the creation and 

destruction operators respectively. The Hamiltonian can be rewritten in the 

quasiparticle space as follows: 

where vk and ~ are the amplitudes of the particles and holes respectively, 

(I) 

~ are the occupation numbers in the quaSiparticle space and A is the chemical 

potential. The amplitudes ~ and vk obey the relation: 

The requirement that the Hamiltonian be stationary with respect to vk with nk 

kept constant leads to the gap equation: 

2 
= 

G 
, 

. I 2 21/2 . . 
where ~ = [( Ek - A) + 11] and where ~ are the occupatl.on numbers 

(3) 

(4 ) 

of quasiparticles. The following expressions for v~ and ~ are also obtained: 
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The introduction of the angular momentum projection M into the Hamiltonian9 

be handled in the same way as the'particle number as follows lO- 12 ): 

can 

+ -nk and nk are the quasiparticle occupation numbers with positive and negative spin 
, 

projections' and y is a Lagrange multiplier which assumes the meaning of the col'"" 

lect i ve angular ve lac i ty: 

3H 
Y =­aM 

The statistical functions can be written as follows: 

n = -s L(e:k - A .... ~) + 2:1n[1 + exp - ~(~ -YII1.c)] + Lln[l + exp - SeEk + YII1.c)] 

N = L [1 

1 + exp S(Ek + ~) ] 

The quantity ~ is related to 8 A, y by ~he gap equation: 

I 

\" 11 l' . 2 
L 2~ [tanh 2" S(~- YlI1c) + tanh 2 S(~ + YII1.c)] = G 

(8) 

(10) 

(11) 

(12 ) 
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At fixed temperature T or B eqs. (9), (10), and (12) can be solved for 6., y' A if ' 

N and M == I aregi ven.
t The moment of inertia can then be obtained by the relati9n: 

~y = I 

In general the moment of inertia depends upon angular momentum through the 

dependence of the gap parameter l::. upon the angular velocity. Such a dependence 

is very strong and produces dramatic changes in the moment of inertia. This 
/ 

has important consequences in the evaluation of the angular momentum 

dependence of the nuclear level density. Some very approximate e_stimates 

of such a quantity make use of the spin cut off parameter a2 whi~h is taken 

b 1 - f· . 13) to e equa to the ollowlng expresslon _ : 

(i '1 \' 2 2 1 ;t 
= '2 L ~ sech 2" B ~ = h2B (14) 

\ 

This expression can be easily justified by observing that it corresponds 

to the following limit: 

a2 = lim 
y = 0 

aM 
aBy 

In other words such an approximation implies that the gap parameter ,6. does not 

depend on angular momentum and that the chemical potential A does not depend 

on angular momentum. The validity of suchan approximation is in fact rather 

limited as will be seen in the following sections. 

f For .a spherically symmetric system, it is possible to account completely for the 

1 1 b f . .. M 11,12),., totaangu ar momentum I y means 0 1tS z prO]ect10n 
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3. The Uniform Model 

The effects of the pairing correlation on the rotational properties of nuclei 

are best observed when the interference of the shell structure is eliminatedlO~11,14). 
This can be achieved by the use of the uniform model. In this specia~ versior, of the 

uniform model the level scheme consists of a set of equidistant, doublY/de-generat~ 

levels with a density g and with a constant spin projection m. The information 

concerning the strength of the pairing interaction is contained in the ground 

state gap parameter ~O. An important advantage of this model is the fact 

that the chemical potential is a constant because of the symmetries inherent to 

the single particle scheme. For this reason the particle equation can be 

disregarded.and the chemical potential can be set equal to zero. The equations which 
, 

remain to be studied are the gap equation, the angular momentum equation and 

the energy equation. For the uniform model they take the following form: 

8 

~ = 2g f 2lE { tanh ~ 13 (E - ym) + tanh. ~ 13 (E + ym)} de: = f ( ~ ,Y ) 

o 

I 2gm f{ 1 -l 
} d£ = S(E - ym) - exp SeE + ym) 1 +exp 1 + 

. 0 

{S €[,1 - € 1 1 
E = g d€ 

2E {tanh "2 SeE - ym) + tanh "2 S(E -ym)}] 

-8 

~2 
G 

(16) 

(18) 

In these equations 8 » ~o is the energy interval' above and below the Fermi 

15· surface, over which the pairing correlations is active '). 

This set of equations can be integrated analytically at zero, temperature 

(13 = 00)14). Let us consider the angular momentum equation17 ). For 13 = 00 the ·second 
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,!-

term of the integrand is zero over the entire integration range, while the first 

term is unity :from E> = 0 to e: __ [('ym)2 6 2 ]1/2 and zero thereafter. Thus: 

I ' 
", 

In order to obtain the relationship between I andy, the gap parameter ~ must 

be calculated as a function of y. This can be achieved by integrating the 

gap equation in the limit of S = 00 in the form: 

0) = f(6,y) , 

or 

(20 ) 

The lower limit of the right hand side integral is' 

a = • (21) -

, 
This lower limit has a very interesting physical significance. It means that, 

because of the presence bf the angular momentum, the range ±S in the single particle 

spectrum is not entirely available to the pairing correlation. In fact all 

t~e single particle levels contained in the interval ±a are effectively 

removed from the reach of the pairing correlation. These levels are 

occupied by the unpair.ed nucleons (quasi-particles) necess ary to build up the 

total angular momentum 1. The number of quasi-particles is: 

I n=-= m (22) 

! ' 
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These "blocked"levels are most precious to the 'pairing correlation because 

they are closest to' the Fermi surface. Therefore it must be expected that 
, I 

the pairing correlation decrease and eventually vanish as the angular 

momentum increases. 

The integrated form of the gap equation is: 

( 

s ((ym)2 _ 112) 
arcsinh A - arcsinh --

u 15.2 

. S 
= arcsinh ~ 

o 
(23) 

By means of the summation formula for the function arcsinh and by making use 

of the assumption S » 110 one obtains.: 

= , (24) 

which is the required relatioh. Before calculating the relationship between 

the angular momentum I and the angular velocity y exp~icitly, let us determine 

the dependence of the gap parameter upon the angular momentum. By means of 

Eq. (19) andEq~' (24) the very simple relation is obtained: 

11 (1 ~ _I_) 1/2 (1 
I'1/2 

-.= = -), 
110 gmt:. 0 I cr ' 

where 

Icr = gmt:. 0 (26 ) 

-It can be seen that the gap parameter 11 decreases with angular momentum and 

" eventually vanishes at ~he critical value, of the angular momentum I cr • 
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B.y using the expressions just developed, the angular velocity and the 

moment of inertia can finally be calculated: 

/ 

I 
Y = -.£!. (2 - l) for I < I 

$R Icr cr 
I 

Y = 'fl; for I ;;;;, Icr 

I III 
if= OR 

cr e1= g- for I ;;;;, I - = 
Y I R cr , 

2 - I 

(28) 

cr 

'or 

62 /12 

ef= ilR ~ 
/1

2 6 + 
(28 ") 

0 

where ~R is the rigid moment of inertia, given by: 

otR 
2 = 2m g 

In Eq. (28) the e:ffect o:fthe pairing superfluidi ty on the moment o~ inertia is 

clearly seen as well as the antipairing ef:fect o:f the angular momentum (fig. 2a). In 

:fact the moment o:f inertia goes :from zero to its rigid value as the angular, 

momentum increases to zero to the critical value. 

Even more striking is the behavior o:f the angular velocity (eq. (27J). At zero 

Icr 
angular momentum the angular velocity takes the value 2 --­

e1R 
and it decreases to the 

Icr 
value T as the angUlar momentum increases to its critical value (fig. la). We are deal-

R 
ing with a peculiar object which, the smaller the-angular momentum, the faster it spins! 

The energy equation can also be integrated analytically at zero temperature. 

Setting a = co the integral can be written as :' 

E = g J+S 
-S 

e:de: -

-I/2:mg gf 
-S 

After a little algebra one obtains: 

f
+S 2 

g '7 de: 

1/2:mg 

(30 ) 



~I 

2 
E = -gS 

-11-

)

l/2 
t} 

By subtracting the ground state energy EO 

equation for the so called yrast line: 

·2 = -gS 

r + n2 
( 

2 . ) 1/2 

4 22 
m g 

which 'can be rewritten in a more elegant form as: 

·E 
Y 

= 

r 
-r­

cr 
( 2 - 2f-) . 

~cr 

for I ~ r cr 

for r ~ I cr 

LBL-2321 

l' 2 
2 gno one obtains the 

, (32) 

(34) _ 

Such an equation repr-esents the locus of the levels of largest angular momentum 

at fixed energy, or conversely the locus of the levels of ~owest energy at fixed angular 

momentum. The parabolic dependence of energy on a~gular momentum typical of a ' 

rigid body can be observed for angular momenta larger than the critical value. 

The yrast energy in eq. (33) is made up of two components: a rotational 

component plus a term representing the energy increase due to the disappearance 

of the pairing correlation. We can consider the momeilt of inertia 'of the rotating 

system to be a function of an internal parameter (the gap parameter) which 

in turn depends upon angular momentum through the condit~onof minimum total 

energy. Systems of this kind are quite common. For instance a deformable 

sphere when set in rotation assumes a spheroidal sha~e whose ecce~tricity 

depends upon the angular momentum through the condition of minimum energy. In 
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these cases the angular velocity of the system can be easily calculated. By 

definition the rotational frequency y is given by 

y = aH 
aI 

However, by taking the total derivative of energy with respect to angular 

momentum one obtains: 

aH 
It is ,easily seen that the partial derivative ~ , when set equal to zero, is 

equivalent to the gap equation (at zero temperature) which defines the very value 

of the gap parameter. It follows that: 

dE 
= dH ~ = -L 

Y ar = dI dI 

This can be verified immediately by differentiating Eq. (33) and comparing the 

result with Eq. (27). At this point we are in the position to calculate the 

loss in pairing correlation energy E* due to the angular momentum: 

* E (38) 

Th:i,squanti ty is zero for I = 0 because the system retains the full condensation 
, 2-

1 2 Icr ,1 2 
"energy C = 2' g!::,O when no angular momentum is present, and it is equal to QiR = 2" g!::,O 

at the critical angular momentum when all of the condensation energy due to the 

pairing correlation is lost.' It is also not so surprising to observe that, 

since the yrast energy at the critical angular momentum is: 

'., 
I 



E 
YI - I cr 
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it follows that the energy in the form 'of rotational kinetic energy is one half 

of the energy in form of pairing potential energy. This is just a specific 

case of the virial theorem. 

Let us now consider the more general case in which the temperature is dif-

'ferent from zero. It is well known that at zero angular momentum the theory 

predicts a critical temperature.: 

T , 
cr 

at which the pairing correlation disappears. 

(40) 

Before proceeding any further, it· is interesting to point out that the 

system is completely characterized by three critical quantities, the critical 

temperature, the critical angular momentum and the rigid moment of inertia. 

These three quantities c~ be obtained by a suitable combination of the initial 

parameters of the model g, m, ~O 

T cr 

I = mg~o cr 

(41) 

In this w~ it is possible to express all the properties of any system by means 

of three . fundamental reduced variables Tier ,III. , JI efR· . . cr cr 

As the temperature incr~ases, new quasi particle_s are created 

and the gap parameter eventually vanishes. A rather peculiar effect 
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. in the dependence of the gap pa~ameter on temperature at constant angular 

moment.um can be observed. An ini tialincrease in temperature leads to a.'1 

increase in the gap parameter which is the more substantial the larger the angul2.r 

momentum. This effect, called thermally assisted pairing correlation 10 ,11) , is 

particularly visible in the dependence of the critical an¥ular momentum upon 
, 

temperature.at low temperatures, where an increase intemperatdre leads to an 

increase of the critical 'angular momentum o 

Returning to the discussion of the rotational properties, the angular 

velocity can be obtained by solving the gap equation and the angular momentum 

equation simultaneously in y and ~ for a given temperature. A plot of the 

angular velocity versus angular momentum for various temperatures is shown 

in Fig. lao The zero temperature limit predicted by eq; (27) shows the 

angular velo~ity decreasing linearly with angular momentum until the critical 

angular momentum is reached. Then the angular velocity increases proportionally 

to the angular momentum. In the lower temperature range, the angular velocity 

increases very rapidly, reaches a maximum and then decreases until the 

critical angular momentum assoc~ated with the specific value of the t·emperature 

is reached. In th~ upp~r temperature range, the angular·velocity increases 

monotonically with angular momentum, initially faster, later slower than 

the normal,behavior unti~ the corresponding critical angular momentum is reached. 

Above the critical angular momenta, the angular velocity is independent of 

temperature and it ~ncreases proportionally to the angular momentum. The dependence 

r 

of the moment6f inertia on angular momentum for various temperatures is shown 

in Fig. 2a. The zero temperature dependence is given by eq. (28). The moment 

of inertia is seen to increase regularly with angular momentum until it reaches 
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~ 

the rigid value at the critical angular momentum. However a more peculiar 

picture is seen when the moment of inertia is plotted as a function of the square of 

the angular velocity as now fashionable (fig. 3a). A back bending is observed' 

in all those isotherms for which a decrease in angular velocity is observed 

as a function of angular m9mentum. The back bending disappears at the higher 

temperatures. The existence of the back bending in the moments of inertia 

associated with the ground state rotational band of deformed nuclei has been 

predicted in various calculations. There seem tQ be experimental evidence 

of such-a feattirein some deformed rare earth nuclei. The present calculation, 
/ 

i~dicates that analogous features might be present along the yrast line and 

higher isotherms of spherical nuclei. 
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4. Effect of Pairing Fluctuations on Angular Velocity Near the 

BCS Phase 'Transition 

The formalism iliustrated in the previous section predicts that the 

nuclear superfluidity' should disappear abruptly as the gap parameter goes to 

zero. A phase boundary f(T, I) = 0 can be determin~d in the temperature-angular 

momentum plane which separates the superfluid from the normal region. The 

prediction of such a phase transition,. is correct in the limit of a large 

number of particles. For a nucleus, where the particle number is small, large 
/ 

. ., 't' 16) fluctuat10ns are to be expected which do remove the sharp phase tranS1 1on. 

In order to appreciate the extent to which the system can fluctuate in its 

superfluid behavior, let us consider, the Hamiltonian: 

,where ~ are the quasiparticle occupation numbers and, for simplicity, we 

disregard the quasiparticle spin projection. 

The BCS treatment consists in finding out the value of !::. which 

minimizes the Hamiltonian at fixed occupation numbers n
k

. In fact it is easy 

aH ' 
to verify that the condition a!::. = 0 corresponds to the gap equation (4). In 

order to estimate the extent of the fluctuations one must calculate the 

second derivative at the equilibrium value of the gap parameter /1 
~ eq 

~ 
2 [1 - 2~ (1- G /1

2 [1 -2~ ) eq (43) = /1 

a/1
2 

!::.=!::. 
eq 

~ 
2 ~ eq 

In the absence of quasiparticles and for the uniform model one obtains: 

(42) 

0, 
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,the rigid value at the critical angular momentum. However a more peculiar 

picture is seen when the moment of inertia is plotted as a !'unction of the square of 
, \ 

the angular velocity as now fashionable (fig. 3a). A back bending is observed 

in all those isotherms for which a decrease,in angular velocity is observed 

as a !'unction of angular momentum. The back bending disappears at the higher 

temperatures. The existence of the back bending in the moments of inertia 

associated with the ground state rotational band of deformed nuclei has been 

predicted in various calculations. There seem to be experimental evidence, 

of such a feature in some deformed rare earth nuclei. The present calculation, 

indicates that analogous features might be present along the yrast line and 

higher isotherms o~ spherical nuclei. 

..;:;;J 
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4. Effect of Pairing Fluctuations oniAngular Velocity Near the 

BCS Phase Transition 

The formalism illustrated in the previous section predicts that the 

nuclear superfluidity should disappear abruptly as the gap parameter goes to 

zero. A phase boundary f(T, I) = 0 can be determined in the temperature-angular 

momentum plane which separates thesuperfluid from the normal region. The 

prediction of such a phase transition is correct in the limit of a large 

number of particles. For a nucleus ,Where the particle number is small,' large 

fl t . t b d h' h h 'h 'h t . t'· 16 ) uctua 10nS are 0 e expecte w ~c do remove t e s arp p ase ranSl lon . 

In order to appreciate the ,extent to which the system'can fluctuate in its 

superfluid behavior, let us consider the Hamiltonian: 

~-

where nk are the quasiparticle occupation numbers and, for simplicity, we 

disregard the quasiparticle spin projection. 

The BCS treatment consists in finding out the value of ~ which 

mirimizes the ,Hamiltonian at fixed occupation numbers nk . In fact it is easy 

to verify that the ~ondition ~~ = 0 corresponds to the gap equation (4). In 
'-

order to estimate the extent of the fluctuations one must calculate the 

second derivative at the equilibrium value of the gap parameter tJ. eq 

~ ~2 [1- 2~ 
( 1 -

G ~2 
[1,-2~) eq (43) = 

a~2 ~=~ 'eq 
~ 

2 ~ eq 

In the absence~of quasiparticles and for the uniform model one o:ptains: 

(42) 
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gG) ::! 2g ,(44 ) 

This implies that, for very small temperatures, the fluctuations in !:J. have a 

width: 

(J::! .... fT a:. .... fT 
Vi Vi (45) 

In other words the width of tl)e fluctuations .. is inversely proportional to the square 

root of the number of particles. Such a pl'oportionality is, of course, retained 

even for the more general expression of the second derivative given by eq.· (43) • 

Consequently, one does expect that a sharp phase transition may occur in_a macroscopic 

superconductor. On the other hand, on the same basis, such a transition should 

be washed out. when the number of particles is small, like in a nucleus. Because 

of the finite widtp of the probability distribution in !:J., and because of the presence 

of higher moments, the use of average quantities is more significant than 

the use -of the corresponding most probable quantities. The probability 

. distribution in !:J. is· given bY:' 

\. 

p(!:J., y) a:. exp - (n - pM) 

-Thus the average angular velocity Y and the average g~p parameter !:J. are 

- fypc!:J.,y) d!:J.dy J!:J.P(!:J.,y) d!:J.dy 
y = !:J. = 

fp(!:J.,y) Mdy fp(!:J.,y) d!:J.iiy 

(46) 

given 

(47) 

by: 

. The value of y for a fixed . value of !:J., 13, and I can be obtained from the angular 

momentum equation (17). The plot of the average angular velocity versus angular 
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momentum for various temper"atures is shown ,in fig. lb., Such a figure should be 

comparedJwith fig. la where the most probable values of :the angular velocity 

are plotted. Away from the critical region the two plots are essentially 

identical; close to the critical region the most probable angular velocity 

reaches abruptly its rigid value generating a cusp, while the average angular 

velocity approaches asymptotically its rigid value. This shows how in a real 

nucleus one should not expect a phase transition in going from the paired to the 

unpaired configuration. In fig. 2b the average moment of inertia is shown as a 

function of angular momentum. As compared with fig. 2a, ~the rigid moment of 

inertia is attained only asymptotically at all temperat~res, instead of 

. abruptly. Notice that, even for T = T the moment of inertia is still smaller cr 

than its 'rigid value because of the, persistenc'e of the pairing correlation. 

Sinularly in fig. 3b the average moment of inertia is plotted versus the square 

of the average angular velocity. Again by comparing this plot with fig. 3a 

one notices the disappearance of the cusps associated with. the critical 

temperatures. ,In their place a s,mooth fold over is observed which, for the 

lowest temperatures constitutes the upper part of an S shaped curve. In fig. 3a the 

highest isotherm T = T - cr gives the rigid moment of inertia. 

In the new calculation pairing extends above the critical temperature: 

consequently the isotherm corresponding to T = T cr 
shows a moment of inertia 

smaller than its rigid value. 

/ 
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-~. Effect of the Spin Projection ,Distribution Upon the Shape of 

the Yrast Line 

TIle equ:i.dist9.Il;t model with const~t spin projection distribution, 

considered so far, predicts a decreasing angular velocity with angular 

momentum in the paired region. As a consequence the yrast line presents a 

negative second derivative and the plot of the moment of inertia versus the 

square of the angular velocity shows a backbending. 

The above effects'depen~ rather dramatically upon'the spin projection 

,distribution. The spin projection used in the previ.ous sections 

p(!!!) d,~ = 0'Cl!! - m) d!!!, is not very realistic. In this section a more realistic 

spin distribution is goihg to be used17 ). Such R distribution is a rectangular, 

distribution: 

p(E!) dm = 

dm 
g-' 

m x 

o 

f~r 0 ~ m ~ m x 

for m ~ m 
x 

(48) 

'Such a distribution approximates the 2j + 1 projections of a jshell quite well 

and therefore is expected to be relevant for a spherical nucleus. Also for 

this distribution it is possible to integrate the angular momentum equation and 

the gap equation analytically. The angular momentum equation becomes: 

T = E.. -L [y2 m2 "' ~2]3/2 
3 2, x ym , x 

(49) 

For the gap equation one obtains: 
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1 
2 1/2 

(1:/ + t::.2 ) (1 _ _ t::._) _ (t::.2 
.. 0 y2mi 0 

t::.2 \ 1/2 
y2mi) } 

The two above equations define the functions y = y(I) and t::. = t::.(I) which 

cannot be expressed analytically. However the limiting values of y at 

I = 0 (t::. = Ii ') and I = I (t::. = 0) can be obtained 
. 0 cr 

YI=O = 
t::. o 
m 

x 
YI=I 

cr 
= 

t::. 
e 0 

2 m , x 

where e is the basis of natural logarithms. Therefore 

=~>l 
2 

(52) 

T'nis means that, contrary to the previous model, the angular velocity is in fact 

increasing when the angular momentum goes from I = 0 to I = I cr 

The complete function y = y(I) can be observed in fig. 4: it appears 

to be a monotonically ,increas,ing function Of I thus excluding the possibility 

of back bending. The critical angular momentum and the rigid moment of inertia 

are given·by: 

I 
. e A = - g m L.l cr 3 . x 0 

2 2 =-gm 
3 x 

The present model predicts a larger critical angular momentum 

than the previous model when the com~arison is made at constant moment of 

inertia. The ratio R between the two critical angula~ momenta is: 

R = e/ 13 
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The yrast line, which is now expected to have a positive second derivative 

can be calculated numerically: 

It is easy to calculate the yrast energy at t~e critical angular momentum: 

1 t,2 
Ey(I=I ) = 2 g 0 

cr 
2.23 Econd (56) 

where Econd = ~ g ~~ i~ the condensation energy due to pairing. This is in 

contrast with the previous model which predicts Ey(I=I ) = 1.5 Econd . 
, cr 

The 

complete yrast line, presented in fig. 5 shows the expected presence of a 

small positive second derivative. The difference between the present yrast 

line and that predicted by the previous model (also shown in fig. 5) is the 

following. The ,first quasiparticles to be produced occupy the highest portion 

of the spin projection distribution; the following quasiparticles ?ccupy 

orbitals with progressively smaller spin projection. 
, 

Thus, in order to 

produce a fixed amount of ,angular momentum it is necessary to produce a 

progressively large number of quasiparticles with the consequent requirement 

of a larger amount of energy as compared with the previous model (the previous 

model requires always the same amount of quasiparticles for a fixed amount 

of angular momentum). As a con~equence the flaring out of the former yrast 

line is more than compensated and a nearly linear dependence of the energy 

upon angular momen'tum is obtained. The sl'ight overcompensation of the flaring 

<6J.f actually changes the sign of the second derivative and makes it positive. 
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6. Examples of8alculations Based Upon the Shell Model 

A semianalytical study of t~e properties of simple models has been 

carried out in the previous sections. It is now interesting to investigate 

in detail the properties of more realistic models. The shell model, applied 

to a spherical nucleus, in conjunction with the pairing Hamiltonian, lends itself 

to'a sufficiently simple numerical calculation. In order to simplifY the 

display of the various quantities the calculations are limited to individual 

nuclear components, neutrons or protons. For a fixed temperature, angular 

momentum and particle number, the gap equation (12) the angular momentum 

equation (10) and the particle equation (9) can be solved to give the gap 

parameter ~, the angular velocity y and the chemical potential A. The 

angular velocity y is displ~ed in fig. 6 as a function of angular momentum 

'" . . . f" t - t . f 220 Ior var10US ~empera~ures or ~ne neu ron ana pro on componen~s 0 . Rn. The' 

lowest isotherms show very strong fluctuations due to shell effects for 

angular momenta above the critical value. For angular momenta lower than the ~ 

critical value the dependence of y on angular momentum shows a flatter 

behavior, which, at the lowest isotherm does indeed resemble the dependence 

predicted by the uniform model with a rectangular spin projection distribution 

(fig. 4). So the shell model indicates that at the lowest temperatures the 

angular velocity tends to become almost constant with angular momentum. Furthermore -

there is no evidence that the angular velocity decreases with angular momentum. 

This implies that no backbending is to be expected. The same fig. 6 indicates 

. that as the temperature increases, both pairing and'shell effects disappear. 

When the temperature is sufficiently high the linear dependence ofy on I, 

typical of a rigid rotor, is observed. 
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In fig. 7 the moment of inertia is displayed versus the angular momentum 

for various temperatures. +he lowest isotherms show the dramatic decrease of 

moment of inertia due to pairing. The antipairing effect of the angular 

JIlomentum is visible in the rapidly risin~ moment of inertia as the angular 

momentum increases. The cusps appearing in the lowest .isotherms are associated 

with the disappearance of pairing. In the vicinity of these cusps the moment 

of inertia assumes values much above the. average. This is due to the presence 

of high spin levels (h9/? for protons and g9/2 for neutrons) close to the Fermi 

surface. - The relevance of these levelsdecre-ases as the angular momentum increases 

because the quasiparticles occupy a larger number of lev~ls thus producing an 

average over many spins. The higher isotherms show a rapid flattening of 

the fluctuations with the consequent achievement of a constant moment of inertia 

-at all angular momenta. In fig. 8 the moment of inertia is plotted versus the 

square of the angular velocity for "various temperatures. The main feature of 

this diagram-is the absence of the backbendlng. The angular velocity, for the 

lowest isothenns, remains almost constant without backbending, while the moment 

of inertia rapidly increases. The constancy of angUIar velocity with angular 

momentum at low temperatures suggests that the dynamical behavior of the system 

is closer to that of an oscillator than to that of a rotor. , 

Figure 7 is very interesting insofar as it gives a direct 'answer 
I 

concerning the validity of the spj.n cut-off approximation in level density 

calculations (see eq. (14) and eq. (15)). Among other things, such an 

approximation implies that the spin cut-off parameter depends 'only upon the 

2 ~-2 temperature and not upon the angular momentum. Recalling that 0 = Jl. ~ T 

one can see that, along a given isotherm, the angular momentum dependence of 

0
2 is' th~ same as that of cf. So, fig., 7 shows that at low temperatures the 
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spin cut-off approximation is rather poor because of the change in the moment 

of inertia due both to pairing and to shell ~ffects associated with the various 

values of the an~ular momentum. At higher temperatures both pairing and sheil 

effects disappear, the moment of inertia becomes independent of angular 
, ) 

momentum, and the spin.cut-off parameter becomes a rather good approximation. 
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7. Conclusion 

Perhaps the most remarkable conclusion to be drawn from the presept 

analysis is the great simplicity which is achieved by considering the pairing-

angular momentum interaction in terms of the average rotational properties 

of nuclei. The study of individual quantum mechariical levels or bands requires a very 
) 

detailed knowledge of the t:lUC Ie ar Hamiltonian and very intricate nume;rical calcula-

tibns are necessary in order to exploit such a knowledge. By considering 

averages over many levels in an inhe~e,ntly simpler spherical nucleus, one may 

hope that the detailed non-essent:j.al features of the residual interactions may 

be "integrated out", thus leaving a clearer picture of the essential traits 

of the nuclear behavior. This we have tried to do theoretically, this still 

needs to be done experimentally. 

It is quite possible that a much better understanding of the inter-

relation between pairing, angular moment~ and excitation energy may be obtained 

from the study of the average properties of spherical nuclei than from the 

detaj,led analysis of the rotational or vibrational bands in deformed nuclei. 
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Figure Captions 

Fig. 1. Angular velocity as a fun~tion of angular momentum for various 

temperatures. The solid line rising from left ,to right corresponds' to 
f 

a ~igid rotor. The solid line descending from left to right corresponds to 

the limit of T = O. In fig.la the calculation has been performed, by using 

the most probable values of ~; the temperature is 0.1 Tcr for the uppermqst 

thin line and it , incre8.!3es in steps of 9.1 Tcr for the lower lines. In 

fig. Ib the calculation has been performed by using the average values of /),.. 

Notice that the bottom thin line corresponds to T = T cr 

Fig. 2. Moment of inertia as a function of angular momentum. In fig. 2a the 

calculation has been performed by using the most probable values of 6. The 

temperature sequence 'for the thin lines from bottom to tpp is 0, 0.2, 0.4, 

0.6, 0.8 Tcr ' In fig. 2b ,the calculation has been performed by using the 

average values of ~. The temperature,sequence is 0, 0.2, 0.4, 0.6, 0.8, 

l.OT cr 

Fig. 3. Moment of inertia as a function of the square of the angular velocity. 

In fig. 3a the most probable values of ~ have been used. The temperatures 

range from 0 to'0.9 T in steps of 0.1 T cr ' cr In fig. 3b the average values 

of ~ have been used. The temperatures' range from 0.1 ~d 1.0 Tcr in steps 

of 0.1 T cr The dotted lines in both figures correspond to constant 

angular momentum. The leftmost dotted line corres, ponds to I = 0.2 I cr 

The remai_ning dotted lines are plotted in steps of 0.2 I . . cr 

Fig. 4. Angular velocity as a function of angular momentum for/arectangular 

distribution of ~pin projections (th~ck lines). The thin lines correspond 

to a 0 distribution in spin p~ojections. 
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Fig. 5. Various shapes of the yrast line for various models. The dashed line 

corresponds to a rigid moment of inertia. The thin line corresponds to a 

o distribution in spin projections. 
, 

'The thick line corresponds to a 

rectangular distribution in spin projection. 

Fig. 6. Angular velocity as a function of angular momentum for the proxon 

220 a) and neutron b) components of Rn for various temperatures. The lowest 

temperature value and the temperature- spacing between the various isotherms 

is given on the top caption. 

Fig. 7. Moment of inertia as a function of angular momentum for the proton a) 
, 220 . . . 

and neutron b) components of Rn for various temperatures. The lowest 

temperature value and the temperature spacing between the various isotherms 

is given on the top caption. 

Fig. 8. Moment of inertia as a function of the square of angular velocity 

220 
for the proton a) and neutron b) components of Rn for various temperatures. 

The lowest temperature value and the temperature spacing between the 

various isotherms is given on the top caption. 
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