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features associated with the pairing correlation. Three different models are
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Abstract

The properties of spherical, paired nuclei with finite angular momentum

are discussed in terms of "classical" rotations. Rotational guantities like the

angular velocity and the moment of inertia are calculated both for the yrast

line (T = 0) and. for higher temperatures. Particular attention is paid to the superfluid

considered.' The‘first‘model is characterized by a constant spacing in the single
particle 1evels and by a constant spin projection, and it -is treated analytically

in thé zero‘temperafure 1imit. it is shbwn that this model leads to a very strong
back-bending.  Calculations accounting forAthe pairing f;u;tuations are shown.
The second model differs from fhe.first one in the spin projec£ion distribution which,
in aﬁalogy with‘a spﬁerical shell model nucleus, is taken to be rectangulér.
. \ v . v
Analytical - calculations shqw‘that, while strong superfluid propérties remain,
thé back;bending seen in the preVious model disappears. The third modei used is
the Sﬁell model. Numerical'célCulations of the angular velocities ahd of the moments

of inertia are compared with the results obtained from the previous two models.

A remarkable agreement is observed between the second model and the shell model.

“*—.—'—"— .
© Work performed under the auspices of the U. S. Atomic Energy Commission.
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I. Introduction
It~has beén shoﬁn fhat thé main effect of angular momeﬁtum on the
nuclgéf level density can be accounted for, on one hand.by the rotational phase
‘space of the'nucleug as a-whoie;_on the other by thé uﬁavailability of the

la,lb)

rotational energy to excite the intrinsic degrees of freedom This

rotation and the associated rotational‘phaSe spaée need not be associated
with well defined rotational qﬁantumvstates. In facf, éucﬁ a rotation is preseht
"even in the case of a spherical nucleus where no quantum mechanical rotatién is
possible.la These rotationalrféatures are essentially "ciaséical"vin nature
insofar as the rotatioﬁal strgngth is shared by all the states.’ Along the same
line;‘individual levels may not show any_diétinct rotatioﬁal'characteristics;
while the envelope of many levels éh;ws an energy-angular momentum dependence
typical of a rotor. fhis‘is expected to be the'caée for thé yraét line of 
a-sphérical nucleus:v the individﬁal yrast levels may not show a rotational
behavior individﬁally, siﬂce they are not part of a rotatioﬁél band. However
their envelope ié expected to showndistinct'rotatiohal featurés. A similar
consideration shouid hold also for nuclei at temperatures larger fhag Zero.
‘+The‘use of temperature as érmeaningful nuclear parameter has qot.received the
recognitioﬁ it ﬁay desefve.— The usual objection is that a nucleus is a system
with fixed energyhand not with fixed temperaturef This is not quite true if
one éonsiders the ensemble of nuclei produced in é coméound nucleus decay (e.g.
neutrénvemission) orvwhen*an individual.degree of freedbm ih equilibrium with the
lremaining intrinsic'degrees/of freedom is singled out (e.g. the fission mode at
-the nuclear saddle point). I# all of these cases the temperatpre and not the
energy is éonstant. ‘In many casesvif is peculiar to see a great effort being
made to calculate éonstant energy properties fol}dwed by an‘equally greét effort-

to fold the same properties over distributions which are characterized quite simply

by a constant temperature.
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The existence of‘rotational féatures in %hé energ&fangular momentum
isotherms allows one to extract other rotational quantifies like the angulaf
velocity aﬁd the moﬁent_of inertia.

A model wifh uniform singlé particle spacing and uniform spin projeétion
&istribution is characterizedAby a constant moment of inertia whosé vaiue
corresponds to the.";igid" vaiueg). A shell model with\nbnuniform spacing
and spin ﬁrojection distribution étillvyiélds a "rigid" mbment of inertia.
Howevér such a moment of inertia is not constant insofar as changes in
temperature and in angular momentum can lead to the 6ccupation of levels with
widely_different 5pin projections. In general the presence of residual
'intergétibns stili leads to é'rigid,moment of inertia. Only special residual
iﬁteractions such as those ofrﬁhe pairihg kind produce moﬁents of inertia. i
which deviate dramétically from fheir_rigidlvalue.~ Such interactions are

responsible for a superfluid condensatipn which leads to a highly correlated

motion of the nucleons. -

The effect of the péifing interaction on the quéntum mechanic;l
\rotations naméix on the rotational bands of deformed nucléi hés been studied -
theoretically3). The antipairing effects pf angular momentum are shown to
reduce dramatically the corrélation, to increase the moment of inertia and to
lead to a backbendingwin the plot of the moment of inertia versus the square of
the angular velocity. Tﬁé experimental evidence of reduced moments of inertia
in rotational’bandé aﬁd the observation of backbendingh_s) has been interpreﬁed
as evidence of the pairing correlation. |

In the present paper we are intereétéd in determining the effect of

the pairing residual interaction on the "classical" rotations of a spherical
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nucleus at various temperafures and angular momenta. In particular sec. 1
is devoted to the presentation of the formalismf In sec. 2 the formalism is
applied to a model with constant spacing and coﬁstant singlé particié spin
projection. The éxpressioﬁs for the yrast energies and for the T = 0 limit of
the angular velocity and moment of inertia are derived. The extension of the
calculation to finite temperatureé indicatés the presence of a backbendiﬁg
in the moment of inertia-angular velocity plot which disapbears as the
température increases. In sec. 3 the pairing fluctuations are studied and
the collective rotational quantities are recalculated with a new formalism
accounting for the fluctuations. The sharp boundary between superfluid and
normal phase is shown to disappear. |

In sec. 4 the relevance of the spin-projection disfribution on the
detailed dependence of the yfast energy and of the angular velocity upon the
angular momentuﬁ is studied. Tt is shown that a rectangular spin projection
distribution, which is a more réalistiC'description of the actual spin projection
distributions, implies the disappearance of the backbending even at zero
tempefature. |

In sec. 5 the Nilsson model is used to obtain a more realistic
description of spherical nuclei énd the fesults are compafed with those

obtained from the analytical models.
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2. General Formalism
The pairing Hamiltonian used in this paper is characterized by a

constant pairing strength G:

Zek -GZ , a- a - : (1)

where €, are the single particle energies and a; and a, are the creation and
"destruction operators respectively. The Hamiltonian can'be rewritten in ﬁhe

quasiparticle space as follows:

\ .2 ' ' 2 2
' - — - - -
H 2 vk(ek A) -G [Zukv (L -2 n.k)] +2 Zn (g, = Ml - wv)
o | (2)
where vk and u are the amplitudes of the particles and holes respectively,
ﬁk are the occupation numbers in the quasiparticle space and A is the chemical

potential. The amplitudes W and Vi obey the relation:

(3)

The requirement that the Hamiltonian be stationary with respect to Vi with ny

kept constant leads to the gap equation:

1-2m% 2 (W)
B ¢
where Ek ='[(ek - A)2 + [\2]1/2 and where n_ are the occupation numbers

of quasiparticles. The following expressions for vi and ui are also obtained:

. -2 ‘ e -2 |
Rl) i) - e
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The introduction of the angular momentum projection M_into fhevHamiltoniang can .

10-12) .

be handled in the same way as the'pafticle number as follows

A

H=H- )\N—YM=.Z(€k— A—Ek) +Zn;(Ek¢-Ymk) + Z»nlz(Ek+mk) + 8%/6 5 (6).

X are the quasiparticle occupation numbers with positive and negative spin

+
n

X and p

projectionS‘énd Y is a Lagrange multiplier which assumes the meaning of the col-

lective angﬁlar velocityt

y=3 . o | | .
The statistical functions can be written as follows:

-BZ(ek - A - Ek) + Zln[l + exp - ?(Ek —Ymk)] + Zln[l + exp - B(Ek + 'Ymk)]

Q=
-8 | f - - (8)

N ) .5‘—;1{ 2 g ">v+ h'Z 8(E, + ym )}] ‘
=) - 7y tanhzsmk-ymk tan‘zBEk_‘Ymk . (9)
- .1 1 ' (10

M= zzj“%. [1.+ exp B(Ek - ym) T 1 + exp B(Ek + Ymk)} (10)

E = E::ek (1 - EE———— {tanh %B(Ek - ymk) +'tanh %-B(Ek + Ymk)}] - A2/G . (11)

2By

‘Thé quantity A is related to B A, Y by the gap equation:

Z E%Tk— [tanh -;— B(E, - Ymk)' + tanh %— B(E, + )] :% - ‘A(lg).

v
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; _ =6

At fixed temperature T or B egs. (9), (10), and (12) can be solved for A, Y X if

Nand M= 1 are,givenj- The moment of inertia can then be obtained by the relation:

gy=1 . o

In general th¢ moment of inertia depends uéon angular momentuﬁ through the
dependence of the gap parameterrA upon.thé angular velocity; Such a defendence‘
is ﬁery‘strong and produces dramatic changes in the moment ofAinerﬁia. This |
has important consequences in t%e evaluation of the angular momentum

dependence of the ﬁucleafvlevel density. Some very approximate estimates

of such a quantity make use of the spin cut off parameter 02 which is taken

. S 1
to be equal to the following expression 3):

2_1 2 21 -2 '
0" =5 ) m sech” =BE = w2y | | (14)

"This expression can be easily justified by observihg that it COrresponds‘

to the following limit: -~ ‘ . -
5 . M . R \ '
o” = 1i — . , 15)
1lim 367 | , . ( |

In other words such an approximation implies that the gap parametérvA does not
depend on angular momentum and that the chemical potential A does not depend
on angular momentum. The-vaiidity of such an approximation is in fact rather

limited as will be seen in the following sections.

For a spherically symmetric system, it is possible té account completely for the

total angular momentum I by means of its z projection M 11'12%,



~7- , - LBL-2321

3. The Uniform Model

The effects of the pairing'correlation on the rotational properties of nucleil

are best observed when the interference of the shell structure is eliminatedlo’ll?lh).

This can be achieved bj the useé of the uniform model. In this speciék version of -the
uniform model the_level scheme cohsists of a set of equidistant, doublyﬁdégeneraté |
levels witﬁ a depsity, g and with‘a'constant spin projection \m. The information

' concefning fhe sfrength’of the pairiﬁg interaction is confained in the ground

state gap parameter AO' An important advantage of this model is the fact

that the chemicéi potential is a constant because of‘the symmetries inhereht to

the single particle scheme. For this reason the partiéie equation cén be
disregardedfahd the chemical potential can be set equal to zero. The equations which

remaih to be studied are the gap equation, the angular momentum equation and

the energy equation. For the uniform model they take the following form:

/

S

Qo

= 2g f 2_1'E' _{taﬁh % B(E - ym) + tanh -121 B(E + Ym)} de = £(A,Y) (16)
) 0 - . ‘ R ,
= ' 1 1 L .
I - 2gm- j; { l + exp B(E - .me - l + exp B(E+ Ym) } dE: ] . (17)
+S ) ) K . 5
E=g [ ae ell - {tanh[—gl- B(E - ym) + tanh % B(E - ym)}] - % S (18)
-8 : . \ v

In these equations S >> AO is the energy interval above and below the Fermi

156‘

surface, over which the pairing correlations is active

N

\

This set of equations can be integrated anélytically at zero, temperature

(3 = m)lh). Let us consider the angular'momentum equationl7). For B = © the -second
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term of the integrand is zero over the entire integration range, while the first

term is unity from €= 0 to € = [(Ym)2 - 42112 ang zero thereafter. Thus:

t

I = omg[(ym)? - 21172 -, o | C(19)

In order to obtain the relationship between I and*y, ﬁhe gap'parameter A must

-~

be calculated as a function of Y. This can be achieved by integrating the

gap equation in the limit of B = ® in the form:

£(8y, Y = 0) = £(,Y)
or

S, , - S .
de de )
2 v = 2 . : 20
: gfo [® + 2512 g[ [e? + 42112 " o =

a ' : -~

The lower limit of the right hand side integral'is

7

211/2 . ' v i (21)"

o

a = [(ym)® - 2

N . ' . B
This lower limit has a very interesting physical significance. It means that,

because of the presence of the angular momentum, the range *S in the single particle
spectrum is not éntirely available to the pairing corielation. IA fact all

the single particlé levels contéined'in the interval ia aie.effectively

removed from the reach of the pairing correlation. These levels are

occupied by the unpaired nucleons (quasi-particles) necessary to build up the

total angular momentum I. The number of gquasi-particles is:

s

= 2al(ym)? - 2212, ' | (22)

5
[
BIH
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These "blocked" levels are most precious to the palrlng correlatlon because
they are closest to the Fermi surface. Therefore 1t must be expected that

‘the pairing correlation decrease and eventually vanish as the angular

momentum increases,
" The integrated form'of the gap equation is:

e

g ( )2'_‘A2. s ‘
_arcsinh T arcsinh (-JEL—js———-) = arcsinh - ' (23)
A 4 -

By means of the summation formula for the function arcsinh and by making use/

of the assumption S >>»A0 one obtains:

{

2 2 . ,

AL - A
1 70 _ /2 o _
= = [(m) - A% , o _ (2h)

0 ,
.~ which is the required relstion. Before calculating the relationship between
the angular momentum I and the angular velocity Yy explicitly, let us determine

the dependence of the gap paremeter upon the angular momentum. By means of .

Eq. (19) and Eq. (2l) the very simple relation is obtained:

A 1/2 _ | a2 -
— T ]l - —— ]l - — . 2
A ( gmAO = ( Icr? ? ' (-5)
where \
Icr = gmAO . . | \ | . ) . (26)

It can be seen that the gap paramefer A decreases with angular momentum and

eventually vanishes at the critical value of the angular mementuﬁ Icr‘
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By using the expressions Just developed, the angular velocity and the

moment of inertia can finally be calculated:

1 . .
_er I : I
Y = (2 - ) for I<I ;3 Yy== forI=1I_. (27)
8R ; Icr er ’ JR cr
I | . I/Icr . g g . 4
a = 7: JR 2————-1— H = R ) for I > Icr . ’ (28)
1
: cr .
“or ,
82 - 42 |
3= : (28 )
R ,2 2
Ao + A
where g‘R is the rigid moment of ineftia, given by:
dy = 2n°g . | - (29)

In Eq. (28) 'the effect of the vpairing superfluidity on the moment of inertia is
clearly seen as well as the antipairing effect of the angular momentum (fig. 2a). 1In
fact the moment ofvinertia goes;from zero to its figid value as the angular. .
mémentﬁm increases to‘éero to the critical value; |

Even more striking is the behavior of the angular velocity (eq. (27)). At zero

T .
angular momentum the angular velocity takes the value 2 ‘,Jc—r and it decreases to the

I o , R .
value QLI' as the angular momentum increases to its critical value (fig. la).We are deal-

R .
ing with a peculiar object which, the smaller the ‘angular momentum, the faster it spins!

The energy equation can also be integrated analytically at zero temperature.

Setting B = « the integral can be written as:
45 -1 S +5 '
/2mg 2 | 5 2 2
E=g ’Ede‘-g -ﬁ-de—g .'fd.e—-G— . (30)

-S -S I/2mg

After a little algebra one obtains: .
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| . \2 172 . , ,
_ 2 1 2 I 1 2 '
E—-g_S—ng.+2m(h22+A) . , (31)
' mg . k
: : ‘ 2 1 2 i :
By subtracting the ground state energy EO = -g5 - E—gvAO one obtains the g
equation for‘the‘so called yrast line:
: ) v ) ) 1/2 :
~ — 1 2 2 I 1" 2 .
o Ey"zg(Ao'A)J'zm(heeJ'A) D - (32)
m g :
which ‘can be rewritten in a more elégant form sas:
Icr I I . | S » ’
— - n <
3 T (2 57 ) for I & Icr (33)
R cr -er : . X
,Ey__ : N v .
I 2 2 : ‘
or 1 . for I>1 (3k)
Jg 23R , ~ter C , ‘

Sﬁch an equation represents the locus of the levels of largest angular momentum

aﬁlfixed energy,_qr‘conversely the loc?s»of the levels of lowest energy at fixed angular
momentum, The parabolic'depenéence of energy on aﬁgular momentum typiéal 6f a ‘i

rigid body ¢an be.observed'fof angular momenta larger than the critic;l value.

The yrast energy in eq. (33) is made up of two components : a rotational

component plus a term representing the enérgy increase‘due to the disappearan@e

of the pai?ing correlatipn. We”canrconsider the momenf of inertié'of'the rotating

- system to be a functibnfof an internal paremeter (thé gap parameter) which

in turn depends upon angular momentum through the\condition”of minimﬁm total

ehergy. Systems of this kind are quite common. For instanée a deformabie

. sphere when set in rotation assumes a spheroidal shape whose eccentricity

depends upori the angular momentum through the condition of minimum energy. In v

4
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these cases the angular velccity of the systemzcan be'easily calculated. By

definition the rotational frequency Y is given by

= o= . , ' . (35)
However, byvtaking the total derivative of energy with_réspect to angular

momentum one obtains:

\

dH _ 9H| , 9H| dA
aT " oI Y oAl & . - (36)
A Ie’ :

| L 3H o .
It 1is easily seen that the partial derivative 3K > when set equal to zero, is
equivalent to the gap equation (at zero temperature) which defines the very value

of the gap parameter. It follows that:

| 4E ,
O _d&H _ Ty . (37)
This can be verified immediately by differentiating Eq.. (33) and comparing the

result With Eq. (27). At this pdint we are in the position to calculate the

loss in pairing correlation energy E¥ due to the angular momentum:

I ‘

Thi§vguantity is zero for I = 0 because the system retains the full condensation
. . : I.m

éﬁérgy Cc = i-gAg when no anguler momentum is present, and it is equal to —— = %-gA

2 | IR -
at the critical angular momentum when all of the condensation energy due to the

pairing correlation is lost. It is also not so surprising to observe that,

since the yrast energy at the critical angular momentum is:

4

2
0
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E_ =5C , | . | (39)

it follows that the energy in theAform'of rotational kinetic energy is one half -

of the energy in form of pairing potential energy. This is just a épecific

case of thé virial théo;em. . | L ' _
.Let us now cogsider the more general case in which the temperéture is dif-

"ferent from zefé. It is well known that at zero angular momentum the théory

, j
predicts a critical temperature:

28 , .
P =2 , ~ (k0)

er 3.5 i
at which the pairing correlation'disappeérs.

Before proceeding any further, it.is interesting to point out that the
system is completely characterized by three critical quantities, the critical
~temperature, the ériticairangulaf momentﬁm and the rigid moment of inertia.
These three_quantitieé can be obtained by a suitable combination of the initial

parameters of the model g, m, A,

T ‘= _2_A_o.
cr 3.5
o = ey
- .2 | ‘ . L (1)

dR=2gIn ; .v

In thié-way it is possible to express all the properties of any system by means
of three-fundamental reduced;Variables T/Tcr’ I/Icr’ éf/afR.
As the temperature increases, new quasi particles are created

and the gap parameter eventually vanishes. A rather peculiar effect
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!
~in the depen&encé 6£ the gap pa;ameter on temperature at constant gngular
momentum can be observed., An initial'increaSe in temperature leads to an
increase in the éap parameter which is the more substantial the larger the anguiar
momentum. This effect,~cailed'th¢rmally assistedupairing correlationlo'lli, is
pérticularly visible in the dependence of tﬁe cfitical angular momentum upon
temperatufe.at low temperatures, where an increase in. temperatire leads to an
7 .

increase;of the critical‘anguiar momentum,

Returning to the discussion of the rotational proﬁerties, the angular
veloéity can be obtained by solving'thé gap equation and.the angular momeﬁtumj
equation Simultapeously in ¥ and A for a givén températﬁre.  A plot of the
_angular velocity versus angular momentum for various temperatures is shown
in Fig. la.v'The zero teﬁperature limit~prédicted by eq. (27) shows the
angular veiqgiiy decreasing linearly with angular momentum until the critical
aﬁgular momentum is reached. Then the angular velqcity'increases proportionally ’
'to the angular momentum. In the lo&er temperature range, the angular.veloéity
iﬁcreases very rapidly, réacheé'a gaximum and then décreaées until the
éritical angular‘momentum assodiafed with the specific value of the temperature
is reached. 1In the ﬁppqﬁ temperature range, the angular velocity increases
monotonically with angular momentum, initially faster, later slower than
-the qprmal_behavior until the cofresponding critical angular momentum is reached.
Abb&elthe criﬁical angular momenta, the angular velocity is independent of
temperature and it incfeasés proportionally to the angular momentum. The depehdence
of the moment of inertia on gngular momentum fér various temperatures is shown

in Fig, 2a. The zero temperature dependencé is given by eq. (28). The momenﬁ

of inertia is seen to increase regularly with angular momentum until it reaches
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the rigid vélue at the cfitical ;ngular mdmentum. Howéver a more peculiarv
picture is seen when the momént of inertia is plotted as a function of the square of
the angular veloéityvas now fashiénable (fig;‘3a). A back bending is observed
in all tﬁose isotherﬁs for which a.decreése in angular Yelocity is observed
as aifuncfibn of angular momentun, ‘The back bending disappéars at the higher
teﬁperatures. The éxisteﬁce"of the back bending in the.moments ofvinertia
associated with tﬁe ground state rotationél band of déformedvnuclei has been
'predicted in various calculafions. There seem to be experimental evidence
of such‘a'féatﬁre'in some deformed rare earth nuclei. The presenf‘calculgtion,

- ‘ _ o
indicates that analogous features might be present along the yrast line and

‘higher isotherms of spherical nuclei.
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4. Effect of Pairing Fluctuations on Angular Velocity Near the
' BCS Phase ‘Transition v

The formalism illustrated in the previous section predicts that the
nuclear superfluidity‘should disappear ébruptly as.thé gap paraﬁéter goes to
zero. A phése bounaary £f(T, I) =0 cén'be determinéd in the temperature-angular
momentum plane which separates the superfluid from the normal region. The

. prediction of such a phase transitionﬁis‘correct in the limit of a large
number of particles. For a nucleus, where fhe particle number is sméll? iarge‘
fluctuations are to be expected which do femove the sharp phése transitio£6),
In order to appreciate the extent to which the system can fluctuate in its

superfluid behavior, let us consider: the Hamiltonian:

. ' 2 - .
- }2 Z . Z ) 2 2
H=2 vk(ek -X) -(}[ ukvk(l - 2nk)] +.2v .nk(ek )\)(uk V) K
~ ‘ K | |

(42)

where n, are the quasiparticle occupation numbers and, for simpiicity, we
disregard the quasiparticle spin projection.
The BCS treatment consists in finding out the value of A which

minimizes the Hamiltoniah at fixed occupation numbers n In fact it is easy

to verify that the condition %%-= 0 corresponds to the éap equation (4). 1In

order to estimate the extent of the fluctuations one must calculate the

K

second derivative at the equilibrium value of the gap parameter Aeq.

. 2’ . . :
2 l1 -2 G A 1-2
3 H _ a2 e ( eq Ty )
= A E — {1 - 5 . (43)
2 3 - 2 3 - :
U B B

in the absence of quasiparticles and. for the uniform model one obtains:



-15-~ : _ : LBL-2321

'flthe fiéid value at the critiéal anéular momentum. However a more peculiar

picture is seen when the moment of inertia is plotted_as a function of.the square of

the angular velocity as now fashioﬁéble (fig. 3a). - A back bending is bbserved

in all those isotherms for which a decrease_ in angular velocity is observed

as a fuﬁction of angular momentum. vThe back bending disappears at the higher

.'temperatures, ‘The existence of‘the back bending in the momehfs of inertia
associated ﬁith the ground state rotational band of dgformed nuclei has been
Ppredicted in various Calculatidns. iThere seem'td be exﬁerigéntal evideﬁce -

‘of'suéh a feature in some deformed rare earth nuclei., The present qgiculation,

indicates that analogous features might be pfesent along the yrast line and

~higher isotherms of spherical nuclei,
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4. Effect of Pairing Fluctuations on” Angular Velocity Near the
o BCS Phase Transition

- 3

The formalism illustrated in the previous section prédicts that the
nuclear superfluidity should  disappear abruptlyvaé tﬁe gap parameter goes to\
" zero. A phase‘boundary £(T, I) =0 q;n be deteymined iﬁ the teméerature—angular
momentum plane which separates the superfluid from the normai region. The
Aprediction of spch a phase ﬁranéitioﬁ‘is correct in_tﬁe‘limit of a large
number of pérticles. For a ﬁucleus, Where the paftiqle humber is small,'large

fluctuations are to be expected which do remove the sharp phase transiﬁiogﬁ).

In order to appreciate the.extent to which the system’can fluctuate in its

superfluid behavior, let us consider the Hamiltonian:

] A 2 : o '
- N 2 ' _ 2 2
H=2 Zyk(ek - )\),_ G[Zukvk(l - 2nk)] + Zan(ek ) (uk - vk) ,
o . k

(42)

—

where n

k are the quasiparticle occupation numbers and, for simplicity, we

disregard the qﬁasiparticle spin projection.
The BCS treatment consists in finding out the value of A which

. In fact it is easy

minimizes the Hamiltonian at fixed occupation numbers n

to verify that the condition %% = 0 corresponds to the>gap équation (). 1In

order to estimate the extent of the fluctuations one must calculate the

second derivative at the equilibrium value of the gap parameter Aéq

, | o .
2 1 -2 G A 1 -2
> =4§qz 3%(1' =) '3%) 'v "
B pen " B

In the absence_of quasiparticles and for the uniform model one obtains:
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- =g (1 - ng)m=42g . | o (k) T

This implieé_that, for very small temperatures, the fluctuations in A have a

width:

Vi Vi R o

' In other words the'width of the fluc#uationsnis inﬁersély brbportiohal to the square
root of the number of barticles. Sucﬁ a péoportionality is, of course, rétained ’
even for the mbrebgeneral'expressiéh of the second derivative given by eq. (43).
Consequently,'one does expect that a sharp phase transition may océur in a macroscopic
sﬁperconductor.‘ On the other hand, on the same basis,'suéh a transition should

v beiwashed out: when the number of partiéles is small, like in a nucleus. Because

of the finitevwidth of the ﬁrobability distribution in A; and.becaus; of the préSence
6f'higher moments, the use of avefage quantities\is more significant than

the use -of the correéponding‘moétfprdbéble quantities. The probability

i

.distribution in A is given by:
P(A,y) = exp = (Q - uM) . , : (46)
Thus the'average angular velocity ? and the average gap parameter’z are given by:

' VJ[;P(A,Y) dAdy ; J[;P(A,Y)?dAdy _ -
3 = . s A= . o (b7)

fP(A;Y) addy f*P(A’Y) aAdy \

' The value of Y for a fixed value of A, B, and I can be obtained from the angular
momentum equation (17)f The plot of thé_average angulaf‘velocity versus angulaf
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momentum for various temperatures is shown .in fig; lb; Such a figure.should be
compafedeith fig. la where the most probable values of the angular velocity
are plottéd. Away frém the critical region the two plots are essentially
identical; close to the critical regioﬁ/the most probabie angular velocity
reaches‘abruptly its rigid value generatiqg.a cusp, whilé the average angular
velocity apprqéches asymptotically its rigid value. This éhows how in a real-
nucleus one should not expect a phase transition in going from the paired to the
. unpaired configurétion. In fig. 2b the average moment of inertia is'shOWn as a
function of angular momentum. As compared with fig. 2a, the rigid momeﬁt of |
ineftia is attained only asymptoticaliy at all tempefatures'instead of
_abruptly.' Notice that, even for T = Tcr the moment of inertia;is still smaller
than iés rigid value becauserof the,péréistencé of the pai;ing correlation.
Similérly in fig. 3b thg\average moment of inertia is plbttéd versus the square
of the average angular velocity. -Again by comparing this(plot with fig. 3a

one notices thévdisappearanbe of thé cusps associated witﬁ_the criticél
temperatures. In their place a smooth fold over is observed which, for the
lowest temperatures constitutes the upper part of an S shaped curve. In fig. 3a the

highest isotherm T = T gives the rigid moment of inertia.

cr
In the new calculation‘péiring extends above the critical femperature:

consequently the isotherm corresponding to T ='Tcr shows a moment of inertia

smaller than its rigid value.
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- 5. Effect of the Spin Projection Distribution Upon the Shape of .
the Yrast Line '

The equidistant model with constant spih projéction distribution,
considered so far, predicts a decreasiné angular velocity.with angular
mom;ntum in the faired regioh. As a consequence the yrast line preseqts a
negative second derivative and the piot of the moment éf'inertia versus'thé
square of thehangular velogity shows a backbenaing.

The above'effects'depenq rather draﬁatically upon’ the spin‘brojection
.;distribution. The spin projection ﬁsed'in'f?e érevious sections
ﬁ(g} dm = S(é - m) dm is not very realistié, In this section a more realistic
spin distribution‘is'goihg to be u?ele). Such a distribution is a rectangular

‘distribution:

— ) 1l
g — for 0 Sm<m_-
m el = Tx

"

p(m) an = ' o , (48)
o . form=m .
=7 %

:l]Such'a distribution approximates the 2] + 1 projectiéﬁs of a J shell quite well
.and therefore is expected to be relevant for a spherical nucleus. Also for
' ;this distribution it is possible to integrate the angular momentum equation and

“the'gap equation analytically. -The angﬁlar momentum equation bécomes:

‘I=-§-—,§—fvzm§‘A2‘l3/2 S , ©(L9)
Sy ‘ " |

- For the gap equation one obtains:
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- ym | 2 1/2 o 2.,1/2 ,

1 % 2, 42 A® 2 2y A% .

5 (A% +47) (1 - ) - (A - A7) =sinn {(1 - b (50)
232, |0 "o Y2n2 o s Y2 .

(o] , ' ] ' N

The two above equations define the functions y = y(I) and A = A(I) which
’,cﬁnnot be expreséed analytically. However the limiting values of Yy at

I=0(A-= 507 and I = Icr (A = 0) can be obtained

Ao e Ao
Yi=0 " m. ¢ Y= _T2m (51)
. b SE cr p'e
where e 1is the basis of natural logarithms. Therefore
£>1 . | - (52)

Yi=r /Y10 = 3
cr

Tais means that,.confrafy.to the brevious model, the'angular velocity is in fact
inéreasing when the angular moﬁentum goes frop I=0 io I= Icr°_ |
The coﬁplete function vy = Y(I)_can be observed in fig. U4: it appears'
to be a ﬁonotonically/increasing function of I ‘thus excluding the pbssibility
vof backbendiﬁg.  The critical angular momentum and thevrigid moment of inertia

are given by:

=& . o~ -2 2
I, = 3 &1y A s éjR 38m,  - (53)

The present model predicts a larger critical angular momentum
than the previous model when the comparison is made at constant moment of

inertié. The ratio R between the two critical angular momenta is:

R=e//3 . N S | (54)
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The yrast line, which is now expected to have a positive second derivative

can be calculated numerically: ‘ \

’Ey.=“ f‘y,dl o | - | (55)

it is easy to calculate the yrast energy at the critical angular momentumf

[

I 2
_ 1 2 cr _ 1 2 ey
Bo(z=1 )= 28%* =28l A+F)=223E 4, (56)
er R v ,
1

nd =58 Ai is the condensation energy due to'péiring. This is in

contrast with the previous model which predicts'Ey(IzI, y = 1.5 E
cr

where E
“co

cond’ The

complete yrast line, presented in fig. 5 shows the expected presence of a

small pogitive second derivative. The diffefence between the preseﬁt yrast

line and that predicted By the previous model (also shownvinAfig.VS)'is the
-vfollowing.. The;first quasiparticles tb.bé,produced 0c¢u§y the highest portion

of the spin projection distribution; the following quasiparticles occupy

: : : . ' : : - , <
orbitals with progressively smaller spin projection. Thus, in order to

produce a fixed amount of angular momentum it is necessary to produce a

‘progressively large number ofyquasiparticles with the consequent requirement

¥

of a larger amount of energy as compared with the prévious model (the previous

model requires always the same amount of quasiparticles for a fixed amount

of angular momentum). As a conéequence the flaring out of the former yrast

line is more than'compensated and a'nearly linear‘dependence of the energy

upon angular momentum is obtained. The slight overcompensation of the flaring

AR

;  % actuaily chénges the sigh of the second derivative and mekes it positive.
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6. Examples of Calculations Based Upon the Shell Model

A semianalytical study of the properties of simple models has been
carried out in the previous sections. It is now interesting to investiggte
in detail the properties of more realistic models. Thérshell model , applied
to a spherical nuclegs; in cénjunction with the pairing Hamiltonian, lends ifself
to a sufficiently simpie numericgl calcul;tion. In order to simplify the |
display 6f the véfious quantities the calculations'are limited to individual
nuclear components, neutrons or protons. Fbr a fixed temperature, angular
momentum and particle number, the gap equation (12) the angular momentum
vequation (10) and the particle equation (9) can be solvéd to give the gap
parameter A, the angular velocity vy and the chemical potential A. The .
_angular velocity vy is displayed in fig. 6 as a function of angular momentum
for various femperatures for the neutron and proton components of Z?ORn.' The *
iowest isotherms show very strong fluctuations due to shell effects for
anguiar momenta above'thé critical value. Forrangular momenta lower tﬁan the -
critical value the dependence of Y on angular momentum shovws a f}atter

¥

behavior, which, at the lowest isotherm does indeed resemble the dependence

predicted by the uniform model with a rectangular spin projection distribution
(fig{ by, So the shell model indicates that at the lowest temperatures the
angular velocity tends to become almost constant with angular momentum. Furthermore

4

there is no evidence that the angular velocity decreases with angular momentum.
{
This implies that no backbending is to be expected. The same fig. 6 indicates
- that as'the temperature increases, both pairing and shell effects disappear.

When the temperature is sufficiently high the linear dependence of Yy on I,

typical of a rigid rotor, is observed.
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In.fig. T the moment of inertla is displayed versus the anguler momentum
for various temperatures. The lowest isotherms show tne dramatic'decrease of
moment of.inertia aue to pairing; "The antipairing‘effect of the angular
momentum.is risible in the rapidly rising moment of_inertia as the angular
momentum increases. The cusps appearing in the lowest isotherms are essociated
with tne disappeerance of pairing.'_ln‘the vicinity of these cusps the moment
of inertia‘assumes values much'&oove the average. This is due to the presence
of high spin levels (h9/2 for protons and g\9/2 for neutrons) close to the Ferml
surface.  The relevance of these levels decreases as the angular momentum increases
because the qua81part1cles occupy aAlarger»number of levels thus producing an
average over many spins. The higher isotherms~show a rapid flattening of
the fluctuations with tne consequent achievement of a constant moment of inertia
,at'ell angular:momenta. »In fig; 8 the moment of inertia is plotted versus the
vsquare'of tne angular velocity for various temperatures. The-meinbfeature of
tnis’diagrem‘is therabsence'of the backoend{ng. The angular velocity, for the
lowest isdtherms, remains almost constant without backbending, while the moment
of inertia ranidly lncreases; The constancy‘of angular'Velocity with angular

[

momentum at low temperatures suggests that the dynamlcal behavior of the system

L —

is closer to that of an osc1llator than to that of a rotor.\
Figure 7 is very interesting insofar as it gives a direct ‘answer

) . . /
concerning the validity of the spin cut-off approximation in level density

s

calculations (See’eq. (14) and eq. (15)). \Among other thlngs, such an
spproximation implies. that the spin cut-off parameter aependS\only_upon the
temperature and not upon the'angular momentum. Recalling that 02 = ﬁf2£fT
one can see thatj'along a given isotherm; the angular momentum dependence of

O2Ais'the same as that of d. So, fig.f? shows that at low temperatures the
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N
[y

spin cut-off approximation is rather poor because of the chaﬁge;in the ﬁoment
of inertia due both to pairihg and to shell effects associated with the various
values of the angular momentum. At higher temperatures both pairing and shell

effects diéappeai, the moment of inertia becomes independent of angular

mpméntuﬁ, and the spin cut-off parameter bebomes a rather good approximation.

/

'
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7; éonclusion

Perhaps the most-femarkgble conclusion to be dravn from the present .
analysié is thé great simplicity which is achievea by consiﬁe;ing the pairing-
'angﬁlar momentum interaction in fermé of the average thational proéerties
of puclei. The study_of individual quantum mechaniéal leQéls or bands reqﬁirés a very
aétailed'knowledgé Of the nuclear Hamilﬁonian-and Qefy intricate numefiéa;jcalcula—
tiéns are necessary in ordef to exploit such a knowledge. By considering.
éver;ges over many lévels in ahrinhe:qntly simpler spherical nucléus, one may
hopg that the detailed hon—essentiai features of the residual intéféctiohs may
be "integrated out", thué leéving a clearer picture of thé.esséntial traits
~of the nuclear behavior. Thiskwg have tfied to do theoreﬁicaily, this étill
' needs to be done'expérimentally. /

It is quite possible that a much better understanding of the inter-

| 4 - .

relation between pairing, angular momentum and excitation energy may be obtained

from the study of the average properties of spherical nuclei than from the .

detailed analysis of the rotational ‘or vibrational bands in deformed nuclei.



1)

7)
8)

9)

‘10)

11)

12)

13)

1k)
15)
16)

17)

L. G. Moretto, Phys. Letters LLB (1973) Lol

-26- ‘ LBL-2321

. Footnotes and Referenées

For a réview of the theories on levél densities see: a) T. Bricson,
Advan. PhYs.lg_(l960) 4255 b) JJ-R,»Huizehga and L. G. Moretto, Ann. Re?.
Nucl. Phys. 22 (1972) k27 | '

C. Bloch, Phys. Rev.‘gi (195k) 1094 .

R. A. Sorénéen, Rev. Mod. Phys. 45 (1973) 353 and %eferences therein"

A. Johnsén; H. Ryde, and J.'Starkier, Phys. Letters 34B (1971) 605

A. Johnson, H. Ryde, and S. A. Hjorth, Nucl. Phys. éizg‘(1972) 753

H. Buescher, W. F. Davidson, R. M. Lieder, and Cf Mayér—Bériéke, Phyé.
Letters 40B (1972) Mg | |

R. M. Lieder, H. Beuscher, W. F. Davidson, P. Jahﬁ, H. J. Probst, and

C. Mayer-Boricke, Phys. Letters 39B (1972) 196

P.-Thiebefger,;A, W. Sunyar, P. C. Rogers, N. Lark, O; C. Kistner, E. der
Mateosian,vS.’C. Cochavi, and E. A. Auefbaéh, Phys. Rev. Letters 28 (1972) 972
T. Kammuri, Prog. Theor. Phys. 31 (196L) 595 |
L. G. Mofetto, Phys. Letters 35B (1971) 37k
L. G. Motetto, Nucl. Phys. A185 (1972) 145

L. G. Moretto, Nucl. Phys. A216 (1973) 1

P. Decowski, W. Grochulski, A. Marcinkowski, K. Siwek, aﬁd Z. Wilhelmi,

Nucl. Phys. A110 (1968) 129

M. Sano and S. Yamasaki, Prog. Theor. Phys. 29 (1963) 317

L. G. Moretto, Phys. Letters LOB (1972) 1

L. G. Moretto, Phys. Letters L6B (1973) 20



o - LBL-2321

Figure Captions S
Fig. 1. Angular velocity as a function of anguiar momenfum’for various
- temggratures. The sblid line rising from left to fight corresponds to
a:rigid rotor. The solid line descending from left to right corresponds to
' the limit of T = 0. In figfala the-Calculation has been pérformed,byvusing
the most probable values of A; the temperature is 0.1 Tcr for the uppermost
thin line and it increages i; steps of 0.1 T;r for the lower lines. In
fig. 1b the caiculétion has been performéd by uSing the avefage yalues of A.
Notice that fhe bottom tﬁin line corresponds to T = Tcr'
‘Fig;'2. Moment of inertia as a function of angular momentum. In fig. 2a the
| _calculatioh has.been performed by usinglthe.most probable valﬁes of A. The
ﬁemperature sequencé"for the thin liﬁes from botfomvto tpp‘is 0, 0.2, 0.k,
0.6, 0.8 T__. In fig. 2b the calculation has been performed by using the
average vaiues'éf A, Tﬁe temﬁerature\sequence is 6, 0.2, 0.4, 0.6, 0.8,
1.0 Ty, o N | |
Fig. 3. quent_of'inertia as a functipn of the sQuare of the angular.velocity.
. In fig. 3a the mosﬁiprobable values of A have been used. The temperatures
range from 0 fo’0.9 Tcr‘in steps ova.lifcr: In fig. 3b the average values
bof A havevbeen'used. The temperatures‘range‘ffqm 0.1 and 1.0 Tér in stepé'
| of O.l Tcr' .The dotted lines in both figu?és correspond to_constantv

angular momentum. The leftmost dotted line corresponds to I = 0.2 I

er’
The remaining dotted lines are plotted in steps of 0.2 Icr'

Fig; 4. Angular velocity as a function.of angﬁlaf momentum for.a rectangular
’dist;ibution of épin projections (thick lines). The thin lines correspond

"to a § distribution in spin projections.
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. 6. Anguiar velocity as a function of angular momentum for the proton
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-

. 5. Various shapes of the yrast line.for various models. The dashed line

corresponds to a figid moment of inertia. The thin line corresponds to a
8 distribution in spin projecfions. ‘The thick line corresponds to a

rectangular distribution in spin projection.

220

a) and neutron b) components of Rn for various temperatures. The lowest

temperature value and the temperature spacing between the various isothlerms

is given on the top caption.
. 7. Moment of inertia as a function of angular momentum for the proton a)

220 .. ' ’
Rn for various temperatures. The lowest

and neutron b) components of
temperature value and the temperature spacing between the various isotherms
is given on the top caption.

. 8. Moment of inertia as a function of the square df'angular velocity

- 22 . v
for the proton a) and neutron b) components of ORn for various temperatures.

\

The lowest temperéture value and the temperature spacing between the

’

various isotherms is given on the top caption.
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