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The least action principle is used to determine the semiclassical path 

in the penetration of a multidimensional 'fission barrier using the gap parameter 

as a dynamical variable. An increase in, the gap pa,rameter, the larger, the 

deeper the penetration of the barrier is predicted. 

The standard pairing formalism generates a Hamiltonian, diagonal in 
, 
quasi-particl~ space, whose expectation value can be expressed as follows:, 

(1) 

where the nk are the quasi-particles occupa ticm numbers, tJ. is the gap parameter 

which expresses the diffuseness of the Fermi surface due to the residual 

interaction, _Ek = Ek(a) are the single particle levels, A is the chemical 

= 1 _ 2 = !. (1 _' Ek - A) 
~ 2' E 

k 

. I' 2 potent1a , v
k 

The'gap parameter is usually determined by the condition: 

= o (2) 

,which is called the gap equation. Such a, condition, which requires (H) to 

be stationary with respect to tJ., is r~levant to physical situations where the 

static, br equilibri~ properties of a system are to be-determined. 
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This is not the case when the quantum-mechanical penetration of a fission 

barrier. is considered. As was pointed out by Pauli and Ledergerber [1], the 

penetration of a multidimensional barrier implies a dynamical motion whose 

semiclassical trajectory must be determined not by considering the potential 

energy only, but by applying a dynamical principle such as the least action 

principle. 

It follows that, the application of the gap equation (2) to the problem 

of barrier pentrability is not appropriate and a new gap equation, defining the 

gap parameter in the framework of the more general dynamical problem, should be 

obtained. 

The action integral for the problem of barrier penetration is: 

b 

S =£ hB(V-E) da (3) 

where a is the deformation coordinate, a and b are classical turning points, B is 

the inertia associated with the coordinate a, V is the potential energy and E 

is the total energy. Suchan expression depends upon the gap parameter/::" through 

both the inert'ia B and the potential energy V. 

The potential energy V can be identified with the expectation value of the 

pairing Hamiltonian expressed as a function both of the deformation a and of the 

gap parameter /::,.: 

V (4) t 

The dependence of (H) upon /::,. and a is now to, be determined. In order to 

approximate the dependence of (H) upon /::,. it lis useful to calculate the second 

derivative of (H) with respect to /::,. when/::,. = /::,. , /::,. being the stationary, value, 
, 0 0 

of /::,.: 
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= 1:.0
2 2:: (5) 

If the single particle Hamiltonian is approximated by the uniform model, one 

obtains: 

(6) 

whereg is the total density-of the doubly degenerate signle particle levels 

inclusive of neutrons and protons. 

The potential energy V(a) can be expressed in quadratic approximation as: 

V,(a) = (7 ) 

where Vo(a) lsthe "shape" of the barrier which corresponds to a value of I:. equal 

to its stationary value 1:.. Similarly the inertia, which can be obtained by the 
- 0 

cr~ing model, is given, for the 
I .' 

uniform model, by the expression: 

B h2 <CEk)2>~ IV K (8) = 
dCf 31:. 2 1:.2 

In ,order to correct the limiting form of this equation at.large 1:., the 

following expression can be postulated: 

B = K + S 
1:.

2 

where S is the irrotational limit of the inertia. 

By substituting (9) and (7) in ,(3) one obtains: 

b 

S = I ·da 
a 

(9) 

(10) 

The least -action principle requires that the integral S be an extremum, namely 

( 

OS=O. In opher words a function I:. (a) must be found which minimizes the integral (10}. 
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Since eq. (10) does not contain the derivative of b. with respect to a, the 

variational ,condition reduces to the algebraic equation: 

(ll) 

This equation is the gap equation relevant to the dynamical problem. By setting 

s = 0, a very simple expression is obtained: 

b. r = 
o 

v (a) - E 
1 + ...;;0 __ ....,,-_ 

b. 2 
g 0 

(12) 

Before penetrating the barrier, at the classical turning point given by 

J the equation Vo(a) - E = 0, the gap parameter is b. = b.o : in other words the 

solution for b. is the same as that given by eq. (2). As the system dives into 

the barrier, the least actiorr~principle tends to decrease the inertia by increasing 

b.. The gap parameter is prevented from increasing indefinitely'by the restoring 

force originated.by the potential energy (7). 

Since in order to obtain eq. (12) S has been set equal to zero, the gap 

parameter glven by (12) is somewhat overestimated. still, one can see that the 

effect is indeed very large. By using the follOWing round numbers: 
-1 g= 7 MeV , 

b. = 1 MeV, and VoCe:) -'E = 7 MeV, one obtains b. = 2b.. The effect of such a 
00, 

* pairing increase; can be incorporated into,an effective potential V : 

* -V (a) - E = 
V (a) - E 

o 
V (a) - E 

1 + _0 __ -::--_ 

b. 2 
g 0 

(13) 

Again, by using the above mentioned parameters, it appears that, the deeper 

the system dives into the barrier, the more the effective barrier is reduced: in 

I v: 
i 
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particular by using the numerical values of the parameters mentioned above, the 

height of the effective barrier is reduced by a factor of two with respect to 

"-
the true barrier. Again, although eq. (l3) is overestimating the effect, it is 

cl,ear that such a dramatic reduction of the barrier must have a substantial 

effect on the spontaneous fission half-lives. 

I ~In fig. 1, a plot of 15. 15. is shown as cl function of 0.. This calculation 
o 

applied to the uniform model, has been performed by substituting eq. (~) and 

eq. (4) into' eq. (3), 

15. 2 
B = 1666 0

2
, + 225'h2 

15. " 

and the following parameters have been used: 

-1 1 2 
MeV ,15.

0 
= 0.775 MeV, V = 6 + 2269 (0. - o.o) MeV and 

E='O.These quantities are expected to be realistic for an actinide nucleus. 

In fig. 2, the effective potential energy is. shown as a function of deformation. " ., . 

_Th~' overall features are still the same as those estimated by eq. (12) and eq. (l3). 

. A limitation of the above treatment is related to the fact that .15. should 

be considered as ~ true dynamical variable instead of a simple parameter. In 

other words, one should account for the kinetic energy associated with 15. as well 

as for the potential energy. 

form: 

-B~ = 
B, 

b.a 

Bab. 

Bb.l:s. 

and the action becomes: 

For the uniform model: 

~ 0 

Consequently, the inertia becomes a tensor of the 
I 

(14) 
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In this case the variational equation oS = 0 becomes a rather complicated 

, '(~)2 
differential equation. Fortunately, it turns out that B~~. de( ,« Baa' as can 

~ 
be checked by using eq. (12) to calculate da Furthermore, a substitution of 

eq. (12) into eq. q5 ) produces a negligible difference in the action as compared 

with that calculated by means of eq., (10). Therefore, it is concluded that eq. (12) 

and eq. (13) as well as the numerical results'presented in figs. 1 and 2 should 

be reasonably accurate. 

The problem of the barrierpentrability needs to be further pursued by 

means of more realistic models. Some indication of the effect discussed above may 

exist in low energy induced fiSSion. Fission fragment angular distributions, 

d ' 1 th b . f th' 'd l' 210 211 h measure very C ose to e arr~er 0 e compoun nuc e~ Po and Po ave 

led to the tentative conclusion of anomalously large values of the gap parameter 

at the saddle point [2]. Such conclusions, however, seem to be incompatible with 

higher energy fission excitation function [2]. This effect could find a possible 

justification along the following lines. The penetration into higher levels in 

induced fission is expected to depend upon the tate of increase of the level 

density. This rate is substantial at energies close to the top of the barrier 
) 

thus leading to a larger value of the gap parameter. 'At higher excitation 

energies the rate of increase of the level density diminishes thus reducing 

the penetration and accounting for,a normal excitation function. 
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Figure ,Captions 

Fig. 1. Enhancement of the gap parameter in the penetration of the fission 

\/ 

-. barrier. 

* Fig. 2. Effective fission barrier V (a) (thick line) as compared with the 

true fission barrier V(a) (thin line). 

/ 



-8-

1.8 

1.6 

---<l 
1.2 

1.0 
0.3 0.4 

Fig. 1 

0.5 
Cl 

0.6 

LBL-2332 

0.7 

lCBL7312 -6965 

... , : 

, 
, ! 

ft',l i 



- " 

'>oJ 

6 

->4 
Q) 

~ ....... 

2 

o 0.3 OA-

-9-

Fig • .2 

V(a) 

V*(a)---

0.5 0.6 
a 

LBL-2332 

0.7 

XBL 7312-6964 



r-----------------LEGALNOTICE------------------~ 

This report was prepared as an account of work sponsored by the 
United States Government. Neither the United States nor the United 
States Atomic Energy Commission, nor any of their employees, nor 
any of their contractors, subcontractors, or their employees, makes 
any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness or usefulness of any 
information, apparatus, product or process disclosed, or represents 
that its use would not infringe privately owned rights. 



TECHNICAL INFORMATION DIVISION 

LAWRENCE BERKELEY LABORATORY 

UNIVERSITY OF CALIFORNIA 

BERKELEY, CALIFORNIA 94720 


