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ABSTRACT 

We study Chorin's vortex sheet method used to solve the Prandtl boundary 
layer equations and to impose the no-slip boundary condition in the random vor
tex method solution of the Navier-Stokes equations. This is a particle method in 
which the particles carry concentrations of vorticity and undergo a random walk 
to approximate the diffusion of vorticity in the boundary layer. A spline 'smooth
ing' is presented which results in a smoother velocity field and in the no-slip 
boundary condition being satisfied to higher order. It is shown that the particle 
creation algorithm and the random walk taken together provide a consistent 
approximation to the heat equation. In particular it is shown that in the Ll 
norm the consistency error is 0 ((h + wmax) Vvt1t ) where h is the sheet length, 
Wmax is the maximum sheet strength, t1t .is the time step and v is the viscosity. 
We demonstrate numerically that the method converges in the case of Blasius 
flow and establish rates of convergence in terms of the computational parameters. 
This numerical study reveals that errors grow when the sheet length tends to 0 
much faster than the maximum sheet strength. Finally, we present the results of 
computer experiments with spline smoothing, second order time discretization, 
and sheet tagging. 
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1. The Prandtl Equations 

The vortex sheet method is a numerical method, due to Chorin [9], for solving the Prandtl 

boundary layer equations ([10, 20, 24, 31], 

Uc + UUz + vu, - pz + I/U" (l.la) 

Uz + v, = ° ( 1.1 b) 

subject to the boundary conditions 

u (x ,O,t) = ° (1.1c) 

v(x,O,t)=o ( LId) 

lim u (x ,y ,t ) = u oo(x ,t) . 
,-00 

(1.1e) 

Here u is the velocity component in the x direction, v the component in the y direction, p 

the pressure, 1/ the kinematic viscosity, and U oo(x ,t) the free st~eam velocity. U 00 is indepen-

dent of y and assumed to be known. We assume a flow with constant density p = 1. 

Equations (1.la-e) are derived from the Navier-Stokes equations under the assumption 

that the velocity component perpendicular to the boundary is small relative to the tangential 

component. They are valid for general flows along curved walls as long as the boundary-layer 

thickness is small compared to the wall's radius of curvature (see White [31], p. 256, Cheer [5]). 

Both the boundary layer equations and the vortex sheet method may be generalized to three 

dimensions (Chorin, [11]). For simplicity we work in' two dimensions and assume that the boun-

dary is a flat wall of length L , beginning at (a ,0) and extending to (b ,0). 
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1.1. The Vorticity Formulation of the Prandtl Equations For solutions of the boun-

dary layer equations the vorticity is given by w = - u,l ([10], p. 100). Differentiating equation 

(1.1a) with respect to 11 and recalling that in the boundary layer the pressure, p , is independent 

of 11 (see White [31], p. 254) we obtain the vorticity formulation of Prandtl equations 

Dw 
--=vw 
Dt " 

(1.2a) 

w= - u,l (1.2b) 

u~ + v, = ~ (1.2c) 

D 
where Dt = at + U a~ + va, is the material derivative. 

This equation will be useful in understanding the vortex sheet method. Note that equation 

(1.2a) consists of two evolution equations: a convection equation, 

and a diffusion equation, 

Dw =0 
Dt 

Wt = vw" . 

(1.3) 

( 1.4) 

In particular, note that for solutions of (1.3) vorticity is constant on particle paths. The advec-

tion step in the vortex sheet method is based on the principle that" for solutions of the inviscid 

Prandtl equations vorticity is constant on particle paths. 
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2. The Vortex Sheet Method 

The vortex sheet method is a fractional step method in which equation (1.3) is solved in 

one step and equation (1.4) in the other, with the vorticity field obtained at the end of one step 

being used as the initial' data for the next. The method was designed in the spirit of the ran-

dom vortex method, [8]. It is a particle method. The particles carry concentrations of vorticity 

and the velocity field is reconstructed from the particle positions. 

The solution of (l.3) is obtained by convecting the particles according to the velocity field. 

Equation (1.4) is solved by allowing the particles to undergo a random walk in the y direction. 

During the random walk solution of (1.4) particles are created at the wall to ensure that the Be 

(l.lc) is satisfied. This creation of particles mimics the physical creation of vorticity at the 

wall .. 

2.1. Notation Before describing the details of the method we introduce some notation. Let 

p~, UO denote the solution at time t = ~t of the Prandtl equations (l:la-e) with initial data 

UO(x ,V) = u (x ,v ,0). Siniilarly, let ~,uo denote the solution at t = ~t of the inviscid equa-

tion 

Du 
Dt = - p~ (2.1a) 

u~ + V,I = 0 (2.1b) 

u (x ,oo,t) = U(x), t > 0, (2.1c) 

v(x,O,t)=O, t > 0, (2.1d) 
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with initial data UO and let Dt:.1 UO be the solution of the diffusion equation 

(2.2a) 

u{x,O,t)=o, t > 0, (2.2b) 

with initial data uO. 

The vortex sheet method consists of finding approximations At:.1 and Dt:.1 to the solution 

operators At:., a!1d Dt:.1 and then using DtlJ At:.1 UO as an approximation to Pt:.1 uo. We write the 

vortex sheet approximation to the solution, uk = {Pt:.,)k uO, of (l.la-e) at time t = k ~t with 

initial data UO as 

We will usually use ii to denote an approximation to u, w an approximation to w, etc. 

2.2. The Approximate Velocity Field One feature common to all vortex methods is that 

the velocity field (u ,v ) is recovered from the vorticity w. From (1.2b) we have 

00 

u(x,y)= U(x)+Jw(z,y')dy'. , 

In the vortex sheet method we replace the integral on the right hand side by a sum, 

u (z ,y ) = u (z ) + E W j b d z - Z j )H (y j - Y ), 
j 

where H (y ) is the Heaviside function, 

(2.3) 

(2.4) 

,"' 



{

O, 
H{y) = 

1, 

x < 0, 

x ~ 0. 

The function bA , known as the cutoff or Bmoothing function, is defined by 

bdx)=b{x/h) 

where b can be chosen in several ways. In [9] Chorin used 

{

l- I x I, 
b (x) = 

0, 

If I x I ~ 1 

otherwiBe. 

5 

(2.5) 

(2.6) 

(2.7) 

The cutoffs bA (x - xi) with b as in (2.7) are frequently referred to as 'hat' functions. (Tiem-

roth [30] refers to them as 'tent' functions.) One of the purposes of this work is to suggest alter-

nate choices for b. We will discuss these and other smoothing functions in Chapter 3 below. 

All cutoffs that we consider will be normalized so that 

b (O) = 1 (2.8a) 

and have compact support, 

b(x)=O, for I x I ~ R (2.8b) 

Typically, R = lor R = 2. 

Each term of the sum in (2.4) is referred to as a vortex Bheet. The j th sheet has center 

(Xi ,'!Ii) and Btrength, or weight, Wi' By (2.8b) each sheet has length 2Rh where R depends on 

the particular smoothing function chosen. From (2.4) we see that for fixed x the difference 

between u at a point immediately above the" j th sheet and u at a point immediately below it is 

Wi bA (x - xi)' This jump in the tangential velocity as one crosses the line y = Yi is the 

motivation for referring to .each computational element as a 'vortex sheet'. 



From (2.4) we have 

00 

ii(x,y)= U(x)+ J L;Wj bh(x -Xj)8(Yj _y/) dy', 
, j 

where S is the Dirac delta function. Thus, our approximation to the vorticity is 

w(x ,y) = I; Wj bh (x - Xj) 8(Yj - y), 
i 

6 

(2.9) 

(2.10) 

and we see that each sheet carries a linear concentration of vorticity which varies like 

bll (x - Xj) as one moves along the line segment (-Rh ~ x -xi ~ Rh, Y = Yj ). 

Given the horizontal velocity u we can recover the vertical velocity with the aid of equa-

tion (l.lb), 

, 
v (x ,y) = - J u~ (x ,y/) dyl . 

o 

Our approximation ii of the vertical velocity is therefore 

, 
ii(x ,y) = - J 8. u(x ,y/) dy' 

o 

(2.11) 

11 

- - U. (x) y - 8. I; Wj bll (x - Xj) J H(Yi - y/) dy' (2.12) 
o 

- U~ (x) y - E Wj 8~ bh (x - Xj ) min(y ,Yi ) . 

Thus, if b (x) is G I , then 

ti(X,y) = - U.(x) y - EWj h-I b~(x - Xj) min(y'Yi) (2.13) 
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where bl = b '(x jh). On the other hand, if b is not differentiable everywhere (this is the case 

for the hat functions in (2.7)), one can use a divided difference approximation to bl, 

v(x ,V) = - Uz (x) V - E wi h-I (b" (x + ~ - xi) - b" (x - ~ - xi)) min(v ,Vi) . (2.14) 

This is the most commonly used versIOn. In Chapter 3 we propose cutoffs that are CP for 

p 2: 1 thereby enabling one to use the exact derivative in (2.13). This is easier to program and 

presumably more accurate than using divided differences. 

2.3. Integration of the Equations in Time Note that our approximation, (u ,v), to the 

velocity field (u ,v) is completely determined by the positions of the particles (xi ,Vi) and their 

weights wi' (We will use the words 'sheets' and 'particles' interchangeably.) We denote the 

time step by .:lot, the position of the j th particle at the k th time step by (x/ ,V/') and the 

velocity field derived from these positions by (u' ,v'). Given this velocity field the velocity 

field at the next time step, (U'+I,V'+I), is determined as follows. 

2.3.1. The Advection Step Given (u' ,v') our approximation to the solution of the advec-

tion equation (2.1a-c) is found by moving the sheets according to 

X/+1/2 = x/ +.:lot ii' (x/ ,V/) 

V/ +1/2 = V/ + tl.t ii' (x/ ,V/ ) 

Thus, the velocity field after the first of the two fractional steps is 

iik+1/2(X ,V) = U(x) + E Wi bdx - X/+i/2) H(V/+ 1/2 - y), 
i 

ii k +1/2(X ,V) = - Uz (x) V - E Wi Jz b" (x - x/ +1/2) min(y ,V/ +1/2) . 

i 

(2.15a) 

(2.15b) 

(2.16a) 

(2.16b) 
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Note that wk +1/2 == - 8
,1 

ii k +1/2 approximates the solution of (l.3) with initial data 

- k 8 - k 
W = - 11" in the sense that vorticity is constant on approximate particle paths 

(x/ ,y/) - (x/ +1/2,y/ +1/2). In the notation of §2.1 we write 

Note that (2.15a,b) is the Euler's method solution of the ODE's 

dx· d: =" (Xj ,Yj ,t), (2.17a) 

dYj dt = tJ (Xj ,Yj,t), (2.17b) 

where we approximate u (x,y,1e t::.t) by uk (x,y) and tJ (x,y,1e t::.t) by vk (x,y). One can 

choose to solve (2.17a,b) with a higher order ODE solver. The use of higher order ODE solvers 

in the vortex method solution of the inviscid Navier-Stokes equations have been studied in [1] 

and [17] but to date there has been no theoretical work done on the use of a higher order solu-

tion of (2.17a,b) for the vortex sheet method. In Chapter 6 we will present the results of a 

numerical experiment to compare a second order solution of (2.17a,b) with the first order solu-

tion given by (2.15a,b). 

2.3.2. The Particle Creation and Diffusion Step The second part of the splitting pro-

cedure is the random walk solution of (2.2a,b) with initial data u Ie +1/2. This consists of creating 

sheets at grid points on the wall in order to satisfy the no-slip boundary condition and letting 

all sheets undergo a random walk, with reflection, in the Y direction. 

Choose h so that the wall length, L , is an integral multiple of h , L = r h. Pick points 

a I, ... , ar on the wall so that a I = ~, aj -aj_1 = h , i = 2, ... , r, and ar = L - ~. 

We approximate the boundary condition (l.lc) by requiring that at the end of every time step 
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the tangential velocity at the wall approximately satisfy 

u(a, ,0) = 0, i = 1, ... , r . (2.18) 

In other words, for some small parameter, Wmin' we require that u satisfy 

,u(a"O), ~ Wmin, i = 1, ... , r (2.19) 

at the end of every time step. This is accomplished in the following manner. 

Let Wmax denote a computational parameter called the maximum sheet strength. All sheet 

strengths will be chosen so that, wi , ~ wmax ' As we shall see in Chapter 4, Wmax is the com-

putational parameter which most directly influences the accuracy of the random walk. After 

the advection step the tangential velocity, u Hl/2, will in general fail to satisfy (2.19), even if 
. , 

the velocity at the previous time step, u It ,does. Let u, = u It +l/2( a, ,0). At each a, we create 

q, ~ ° sheets, with center (Xi ,'IIi) = (a, ,0) and strength Wi' , so that for j = 1, . . ., r , 

r t. 

, U It +1/2( a,. ,0) + E E Wi' bh (a,. - Xi) H (11, - 0) , 
i=1 '=1 

r q. 

, u,. + E E Wi' bh (aj - ai) , 
i=1 '=1 

We assume that for a given i the Wi' are all equal and will often write Wi rather than Wi' . 

One has considerable leeway when choosing qi and Wi' We will therefore discuss this 

aspect of the algorithm in greater detail. We begin by describing the version originally proposed 

by Chorin in [9]. We then present a variation on his idea which leads to fewer sheets at, the 

expense of satisfying (2.18) less accurately. In §6.7 we report on a numerical experiment in 

which we find that both particle creation algorithms produce comparable errors. 
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Assume that R = 1 in (2.8b). Hence, 

where bjj is the Kronecker delta function. This is the case for Chorin's cutoff (2.7). In Chapter 

3 below we will remove this assumption and describe a variation on the creation algorithm. 

Particle Creation Algorithm A In this. version a sheet is created at aj if I Uj I ~ Wmin 

where Wmin <wmax ' For example, Wmin might be chosen to be on the order of the computer's 

roundoff error. Let [:r 1 denote the greatest integer less than or equal to :r:. If I Uj I ~ Wmin, 

then we create 

if Wmu divides Uj evenly 

otherwise 

sheets at (aj ,0), each of strength Wj - Uj I qj. Otherwise we set qj = 0 and create no new 

sheets at (aj ,0). 

As we shall see presently, the random walk does not alter the tangential velocity at the 

wall. Thus, the tangential velocity at time t = (k +1)l1t satisfies 

" I Uj + EWj 
1=1 { 

0, 
I Uj + qj Wj I < 

- Wmin, 

if qj > 0, 

if qj = 0 . 

Thus, the approximate BC (2.18) is either satisfied exactly or with an error which is O(Wmin). 
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Particle Creation Algorithm B An alternate version of this particle creation algorithm was 

used in [7, 29, 30] as well ~in the present work. Let qj = [ I Uj I / wmax]. At the i th grid 

point we create qj sheets, each with strength Wj = - 8ign (Uj ) Wmax and center (aj ,0). Our 

approximation to the tangential velocity at time t = (k + I)A t now satisfies 

'Ii 

I Uj + EWj I - I Uj - qj 8ign (Uj) wmax I < Wmax . 
1=1 

(2.20) 

Thus, the approximate BC (2.18) is satisfied somewhat less accurately than in Algorithm A. 

However, our experience has been that this has a negligible effect on the overall accuracy of the 

solution. In Chapter 4 we will present some analysis which clarifies the relationship between 

the accuracy with which we approximate the no-slip boundary condition and the overall error 

in the random walk solution of (2.2a,b). In Chapter 6 we present numerical results that indi-

cate Algorithm B creates fewer sheets without any noticeable deterioration in the accuracy of 

the computed solution. 

We remark that Algorithm B is essentially Algorithm A with Wmio = Wmax except that in 

Algorithm B all sheet strengths are of equal magnitude, Wmax . This is similar to the algorithm 

studied in [16]. We believe that creating all sheets with the same strength gives one better con-

trol over the variance of the solution while simultaneously creating fewer sheets, thereby pro-

ducing a more cost efficient algorithm. 

Now let every sheet including those just created take a random walk in the y direction, 

reflecting those sheets which go below the wall. The new particle positions are given by 

r.k +1 = rft+l/2 
) ) (2.21a) 

(2.21b) 
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where ~j is a Gaussian distributed random number with mean 0 and variance 2v~t. The vela-

city field at time t = (k +1)~t is thus 

Nt 

Nt 

Uk+1(X,y) = U(x)+ E Wj b/i(x _x/+t!2)H(ly/+1/2+S"j I -y) 
;=1 

,. q. 

+ E E Wi b,. (x - ai ) H( I ~il I - y) 
i=II=1 

Nt +1 
U(x) + E Wj bdx - x/+1) H(y/+1 - y) 

j=1 

(2.22) 

where E indicates that the sum is over those sheets that existed in the flow at the k th time 
j=1 

Nt+! 

step while E is over all sheets, new and old, that exist at the end of the k + 1st time step. 
j=1 

Using the notation introduced in §2.1 we write 

,,-. +1 _ n ,,-. +1/2 
- LI~I • 

It is appropriate to make several remarks here. In §4.2 we will prove that 

(2.23) 

where the expected value is only over those random walks taken at this time step. In other 

words, the expected value of the sheet creation and random walk process applied to u" +1/2 . 

differs from the exact solution to (2.2a,b) with initial data u" +1/2 by an error which is 

O(h +wmuJ. This error is due to our failure to satisfy the no slip boundary condition exactly. 

In fact, if the new sheets are chosen so that (2.18) is satisfied exactly at ai, then we have 
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This has several implications. In the original version of the vortex sheet method Chorin 

created twice as many sheets as needed, whose total was twice that needed to cancel the velo

city at the wall ([9]' p. 423). He then let these new sheets random walk without reflection 

throwing away those sheets that went below the wall. (Of course the other sheets were random 

walked, with reflection, as above.) In a more recent version ([11], p. 6) Chorin again created 

twice as many sheets as needed but this time employed a rejection technique to ensure that 

exactly half of these sheets took their random walk in the positive y direction. Equation (2.23) 

tells us that these special procedures are unnecessary. It is sufficient to create sheets as in Algo

rithms A or B above and allow them to undergo a random walk with reflection. 

The results mentioned above also indicate that the sheet creation and the random walk 

are part of the same process. That is, they are one step in a two step fractional step method 

(the advection step being the other) rather than being two separate steps in a three step frac

tional step method. Furthermore, the new sheets should undergo a random walk just as the old 

ones do, without waiting a time step before diffusing them from the wall. 

2.4. Sheet Tagging In [9] Chorin proposed the following 'variance reduction technique'. 

During the sheet creation process each sheet is assigned a positive integer, called a tag, as fol

lows. Let Tit be the last tag assigned at the Ie th time step. Then, during the k + 1st time step, 

the first sheet created at every grid point is assigned the number Tit + 1, the second sheet is 

assigned Tit +2, and so on until all sheets have a tag. Thus, no two sheets created at the same 

grid point will have the same tag while one sheet at each grid point will have the same tag 

(except, of course, when more sheets need to be created at one grid point than another). \Vhen 

the sheets are random walked all sheets with the same tag get assigned the same random walk. 

The motivation behind this procedure is twofold. First, if one uses the vortex sheet 

method to model flow past an infinite plate with constant free stream velocity ([10]' pp. 92-95), 
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then with sheet tagging the vortex sheet method reduces to the random walk solution of the 

heat equation. This eliminates all error due to the advection step. Second, on heuristic grounds 

it is believed that vorticity leaving the wall diffuses at the same rate everywhere along the wall 

and it was thought that the sheet tagging mimicked this process. 

Our experience has been that, with the exception of the infinite flat plate problem, sheet 

tagging has at best a benign influence on the accuracy of the vortex sheet method. Numerical 

experiments show that for problems in which sheets with the same tag tend to overlap the tag

ging procedure leads to an increase in both the expected value and the variance of the error. In 

§6.8 we present the results of one such experiment. We also address this issue from an analyti

cal point of view in the remarks after the proof of Theorem 4.6. 
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3. Smoothing 

We now turn to a discussion of the smoothing function, 611 , Let us begin by considering 

the smoothness of our approximation as a function of 1/. From (2.4) it is apparent that, for 

each fixed r , the approximation u If (r ,1/) is a step function in y. This is analogous to the ran

dom gradient method. In both cases it is natural to inquire what happens if one uses something 

smoother than a step function. 

In unpublished work the author replaced the step function approximation described in 

§2.1 of [21] by a piecewise linear function and used it to compute the traveling wave solution 

described in §9.1 of [21]. The piecewise linear version produced a significantly better approxi

mation to the initial data at time t = O. Mter several time steps, however, the error was com

parable to that incurred by the original method. This is due to the following reason: for fixed t 

the accuracy in approximating a function on IR by a step function is O(N-1
) where N is the 

number of particles (jumps in the function). When one uses a higher order approximation this 

accuracy improves. This accounts for the observed decrease in the initial error. On the other 

hand, the error due to solving the diffusion equation by random walking the particles is 

O(VN-1
) (see [16,21,22]). Consequently, any accuracy attained through the use of a higher 

order spacial approximation is quickly lost by the random walk. 

Now fix r = ro in (2.4) and consider the approximation ulf(rO'y) to the one dimensional 

slice of the tangential velocity, u (xo,1/,k 6.t). Because of the similarity between this approxi

mation and the random gradient approximation it is plausible that making u" smoother as a 

function of 1/ (i.e., replacing H (1/j - 1/) in (2.4) by something smoother) would not result in an 

overall improvement in the accuracy or the method. To the author's knowledge all versions of 

the vortex sheet method currently in use employ a step function approximation to u as a func

tion of 1/ . 
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3.1. Piecewise Constant Cutoffs (No Smoothing) Given the above considerations it is 

natural to conclude that smoothing in the x direction will lead to little or no improvement as 

well. For example, one might to choose a cutoff of the form 6 (x) = 8 (x) where 8 is defined by 

8(x)=H(~-lx I). (3.1) 

Here we have chosen the support of 8 to be of length one in order to satisfy the requirement 

that the total circulation around a sheet of length h and unit weight must be h. Furthermore, 

assuming that we have an equally spaced grid on the wall, with spacing h , it is apparent that 

the desire to satisfy (1.1c) as best possible leads to choosing sheets of length h . 

It has been observed that the vortex sheet method performs poorly when this cutoff is 

used. We offer the following explanation. For 6 (x) = 8 (x) the tangential velocity U IS plece-

wise constant as a function of x. Consequently, our· approximation to the derivative Or it in 

(2.14) is poor. This in turn leads to large errors in the particle paths through (2.15b). To rectify 

this problem Chorin proposed using a piecewise linear approximation to u . We now turn to a 

discussion of his cutoff. 

3.2. Piecewise Linear Smoothing It is apparent from (2.4) that the degree to which U is 

differentiable as a function of z is completely determined by the differentiability of 6/&. (We 

always assume that U(x) is at least as smooth as 6/&.) For example, to obtain an approximation 

which is piecewise linear in x one may use" 6 (x ) = I (x ) where 

{

1- 1 xl, 
I(x) = 

0, otherwise. 
(3.2) 

This cutoff was first used by Chorin [9]. In fact, with the exception of the present work, 

to the author's knowledge it is the only cutoff in use. It has been used successfully for a wide 

variety of problems, usually in conjunction with some variant of the random vortex method. 
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For example, see Cheer [5,6], Ghoniem, Chorin and Oppenheim [13]' Ghoniem and Sethian [29], 

Sethian [27,28], and Tiemroth [30]. 

For b (x ) = I (x) the approximate tangential velocity, U, is only piecewise 0 1, failing to 

be differentiable at x = Xj and x = Xj ± h for each j. Therefore, one must still use a 

divided difference approximation to the derivative az b" (x) as in (2.14). In §6.5 we report on 

the results of a numerical experiment to compare this approximation to a version in which it is 

0 2 as a function of x . 

It is instructive to examine this smoothing process from another perspective. At each time 

step we would ideally like to create sheets at the wall so that the computed solution satisfies the 

boundary condi tion (1.1 c ), 

for all x E [a ,b ]. Define 

The velocity field, u .~t+l, defined by 

where ~ and the ~j are independent Gaussian distributed random variables with mean ° and 

variance 21111t is the optimal choice for u It +1 since u .~t+1 satisfies 

for all x E [a ,b ]. (This is Theorem 4.1.) In particular, u .~,+I(x ,0) = ° for all x on the wall. 
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However, we wish to write Uk +1 as the sum of vortex sheets. Therefore, our task is to find 

W,l such that 

r ~ r 

g(x) == - ~ ~ Wil b" (x -ai) = ~ 'Ill b" (x -ai ) (3.3) 
i=II=1 i=1 

is the best possible approximation to g. For b" (x) = I(x jh) where I is defined by (3.2) this 

amounts to finding a piecewise linear interpolant for 9 , i.e., a firSt order spline. In fact, for this 

choice of smoothing the functions 

i = 1, ... , r 

are a basis for the space of piecewise linear polynomials on [a ,b ] with breaks at the ai' (See 

§2.1 of Schultz [25].) This naturally leads to the idea of finding a better approximation to 9 by 

letting g in (3.3) be a higher order interpolant of g. We will now present an algorithm in 

which g is piecewise cubic. 

3.3. Spline Smoothing This may be accomplished in many ways. (For example, see de Boor 

[4] and Schultz [25].) Here we suggest one method which also has the potential of creating fewer 

sheets, thus reducing the overall computational cost of the method. We choose a cutoff, B (x), 

defined by 

1 '4 (2- I x 1)3 - (1- I x I )3, if O~ I x I ~ 1 

B(z) = ! (2- I z I )3, if 1 ~ I z I ~2 (3.4) 

0, if I x I > 2 

For b (x) = B (z) the b" are B-splines ([4, 25]). This results in an approximation, uk, which is 

c2 in x and piecewise C 3 in x . 
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Note that with this choice of 6 the support of 6}& .is now 4h rather than 2h. Thus, the 

sheets overlap each other more than with the piecewise linear cutoff defined by (3.2). In particu-

lar, each new sheet centered at ai now influences three grid points rather than just one as is the 

case for Chorin's smoothing, (3.2). Thus, in the creation algorithm we can no longer simply 

choose Wi so that I Ui + qj wi I < Wmu' Instead, one must now solve the tridiagonal matrix 

equation 

1 1 
-a· 1 + o'· + -0"+1 = U· 
4'- • 4' • 

i = 1, ... , r 

and chooseqj, Wj so that I O'j + qj Wj I < Wmax' One has to decide what t? do at the end-

points, i = 1 and i = r. Endpoint conditions have been extensively studied in the context of 

spline interpolation of a function. For example, see de Boor [4]. For the numerical experiments 

presented in Chapter 6 we used a periodic domain and hence, aj = aj +r . 

For the cubic spline cutoff defined in (3.4) the sheet creation algorithm should result in 

fewer sheets. For example, let L = 1 (i.e., a wall of length 1) and consider the periodic problem 

in which the point z = b is identified with z = a. So we have a 1 = ar +1, etc. Let h = 0.2, 

Wmax = 3-1
, and Ui = 1.0, i = 1, . . ., r. Then for the piecewise linear cutoff I (z ) defined 

in (3.2) we will create 3 sheets at every grid point, each with strength Wj = 3-1 • On the other 

hand, for the B-spline cutoff defined in (3.4), we would create 2 sheets at every grid point, each 

with strength Wi = 3-1
• 
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4. The Error Due to the Random Walk Operator DAf 

In this chapter we prove several bounds on the error that results from using the random 

walk to approximate the exact solution of (2.2a,b). The purpose of these estimates is to exam-

ine the relationship between the parameters v, At , Wma.x, and h and the error made by one frac-

tional step of the random walk process. We present this analysis to explain how the parameters 

affect the error at each step. We feel that the analysis below helps to clarify the relationship 

between the accuracy with which the no-slip boundary condition is satisfied and the error due 

to the random walk process. 

We begin by showing that the random walk algorithm is consistent in the sense that, 

( 4.1) 

We define uo, DAf Uo and what we mean by E DAf Uo below. We then derive bounds on the vari

. ance of DAf Uo and on the probability distribution of the L 2 error, II DAf U - DAf U 112' These 

latter bounds are essentially a generalization of Hald's work in [16]. To establish them we first 

prove 

00 

J var H( 1 Yj +~j I-Y )dll = F (Yj) J2VAt 
o 

(4.2) 

for some function F which is bounded between (2-v2)jJ1r and 4jJ1r. (For Yj =0 this is Hald's 

result.) Then, using the fact that the random walks ~j taken at a given time step are indepen-

dent, we use (4.2) to show 

(4.3) 

It will be apparent from the proof that (4.3) exhibits the correct dependence on the 

parameters v, At and Wmu ' Along these same lines we note that Hald has shown 
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/ 

OOJ (2-J2) ~ 
var 9(y )dy = v2vAt W max 

o ..fir 

where 9 is the random walk solution after one time step of length At to 

° ~ y < 00, 

9(0,t) = 1 ° < t, 

9(y ,0) = 0, 

and where we have written Wmu instead of N-I • (All of RaId's particles have strength N-I
.) 

This is the second equation in the proof of Theorem 2 in [16]. Thus, the LI norm of the vari-

ance of e is precisely O(v'VAt wmu). In the case of (4.3) equality generally fails to hold, but 

the amount by which the right and left hand sides differ does not depend on v, At , and Wmax ' 

It is important to note that by (4.1) and (4.3), the error in the diffusion step decreases as 

v -. 0. Thus, one gets better results from the random walk at small viscosities for no additional 

work. In contrast, for a finite difference method the amount of work to achieve comparable 

errors at different viscosities increases like O( ./V-I). 

4.1. Notation In what follows we will let uO be an arbitrary function of the form 

N 

uO(z,y}= U(z}+ E Wi b,,(z -zi)R(Yi -y}, 
i=1 

( 4.4) 

with I Wi I ~ Wmu for all J. We assume the use of piecewise linear smoothing, 

b" {z} == b {z jh} with b defined by {3.2}. All of the results in this section remain valid (with 

minor modifications) if B-spline smoothing is used. 
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We also assume that the Yj in (4.4) have been chosen so that 

(4.5) 

This gives us a nice representation for the Ll norm of the vorticity field WO = -° 11 uo, 

boob 

IIwOlll=JJ IEw j b,dz-Zj)8(Yj-y)ldzdy=E IWjl Jb,dz-zj)dz (4.6) 
,,0 j j " 

Note that the sum is over all sheets in the flow. We remark that in the vortex sheet method 

(without tagging) the probability that y/, = y/ or Y" +1/2 = Y/ +1/2 for some i =F j is O. 
Hence, the assumption (4.5) is reasonable. 

We assume that the ai have been chosen as described in §2.3.2. Define the action of D,;:,./ 

on UO by 

N 

D,;:,.ruO(z,y)=U(x)+ E Wj b.dx-Zj)H(IYi +~i I-Y) 
i=1 

r f, 

+ E E w" b,d Z - ad H ( 1 ~il 1 - Y ) 
i-I I-I 

( 4.7) 

where and the ~i and ~" are independent Gaussian random variables with mean 0 and variance 

2vAt and qj and w" are chosen as in Algorithm B. The results below remain true for creation 

algorithm A or if one solves the Be (2.18) exactly by requiring that 

f. 

E Wil 
1=1 

hold for each i = 1, . . ., r. 

- -
We let E Df::./ UO denote the expectation of Df::./ UO taken over the random walks ~i and ~il 

while 
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denotes the variance of Dtl., UO with respect to these random walks. 

We will obtain bounds in the L1(11) and L2(11) norms where 11 is our computational 

domain 11 = [a ,6 ] X [0,00) and for 1 :5 p < 00 the L P (11) norm of the error between two 

functions is defined by 

6 00 1 

II/-gilp =(J JI/(x,y)-g(x,y)IPdydxf"P 
4 0 

For a function I(x ,y) defined on 11 we will sometimes need to consider the sup norm of 1 as a 

function defined on the wall alone, 

11/(·,0)1100= sup I/(x,O)I· 
" E 14,61 

Furthermore, if 1 is. piecewise Cion [a ,6] and Cion the open intervals (6; -1,6;) where 

:5 6m = 6 then, following Schultz ([25], p. 2), we define 

lIa"/(·,O)lioo=max sup la"/(x,O) 1 . 
i 6'_1 ~ " ~ 6, 

The L2 norm of I(x ,0) and a" I(x ,0) are defined similarly. 

Recall that we denote the length of the wall by L = 6 - a. In any actual utilization of 

the vortex sheet method the sheets will be moving downstream parallel to the wall, eventually 

leaving [a ,6 ]. In particular, at any given time step some sheets will lie partly in and partly out 

of this interval. Since in this section we are only concerned with movement of the sheets in the 

direction perpendicular to the wall this will not present a problem. We consider only those parts 

of sheets which affect the velocity field within the computational domain 11. 
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4.2. The Analysis We begin by showing that the exact solution DAr ,,0 is the expected value 

of our random walk process when the no-slip boundary condition is solved exactly. (In this 

regard see the definition of U o~,+l in §3.2.) 

THEOREM 4.1 Let "O( x ,Y ) be given by (4.4) and let DAr ,,0 denote the exact solution of the 

differential equation (2.2a,b) with initial data ,,0. Then 

DAr "O(x ,y) = E [ U(x) + E wi b.dx - xi) H( 1 Yi +~i I-Y) - "O(x ,0) H( 1 ~ 1 - y) 1 
i 

where ~ and the ~i are Gaussian distributed random variables with mean-O and variance 2v~t 

and the expected value is over these random variables. 

Proof: We begin by obtaining an exact expression for DAr ,,0 in terms of the Green's function 

for the diffusion equation on -00 < y < 00. The exact solution to (2.2a,b) on the half plane 

y ~ ° can be found by extending the initial data anti-symmetrically about x = 0, 

y < 0, 

and solving 

U, = VU", 

u (x ,'1/ ,0) = UO(x ,'1/), 

on the entire real line -00 < y < 00. The solution of this problem is easily obtained via the 

fundamental solution of the heat equation on R ([191), 

_(, __ )2 

1 •. (x '1/ t) - J. 4.,1 •• O(X ,s ) ds .. " -J41iVt'" .. 
-00 

00 

( 4.8) 
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For UO defined by (4.4) let Cj = Wj bh (x -Xj ) where we suppress the dependence on x for 

notational convenience. Then 

.::i!.::!f. o e 4v~ 

- J ~ (U (x ) + ~ C j H (y j + s )) ds 
-00 411'VLH j 



26 

-r -~ 
00 4v~' 00 e 4v~ 

=U(X)+~CjJ; H(IYj+s-I-y)dS--uO(x,O)J J H(IS"I-y)dS" 
j -00 47!'v~t -00 47!'v~t 

= U(x) + ~Cj E H( 1 Yj +S- I-Y) - UO(x ,0) E H( 1 S- I-Y) . 
j 

Thus, the amount by which the expected value of Dt:>.t UO differs from the exact solution, 

Dt:>.t uO, depends on how well one approximates UO( x ,0) by creating new sheets at the wall. We 

will now show that in the LI norm this difference is O((h + wmax) Jv~t). This fact holds for 

either of the particle creation algorithms described in §2.3.2 as well as solving the Be (2.18) 

exactly. 

THEOREM 4.2: Let uO, Dt:>.Iuo be defined by (4.4) and (4.7) respectively. Then 

f, 

Proot: Let u!= - E Wi/' By Theorem 4.1 we have 
I-I 

, f, 

E Dt:>.1 UO(x ,y) - Dt:>.1 UO(x ,1/) = E [ E ~ Wil b" (x - ai) H( 1 S"il 1 -Y ) I 
i-II=I 

+ E [ UO(x ,0) H( 1 S- I-Y) I 

, 
- [ E u/ b,.{x - a..} - UO(x ,0) 1 E H( 1 S" I-y) . 

i=1 

since S" and the S"il are identically distributed. Thus, 

b - , 00 

II E Dt:>.Iuo - Dt:>.t uo III = fiE u!b,dx-a..} - UO(x ,0) 1 dx J E H(, S" I-y )dy. 
G i=1 0 

(4.10) 
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We can write 

~ 
00 e 4//6t 00 2e -(l/2 

E H ( I s- I -y ) = J H ( I s- I -y ) d s- = J d S-
-00 V411'vat 1I/v'2IIf:;.t V21r 

(4.11) 

whereby 

ooJ ooJ ooJ 2e ~/2 J4vat ooJ ooJ -(lf2d d = J4i/At EH(Is-I-y)dy= V21r dS-dy= Vir e S- Y r=. 
o 0 11 /v'211f:;.t 211' 11' 0 II V 11' 

The last equality follows from integration by parts with respect to y. Next, let Uj = UO( aj ,0)-

and write 

b r b r r 

J I ~ tlJ 6, (z - ad - tl°(z ,0) I dz ~ J I ~ til 6, (z - ad - ~ tlj 6,.. (z - ad I dx 
.. j-I .. j~1 j=1 

r 
+ J I ~ tlj 6...(x - aj) - UO(x ,0) I dx 

.. j=1 

By definition of the u! and (2.20) we have 

I tI! - Uj I (4.12) 

Thus, since rh = L , 

b r r r b 

fiE u! b,.. (x - ad - E tlj b...( x - ad I dx < Wma.x E J b,.. (x - aj ) dx ~ L WmIU 

(I i=1 "=1 "=1 II 

where we have used (3.2) to evaluate the integral of b,.. exactly. Now note that EUj bh (x -aj) 

is the piecewise linear interpolant of tl°(x ,0) with breaks at the aj. Therefore, exercise 2.3 of 

Schultz ([25]) implies 
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The theorem follows immediately. 

During the course of estimating the probability distribution of the error in the L2 norm 

(Theorem 4.7) we will need the following bound. 

THEOREM 4.3: For UO and DAI uo, as in Theorem 4.2 we have 

Proof: From (4.10) we find 

_ b r .!.. 00 .!.. 
liE DAJuo - DA1uO 112 = (f( E u!6,,(z-a.) - UO(z ,0))2dz)2 (J(E H( I ~I-Y) )2dz)2. (4.13) 

4 .=1 0 

The right hand side of (4.13) is the product of two one dimensional norms. The first of these is 

the L2 norm of a function of z defined on the interval [a ,6]. Letting u. = uO(aj ,0) we have 

r r r 

II E ul 6" ( . - aj ) _. UO( . ,0) 112 ~ II E ul 6" ( . - aj) - E Uj 6" ( . - aj ) 112 
j =1 j =1 j=1 

r 

+ II E Uj 6" ( . - aj ) - u ( . ,0) 112 
;=1 

We can evaluate the first term on the right by using (4.12) and the fact that E6" (x -aj ) ::; 1 

for all z (since aj - aj -1 = h ), 

r r 

II E u16" ( . - aj) - E Uj 6" ( . - aj ) 112 < Wm&X .JL 
j=1 j =1 
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To evaluate the second expression we use Theorem 2.4 of Schultz ([25]) to bound the £2 norm 

of the difference between Uo(x ,0) and the piecewise linear interpolant ~'Uj b" (x -aj ), 

r 

II ~ 'Uj b,.( . - a;} - U
o( • ,0) 112 ::; 11'-1 II 0" Uo ( • ,0) 112 h 

i =-1 

The other one dimensional norm on the right hand side of (4.13) may be evaluated by using 

(4.11) and Lemma 1 of Hald ([16]) with a = b = 2vAt , 

We would like a bound on the £1 norm of the variance of DAt 1£0. We begin with two prel-

iminary lemmas, the first of which is essentially an extension Hald's Lemma 1 ([16]). 

LEMMA 4.4: For any Yj ~ ° we have 

(4.14) 

where 

Furthermore, F(O) = (2 - J2)/h, F'(y) ~ ° for all y, and F(oo) = 4/h implying 

(
2 ~) ::; F (y) ::; ); (4.16) 
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for all y E [0,00). 

Proof: Our proof closely follows Hald's. Set 

II 2 
/(y) = J e -{f-lIj) /2 d ~ . 

o 

By interchanging the order of integration and then integrating the inside integral by parts we 

obtain 

Now integrate the first summand in this last expression by parts to get 
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This proves (4.14). The claims regarding F (0), F '(y ) and F (00) are easily verifiable. 

We obtain bounds on the variance of Df:>.t UO using the following bound on the £1 norm of 

the variance of the independent summands, H ( I Yj +S-j I -y). Hald proved this lemma in [16] 

for the case when Yi =0. 

LEMMA 4.5: Let Yj :::: 0, let F(Yj) be defined by (4.15), and let S- be a Gaussian random 

variable with mean 0 and variance 2vilt . Then 

00 

J var H( I Yi + S- I - Y )dy ~ F (Yi /J2l1ilt ) J2Vilt . 
o 

Proof: First note that 

e 411f:>.t 

EH(IYj+s-I-y)= J H(IYj+s-I-Y) J41rVilt ds-=P(IYj+s-1 :::: y). 
-00 

00 

Hence,sinceH(y)2=H(y)andl-P(a ~ b)=P(a < b),wehave 

varH(IYj +~I-y)=P(IYj +~I ~ y) P(IYj +s-I < y). 

Furthermore, 

e 411f:>.t 

P( I Yj+~1 ~ Y ) = J H( I Yj+~I-Y) J41rllilt d~ 
-00 

00 

-{'-'1)2 -('-'1 )2 

00 e 411At -11 e 4"61 

= J ~ ds-+ J J41rVilt d~ 
, -00 

_(,_, )2 
__ 1_ 

oo..,~ 411f:>.t 

< J w" d 
- J41rVilt S-, 
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since the Gaussian curve is centered at ~ = Yi. Similarly, we have 

e <lvAt 

P( I Yi+~1 < Y ) = 1 H(Y-I Yi+d) J47rv~t d~ 
-00 

00 

-( r-tI j )2 -{~-1I J )2 

11 e 4vAt 0 e 4vAt 

-1 d~+1 d~ 
- 0 J47rv~t J47rv~t -11 

Now let zi = Yi /J2v~t . Then we have 

00 00 

f varH( I Y; + ~I - y)dy= f P( I y; + ~I ~ y) P( I y; + ~I < y)dy 
o 0 

00 00 2 -(r-' )2/2 11 /./2vt:.1 2 -(r-z )2/2 
= f f _t: J d ~ f _e J d ~dy 

o 11 / ./2vt:.1 J2'1r 0 J21T 

-
A bound on the L 1 norm of the variance of Dt:.1 UO now follows easily from the indepen-

dence of the random walks, ~j and ~il . 

THEOREM 4.8: Let UO be given by (4.4) and Dt!J UO by (4.7). Then 

(4.17) 
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where 

c. = .}; {II wO III + ! L II UO( . ,0) II oo} . 

Proof: Since the ~i and ·~il are independent, identically distributed random variables we have 

b 00 

IIvar(D6 I uO)III=J JE wlb 1l
2(X -xi)varH(IYi +~i I -y)dydx 

.. 0 i 

boor 9, 

+ J J E E WiT b1l
2(X - ai) var H( I ~il I - y)dydx (4.18) 

.. Oi=II-1 

b 00 

= E wl J b1l
2(X - Xi )dx J var H( I Yi + ~ I - y)dy 

i.. 0 

r 9; b 00 

+ E E WiT J b1l
2(X - ai )dx J var H( I ~ I - y)dy 

i-II-I.. 0 

Since 0 :5 bll (x) :5 1 for all x we have 

b b 

Jb Il
2(X -xi)dx:5 Jbll(x -xi)dx 

CI CI 

and hence, by (4.6) 

b b 

E wl J b1l
2(X - Xi )dx :5 wmu E I Wi I J bdx - Xi )dx = wmu II wO III . 

i CI i .. 

Furthermore, for the piecewise linear bll we have 

b 1 

J bll
2(x - ai )dx < h J 12(x )dx 

CI -1 

~h 
3 

where 1 is defined by (3.2). By definition of the qi and the Wi, we find 

(4.19) 
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9j 9j 

~ Wif = Wmax ~ I Wil I ::; Wmax I UO( ai ,0) I ::; Wmax II UO( • ,0) II 00 • (4.20) 
1=1 1=1 

Thus, by Lemma 4.5 and the fact that rh = L we have 

( 4.21) 

The inequality in (4.17) now follows from (4.16). 

The inequality in (4.17) give us a relationship between the variance of Dt::.tuO and the 

parameters v, ~t , and Wmax ' In particular we see that, in the L1 norm, the variance. of Dt::.t UO 

decreases like ..;;;. In other words the statistical fluctuations in the actual realization of our ran-

dom walk, Dt::.1 uo, diminish with diminishing v. We note in passing that a close inspection of the 

proof will reveal that the bound in (4.17) exhibits the correct dependence on v, ~t , and W max ' 

Note too that this proof relies on the independence of the random walks. When sheet tag-

ging is used this independence is in general lost since sheets with the same tag may overlap. 

This loss of independence results in a term of the form 

h 00 

f f ~WjWI bdx -xj)bdx -x,}E[H(IYj +~j l-y)H(IYI +~I I-y)jdydx, 
4 0 j'l'l 

h 00 

- f f ~ Wj W, b,dx - Xj) bdx - x,) E H( I Yj + ~j I - y) E H( I YI + ~I I - y)dydx, 
4 0 j oFI 

being added to the right hand side of (4.18) where the sum is over all sheets, new and old. It is 

hard to see how this will lead to a smaller variance. 

Finally, we derive a bound on the probability distribution of the error Dt::.1 UO - Dt::./ UO in 

the L2 norm. Our proof is based on ideas found in the proof of Hald 's Theorem 2 ([16]). 
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THEOREM 4.7: Assume that h 2 ::; Wma.x ::; 1 and let UO and DAt UO be as in Theorem 4.2. 

Then for all '"Y > 0 we have 

( 4.22) 

where CD is defined by 

Remark: As described in Chapter 8 of [21] the bound in (4.22) immediately yields a bound on 

the expected value of the error, 

1 

E IID~uO-DAtUOI12::; (1 +2CD)(2v~i)4 Jwmax . 

Proof: From Chebychev's inequality (Feller [12], p. 151) we find 

We have 

- -= var (DAt UO) + (E DAt UO - D~ uO)2 

and so, by Fubini's theorem, 
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The bound in (4.22) now follows from Theorems 4.3, 4.6 and our assumption that h 2 ~ Wmax. 

4.3. Remarks Theorem 4.2 states that the random walk process is consistent. The term in 

(4.9) which is O(wmax) is due to how much we failed to satisfy the no slip boundary condition at 

the grid points, a., i =1, . . ., r. The O(h ) term is the error due to using a piecewise linear 

interpolation to the tangential velocity at the wall. IT we use a higher order interpolation the 

order of this error increases. For example, with B-spline smoothing it is O(h 2). It will be 

apparent from the numerical results presented in §6.5 that such an increase in accuracy appears 

to result in little improvement in the overall accuracy of the method. However it may increase 

the rate at which the method converges as a function of h . 

Based on the experimental evidence in Chapter 6 we believe that large errors in the vortex 

sheet method manifest themselves in the production of large quantities of unnecessary sheets. 

Note that in all of the bounds above the constants depend on uo. In particular, they depend on 

the LI norm of the vorticity, wo, and on the size of the tangential velocity at the wall, UO(:1: ,0). 

By (4.6), the vorticity is connected to h and the number of sheets, N, in the following way 

b 

IIwolil = E IWj I Jbd r -:rj)dr~ h N Wmax · (4.23) 
j II 

Furthermore, equality fails to hold only because some sheets do not lie entirely in a ~ :r ~ b . 

Thus, the LI norm of the vorticity grows when the number of sheets in the flow grows faster 

than to the rate at which h is decreased. We suspect that this is a major source of error in the 

vortex sheet method. In §6.6 we investigate numerically the increase in vorticity as a function 

of h ,~t and Wmax and find that decreasing Wmax while leaving h fixed results in no appreciable 

increase in the amount of vorticity in the flow. However, if we fix Wmax and decrease h the L 1 

norm of the vorticity generally grows. The bounds here tell us that this could result in larger 

errors and the numerical evidence in §6.6 appears to confirm this. 
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o. The CFL Condition and Dependence of the Method on v 

In this chapter we examme the so called 'CFL condition', U At ~ h, where U is the 

maximum size of the free stream velocity, U == maxU(x). We also discuss the behavior of the 
" 

vortex sheet method in the limit of vanishing viscosity. In this regard we show that vortex sheet 

solutions scale like ..;v in the y direction and that, as a consequence , for 1 ~ p < 00 the U' 

norm of the error in approximating any similarity solution of the Prandtl equations goes to 0 

like v1/ 2p . On the basis of this example as well as the results in Chapter 4 we argue that vortex 

sheet method exhibits benign if not favorable dependence on the viscosity. 

0.1. The CFL Condition The most well known and perhaps the only universally ack-

nowledged condition on the parameters in the vortex sheet method is 

U At ~ O(h ) . (5.1) 

This requirement was proposed by Chorin in [9]. The justification usually given for (5.1) is that 

one wants to ensure that the distance a sheet travels in one time step parallel to the wall is less 

than or equal to one sheet length length. ThUs, sheets created at the i th grid point are required 

to influence the i + 1st grid point before moving on downstream. 

We propose another, similar constraint: 

At < h (5.2) 

Consider sheets created at the first grid point, a 1 = .!, during the k th time step. At the next 
2 

time step, since the velocity is 0 at the wall, the only movement imparted to these sheets will 

be due to the random walk ~i in (2.21b). We seek a condition to ensure that these sheets 

remain in the boundary layer after this random walk. 



For Blasius flow the boundary layer thickness at a b denoted by 64 , is given by 
I 

5Vv h /2 . 
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(Schlichting [24], p. 140). The ~i are drawn from a Gaussian distribution with mean 0 and 

standard deviation 0' = J2v1:1t. Thus, if (5.2) holds, then 

This implies that, on the average, better than 98% of the sheets created at a I will remain in 

the boundary layer after taking one time step. Since for the Blasius flow the boundary layer 

Increases as z increases this will hold true for the sheets created at the other grid points as well. 

Similar conditions maybe found for other flows, all that is required is an estimate of the boun-

dary layer thickness. We note that for U = 0(1) the conditions (5.1) and (5.2) are essentially 

equivalent. In all computer experiments reported on in this paper 1:1t and h satisfy (5.2). 

6.2. The Dependence or the Vortex Sheet Method on the Viscosity The vortex sheet 

method scales like.;v. To see this, fix the the parameters 1:1t , h , Wmu, and the wall length, 

b - a = rh. Let Vil V2 > 0 and define p =.,;;;;;v;. Let (u I, v I) and (u 2, v 2) denote the vortex 

sheet solution at some arbitrary time, t = Ie 1:1t , with viscosities VI and V2 respectively where 

we use the same random number sequence to compute each solution and where th~ positions of 

sheets at time 0 are identical modulo the scaling 

(5.3) 

Then, 



'. 

• 

uz(x ,y) = u l(X ,p-ly) , 

V2(X ,y) = P-1Vl(X ,p-I y ) . 
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(5.4) 

This follows from induction on the time step and the fact that if ~ is a Gaussian distributed ran-

dom variable with mean 0 and variance 2vI~t , then p~ is a Gaussian random number with 

mean 0 and variance 2vz~t . 

This invariance of the vortex sheet method under the scaling (5.3) has two important 

consequences. First, one can not use the vortex sheet method by itself to model flows that 

become unstable at small v. Instead, one must employ a hybrid method as in Chorin [11]. 

Second, for l~p <00 the L" norm of the error in approximating Blasius flow (see §6.1) scales 

I 

like (JV) p. To see this, let u I (resp. u 2) denote the exact solution to Blasius flow with viscos-

ity VI (resp. vz). Then using the change of variables (5.3) and the identity in (5.4) we find 

6 00 I 

lIuz-uzll" =(J J luz(x,y)-uz(x,y)I"dydx)" 
II 0 

I 6 00 I 

=pP(J J IUI(x,y)-uI(x,y)I"dydx)" 
II 0 

Thus, if we fix vI=l and let vz-+o we have 

I 

II u 2 - u 211" = Vz 2P II u I - U I II" - o. 

Of course this argument works equally well for any similarity solution of the Prandtl 

equations which has similarity scaling 

,,= y /JVi . 

In particular, this argument applies to the Falkner-Skan solutions (Schlichting [24], Chapter IX) 

and hence the error will scale with v for any flow which is converges to these solutions .. ( e.g., 
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Serrin [26]). 

In general, we believe that the vortex sheet method exhibits either a 'favorable' depen

dence on v or no dependence at .all. (The latter is probably the case for errors in the sup norm.) 

For example, the results in Chapter 4 show how the error due to the random walk improves 

with decreasing v. This independence of v is what makes the vortex sheet method competitive. 
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6. Numerical Results 

6.1. The Test Problem We model 2-D flow past a flat plate with a constant free stream 

velocity, U(x) == con8t. This is known as Blasius flow ([24,31]). For simplicity we take the 

constant equal to 1, so U (x ) = 1. This is a stationary flow which has a well known similarity 

solution, 

u (x,y) = f(,..,) (6.1) 

where 

(6.2) 

and I satisfies the ODE 

If' + 2 f" = 0 (6.3a) 

1(0) = 0, 1'(0) = 0, and 1'(00) = 1 . (6.3b) 

While one can not write down the function I exactly it is a simple matter to solve the ODE 

(6.3a,b) numerically with great accuracy (White [31], p. 262) thus obtaining an effectively exact 

solution. 

Blasius flow is a solution of equations (l.la-e) over the semi-infinite flat plate, 

o < x < 00, 0 ~ y < 00. There is a small neighborhood of the leading edge of the plate in 

which the transverse velocity component is of the same order of magnitude as the tangential 

velocity component. The Prandtl equations are therefore not valid in this region. In order to 

ameliorate the effects of this leading edge singularity and in order to conveniently handle the 

right hand boundary of our computational domain we consider the following periodic problem. 
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We compute over the portion of the plate from a = 3h to b = 1 + 3h. We map physi

cal space, n == {(x ,y) : x > 0, and y ~ O}, onto the periodic domain 

nc == {(x ,y) : 3h ~ x ~ 1 + 3h , and y ~ O} (0 for 'computational') by the transformation 

(x ,y) E n - (x·,y·) E nc where 

x· = x mod 1 (6.4a) 

y. = y .,;;;;; . (6.4b) 

Sheets which move to the right of x = b have their centers transformed according to (6.4a,b) 

so that they now appear to lie near the beginning of nco Similarly, sheets which move back

wards, to the left of x = a , are rescaled and placed at the end of nco Furthermore, when cal

culating the velocity of a point that lies within one sheet length ofOthe edge of our computa

tional domain we take care to include the influence of sheets which lie near the other end. t 

In this way we eliminate the effects of the leading edge singularity by imposing as an 

upstream boundary condition the computed velocity profile that results from identifying x = a 

and x = b with appropriately scaled y coordinates. This also eliminates spurious effects due to 

throwing sheets away after they pass x = b (see Ohorin [91, p. 433). 

One drawback of the periodic formulation of this problem is that one never throws away 

sheets. Once a sheet is created it exists for the remainder of the computer calculation. Since the 

no-slip boundary condition is frequently violated at the end of the advection step, it follows 

that the total number of vortex elements in the flow increases with time. For Blasius flow this is 

non-physical. It is our contention, however, that this is a good test of the algorithm's 

effectiveness. Vorticity creation is an important phenomenon and one would like to approxi

mate it as accurately as possible. Successful strategies for minimizing the error in the vorticity 

creation algorithm will lead to a better overall algorithm. Furthermore, the error estimates 

t I am indebted to Jim Shearer for suggesting this formulation ·of the Blasius problemo 
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obtained for the periodic flow will presumably be worse than errors measured for flows in which 

sheets are thrown away, and therefore constitute an upper bound on the error in computing 

Blasius flow with the vortex sheet method. 

All the computer runs reported on in this paper were run with v = 10-4 and with initial 

data 

{

I, 
UO(x ,y) = 

0, 

All results are measured at time T = 2.0 

y > 0, 

y =0. 
(6.5) 

6.2. Measurement of the Error In order to eliminate the dependence of the integral U' 

norm of the error on the viscosity (see §5.2) we measure all such norms in the transformed vari-

abies (x ,,,), 

. h 00 I 

lIu -ull, =(J J lu(x,,,)-u(x,,,)I'd,,dx)' (6.8) 
" 0 

where" is given by (6.2). Furthermore, when p =1 we divide the error in the LI norm by 

hoo _00 

111 - u III = J J (1 - f(,,))d "dx = (,,- 1(,,)) I ~ 1.7208 
" 0 ~=O 

(see [24], p. 130) and report the 'normalized' error, 

(6.9) 

To estimate the integral norm in (6.8) we used 
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r 00 1 

lIu -ullp ~ (E h J lu(a;,,,)-u(a;,,,)lpd,,)" 
;=1 0 

~ r 00 1 

- h" ( E (JVa~)-1 J I u (aj ,Y ) - u (aj ,y ) I " dydx )" . 
j=1 0 

The one dimensional error above a; was calculated using the trapezoid rule 

00 

J I u (aj ,'J) - u(aj ,'J) I I' dy ~ E((errj)" + (errj+d" ) (Yj+1 - Yj )/2 (6.10) 
o j 

where errj I u (a; ,'Ji ) -. u (aj ,'Ji ) I , the sum is only over those Yi such that 

(6.11) 

and we have ordered the 1Ii so that 11; ~ 1Ii +1 for all j. i.e., we use a grid that corresponds..to 

the location of the sheets above aj. To ensure that the sum in (6.1O) starts at y = ° we place 

an sheet with no weight at (aj ,0). The value of u (aj ,1Ii ) = /'(Yi /.;;;a:) was determined by 

linear interpolation from an array containing values of f at equally spaced points 

,,=0.0,0.01, ... ,8.0. We estimate the sup norm of the error similarly, 

II u - u II 00 ~ max { I u (aj ,11 i ) - u (a; ,Y i ) I }, 

where the max is taken over all i, j satisfying (6.11). 

The velocity, vorticity, drag, and each of the various norms of the error are random vari-

abIes. We therefore made several different runs (which we refer' to as tria/a) each with a 

different starting seed for the random number generator. We estimate the expected value of a 

randomly varying quantity, e, by e where 

- 1" e = - E e j 

n j~1 
(6.12) 
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and a. is the value of a calculated from the i th trial. We estimate the standard deviation of 

a by 

" 1 
1 " - 2)2 q ~ -- ( LJ (a. - a) 

In-l .=1 
(6.13) 

It is useful to consider the standard error, lTe, of the estimate in (6.12) defined by 

(6.14) 

where IT is the true standard deviation for the parent distribution of the a •. The quantity lTe is 

simply the standard deviation of the distribution of the e's and is therefore a measure of how 

good an estimate (6.12) is of the true mean. (See [18]' p. 21.) Since we do not know IT we' will 

use (6.14) with IT replaced by q from (6.13). Unless noted otherwise, all of the data below are 

estimates based on n = 25 trials. 

6.3. An Estimate of the Rate of Convergence We begin by presenting numerical results 

. which demonstrate the convergence of the vortex sheet method in the case of Blasius flow and 

from which we' can estimate the rate of conv.ergence. Table 1 contains the discrete Ll norm of 

the error (normalized as in (6.9)) at time T = 2. In Table 2 we present the standard deviation 

of these errors obtained with formula (6.13). Note that the standard deviation decreases along 

both rows and columns. 

It is apparent that for all values of Wmax the error decreases with decreasing h as long as 

h < W max but levels off or begins to increase as h approaches W max ' We observed this 

phenomenon consistently in all of our runs. It was particularly pronounced when B-spline 

smoothing was used. We find it surprising that the standard deviation decreases even while this 

error grows. We will investigate this behavior more thoroughly in §6.6 below. 
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A Study of the Convergence Rate in the £1 Norm as a Function of Wmax 

h (~t = h ) 
W 0.2 0.1 0.05 0.025 0.0125 

0.2 0.4002 - - - -
0.1 0.2989 0.2983 - - -
0.05 0.2580 0.2239 0.2230 - -
0.025 0.2663 0.1773 0.1657 0.1903 -
0.0125 0.2483 0.1636 0.1267 0.1346 0.1864 

0.00625 0.2529 0.1594 0.1088 0.0990 0.1159t 

0.003125 0.2473 0.1528 0.1007 0.0778 t -
0.0015625 0.2511 0.1534 0.0857t 0.0669* -

Table 1 Piecewise Linear Cutoff 

The Standard Deviation of the Errors in Table 1 

h (~t = h) 
w 0.2 0.1 0.05 0.025 0.0125 

0.2 0.0734 - - - -
0.1 0.0638 0.0521 - - -
0.05 0.0475 0.0399 0.0279 - -
0.025 0.0473 0.0239 0.0112 0.0165 -
0.0125 0.0243 0.0202 0.0126 0.0101 0.0069 

0.00625 0.0252 0.0104 0.0103 0.0075 0.OO60t 

0.003125 0.0146 0.0093 0.0069 O.OO77t -
0.0015625 0.0088 0.0068 0.0078t - -

Table 2 Piecewise Linear Cutoff 

We repeated this experiment with the time step halved (~t = h /2) in an effort to deter-

mine if any of the errors would decrease as ~t decreased. These errors, presented in Table 3, 

were remarkably close to the previous results, sometimes agreeing tQ several decimal places. 

Furthermore, most of these new errors lie within two standard errors of the figures in Table 1 

(using the estimates of the standard deviation from Table 2), making the two quantities statisti-

cally indistinguishable from each other. This was also true for the errors in the £2 norm. Thus 

we conclude that the errors presented in Table 1 do not vary 'independently' with the time step 

tHere 5 :S n < 25 where n is the number of trials. 

t n =1. 
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in the sense that they do not diminish when hand W max are fixed and at decreased. This may 

well be due to the fact that we are computing a stationary flow. 

The Error8 are Independent of at . 

h iat = h /2) 
W 0.2 0.1 0.05 0.025 0.0125 

0.2 0.4318 - - - -
0.1 0.3215 0.2967 - - -
0.05 0.2762 0.2336 0.2463 - -
0.025 0.2721 0.1787 0.1778 0.2170 -
0.0125 0.2402 0.1586 0.1276 0.1498 0.2146t 

Table 3 Piecewise Linear Cutoff 

Returning to Table 1 we note that for small, fixed W max the errors decrease like h 2/3. We 

conjecture that there are two sources of error which depend predominantly on h, one like 

O(h 2/3) and another which grows if h tends to zero much faster than W max . Hence, for 

W mu « h the first error dominates and we find the errors that behave like O(h 2/3). On the 

other hand, as we shall document in§6.6 below, when h decreases faster than W max the second 

source begins to dominate and we observe gradually increasing errors. We speculate that this 

second source of error may be due to the fact that 

In other words, sheets induce local (non-physical) fluctuations in the velocity (and vorticity) 

which are O(wmaxl h) as one moves in the direction parallel to the wall. The exact cause of 

these sources of error and the nature of their dependence on the parameters remains an open 

question. 

Note that as one moves vertically down a column the error eventually levels out. This 

'plateau' is due to sources of error, such as the splitting error, which are unaffected by W max. 
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Since ilt and h are constant along columns it follows that any decrease in the error along 

columns is due to Wmax alone. 

It is difficult to obtain a precise estimate of the rate at which the error depends on Wmax 

We believe this rate to be O(wmaxO) for some 1/3 ::; a ::; 1/2. We choose a lower bound of 1/3 

based on (4.22) and the data presented here. Furthermore, we believe it is very likely that 

a = 1/2. In [23] Roberts showed that for the random vortex method the error deceases like 

.fN -1 where N is the number of vortices used. This corresponds to a rate of ..jwmax for the vor-

tex sheet method. In contrast, the theoretical bounds for the random vortex method in [14] only 

pr~dict a rate of 10gN /W in the L2 norm. Similar remarks apply to the bounds established in 

[21] on the random gradient solution of the Kolmogorov equation. 

All of our numerical experiments were made under the assumption that the error was 

O( ..jwmax). The danger in assuming a rate slower than the true one is that we end up doing 

more work than necessary to achieve a given level of accuracy. The danger in assuming a rate 

which is faster than the true one is that we may end up in a regime in which errors result from 

too rapid a decrease of the parameter h . 

A Convergence Study with h = O(Wmax
3

/
4

) and ilt = h . 

(ilt = h ) 

W~U L1 norm L2 norm Loo norm sheets time 8 av 8"av 
0.025 0.2817 0.2489 0.2708 226 0.002 0.0044 0.00161 
0.0125 0.1617 0.1756 0.2677 939 0.022 0.0024 0.00070 
0.00625 0.1044 0.1070 0.1536 2954 0.218 0.0013 0.00037 
0.003125 0.0823 0.0915 0.2719 13755 3.638 0.0009 0.00029 
0.0015625 0.0592 0.0631 0.1141 37206 31.131 0.0007 0.00019 

Table 4 (1 trial per row) 

We made a sequence of runs with w~~ = O(h 2/3). The results appear in Table 4. We 

started with W max = 0.025 and h = 0.2 and decreased W max by 2 while decreasing h by 23
/
4

• As 

before we take ilt = h. Note that each row of data is from only one trial. 
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The column labeled 'time' contains the time, in minutes, it took for 1 trial on a eRA Y 

X-:MP. The FORTRAN program was designed to be as fast as possible. In particular, we vec-

torized every loop that would admit vectorization. We also employed a 'bin' data structure in 

which all sheets lying in aj - h /2 ::; 1: < aj + h /2 are kept in the same bin. Thus, in order to 

compute the velocity of a sheet in the i th bin we need only loop over those sheets in adjacent 

bins. Thus, in the advection step, instead of every sheet interacting with every other for a total 

of N 2 interactions each sheet has approximately (2R + 1 )hN interactions where R is as in 

(2.8b). This results in an algorithm which is 

O((2R +1) h N 2
) . (6.15) 

The column labeled 81 at! is the average error in the di8placement thickness defined by 

(6.16) 

Here 81( aj ) is the displacement thickness above aj , 

00 

81 (:1" ) = J (1 - u (z , y ) ) dy 
o U(z) 

(Schlichting [24], p. 140) and 81 is the trapezoid rule approximation to 81 given by (6.10) with 

u (aj ,y ) replaced by 1. Similarly, c2 at! is the average error in the momentum thickness defined 

by (6.16) with 81 and 81 replaced by 82 and 82 where 

00 

8(z) . J u(z'Y)(1_ u(z'Y))d 
2\ 0 U(z) U(z) y. 

(Schlichting [24], p. 141) and 82 is the trapezoid rule approximation to 82. Note that we have 

not scaled out the effect of v in our calculation of 81 and 62. Thus 81at! and 82av are 

O( JV) = O( 10-2). 
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We chose wmaxlh small in order to compute in a regime with small variance. We wished 

to demonstrate that one need not average in order to effectively use these random walk 

methods. The fact that most of the results reported on in this paper are averages should not be 

construed as suggesting that one must always 'ensemble average' to get reasonable results. It is 

sufficient to make one run as long as it is in a regime of small variance. t In particular, note that 

the errors in the L1 and L2 norms as well as the average errors in momentum and displacement 

thickness decrease at the anticipated rate of II J2 without averaging. The Loo norm was not as 

well behaved, an issue which we shall pursue no further. 

It should be remarked that Blasius flow is not only a stationary solution of the Prandtl 

equations but a similarity solution as well. Therefore, these results may not be representative of 

what happens with more general flows. 

6.4. Second Order Integration in Time In order to determine the effect of solving 

(2.17a,b) with a higher order ODE solver we .conducted the same experiment as in Table 1 but 

with the movement of the sheets in the advection step now being given by 

where 

1 
Yj ,= Yj + _ I1t tilt: (xl ,y/) 

2 

I Thus, ror small II, 1 trial should be sufficient even though the values or the other computational parameters 
may be large. For example, see 161. 
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is the position of the j th sheet after one half of a time step and (u 1/2, ii 1/2) is the velocity field 

induced by the sheets when their centers are at these positions. 

Second Order Integration in Time 

h (~t = h) 

w 0.2 0.1 0.05 0.025 0.0125 
0.2 0.4224 - - - -
0.1 0.3290 0.3183 - - -
0.05 0.2736 0.2316 0.2547 - -
0.025 0.2261 0.1701 0.1759 0.2271 -
0.0125 0.2325 0.1552 0.1325 0.1531 t 0.2239t 

Table 6 Piecewise Linear Cutoff 

Comparing these results with Table 1 we observe no increase in accuracy over the Euler's 

method solution of (2.17a,b). Furthermore, we noticed a marked increase in the rate at which 

the number of shee~ in the flow grew as h was decreased with W max left fixed. Of course here 

we did not use Strang splitting and hence do not expect to see all sources of error that depend 

on ~t decrease. Nonetheless, unlike the results in Table 2 of [21], here there appears to be no 

improvement in the error due to second order time discretization. 

There seems to be a prevalence of opinion among users of hybrid vortex sheet/vortex blob 

methods that the use of a higher order time integration will result in a better solution. (For 

example, [6,29,301.) Perhaps this opinion is based on theoretical results for the vortex method 

solution of the Euler equations with higher order time integration ([1,17]). However, the fol-

lowing points should be made with regards to the vortex sheet method. A second order scheme 

such as the one used. here results in twice as much work. Furthermore, we are constrained by . 

(5.2) to decrease ~t as rapidly as h. Our results indicate that the dominant sources of error 

'. 
are those that depend on hand Wmax ' Hence one may be doing twice as much work for a negli-

gible gain in accuracy. We suspect these considerations may apply to other flows as well. 

t 5 :S n < 25 
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We remark that Tiemroth [30] used a second order time integration in conjunction with 

Strang splitting and reports improved results. We tried this approach in our numerical experi-

ments with the random gradient solution of the Kolmogorov equation and also observed 

improvements. However, to achieve the full benefit of the higher order time integration and 

higher order splitting one needs to balance the O(~t 2) errors with the other sources of ,error. 

Since we know of no way to increase the rate that the error decreases with h and W max we ques-

tion the wisdom of computing the velocity field twice as often in order to diminish only one 

source of error. 

0.5. B-Spline Smoothing In Table 6 below we present the average of the error in the L 1 

norm versus the average number of sheets at time T = 2.0 for the vortex sheet method with 

the B-spline cutoff. These figures should be compared with Table 7 which contains the same 

data for the piecewise linear cutoff. The two methods achieved comparable levels of accuracy. 

Furthermore, for some values of W max and h spline smoothing results in fewer sheets. 

L1 Norm 0/ the Error vern6 Number 0/ Sheet6 with ~t = h 

h (~t = h) 
W~.9 0.2 0.1 0.05 

sheets error sheets error sheets error 
12-1 52 0.3162 144 0.3099 511 0.3769 
24-1 105 0.2514 285 0.2173 973 0.2775 
48-1 198 0.2460 526 0.1632 1686 0.1864 
96-1 390 0.2130 960 0.1467 2851 0.1245 
192-1 746 0.2328 1778 0.1346 4923 0.0989 
384-1 1455 0.2200 3332 0.1346 8676 0.0857 
768-1 2894 0.2411t 6033 0.1485t 14831 0.0928t 

1536-1 5694 0.2178 t 12064 0.1312t 28167 0.0677t 

Table 0 B-spline Cutoff 

.' 
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For a given combination oC h , Wmax, and tJ.t let Ns be the number oC sheets created with 

spline smoothing and let N p denote the number oC sheets created with piecewise linear smooth-

ing. Table 8 contains the ratio Ns I N p as a Cunction oC the parameters. It is apparent that this 

ratio grows with increasing wmaxl h , eventually becoming greater than 1. It appears that one 

might be able to keep the ratio Ns I N p constant by decreasing Wmax three or Cour times as Cast 

as h . However this is much Caster than we concluded was necessary above. Perhaps this is due 

to a Caster rate.oC convergence as a Cunction oC h Cor the splines. We note that iC the B-spline 

algorithm was O(h 4/3) then the rate at which one must decrease h relative to Wmax in order to 

balance O(h 4/3) = O(w~~) is roughly the same rate that appears to result in a constant 

Ns/Np . 

L1 Norm 0/ the Error with tJ.t = h 

h (tJ.t = h ) 
Wrnu 0.2 0.1 0.05 

sheets error sheets error sheets error 
12-1 64 0.2902 152 0.2725 387 0.2923 
24-1 131 0.2471 302 0.1919 764 0.2137 
48-1 264 0.2358 595 0.1572 1475 0.1529 
96-1 519 0.2127 1144 0.1442 2768 0.1130 
192-1 1027 0.2207 2217 0.1382 5203 0.0911 
384-1 2025 0.2201 4319 0.1315 9690 0.0811 

768-1 4017 0.2290t 8471 0.1354t 18521 0.0865t 

1536-1 8016 0.2304t 16523 0.1373 t 35240 0.0779t 

Table 7 Piecewise Linear Cutoff 

The relationship between the growth oC the error, the increase in the ratio Ns I Np , and 

the rate at which Wmu is reduced relative to h merits further study. We find it puzzling that 

presumably more accurate methods, second order Runge-Kutta above and spline interpolation 

'. here, result in an increased rate oC growth, in both the sheets and the errors, when h is dimin-

ished with fixed Wmax . 
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Until a more complete understanding of this phenomenon is forthcoming we feel that 

.some care should be taken with the B-spline smoothing. We suggest making (small) runs with 

each smoothing, using several different choices of Wmax and h, and plotting the ratio Ns / Np . 

One can then extrapolate to find the proper combinations of Wmax and h for large runs. In fact, 

this may be a way to find combinations of Wmax and h for which the variance is small. 

The ratio Ns / Np . 

h (LH = h) 
W 0.2 0.1 0.05 
12-1 0.81 0.95 1.32 
24-1 0.80 0.94 1.27 
48-1 0.75 0.88 1.14 
96-1 0.75 0.84 1.03 

192-1 0.73 0.80 0.95 
384-1 0.72 0.77 0.90 

768-1 0.72t O.71t 0.80t 

1536-1 O.71t O.73t 0.80t 

Table 8 

The savlOgs 10 computational cost due to the reduced number of sheets needs to be 

weighed against the increased expense of computing with B-splines. The cutoff in (3.4) is 

moderately more expensive to evaluate than that in (3.2). Furthermore, since the support of the 

B-spline cutoff is twice as large as that of the piecewise linear cutoff the number of sheets 

needed to evaluate the velocity in (see (6.15)) roughly doubles. On the other hand, when the 

vortex sheet method is combined with a vortex method solution of the.Navier-Stokes equations, 

in which the sheets become vortex blobs, reducing the number of sheets by 25% may reduce the 

amount of work in the vortex method by 43%, i.e. roughly one half. Here we have assumed 

that the work in computing the velocity field in the vortex method is 0(N2). In some cases this 

may be reduced ([2, 3, 15]). 

t n =1. 
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6.6. The Behavior of the Algorithm with Decreasing h Observe that the number of 

sheets above x is governed by Wmu' For example, assume that Wmax divides 1 evenly and let 

the initial data be given by (6.5). Let Nz denote the number of sheets above x. Then at the 

first time step, with piecewise linear smoothing, we have 

NtJ = wmax- 1 
I 

i = 1, ... , r. 

In general, at least for reasonable pressure gradients (UUz small), one expects that 

for any x. 

In Table 9 we show the average number of sheets in the flow at time T = 2.0 as a func-

tion of Wmax, h , and i1t with the piecewise linear smoothing. It is apparent that if one fixes h 

and i1t and decreases Wmu by 2 that, on the average, the number of sheets above x roughly 

doubles. In fact, if we restrict ourselves to regions for which Wmax < h it is rare for the number 

of sheets to more than dou.ble. (Some of the figures here differ from those in Table 1 even 

though the choice of parameters is the same .. This is due to the fact that these trials were made 

on a different computer with a different random number generator.) 

Gradual Increase of the L 1 Error for Decreasing h ,i1t and Fixed Wmax 

h (i1t = h ) 
W 0.2 0.1 0.05 0.025 

sheets error sheets error sheets error sheets error 
0.2 26 0.4317 63 0.4449 179 0.5434 880 0.6860 
0.1 54 0.3106 125 0.2915 328 0.3331 1074 0.4169 
0.05 109 0.2724 253 0.2054 641 0.2317 1986 0.2858 
0.025 222 0.2524 498 0.1681 1248 0.1630 3702 0.1989 

Table 9 Piecewise Linear Cutoff 

One would also expect that letting h go to h /2 would produce similar results. This turns 

out not to be the case. It is apparent from Tables 6 and 9 that the (average) number of sheets 
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In the flow always increases by more than 2, often by much more. Since in all these runs 

~t = h , one can inquire if this unexpected increase is due to the increased number of time 

. steps. To answer this question we made a sequence of runs fixing ~t = 0.0125 and reducing h 

as before. The results appear in Table 10. It is apparent that the errors continue to grow as h 

decreases with Wmax fixed. Therefore this phenomenon is not due to decreasing ~t . 

In all but one case the errors in Table 10 are larger than those in Table 9. The same is 

true for the number of sheets. In sOme cases, particularly in the last column, the difference is 

by as much as 7 standard errors. Provided our estimate of the standard error is reasonably 

accurate, this is statistically significant. It seems to run counter to our intuition that the errors 

should be worse for a smaller time step. We can offer no explanation. We do note however that 

an abnormal growth in the number of sheets seems to characterize these regions of parameter 

space that produce large errors. 

Gradual Increa8e 01 the L 1 Error lor Decrea8ing hand Fized ~t , Wmax 

h (~t = 0.0125) 
w~. 0.2 0.1 0.05 0.025 

sheets error sheets error sheets error sheets error 
0.2 31 0.4380 79 0.4489 242 0.5339 1056 0.7514 
0.1 64 0.3640 158 0.3110 451 0.3647 1427 0.4549 
0.05 128 0.2849 320 0.2310 909 0.2549 ·2745 0.3228 
0.025 246 0.2733 612 0.1789 1712 0.1839 4978 0.2167 

Table 10 

We consider this phenomenon important for the several reasons. The amount of work to 

compute the velocity at each of the sheets in the advection step is either 0 (N2) or, with a bin 

data structure, O(hN2) where N is the total number of sheets in the flow. Thus, reducing h by 

2 results in a greater increase in computational cost than reducing Wmax by 2. Furthermore, 

errors eventually begin to grow if h is decreased .with Wmax left fixed. In particular, these obser-

vations together with (4.23) imply that the vorticity in the flow will remain constant if hand 

~t ar~ fixed and Wmu is decreased but grow if h and ~t are decreased with Wmax fixed. Conse-
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quently, the bounds in §4.2 worsen. Unfortunately, one cannot pursue a strategy of only 

decreasing W max , for eventually there is no improvement except possibly a reduction in the vari-

ance. One must therefore toe a fine line between decreasing h too rapidly and not decreasing 

h fast enough. 

6.7. A Comparison of Particle Creation Algorithms In this section we present the 

results of a numerical experiment designed to compare the two particle creation algorithms 

described in §2.3.2. We obtained the errors in Table 11 with creation Algorithm A using a 

value of Wmin = 10-6• Table 12 is a duplicate of Table 11 except here we used the creation 

Algorithm B. i.e., the same algorithm used for all other experiments in this paper. Note that 

here the errors are in the discrete L2 norm. 

Di8erete L2 Norm of the Error 

h (At = h) 
W~ .. 0.2 0.1 0.05 0.025 

sheets error sheets error sheets error sheets error 
0.2 60 0.3600 - - - - - -
0.1 88 0.2957 289 0.2738 - - - -
0.05 145 0.2525 427 0.2103 1407 0.2416 - -
0.025 255 0.2327 676 0.1783 2021 0.1690 7076 0.231Ot 

0.0125 477 0.2021 1150 0.1400 3109 0.1164 9860 0.1350t 

Table 11 Algorithm A 

It is apparent that Algorithm A results in an increase in the number of sheets in the flow 

but with little or no improvement in accuracy. We also tried replacing Wmin = 10-1 with 

WmiD = Wmu./2 and observed a similar result: no noticeable improvement in the error but more 
• 

sheets than Algorithm B. Thus, we conclude that Algorithm A results in no observable increase 

in accuracy but leads to a greater computational cost. 

I 10 ~ n < 20 
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Discrete L2 Norm of the Error 

h (~t = h) 

W ow 0.2 0.1 0.05 0.025 

sheets error sheets error sheets error sheets error 

0.2 27 0.3610 - - - - - -
0.1 53 0.2763 124 0.2766 - - - -
0.05 109 0.2410 251 0.2090 638 0.2087 - -
0.025 216 0.2378 495 0.1709 1256 0.1612 3749 0.1808 

0.0125 430 0.2222 972 0.1549 2370 0.1258 6775 0.1329 

Table 12 Algorithm B 

6.8. Sheet Tagging Finally we made a run with the same values of parameters as in Table 

12 but this time using sheet tagging. We present the L1 norm of the error and it's variance in 

Table 13. These figures may be compared with Tables 1 and 2. It is apparent that the sheet 

tagging leads to neither a decrease in the error nor a reduction of the variance. We remain very 

dubious about the use of sheet tags. 

Di8crete L1 Norm of the Error 

h (~t = h ) 
W 0.2 0.1 0.05 0.025 

error ti error ti error ti error ti 
0.2 0.5508 0.2671 - - - - - -
0.1 0.4574 0.1933 0.3677 0.1938 - - - -
0.05 0.2922 0.1145 0.2524 0.0748 0.2844 0.0777 - -
0.025 0.2422 0.1236 0.1729 0.0399 0.2026 0.0437 0.2045 0.0236 
0.0125 0.2406 0.0893 0.1638 0.0637 0.1413 0.0308 0.1490 0.0119 

Table 13 Sheet Tagging 

6.9. Conclusions In the case of Blasius flow we conclude that for fixed v, ~t ~ h, and '. 
Wma.x < h the vortex sheet method converges like O( Jwma.x) + O(h 2/3). However, if h is 

allowed to decrease much faster than Wma.x the error eventually begins to grow. We have also 

shown that for 1 ~ P < 00 the error in the LP norm decreases like V 1/ 2P . 
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Our investigation of the algorithm when h tends to 0 much faster than WmaX has shown 

that the increasing errors are accompanied by an increased growth rate in the number of sheets. 

This leads to a rapid increase in the computational cost of the algorithm. Thus, in order to 

ensure that the errors will decrease as the parameters tend to 0, we recommend setting At < h 

and h = O(Wmax
3/ 4). 

Experiments with B-spline smoothing indicate that for the same choice of parameters the 

error is comparable to that obtained with piecewise linear smoothing. Additionally, we were 

able to diminish the number of sheets created by as much as 25% through the use of the B

splines. However this reduction was only evident for certain choices of the parameters. It 

appears that to ensure a 25% reduction in the number of sheets hand Wmax must be chosen so 

that Wmu: decreases three or four times as fast as h. Further work is necessary to determine if 

the splines are indeed a viable improvement to the vortex sheet method. 

We have also demonstrated that a more cost efficient algorithm results when all sheet 

strengths are chosen to have magnitude Wmu ' Finally, on the basis of numerical evidence 

presented here, we conclude that the variance reduction technique known as sheet tagging intro

duced in [9] is of questionable value. 
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