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Introduction 

Speciation studies describe a l i q u i d ,  solid, or gas-phase 

composition i n  greater detail than i n  terms of gross concentrations. 

For example, a liquid-phase composition may specify the oxidation states 

of the ions. More extensive studies would report the species general 

solution interactions i n  terms of specific solvation, hydrolysis, 

complexation, redox, etc. reactions. Oxidation states determinations 

are frequently included i n  solubility studies analysis. Further 

solution species characterization is most often found i n  studies that 

deal with the behavior of a.single ele 

idealized experi rimental results are 

der carefully controlled 

useful for data bases utilized by modelers I n  their calculated 

predications for a nuclear waste repository safety assessment. 

Note that speciation studies gre secondary to s o l u b i l i t y  studies. 

no- actinide or 
%LV! 

e released from a 

ntatfiment'6&if!st8it or from the spent fuel or glass  matrix, then there 
2 

is l i t t J e  need f5r Uquid-phase speciation studies. Under real 
I , .  
. l i . .  1 

"conditions there%ill be instances where the solubility of a 

radionuclide is low enough (< loe8 t o  lo-' M) so that from a barrier 

engineering viewpoint no further information is required about the 

particular radionuclide solution-phase speciation. Yet, even i n  t h i s  

case, i f  additional information about the species oxidation states 

distribution can be relatively easily obtained for selected exainples, 

t h i s  may prove useful. Characterization of the redox reactions under 

Jement concentrations w i l l  aid i n  establishing confidence 

f satisfactory radionuclide containment due t o  pure 
si. 

. .  
i : .  . , -  .. * I  

~. . . .~ 
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secondary-phase formation or mixed compound inso lubi l i ty  alone. 

Although the redox information w i l l  not place any addi t ional  demands 

upon the barrier englnerlng requirements, it w i l l  clearly confirm t h a t  

L. the unmodified near-field components (e&, iron cannis ter  material, the 

overpack, etc ) re control l ing the Eh and/or pH conditions 

appropriately. ~ It is expected that speciation study r e s u l t s  w i l l  
5 

indicate  the solution-phase existence of te rva len t  o t r i v a l e n t  ions . 
Representati examples are uranium, U4+ and its hydrolysis products 

+ + 
U(OH):-~ , neptunium, N ~ ( o H ) ,  4-x technecium, Tc4+ (or ? Tc02+); 

' +  
plutonium, ~ u 3 +  ( ~ u (  :-' , with a possible intermediate t r i v a l e n t  

+ 
se, Pu(OH)~),  and €I):', a l l  und reducing Eh co 

These s tudies  w i l l  also provide experimental ver i f ica t ion  of modeling 

the solution- 

i den t i f i ca t ion  of the solution-phase redox species is no longer s imply a 

matter of providing supplementary confirming information, Solution 

speciat ion r e s u l t s  es of 

remedial conditions need to  be included i n  the engineered near-field 

\ 
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Techniques need to be'developed so t ha t  t h e  solid-phase is 

characterizable even .if i t  is amorphous or is i n  a mixed phase of 

radionuclides-cannister-corrosion products. 

The two most u t i l i zed  approaches t o  the determination of -solution- 

phase species involve separation or spectroscopic techniques. 

Separation procedures are base3 mainly upon ion se lec t ive  interact ions 

and are thus sens i t ive  t o  oxidation states. These procedures include, 

such familiar methods as organic ion-exchange r e s in  chromatography, 

solvent extraction, d the less of ten  encountered var ia t ions  on these 

methods : inorgani c ion-exchange chromatography and f i xed-phase solvent 
4 -  

ext rac t  ion systems. 
I . .  

These methods are usually applied using low pressure techniques. 

The use of high-pressue l i qu id  chromatographic (HPLC) techniques, a 

standard technique used i n  separating biological materials, has not been 

frequently employed i n  separating inorganic materials. HPLC can give 
1 

rapid separations and thus preserve the desired redox speciation 

information even under d i f f i c u l t  experimental redox conditions. 

occurs by taking advantage of the  fa i r ly  slow kine t ic  react ions of the 

important radionuclides (i.e., Tc, U, Np, Pu). 

This  

Chromatography Appli cat ion 

To i l l u s t r a t e  t he  appl icat ion of separation methodology to  the 

problem of radionuclide oxidation s ta te  speciation, r e s u l t s  from the  

1 doctoral thesis of a ~ o ~ w o r k e r ,  D r .  Horst Gehmecker are presented. H i s  

objective was t o  explore the separation and ident i f  i ca t ion  of plutonium 

oxidation state d is t r ibu t ions  at  low concentrations as might be found i n  
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groundwater. He used commonly i l a b l e  separation materials and 

established the experimental conditions under which useful workable 

schemes for oxidation state d i s t r i b u t i  

Experiments were primarily done 

IO-? M or l e  

could be clearly demonstrated. 

onium concentrations of 

Fig. 1 shows d is t r ibu t ion  coeff i  

function of oxidation state (Pu3+, Pu , Pu02 1 and 

concentration f he strong acid organic ion-exchange r e s in ,  Dowex 

50W-X8. This data suggests that ion-exchange columns can be used for a 

satisfactory plutonium oxidation state separation by using a s ing le  HCll 

concentration between 1-07 M. The important featureein Figure 1 is the 

noncrossing of the individual oxidation ate d is t r ibu t ion  coef f ic ien ts  

4+ 2+ 

ll concentrations (> 8.5 MI are used. 
+ 2+ ould be Pu02, Pu02 Pu3+, Pu 

acid concentration means tha t  a)  10 

large volumes are necessarys 

higher HCll concentra a long column Is necessary, as the  

are small. A t h i rd  mode of 

operating an ion-exc 

c 
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Figures 3 and 4 detail the  d t r ibu t ion  coef f ic ien ts  f o r  Pu i n  the 

sytem tributylphosphate (TBP)-nitric acid. 

neutral  solvent-extraction systems and d i l u t e d  TBP is the main reagent 

used i n  nuclear f u e l  reprocessi 

behavior of Pu i n t o  a pure TBP phase from various n i t r i c  acid 

concentrations. Figure 4 is similar except the TBP has been sorbed upon 

an i n e r t  s ta t ionary  material (polytrifluorochloroethylene polymer, 

usually known as Kel-F) . 

TBP is representative of 

Figure 3 shows the extract ion 

xed-phase material can be 

column form. It is evident from both Figures 3 and 4 that the 

4+ s e l e c t i v i t y  for Pu and PuOr is nonexistent. However, the difference 

i n  d i s t r ibu t ion  coef f ic ien ts  for Pu4+and Pu3+ is good and could be 

par t icu lar ly  useful i n  oxidation state speciat ion s tudies  of Pu under 

reducing conditions. 

than n i t r i c  wi th  TBP. 

po ten t ia l  for useful  species separations. 

Figure 5 shows the effect of using acids other 

Only the TBP-perchloric acid system shows any 

1 

A more useful solvent extract ion system is shown i n  Figures 6 and 

7. The material, di-(2-ethylhexyl) phosphoric acid (HDMP) is a 

moderately strong acid. When sorbed upon an i n e r t  fixed-phase it is 

similar t o  the previously discussed Dowex 50 cat ion ion-exchange resin. 

Also included i n  Figure 7 is information on PuO; dis t r ibut ion.  

before i n  the TBP system, no clear discrimination between Pu4+ and Pu02 

is possible i n  these HDMP/acid system. 

more than an experimental inconvenience. Unless the  Pu concentration is 

su f f i c i en t ly  high so that  disproportionation react ions are occurring, it 

As 

2+ 

This  may not ,  howe 

4+ is unlikely Pu and PuOg+ would coexist .  The very large d is t r ibu t ion  

coef f ic ien ts  for Pu3+, Pu4+, and PuOF in' t h i s  HDMP system at  low 
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acidities, would allow its use for  concentrating tonium (and the 

other’analogous actinide systems Np and U) species from large volumes of 

tes t  solutions. This  ability t o  concentrate species without losing 

redox information would be especially useful i n .  increasing the detection 

l i m i t  aensitiv 

reducing conditions. I n  order to  remove either Pu4+ or PuO? from t h i s  

type of column it is necessary to  use a reducing agent (ascorbic acid) 

for other actinide systems such as neptunium under 

80 that PU3+ 

’ Figures 8, 9 ,  10, and 11 6how the results for plutonium separations 

f’ram both apeoially prepared s i l ica  gel and 

su l f  onated .  silica gel used (Merck, L i C  pher Si 100, 10 vm 
particle size) has a large surface area, - 250 m /gm, and results in an’  

s i l i ca  gel that has b 

2 

3 

ion absorptlve’capacity of - 2 meq/gm.’ This capacity is similar i n  

magnitude to  a typical organic based cation or anion ion-exchange^reain. 

The other material wed is formed by attaching a sulfonic acid group, - 
SO;, t o  the’sil ica ,backbone to give: -#l-O-SO; groups. * This material 

acts as a strong acid cation exchanger 

counterpart, the sulfonated si l ica gel has no tendency to perturb the 

speciation by redox reactions as the 

1 

Unlike its organic baaed resin 

1 has no reducing properties. 

Figure 8 shows the‘distribution coefficients for absorption of 

sized equivalent to ’ 

selectivity fo 
6 
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easily eluted. For e f fec t ive  absorption of tervalent  plutonium, a 2.5-3 

hr. contact time is needed during the loading phase of the solut ion.  

Figure 9 shows the s e l e c t i v i t y  of LiChrospher SI 100 when used i n  

an absorption column. 

Pu4+ is done with 5 M H C L  

l eve l  . 

Loading is done at  0.01 M HCl104; desorption of 

Experiments were run a t  a loW8 M plutonium 

Figures 10 and 11 detail the behavior of plutonium on sulfonated 
+ silica material. Figure 10 shows that a complete Pu3*, Pu4+, Pu02, and 

PuOr redox separation can be achieved when moderate stepwise ac id i ty  

changes are used. The conditions necessary for Pu3+ and Pu4+ e lu t ion  

are considerably milder than needed i n  the Dowex 50 cation Ion=exchange 

experiments. 

Figure 11 shows similar data for oxidation state mixtures. The 

data a l s o  indicates  that when phosphoric acid is used t o  e l u t e  the  Pu4+ 

i rac t ion ,  a considerably smaller volume of eluant is needed. 

Experiments were run a t  total plutonium concentrations of either 

- l d 9  M or loo8 M. No separation differences were observed with these 

ul t ra- t race concentration levels .  

Figure 12 shows several  flow sheets proposed by Gehmecker. They 

incorporate the use of two connected columns i n  each example. The first 

column contains silica material (see Fig. 8) which is se l ec t ive  for 

t e rva len t  ions and retains th i s  oxidation state, while .the other redox 

species flow straight  through to  a second column. 

choice of using either Dowex 50-X8 or the sulfonated si l ica ca t ion  ion- 

exchanger is equally effect ive.  A s l i g h t  preference for the  system 

detailed i n  part a )  comes fiom considering the total  e luant  volumnes. 

As indicated,  the  



of the LaF3 coprecipi ta t ion technique for carrying tri- and te rva len t  

is technique is presently eing used to concentrate 

unium species om so lub i l i t y  measurement. 

M NpO; solut ions i n  6 m NaCI1, the NpOi is 

9 

Smaller so lu t ion  volumes are easier and more e f f i c i en t ly  assayed by 

counting techniques. Also the t o t a l l y  inorganic composition of the 

sulfonated si l ica ion-exchange is useful i n  preventing any species 

reduction react ions from the column material. 

The r e s u l t s  i n  Table 1 i l l u s t r a t e  t he  effectiveness of these 

separation techniques for oxidation state apeoiation determinations. 

Plutonium concentration l eve l s  of the i n i t i a l  mixed redox solut ions were 

0’l2 H. I n i t i a l  redox compositions are l isted i n  column 3 and 

the r e s u l t s  determined by counting techniques (errors are at- the 2 u 

(sigma) l e v e l )  are l isted i n  subsequent columns. The agreement between 

the  i n i t i a l  s t a r t i n g  plutonium oxidation state composition and the  

experimentally determined redox species percentages is extraordinary, 

especially i f  one considers the ul t ra- t race concentration l eve l  used. 

By using a combination of absorption and ca t ion  ion-exchange columns 

redox speciat ion determinations are feasible down t o  the  very l i m i t s  of 

radionuclide counting detection. 

Data are also included i n  t h i s  table which show the effect iveness  

.; 

the l i t e r a tu re .2  They center upon the use of solvent extract ion methods 
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and the use of TTA (thenoyltrifluoroacetone) is frequently encountered. 

Most, i f  not a l l ,  of these liquid-liquid phase solvent extract ion 

determinations were performed under oxidizing conditions. It is f e l t  

that  the use of i so la ted  absorption and ion-exchange columns can give 

better redox speciation resu l t s .  

where redox speciat ion is examined from so lub i l i t y  s tud ies  done under 

reducing conditions (3 repository conditions). 

columns can be maintained i n  a close approximation to  those ex is t ing  i n  

the reducing test solutions.  

This is especial ly  useful  for  the case 

Eh conditions i n  the 

Spectroscopic Applications 

Spectroscopic techniques provide more versatile but  less sens i t i ve  

methods for speclat ion s tud ie s  than separation techniques. 

act inide radionuclides have sharp absorption bands characteristic for 

each ac t in ide  ion oxidation state. These e lec t ronic  t r ans i t i ons  arise 

A l l  the 

1 

from the 51" electron configurations and the strength of these 

t r ans i t i ons  is seldom large. Dilute solut ions of ions or complexes of 

these elements (U, Np, Pu and Am) are usually weakly absorbing and more 

sens i t i ve  instrumental techniques are needed for accurate studies.  

Table 2 lists the absorption parameters fo r  U, I p ,  Pu, Am, and Tc 

(technioium). 

absorption band for each l isted radionuclide oxidation state. Molar 

The ent ry  under wavelength is f o r  the s t rongest  

absorpt ivi ty  is a parameter that normalizes the absorption process per 

un i t  length. The absorption spectroscopy equation is expressed as: 

. 
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wher 

f l u x ,  a Is the absbrbance'coefficient and E is the u n i t  length, usually 

is the amount of l i g h t  absorped, A, is the in i t ia l  l i gh t  

expressed i n  units of centimeters. The absorbance coefficient,.ar-, can 

be broken into two components: c, the centration of the absorbing 

e ,extinction coefficie 

(2) 

sensitivity, is an estimate of the 

lowest concentration detectable for each oxidation state. It is assumed 

that a )  a conventional research UV-VISoNIR spectrometer is used, b) the 

m i n i m u m  detectable absorption on an expanded acale l a  5 x 

absorbance units (signal t o  noise ratio is l t l ) , -and c) the pathlength 
2+ . It is evident that even for the best actinide example, Pu02 , 

- I d 6  H l a  the l imit ing detectable redox species concentration. 

the fission 'product radionuclides (e.& , technicium) , an order of 

magnitude detection sensitivity increase is expected, as the observed 

transitions are not 'formally forbidden. Another order of magnitude 

For 

increase i n  sensitivity for a l l  the examples actinide ions, 

ined by using 10 cm pathlength cells, but the 

solution volum creases (> 7 mll neede 

tection sensitivities are strict 

di lute ,  low ion solutions, conditions that are found i n  other 

- t repository sit I n  strong sa l t  solutions 6 

edox species l i s t ed ,  

in Table 2 wi This interaction to  
3-5 the molar absorptivity values 

and hence the detection sensitivity. Despite t h i s  hinderance, useful. 
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so lu t ion  redox species determinations caq still be done with absorptio 

spectroscopy techniques for several  of these ac t in ide  systems. The , 

possible systems are pr incipal ly  those t h a t  involve a difference In  t h  

solut ion and solid-phase oxidation s t a t e s .  Examples are:- Pu02.xH20 

(solid phase) , PuO; or Pu02Ctx 

(solid phase), NpO; or Np02Ctx (lox) , systems l i k e l y  

conditions; and Pu02*H20 (solid phase), Pu3+ or PuC 

under the strong FeiFe2+ controlled reducing conditions and 

A T ~ ( O H ) ~ * X H ~ O  or Am02*xH20 (solid phase), AmCt;-'. (solution phase) a t  .&ow 

pH values and under both oxidizing and reducing conditions. Absorption 

(solution phase) , and Np02*xH20 

Spectroscopy can be used t o  ident i fy  the so lu t ion  redox species i n  each 

of the above examples because the solution-phase concentration is large 

(> H) over some portion of the  pH dependent so lub i l i t y  

determination study. Obviously, the radionuclide concentration l eve l s  

needed to  apply t h i s  technique are at  an unacceptable level-from a near- 

f i e ld  containment viewpoint. However t h i s  type  of experimental 
1 

speciation information is useful to  define conditions tha t  are needed to  

prevent unacceptable radionuclide release conditions. For example, well 

established Eh and pH conditions i n  the near-field boundary could 

prevent radioact ive releases above an acceptable level .  

A better use of apectroscopic technique8 for speciat ion studies is 

shown i n  Figures 14, 15, 16, and 17. These figures'show absorption 

spectra for Np, Pus and Am with various Ct,' concentrations and severa l ,  

other ligands. A s  noted before, it is clear that the v i s i b l e  region 

t r ans i t i ons  are decreasing i n  Intensi ty  as t he  chloride ion 

I 

concentration increases. While not clearly obvious i n  the f irst-three: 



t h i s  group, f igure 17, an expanded presentation of 

systems, shows the typ ica l  Small s h i f t s  that  occur i n  these 5fn-5fn 

t rans  complexation. It is t h i s  unique spectroscopic feature  

that  can be explolted t o  exam1 
6 A possible nee 

that form the data b delers. Such simple 

interact ions have literature values as f O l l O W 8  for chloro complexation: 

. 

- 5  = .a; 
UQ2CL+ PUO2 ca+ 

U4+ + CL- - UCt3+, K - 400, K = 2, K - 8 ;  PU3+ + c11- = 
UCL3+ NpC t3+ P U d +  

puct2+ - 17, K 17. Certainly,  something 13 

inconsis tent  for each grouping of redox-species-chloro complexes. 
puca2+ Amct2+ 

Systematic comparisons for H O Y  ions (M = U ,  Np, Pu) would not support a 

s l a r g e r  constan 

ems, and the finding 



14 

PuCa2+; the r a t i o  of PuCa2*/Pu3+ is equal t o  (K 

brine] or (17)(-27) = 460 = PuCl /Pu . 
ion i n  equilibrium with a s o l u b i l i t y  control l ing s o l i d  phase, its 

) * ( A  ) CPBB3 
PUCi2+ ca- 

2+ 3+ Since Pu3+ is the  pr incipal  

. ,  

concentration m u s t  be maintained i n  solution. Yet, Pu3+ is also i n  

equilibrium with PuC12+; and t h  

approximately 2.5 orders of mag 

concentration. 

that might be expected is greatly increased i f  the chloro 

s t a b i l i t y  constant value of 17 is correct. While it is l i k e l y  t h i s  

ion of PUCE*+ is 

r than the Pu 3+ 

Thus the total  solut ion inventory of Pu rad1 

value is too large, what is the correct s t a b i l i t y  constant? Even small 

complexation constants i n  the range of 1 can have a noticeable effect. 

If s e n s i t i v i t y  calculat ions using the modeler's codes confirm the  

need for redetermination of any of the s t a b i l i t y  constants for the type 

of complexation systems discussed above, absorption spectroscopic 

techniques are the most promising experimental procedure. Data for the 

subt le  act inide ion s h i f t s  due to  complexation can be collected today i n  

a superior manner due to  the advances of modern instrumentation. 

data collected can a l s o  be analyzed i n  a much better way than 20 years 

ago due to  the general ava i l ab i l i t y  and improvement of computer peak 

deconvolution programs and a l so  due t o  a superior understanding of 

formulating and applying so lu t ion  a c t i v i t y  coeff ic ients .  

The 

Spectroscopic techniques are also needed for the resolut ion of the 

4+ problem of te rva len t  ac t in ide  ion (especially Pu 

carbonate ion. 

experimenters and has caused much e f f o r t  to  be expended i n  t ry ing  t 
8 confirm the  earlier Russian value o r  t o  redetermine it accurately. It 

complexation with 

This problem has held the a t t en t ion  of many 
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. 

i 

be made. Preliminary experiments have indicated that the instrumental 

s e n s l t i v l t i e s  needed exceed the capabilities of conventional UV-VIS-NIR 

Spectrometers. 

teohnique t o  conventional absorption spectroscopy, such as optoacoustic 

(OA) (photoacowtic) spectroscopy. Stump et al. have demonstrated the 

This problem requires a more sens i t i ve  a l t e rna t ive  

use of OA spectroscopy for speciat ion studies of aqueous ac t in ide  ions. 

As i n  absorption spectroscopy, the problem i n  OA spectroscopy is t o  

measure the energy absorbed (Eabs) when a l i gh t  beam or l i g h t  pulse 

passes through an op t i ca l ly  t h i n  medium of length 

coef f ic ien t  a. The equation, Eabs = Eo&, is basically the same for 

either technique; however the meana of determining Eabs is radically 

d i f fe ren t .  

I 

and absorption 

I n  conventional absorption work Eabs f a species is determined as 

the  difference between Io ( l igh t  in tens i ty  after passing through 

solvent)  and I ( l ight  in t ens i ty  after passing through solvent plus 

so lu te ) .  For weak absorption the problem arises of determining the 

difference between two large values. 

is measured d i rec t ly .  The quantity evaluated is the amplitude (or 

integrated in tens i ty)  of a pressure wave that is generated as a r e s u l t  

I n  OA spectroscopy, however, Eabs, 
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of the degradation of the e lec t ronic  absorption energy i n t o  heat within 

a localized area defined by the l i g h t  beam. Expansion by the heated 

area produces the pressure wave that is proportional todEabs for systems 

that r e l ax  primarily by non-radiative processes. This OA method l a  of 

great advantage i n  weakly absorbing aystems and offer8 the poas ib l i ty  of 

increasing the detect ion s e n s i t i v i t y  by one to  two order8 of magnitud 

when compared t o  the l i m i t s  of conventional absorptio 
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Initial 
Condi ti om 

Determination of Oxidation States S o l U t i O l  Oxidation 
State Sil ica Cel LlChrosorU LaF3-precp. 

1 

Pus+ 
Ra4+ 

2 
33 * 1eS 
47kleS 

3s f l e !  

4S*l*: 
s3* 1,s 
47f1,S -r 

3 
54 f l,! SOfl.5 

4 } 7lf2.0 33,3 
33,3 

29 f 1.0 z 33,3 
0 

28*1,0 

I f o e 3  

Table 1. Aklysle of Oxidation State Determln 
System in  Synthetic Gmunduater. 
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Table 2. Absorption Parameters for U, Np, Pu, Am, and Tc 

Sens i t iv i ty  
Wave Length Molar Absorptivity ( m ~ l e / L ) - ~  

Species (nm) (i/mole-cm) (A - 5x10 

h3+ 

Am4+ 

3+ 

44 
Pu 

Pu 
+ 

PUO2 

PUO2 24 

u3+ 
u4+ 
uo; 

uof' 

Tc3+ 
44 Tc 

TcO'G 

503 

456 

600 

470 

568 

830 

786 

723 

980 

1223 

520 

650 

- 
41 5 

340 

485 

246 

380 

30 

38 

55 

19 

550 

44 

1 27 

395 

45 

140 

58 

- 
8 

4,500 

4 , 300 

6,220 

1.3 x loo6 

1 -5 

1.3 

2.6 loo5 

9.0 loo7 

9.0 x 

1.1 

4.0 x 

1.3 x lod 

1.1 x 

3.5 x 

8.6 x 

- 
6.3 

1.1 loo7 

1.2 10 '~  

8.0 x 
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Figure 2. Eluatfon-Peaks For Pu3+, Pull+, PuOi, and PuO:+ for a 

(lOOx4)mm Dowex AC50-X8 Column, Various Acidities. 



Figure 3. Distribution Coefficients for Pu and PuO; in the 

HN03. (Liquid-Liquid Phase Extraction). 
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. 
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Figure 4. Distribution Coefficients for Pu 3+ , Pu4+, and PuO$+ in the 
System TBPIHNO 

Phase). 

(TBP Sorbed on an Inert Stationary 3' 
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Figure 6. D i s tr ibut ion  Coefficients for Pu3+, Pu4+, and PuOg+ i n  t h e  

System HDEHPIMineral Acids. 

d )  H2S04 

a) m03, b) HCR, c )  HCR04, and 

. 

e 
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awi am 0.1 1.0 10 
Holaritot Htl 

3+ 4+ Figure 8.  Distribution Coefficients for the Absorption of Pu , Pu , 
and PuO;' on LiChroprep SI 60 as a Function of Hydrochloric 

Acid Concentration. 

t 



29 

. .  

0 I 4 6 a I O  I2  14 16 18 
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Figure 9.  

a LiChropher SI 100 Column/Acid System 

a )  Pu3*/Pu4+; b) Pu /Pu02; c )  Pu /Pu02 

Column Size: (10Ox4)mm 

Flow Rate: 0.3 mfi-min-1-cm'2 (Sorption) 

4+ + 4+ 2+ 

- 1  -2 
1 .O ma-min -cm (Desorption) 
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@ 
PU'*, Pu", 

p"Z I Puo; , P u o y  

- I  LiOIrospher 
Sl 100 

*@ 

4+ Figure 12. Flowsheet Diagrams for the Determination of Pu3+, Pu , 
+ 

Pu02, and P u O F  Oxidation State with Ion-Exchange 

Chromatography. a )  Silica Gel (LiChrospher SI 100)/Acid 4 

Sulfonated Silica Cation Ion-Exchange MateriaWAcid; 

b) Silica G e l  (LiChrospher SI 100)/Acid + Dowex SOW-XB 

Cation Ion-Exchange Resin/Acid. 



33 

a 

i 

400 

6oC 

cot 

2a 

1 1 1 1 1 1 

A '  

700 

Figure 13. Absorption Spectrum of 

, A  
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Neptunium(II1) a t  Various Chloride 
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Figure 14. Absorption Spectrum of Plutonium(II1) at Various Chloride 

Concentrations. , 
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Figure 15. Ab arious Chloride 
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Figure 16. The 503 nm Band i n  the  Americium(II1) Spectrum: 

L 

505 , 515 - om 
: 
!O 

1 M HCR04, -- - 11.4 M L i  Br, 

6.0 M K CO s o l u t i o n s .  The Molar Absorbance E i n  ----- 
2 3  

-1 - 1  M cm of 0.6-2.0 mM Americium Solutions is P lo t ted  

Against the  Wavelength. 




