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Abstract 

The effect of rigid inclusions on the sintering of glass powder 

compacts has been investigated at 600°C. The densification rates show good 

agreement with the rule of mixtures for inclusion volume fractions of ~0.1. 

The transient stresses generated during sintering by the presence of the 

inclusions were evaluated from the sintering data. Below inclusion volume 

fractions of -0.12, the results are in excellent agreement with Scherer's 

theory for viscous sintering with rigid inclusions. At higher inclusion 

volume fractions, interactio~s between the inclusion particles lea~ to 

large deviations from theoretical predictions. 
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1. INTRODUCTION 

It is now widely recognized that inclusions and heterogeneities can 

have important effects on sintering. Inclusions induce differential 

sintering rates, which in turn produce transient stresses during 

sintering. 1 These stresses can not only retard the densification rate of 

the body but can also induce creep damage by the generation of cracklike 

2 3 1-5 voids.' A number of approaches have been used to determine 

analytically the stresses developed during sintering and their effects on 

densification. 6 Recently, Scherer has modelled the effect of rigid (i.e. 

nonsintering, incompressible) inclusions on sintering ·and has applied the 

theory to the case of viscous sintering. Scherer considered two models to 

describe the stresses developed during sintering. First, the composite was 

represented by a composite sphere, with the core being the inclusion and 

the cladding being the sintering matrix. This composite sphere model has 

been used by others 2 ,3 to consider the same problem, and is expected to 

apply for low volume fractions of inclusions where the stress fields of the 

inclusions do not overlap. The second model is related to one used 

previously to analyze the sintering of a body containing a bimodal pore 

size distribution. 7 This model, referred to as the self-consistent model, 

is expected to apply until the volume fraction of inclusions is so great 

that they form a contiguous network that prevents contraction of the 

composite. For the case of viscous sintering, the predictions of the two 

models are indistinguishable for inclusion volume fractions below -0.2. 

Experimentally, the densification of a composite containing rigid, 

8 particulate inclusions has been studied by Rahaman and De Jonghe for 

polycrystalline zinc oxide powder compacts containing different volume 

fractions of silicon carbide. The main objectives were to investigate the 

effect of inclusions on the sintering of a polycrystalline oxide system, in 
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which densification and deformation occur by a diffusion mechanism, and to 

estimate the transient stresses developed in the matrix due to the 

constraint of rigid inclusions. In the present study, the investigation 

of the effect of rigid inclusions on sintering is extended to the case of 

glass powder compacts in which mass transport occurs by viscous flow. 

2. EXPERIMENTAL 

+ 
A soda-lime glass powder, average particle size -4~m, was the 

matrix material, and silicon carbide* particles, classified to a narrow 

size range with an average of -35~m, were the inclusion phase. The glass 

powder was used previously in creep-sintering experiments,9 and, except for 

its particle size, the silicon carbide was similar to that used in an 

earlier stUdy8 on the effect of inclusions on the sintering of zinc oxide. 
~ 

The powders, containing -5 v% Carbowax** as binder, were mixed in 

chloroform and stir-dried, then hand-ground lightly using a mortar and 

pestle, and finally die-pressed to give composite green compacts (6 mm 

diameter by 6 mm) having approximately the same matrix density (-0.55) but 

different volume fractions of inclusions. 

The compacts were sintered for 2 hours at 600 0 c in air, using a . 

dilatometer 10 that allowed the sintering kinetics to be monitored 

continuously. The binder burnout and sintering procedure was the same as 

that described previOuSly.9 The density at any time was determined from 

the green density and from the measured·shrinkage. The final density was 

also measured using Archimedes' principle. The microstructure of the 

fracture surface of the sintered compacts was examined in a scanning 

electron microscope. 

+ 
Owens-Illinois, Perrysburg, OH 43551 

*Geoscience Corp., New York, NY 10175 

**Union Carbide Corp., New York, NY 10017 
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3. DATA ANALYSIS 

The experiments give data for the initial density, Pco' (or the final 

density, pcf ) of the composite and the axial shrinkage, ~L/Lo' of the 

compact [L = initial sample length, and ~L = L - L, where L = o 0 

instantaneous sample length]. The density of the composite, P • at any c 

time can be calculated using the relation 

P = P (1 - ~R/R ) -2 (1 _ ~L/L )-1 
c co 0 0 

(1) 

where R is the initial sample radius, and ~R = R - R, where R is the o 0 

instantaneous sample radius. As observed earlier8 in the sintering of 

similar glass powders, the shrinkage is slightly anisotropic, but the axial 

and radial shrinkages are related by the expression 

~R/R = k~LlL 
o 0 

(2) 

where k is a constant for a given experiment. The value of k was obtained 

from the ~R/R and ~L/L values at the end of the sintering experiment. o 0 

Then 

P = P (1 - k~L/L )-2(1 - ~L/L )-1 . 
c co 0 0 

The density of the matrix, P , at any time is defined as m 

P = (m /V ) 
m m m 

(3) 

(4 ) 

where m is the mass, and V is the volume of the matrix. If V and V m m co c 

are the initial and instantaneous volumes of the composite, and m is the s 

mass, and f V is the volume of the inclusion phase. then o co 

P = (m - m )/(V - f V ) m c s coco 

where m is the total mass of the composite. Taking the density of c 

inclusion phase as Ps ' then 

Pm (pcoVco - P f V )/(V s 0 eo c - f V ) o co 

Since V /V Pe/Peo ' then co c 

P = m (pco - psfo)Pe/(pco - f oPe) 

(5 ) 

the 

(6 ) 

(7) 
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The densification rate of the matrix, Pm' is 

Pm = pcopc(pco - fops)/(pco - fopc)2 (8) 

Then, from equations (7) and (8), the volumetric strain rate of the matrix 

is 

Pm/Pm = (pc/pc)pco/(pco - foPc) (9) 

The quantity f is defined as the volume fraction of the inclusion phase 
o 

within the initial composite powder compact, which includes the void phase. 

As the void phase disappears during sintering the volume fraction of the 

inclusions increase. Usually the volume fraction of the inclusions is 

calculated on the basis of the fully dense composite, denoted here by F. 

Then the volume fraction of inclusions, f, at any matrix density, P , and F 
m 

are related by the expression 

f = P [p + (1 - F) /F]-1 
m m . 

( 1 0) 

4. RESULTS 

Figure 1 shows the density of the composite, P • versus time, t. for c 

different inclusion volume fractions, F. The results were calculated using 

equation (3) and the data for the axial shrinkage, ~L/L • which was o 

measured continuously, and the shrinkage anisotropy factor, k, which was 

measured at the end of each experiment. Each curve is the average of two 

runs under the same conditions; the results are reproducible to within ±2%. 

The final density calculated from the sintering curves are in good 

agreement with the values determined using Archimedes' principle. The 

beginning of densification was taken as t=O, and the sintering temperature 

was reached after t=8 minutes. Since the samples were pressed to 

approximately the same matrix density (-0.51 - 0.55), the increasing 

initial density of the composite with increasing F reflects the higher 

density of the silicon carbide inclusions (density -3.2 Mgm-3) compared 

with the density of the glass matrix. 
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The density of the matrix, P , was calculated from the data of Fig. 1 m . 

and equation (7). -3 The theoretical density of the glass was 2.43 Mgm , the 

. 8 
value measured in earlier experiments. Figure 2 shows the results for Pm 

versus time for different values of F. For F ~ 0.17, the initial matrix 

density was constant at -0.55, and at any time, the effect of the 

inclusions on p is relatively small. Above F - 0.17, the samples could m 

not be compacted to the same initial matrix density of 0.55, b~cause of 

interactions between the rigid inclusion particles; the effect of the 

inclusions on p is also seen to be more pronounced. m 

Since the density of the matrix increases during sintering, the 

inclusion volume fraction, f, increases with p (or time). The change in f 
m 

as a function of p is shown in Fig. 3 for different values of F. It is m 

seen that f increases approximately linearly with p . m 

The composite densification rate, p /p , was found by fitting smooth c c 

curves to the data of Fig. 1 and differentiating. Figure 4 shows the 

results for p /p versus p for different values of F. For F=0.09 and for 
c c m 

F=0.17 at lower p , the effect of the inclusions is relatively small, but 
m 

larger effects become noticeable for F=0.17 at values of p ~0.8. The 
m 

effect of the inclusions is seen to be significant for the sample with 

F=0.25. 

Figure 5 shows a scanning electron micrograph of the fracture surface 

of a sample with F=O.09 and sintered to a matrix density of -0.85. The 

inclusion particle, which is -10 times the initial particle size of the 

glass powder, is somewhat angular. 

5. DISCUSSION 

It is instructive to compare the data of the present study with the 

predictions of theoretical models. The analysis of SCherer 6 seems well 

suited to this comparison. Although the predictions of both of Scherer's 

6 



.. 

models (i.e. the composite sphere model and the self-consistent model) are 

indistinguishable for viscous sintering with F below -0.2, the 

self-consistent model will be used in the present discussion since this 

model has a greater range of applicability. 

According to Scherer's theory, the line.ar strain rate of the 

composite, £c' can be expressed by an equation of the form 

P 1(3p ) = (1 - f)K Ef 1(4G ) c c s-c m c ( 11) 

where f is the instantaneous volume fraction of inclusions, Efm is the 

"free" strain rate of the matrix, and K is related to the "apparent bulk s-c 

modulus" of the matrix, K , and the shear viscosity of the composite, G • m c 

by 

K = [1/(4G ) + f/(3K )]-1 
s-c c m ( 1 2) 

The rule of mixtures predicts that the linear strain rate of the composite 

is 

• rm • 
E = (1 - f)E c fm ( 1 3) 

Then from equations (.12) and (13), 

• • rm -1 
E IE = [1 + f (4G ) 10K )] . c c c m ( 1 4) 

The shear viscosity of the composite, G , was taken as the lower bound of 
c 

11 the Hashin-Shtrikman equation, and is given by 

4G I (3K ) = 4G 10K )[ 1 + (15/2) (f I (1 "" f))( 1 - \I ) I (4 - 5 \I )] ( 1 5 ) c m m m . m m 

The ratio 4G 1(3K ) is related to the Poisson's ratio of the matrix, \1m' by m m 

4G 10K) = 2(1 - 2\1 )/(1 + \1m) m m m 

The Poisson's ratio is related to the matrix density by12 

\I = (1/2)[p 1(3 - 2p )]1/2 
m m m 

Equations (14)-(17) were used to evaluate the theoretical values of 

• • rm 
E: IE • 

C C 

( 1 6) 

( 17) 

• • rm 
In Figure 6, the experimental results for E IE are compared with c c 

the predictions of equation (14) for values of F of 0.09 and 0.17. It is 
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seen that the data are in excellent agreement with Scherer's model for 

F=0.09. For F=0.17, there is initially good agreement with the theory, but 

significant deviations are evident above Pm-0.7. At this value of Pm' 

the inclusion volume fraction, f, is -0.12. The deviations from the theory 

for F=0.25 are very large and fall outside the scale of Figure 6. One 

factor which may give rise to the large deviations between theory and 

experiment above f-0.12 is interaction between the inclusion particles. 

Scherer's model does not allow for the fact that the inclusions will 

initially interfere, and later will come into contact and stop 

densification at some critical volume fraction, f*. For inclusions of 

uniform size, percolation theory13 indicates that the inclusion will form a 

contiguous network when f-0.16. Since Figure 2 indicates that appreciable 

densification occurs for much higher values of f, it appears that the 

inclusion network is not stiff enough to resist the sintering stress. For 

angular inclusion particles (Figure 5), the value of f at which significant 

deviations from theory become evident would be expected to be slightly 

smaller than for spherical particles. Figure 6 also shows that the 

deviation from the rule of mixtures is ~5·% for FSO.1. 

The stresses caused by the inclusions in the sample can also be 

calculated. According to Scherer's model, the ratio of the hydrostatic 

stress, am' in the matrix caused by the inclusions, to the sintering 

stress, E, is given by 

a IE = -f[f + 3K 1(4G )J-1 
m m c 

( 18) 

Thus a IE can be evaluated using equations (16) and (17). The shear stress m 

at the interface between the inclusion and the matrix is given by 

( 1 9) 

8 
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The experimental values for a IE can be determined by recalling that m 

the effective sintering stress in the matrix is related to the "free" 

strain rate by 

3£ m -3€f (1 - a IE) m m (20) 

Figure 7 shows a comparison between the experimental and theoretical 

values for a IE as a function of p ,for F=0.09 and F=0.17. As observed m m 
• • rm 

earlier for the E IE results, the experimental data show excellent c c 

agreement with Scherer's model for F~0.12. For F~O.l, the maximum value of 

a IE is quite small, i.e. ~0.05, and thus cannot lead to any appreciable 
m 

deviations from the rule of mixtures (Figure 6). The experimental and 

theoretical data for a.IE, plotted as a function of p , is shown in Figure 
1 m 

8 for F=0.09.· The experimental data is seen to be in excellent agreement 

with Scherer's theory. As shown earlier, strong deviations from theory 

occur for f~0.12, and these data have been omitted. Figure 8 shows that a
i 

is a Significant fraction of the sintering stress in the early stages of 

densification, but its value is not nearly as great as the a. values. 
1 

obtained for polycrystalline matrices,3,7 where a
i 

has been estimated as 

many times larger than the sintering stress. 

6. CONCLUSIONS 

The effect of rigid inclusions on the sintering of glass has been 

investigated, and the stresses caused by the inclusions during sintering 

have been calculated and compared with Scherer's theory of viscous 

sintering with rigid inclusions. The densification rates are in good 

agreement with the rule of mixtures for inclusion volume fractions of ~0.1. 

The data for the densification rates, and the stresses caused by the 

inclusions are in excellent agreement with Scherer's theory for inclusion 

volume fractions of ~0.12. Above this value, interactions between the 

inclusions cause significant deviations from theory. The results suggest 
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that high density composites can be fabricated readily by conventional 

(pressureless) sintering for inclusion volume fractions of ~O.15 provided 

that the matrix deforms in a viscous manner. 

Acknowledgement: The authors thank Dr. G.W. Scherer for a preprint of his 

paper (Reference 6). 
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matrix density, p , of -0.85. m 

6. Comparison of the experimental results for the linear strain rate of 

the composite normalized by the strain rate from the rule of mixtures 

• • rm 
[equation (13)J, e Ie ,versus relative density of the matrix, p , . c c m 

with the predictions of Scherer's model [equation (14)J, for indicated 

volume fractions of inclusions, F. 

7. Hydrostatic stress in the matrix normalized to the sintering stress 

8. 

[equation (20)J, a IE, versus the relative density of the matrix, p , m m 

compared with the predictions of Scherer's theory, [equation (18)J, 

for indicated volume fractions of inclusions, F. 

Shear stress at the interface normalized to the sintering stress, 

[equation (19)J, ailE, versus the relative density of the matrix, Pm' 

compared with the predictions of Scherer's theory for volume fraction 

of inclusions, F, of 0.09. 
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